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Strong gravitational lensing of gravitational waves (GWs) has been forecasted to become detectable in the
upcoming LIGO/Virgo/KAGRA observing runs. However, definitively distinguishing pairs of lensed sources
from random associations is a challenging problem. We investigate the degree to which unlensed events mimic
lensed ones because of the overlap of parameters due to a combination of random coincidence and errors in
parameter estimation. Lensed events are expected to have consistent masses and sky locations, and constrained
relative phases, but may have differing apparent distances due to lensing magnification. We construct a mock
catalog of lensed and unlensed events. We find that the probability of a false alarm based on coincidental
overlaps of the chirp mass, sky location, and coalescence phase are approximately 9%, 1%, and 10% per
pair, respectively. Combining all three parameters, we arrive at an overall false alarm probability per pair of
∼ 10−4. We validate our results against the GWTC-2 data, finding that the catalog data is consistent with
our simulations. As the number of events, N , in the GW catalogs increases, the number of random pairs of
events increases as ∼ N2. Meanwhile, the number of lensed events will increase linearly with N , implying
that for sufficiently high N , the false alarms will always dominate over the true lensing events. This issue
can be compensated for by placing higher thresholds on the lensing candidates (e.g., selecting a higher signal-
to-noise ratio (SNR) threshold, ρthr), which will lead to better parameter estimation and, thus, lower false
alarm probabilities per pair—at the cost of dramatically decreasing the size of the lensing sample (∝ ρ−3

thr).
We show that with our simple overlap criteria for current detectors at design sensitivity, the false alarms will
dominate for realistic lensing rates (. 10−3) even when selecting the highest SNR pairs. These results highlight
the necessity to design alternative identification criteria beyond simple waveform and sky location overlap for
conclusive detection of strong lensing. Future GW detectors such as Cosmic Explorer and Einstein Telescope
may provide sufficient improvement in parameter estimation and a commensurate decrease in the incidence of
coincidental overlap of parameters, allowing for the conclusive detection of strong lensing of GWs even without
additional detection criteria.

I. INTRODUCTION

When light travels near massive objects over cosmological
distances, it is gravitationally lensed [1, 2]. This phenomenon
leads to many interesting observations in the electromagnetic
band, such as distortions of galaxy images into long arcs or
Einstein “rings,” time-variable changes in the flux emitted by
stars in the limit of micro-lensing, multiple images of the same
supernova explosion, and statistical distortions of background
light in the limit of weak lensing. Gravitational lensing of
electromagnetic waves is widely used in studies of astronomy,
astrophysics, and cosmology, including constraining the dark
matter [3, 4], discovering exoplanets [5], measuring the Hub-
ble constant [6], uncovering massive objects and structures
that are too faint to be detected directly [7, 8], and a wide
range of other effects (e.g., see [9–14]).

Just as in the case of light, gravitational waves (GWs) can
also be gravitationally lensed [15–20]. However, the tools to
detect and analyze lensed GWs have been developed only re-
cently [21–34]. In particular, when a GW is strongly lensed,
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its amplitude, arrival time, and overall phase can change while
the frequency evolution remains the same [15–20, 35, 36]. As
a consequence, GW detectors might detect multiple images as
repeated events separated by time delays of minutes to months
when lensed by galaxies [37–39] and up to years when lensed
by galaxy clusters [40–44]. If the GWs propagate near smaller
lenses such as stars or compact objects, micro- or milli-lensing
may produce observable frequency-dependent amplitude and
phase modulations [21–23, 45–49]. Indeed, lensing can in-
duce many effects on GWs.

If observed, lensed GWs would enable a plethora of new
scientific studies. For example, they might allow us to lo-
cate merging black holes at sub-arcsecond precision when
combined with electromagnetic lensing surveys [28]. When
accompanied by an electromagnetic counterpart, they could
enable precision cosmography studies owing to the sub-
millisecond lensing time-delay measurements granted by GW
observations [28, 50–54]. Lensing of GWs could be used to
perform precision tests of the speed and polarization content
of GWs [55–57] and to break the so-called mass-sheet degen-
eracy [58]. They could also be used to detect intermediate-
mass and primordial black holes through micro-lensing obser-
vations [22, 47, 59]. Finally, the statistics of lensing distribu-
tions may provide a clean and powerful cosmological probe,
constraining both the source and lens populations [60].
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Figure 1. Comparison of waveforms of lensed images from the
same event (upper panels) versus waveforms of images from sepa-
rate events (lower panels). The waveforms of the lensed images show
high resemblance, although their amplitudes are different due to the
magnification caused by lensing. On the other hand, the waveforms
of the unlensed images also show resemblance (due to coincidence),
mimicking lensing.

A particularly exciting area is the strong lensing of GWs,
forecasted to be at a detectable rate at design sensitivity [37–
39, 60–62]. Multiply imaged GW sources produce two or
more waveforms with consistent frequency evolution and sky
locations but different overall amplitudes, arrival times, and
complex phases [63]. To detect such near-identical signal
pairs, we test if two waveforms have identical detector-frame
parameters within detector accuracy [24, 29, 30, 32, 63].
However, it is also possible for two waveforms to have sim-
ilar detector-frame parameters by coincidence, resulting in
a “false alarm.” Figure 1 shows an example in which two
unlensed waveforms from separate events show high resem-
blance due to coincidence, mimicking lensing. This is a timely
problem to investigate, given that several groups have reported
the intriguing possibility that LIGO [64] and Virgo [65] have
already observed lensing [29, 66–68], and in light of the re-
cent LIGO–Virgo–Kagra search for lensing [69].

To show that an event pair is lensed, we must rule out the
possibility that it is just a chance overlap instead of multiple
images of a single source. Two approaches exist to distinguish
these possibilities. First, statistical approaches rely on quanti-
fying the likelihood of a false alarm using a particular metric,
usually called coherence ratio, and a simulated population of
events [29, 30, 34, 63]. A second approach quantifies the like-
lihood that a given event pair is lensed using a Bayes’ factor,
which relies on accurate modeling of the source and lens pop-
ulations [32]. However, prior literature has not focused on (i)
understanding to what extent individual parameters contribute
to the false alarm rate, (ii) quantifying which types of events
would enable more confident detection of lensing, and (iii)
how triply and quadruply-imaged events raise our confidence
in lensed detections. In what follows we address these issues.

In particular, we investigate the probability that random
astrophysical processes could create two GWs sources that
mimic strong lensing. We construct a mock catalog of lensed
and unlensed events, and define our parameter overlap statis-
tics, in Sec. II. We present the results for the overlap in our

mock catalog for the mass, sky position, and phase in Sec. III.
We also discuss the total false alarm probability, effects of
triple and quadruple images and higher signal-to-noise ratio
(SNR) thresholds on the false alarm probability, and the nec-
essary conditions for conclusive identification of strong lens-
ing. We conclude in Sec. IV.

II. METHODS

The propagation of a wave around a lens can be obtained by
solving the diffraction integral, F , which considers the prop-
agation along all possible paths (e.g., see [70]). In the station-
ary phase approximation, when the time delay between the
paths ∆t is larger than the inverse frequency of the wave, i.e.,
|ω∆t| � 1, this integral is dominated by the stationary points.
This implies that distinct images are formed. In this regime,
for a frequency domain waveform h̃(ω), the lensed signal will
be given by

h̃L(ω) = F (ω)h̃(ω) , (1)

F (ω) ≈
∑
j

|µj |1/2 exp
(
iω∆tj − i sign(ω)

njπ

2

)
, (2)

where µj is the amplification factor of the j-th image, ∆tj
its time delay, and nj the Morse index. This last frequency-
independent phase shift is associated with the image type or
number of caustics crossed between the source and the ob-
server. For a single lens it takes three possible values: nj = 0
for Type I, nj = 1 for type II, and nj = 2 for type III images.
Therefore, in the regime of multiple images (also known as
strong lensing), a GW source will suffer three main effects:
(i) an amplitude change via µj , (ii) a different arrival time
due to ∆tj , and (iii) a possible waveform distortion due to
nj if the original signal contains multiple frequency compo-
nents. The first two modifications are exactly degenerate with
a change in the luminosity distance and coalescence time. The
last one is approximately degenerate with a change in the co-
alescence phase when the quadrupole radiation dominates the
signal [35, 36].

The fact that for “typical” binary black-hole mergers (those
without significant higher modes, precession, or eccentricity)
the effects of strong lensing are (approximately) degenerate
with a few parameters describing the binary implies that we
can search for multiple images by looking for correlations in
the other parameters.1 In particular, one can search for events
with the same masses, spins, and sky positions. Moreover,
since the Morse index introduces only a fixed phase shift, one
can also look for coalescence phase differences of multiples
of π/4 (∆φMorse = 2∆ϕc).

The search for strongly lensed events is not as simple as
this implies, however. The first obvious limitation is the ob-
servational error. Because some parameters are poorly mea-
sured (e.g., individual component spins), parameter overlap

1 However, higher-order-modes can produce non-trivial waveform ef-
fects [32, 33, 35, 36]; a joint analysis could reveal this [32, 33].
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between unrelated events can happen due to astrophysical co-
incidence. A second difficulty is the impact of selection ef-
fects. Since ground-based detectors are more sensitive to cer-
tain frequencies and have a fixed geometry and location on
Earth, they are preferentially sensitive to certain masses and
sky positions, increasing the odds of chance overlap. Finally,
there is uncertainty regarding the properties of the source pop-
ulation. If, for example, the binary population had a promi-
nent peak at a certain mass, it would be expected to have many
events overlapping precisely at this mass and thereby mimic
lensing.

Given these characteristics of strong lensing and current
GW detectors, in the following we assess how likely it is that
an unlensed population has parameter overlaps by chance, and
compare this rate to expectations for the true lensed popula-
tion. To achieve these goals, we first simulate a population
of binary black holes (BBHs) as described in Sec. II A. We
then compute the overlap in their parameters using the metric
presented in Sec. II B. We calculate the false alarm probabil-
ity based on the description presented in Sec. II C, and discuss
results in Sec. III.

For simplicity, we consider the overlaps in mass, sky po-
sitions, and coalescence phase independently. Due to com-
putational expense, a joint parameter estimation (PE) of the
full parameter space of all possible event pairs (see [30, 32–
34]) is not possible for the number of simulations we need
to perform for this study. As we argue below, the number
of potential lensing pairs increases as ∼ N2, and thus joint
PE of all possible pairs rapidly becomes infeasible. The false
alarms quoted here should therefore be considered conserva-
tive, since including additional parameters could lower their
significance.

A. Mock catalog of unlensed and lensed events

To simulate the population of sources, we consider simpli-
fied, parameterized models consistent with current observa-
tions. Our goal is to simulate posterior distributions for the
masses, sky maps, and coalescence phase of a set of lensed
and unlensed events.

a. Simulating mass posteriors. First, we generate a
mock catalog of unlensed and lensed events to be used for
mass overlaps. We initially choose a simple model based on a
power-law distribution and later investigate the effects of dif-
ferent populations on the lensing false alarm probability. For
the BBH component masses, we use a power-law mass func-
tion p(m1) ∝ m−2.35

1 with m1 ∈ [5, 45] M� for the primary
mass, while the secondary mass m2 is uniformly distributed
in the mass ratio q, consistent with the black hole population
properties inferred from LIGO/Virgo O1 and O2. [71]. For
the redshift evolution, we use a parameterized model

R(z) = R0 C(α, β, zp)
(1 + z)α

1 +
(

1+z
1+zp

)α+β
(3)

designed to have a peak at zp = 1.9, with a rising slope,
α = 2.7, and a decaying slope, β = 2.9. This choice cor-

responds to the BBHs following the star formation rate with-
out a time delay [72]. Here, R0 is the local merger rate and
C(α, β, zp) = 1+(1+zp)

−α−β , where we fix the background
cosmology to Planck 2018 [73]. We distribute the BBH merg-
ers uniformly in the sky, and the inclination and polarization
angles isotropically. To compute the SNR, ρ, we use the phe-
nomenological waveform model IMRPhenomPv2 [74] and
assume that the signals are detected by the LIGO–Virgo de-
tector network at design sensitivity [75, 76]. We neglect the
effect of spin in the SNR calculation.

The population of strongly lensed mergers follows the same
BBH distribution. However, we lens this BBH population pre-
suming that the lenses are distributed as in the SDSS galaxy
catalog and assuming the singular isothermal ellipsoid (SIE)
model, following the approach in [63]. Concretely, this means
that each binary (i) can be multiply imaged, (ii) has a proba-
bility τ(zs) ∝ Vc(zs), where Vc(zs) is the comoving volume,
of being lensed a priori (assuming that the density of lenses is
constant in redshift), and (iii) can be magnified at magnifica-
tion µ, such that the lensed SNR becomes ρL = µ1/2ρ.

To assign measurement uncertainty to simulated observa-
tions described above, we use the following method based
on [77]. First, we determine the observed SNR, ρobs, by

ρobs = ρ+ n(0, 1) , (4)

where ρ is the actual SNR and n(0, 1) is a random number
drawn from the standard normal distribution with mean 0 and
standard deviation 1 [78]. We assume that the sources are
detected only if

ρobs > ρthr , (5)

where ρobs is the observed network SNR, and ρthr is the net-
work SNR threshold. For a network of GW interferometers,
the total network SNR ρn is defined as

ρ2
n =

∑
i

ρ2
i , (6)

where ρi represents the SNR of the ith GW interferometer.
We calculate the observed network SNR based on the SNR of
each GW interferometer as described above, and consider the
network SNR threshold of ρthr = 12.

We work both with

Mz = (1 + z)
(m1m2)3/5

(m1 +m2)1/5
, (7)

and

M total
z = (1 + z)(m1 +m2) , (8)

where Mz and M total
z are the detector-frame (redshifted)

chirp mass and detector-frame total mass, respectively. We
assume that the uncertainties of the observed parameters scale
inversely with ρobs so that

log
(
Mobs

z

)
= log(Mz) + n

(
0,
σM
ρobs

)
, (9)

where Mobs
z is the observed detector-frame chirp mass and

σM = 0.053ρthr. We determine the posteriors of the detector-
frame masses of the events in our mock catalogs based on
Eq. 9.
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b. Simulating sky map posteriors. We generate and lo-
calize a mock catalog of unlensed and lensed events to be
used with sky map overlaps using BAYESTAR [79], which is
a Bayesian, non-Markov chain Monte Carlo sky localization
tool that can rapidly localize a given GW event with accuracy
similar to the parameter estimation of a full analysis.

For the unlensed population, we assume that the mergers
have fixed masses with m1, m2 = 30M�.2 We also as-
sume that the sky position and the inclination distributions
are isotropic. We distribute the distances uniformly in vol-
ume in the range 0.07 < z < 1.9 [80]. We assume that
the BHs have no spin. We generate the waveforms using
IMRPhenomPv2 and run the matched filter pipeline assum-
ing the signals are detected by the LIGO-Virgo detector net-
work at design sensitivity. We introduce Gaussian noise into
the measurement. Similar to before, we choose the network
SNR threshold to be 12, and the minimum number of triggers
to form a coincidence as 1. We then localize the BBH mergers
with BAYESTAR and form the sky maps.

For the lensed population, we make similar assumptions for
the source parameters, except in this case we assume multiple
images are detected for each merger. We use this approach
to estimate the degree to which lensed images of the same
source overlap in their sky maps. This will be useful when
we set a threshold overlap to cull out random overlaps for the
unlensed population. Like before, we impose consistent de-
tection thresholds and sample the events until we haveO(100)
detected events. This approach is similar to those followed by,
for example, Refs. [37, 62, 69]. We localize the BBH mergers
with BAYESTAR and form the sky maps.

c. Simulating coalescence phase posteriors. Lensed
signals will differ in their overall phase. When restricted to
typical signals, those dominated by the quadrupolar 22 mode,
this corresponds to difference of an integer multiple of π/4 in
the coalescence phase. The coalescence phase itself is a quan-
tity which is degenerate with other intrinsic parameters, and
therefore the typical PE posterior for the phase is relatively
unconstrained. However, when performing a joint PE analy-
sis of a pair of events, many of these degeneracies are broken
and one can constrain the phase difference. For this reason,
we focus directly on simulating the phase difference, ∆ϕc.
Performing a full joint PE analysis is beyond our simple anal-
ysis, and would not be expected to qualitatively change our
results if we can anticipate the error in the phase difference.
As a benchmark, we benefit from the previous work of [29] to
estimate the typical error in the phase difference, and assume
that the ∆ϕc posterior is Gaussian.

Once we have a model for the phase difference posterior,
a population of unlensed events will have their means ran-
domly located in the range [−π, π]. On the other hand, a

2 Fixing the masses for the simulations of the sky maps (as opposed to draw-
ing them from a mass distribution as in the previous section) is a simpli-
fying assumption to reduce the computational cost. It is justified by the
fact that sky maps are dominated mainly by the SNR, and are relatively
insensitive to the precise mass values. By choosing a representative SNR
distribution, we can obtain a proper representation of the distribution of sky
maps.

lensed population will correspond to events with ∆ϕc =
0, π/4, π/2, 3π/4.

d. Analyzing different populations and detection thresh-
olds. To understand the effect of the assumptions of the pop-
ulation, we generate two other mock catalogs of unlensed
events to be used with mass overlaps. For our second cat-
alog, we use a different power-law mass distribution for the
primary components mass: p(m1) ∝ m−1.6

1 as opposed to
p(m1) ∝ m−2.35

1 . For our third catalog, we test an extreme
case in which the population has a prominent peak at a specific
mass and described by a Gaussian:

p(m1) =
1

σ
√

2π
exp

{
−1

2

(
m1 − µ
σ

)2
}
, (10)

where µ = 35M�, and σ = 1 (see the left panel of Fig. 4
for the primary component mass distribution of these cata-
logs). Moreover, we also analyze a more stringent network
SNR condition (ρobs > 24) for both the mass overlap and sky
map overlap to understand the effect of higher SNR thresholds
on the false alarm probability.

B. Parameter overlap

The product of GW parameter estimation of a given event
is a multi-dimensional posterior distribution that describes the
probability function of each of the parameters of the wave-
form model as well as their correlations (typically in 15 di-
mensions). Here, for simplicity, we will focus on reduced sub-
sets of this parameter space. In particular, we concentrate on
the parameters that are most relevant for the lensing hypoth-
esis and better measured with current detectors: masses, sky
localization, and phase. We use a range of metrics to quantify
the overlap between parameters:

a. Mass overlap. For the masses, we quantify the pa-
rameter overlap between pairs of events using the Bhat-
tacharyya coefficient3 [82], F , also known as the fidelity [83].
This is a statistical measure that quantifies the similarity of
two distributions:

F (d1, d2) =

∫ √
p(Θ|d1)p(Θ|d2)dΘ

=

〈√
p(Θ|d1)

p(Θ|d2)

〉
p(Θ|d2)

,

(11)

where p(Θ|d1) and p(Θ|d2) are the posterior distributions
of the desired parameter, Θ, for events one and two respec-
tively. Given that p(Θ|d1) and p(Θ|d2) are probability density
functions, the Bhattacharyya coefficient is normalized within
unity.

3 The Bhattacharyya coefficient F is related to the Hellinger distance, DH ,
a common statistical measure of the similarity between two probability
distributions [81]: DH(d1, d2) =

√
1− F (d1, d2).
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Figure 2. Probability density function of the posterior distribution of detector-frame chirp mass of a lensed pair (left) and an unlensed pair
(right). The Bhattacharyya coefficients in this example, quantifying the amount of overlap between the pair for the lensed and the unlensed
pairs, are F = 0.80 and F = 0.96, respectively. The Bhattacharyya coefficient of the unlensed pairs can be high due to astronomical
coincidence. For example, if only the detector-frame chirp mass were checked, this unlensed pair would appear more convincing that the true
lensed pair, and thus lead to a false alarm.

b. Sky map overlap. For the sky maps, we quantify the
parameter overlap between the pairs of events using

O(d1, d2) =

∫
p(Ω|d1)p(Ω|d2) dΩ , (12)

where the integral is taken over all of the sky, and p(Ω|d1) and
p(Ω|d2) are the posterior distributions of the parameter Ω (sky
position) for events 1 and 2, respectively [84]. As opposed to
the Bhattacharyya coefficient, the sky map overlap O(d1, d2)
is not normalized within unity. One normalization might be to
divide the sky map overlap on the 2-D sky map posterior space
by the area of the smaller sky map. However, if one of the sky
maps is poorly constrained (e.g., ∆Ω ≈ 2000 deg2), we get
an overlap value close to unity in many cases when the other
sky map in the pair is better constrained and is enclosed by the
poorly constrained sky map. Instead, we enforce that all the
sky maps have consistent pixel resolutions and use the overlap
defined in Eq. 12. This definition favors better-constrained sky
maps (with smaller ∆Ω). For a more detailed discussion for
different sky map overlap metrics, see [85], and for a public
version of the code used for this analysis, see [84].

c. Phase overlap. For the coalescence phase difference,
we model the posterior distribution as a Gaussian. A normal
distribution in periodic boundary conditions [−π, π] can be
described by an elliptic theta function

p(x, µ, σ) =
1

2π
ϑ3

(
x− µ

2
, e−σ

2/2

)
. (13)

Therefore, to know the probability that the phase difference
corresponds to the lensing prediction, we only need to com-
pute p(µ = ∆ϕc) = p(∆ϕc, µ, σ)/p(µ, µ, σ), where the term
in the denominator is the normalization factor.

C. False alarm probability

A high Bhattacharyya coefficient and sky map overlap im-
ply consistency with the lensing hypothesis. However, this is
not equivalent to guaranteeing that an event is lensed. Instead,
we must consider the overlap in the context of the false alarm
probability.

The total false alarm probability, FAP, is the probability
that, given a population of N events, at least one pair within
this population will mimic lensing due to astrophysical coin-
cidence. Mathematically, the FAP is described by:

FAP = 1− (1− FAPper pair)
Npairs , (14)

where Npairs = N(N − 1)/2 is the number of unique pairs
of events and FAPper pair (false alarm probability per pair) is
the percentage of pairs with parameter overlaps similar to that
of lensed pairs. In other words, FAPper pair is the percentage
of pairs with parameter overlaps that are greater than or equal
to a threshold overlap value defined by the behavior of pa-
rameter overlaps of the lensed pairs. Note that the FAP and
FAPper pair discussed here are different from the false alarm
rate (FAR) used in GW search pipelines [86], which accounts
for the trial factors under the noise background and quantifies
the false alarm probability of the search pipeline.

To calculate the FAPper pair, we first need to understand to
what extent the parameters overlap for the lensed pairs. While
the parameters of lens pairs exactly overlap in an ideal noise-
less universe, the amount of overlap, in reality, varies due to
detection errors and selection biases. The SNRs of the lensed
images of the same source will differ due to the magnification
(de-magnification) and the difference in arrival time. There-
fore, the posteriors of the detector-frame chirp mass and sky
map will be slightly different for the lensed pairs. This means
that, in the case of mass overlap, the Bhattacharyya coefficient
for a lensed pair will not necessarily be 1. A similar situation
is true for the overlap of other parameters.
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For example, the Bhattacharyya coefficient for the unlensed
pair in Fig. 2 is 0.96, which is higher than the Bhattacharyya
coefficient of 0.80 for the lensed pair. This shows explicitly
how some unlensed pairs can mimic lensing due to coinciden-
tal parameter overlap.

To tackle the issue described above, we simulate a mock
catalog of lensed events based on the description in Sec. II A,
and calculate the parameter overlaps based on Sec. II B. We
also calculate the cumulative distribution function of the pa-
rameter overlaps of the lensed pairs. This allows us to un-
derstand the threshold overlap amount, which is the amount
of overlap surpassed by most of the lensed pairs. For exam-
ple, we look for the amount of overlap displayed by the up-
per 99%, 95%, and 50% of the lensed pairs (1st and 5th per-
centiles, and the median of the CDF, respectively). We then
look for the percentage of unlensed pairs with an overlap value
greater than the threshold, finding the FAPper pair for that pa-
rameter for the catalog of unlensed events.

It is an arbitrary choice to pick the overlap threshold. Ac-
cepting the 1st or 5th percentile as the threshold accounts
for most of the lensed pairs but also leads to a greater FAP
since the threshold value is lower. Setting the threshold higher
would lead to a lower FAP at the cost of missing more lensed
pairs.

The lensing hypothesis suggests that all the parameters we
focus on (mass, sky map, and shift in the coalescence phase)
should overlap. Hence, significant overlap in one of the pa-
rameters is not sufficient to identify lensing. After finding
FAPper pair for the unlensed population, we calculate the prob-
ability that all three parameters overlap due to coincidence.
Then, given a population of N events, we can finally calcu-
late the total false alarm probability for the catalog, FAP. Al-
though there could be weak correlations between these three
parameters, we conservatively study them independently and
compute the total FAPper pair as the product of each of them.

III. RESULTS

In the following, we present our results for the overlaps of
mass, sky map, and coalescence phase. We then compute the
total false alarm probability.

A. Mass overlap

We begin by computing the overlap in the masses. Given
that GW detectors are sensitive to the detector-frame chirp
mass (Mz) at the leading post-Newtonian order, to simplify
our analysis, we focus on this quantity instead of the source
frame component masses; they are related by Eq. 7. This
choice allows us to avoid the bias in the inferred source frame
component masses of lensed images that arises from the mag-
nification of the signal. The results of the overlap ofMz for
our simulated population of lensed and unlensed events are
presented in Fig. 3, where we show the cumulative distribu-
tion function (CDF) of the Bhattacharyya coefficient F .

In addition, we compute the distribution of F for the BBH
mergers reported in the catalog GWTC-2 [87, 88] encompass-
ing the observing runs O1, O2, and O3a. We perform this
computation both forMz and M total

z to understand whether
either one performs better in terms of false alarm probability.
The result for the overlap of Mz is also presented in Fig. 3.
Since we find thatMz and M total

z perform similarly in terms
of false alarm probability per pair, the result for the overlap of
M total
z is omitted from Fig. 3.
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F (Bhattacharyya Coefficient [Mz])
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Overlap of Detector-Frame Chirp Mass

Lensed BBHs in Simulation
Unlensed BBHs in Simulation
BBHs in GWTC-2 (overlap of Mz)
1st Percentile Value (Lensed BBHs) = 0.42

Figure 3. Cumulative distribution function of the Bhattacharyya
coefficient F based on the detector-frame chirp mass for simulated
lensed (purple) and unlensed (green) binary black holes (BBHs), as
well as BBHs found in GWTC-2 [87, 88] (blue). We can use the
cumulative distribution to assess the lensing false alarm probability.
Although the lensed BBH pairs produce significantly higher Bhat-
tacharyya coefficients (F > 0.42 at 99% confidence), the unlensed
pairs still mimic lensing (F > 0.42 in 9% and 20% of the simu-
lated and catalog pairs, respectively). These unlensed pairs with high
Bhattacharyya coefficients lead to false alarms. We have assumed a
power-law mass distribution for the primary component mass of the
BBHs, and use the SDSS galaxy catalog with a singular isothermal
ellipsoid model for the lenses.

The purple line in Fig. 3 shows the CDF of F for the
lensed BBH pairs in our simulation. The 1st percentile, the
5th percentile, and the median values of F (corresponding to
the upper 99%, 95% and 50%) for the lensed population are
F lensed

0.01 = 0.52, F lensed
0.05 = 0.87, and F lensed

0.5 = 0.98, re-
spectively. We show the threshold based on the upper 99%
of the lensed pairs (1st percentile value) with the purple dot-
ted vertical line. The percentage of unlensed pairs above this
threshold can be found by finding the CDF value of the point
where the vertical (threshold) dotted line intersects the CDF
for the unlensed population and subtracting this value from
unity. For example, the dotted line intersects the unlensed
population in the simulation approximately at 0.91 (in the ver-
tical axis). This means ∼ 9% of the unlensed pairs produce
Bhattacharyya coefficients greater than this threshold, while
99% of the true lensed pairs are above this threshold.

Even though the lensed pairs produce significantly higher
Bhattacharyya coefficients (F > 0.42 at 99% confidence),
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Overlap of Detector-Frame Chirp Masses for Different Populations

Figure 4. Simulated BBH populations with different mass distributions (left) and the cumulative distribution function of the Bhattacharyya
coefficient based on the overlap of detector-frame chirp mass for these populations (right). We investigate three different distributions for the
primary component mass of the BBHs: p(m1) ∝ m−2.35

1 (green), p(m1) ∝ m−1.6
1 (blue), and an extreme distribution for which the primary

component mass is distributed as a Gaussian (orange). The secondary component mass is uniformly distributed in the mass ratio in each case.
We also investigate the effect of using a more stringent signal-to-noise ratio (SNR) threshold on the false alarm probability per pair: ρobs > 12
(solid lines on the right) and ρobs > 24 (dashed lines on the right). In each case, unlensed pairs still mimic lensing (F > 0.42 in 9% and 10%
of the simulated pairs with p(m1) ∝ m−2.35

1 and p(m1) ∝ m−1.6
1 , respectively). Doubling the SNR threshold (ρobs > 24) lowers the false

alarm probability per pair (F > 0.42 in 5% of the simulated pairs with p(m1) ∝ m−2.35
1 and p(m1) ∝ m−1.6

1 ). For the distribution with
the Gaussian peak, F > 0.42 in 37% of the simulated pairs, showing that if there was a formation channel that created binaries with similar
masses, the false alarm probability would increase (a few factors) due to the increased overlap of chirp mass.

the unlensed pairs still mimic lensing (F > 0.42 in 9% and
20% of the simulated (green) and catalog (blue) pairs, respec-
tively). This means that if we wanted to detect 99% of the
lensed pairs, approximately 9% of the unlensed pairs would
also mimic lensing if only the mass overlap is considered.
Therefore, FAPper pair = 9% (based on mass overlap).

As discussed in Sec. II C, the threshold value could be set
considering different fractions of the lensed pairs. We present
the results based on different thresholds in Table I. As we
increase the overlap threshold, fewer unlensed events mimic
lensing at the cost of losing some lensed events from the cat-
alog.

BBHs in GWTC-2 produce a distribution very similar to
the unlensed BBHs in our simulation. The FAPper pair based
on mass overlap is slightly lower for the simulated unlensed
BBHs than the BBHs in GWTC-2 because for the simulation
we assume design sensitivity. Larger errors increase the prob-
ability of overlap. The comparison of relative uncertainty of
Mz between the mock catalog and the BBHs in GWTC-2
can be found in Appendix A. We find that the relative un-
certainty behaves differently for Mz and M total

z at different
mass ranges (low mass vs. high mass). In particular, low mass
events have better detector-frame chirp mass measurements.
We also provide comparisons between the SNR distribution of
the mock catalog of unlensed and lensed events and the BBHs
in GWTC-2 in Appendix A 3, finding an overall consistency.

If we consider a more stringent SNR threshold, e.g. ρobs >
24, then a smaller portion of the unlensed BBHs (∼ 5%)
have Bhattacharyya coefficients as large as those of the lensed
BBHs. This lowers the number of false alarms and indicates
that the events with higher SNRs are better candidates for the

conclusive detection of lensing. Moreover, one could also fo-
cus on the low mass part of the population. This is because the
relative uncertainty of the detector-frame chirp mass is bet-
ter constrained for low mass events as opposed to high mass
events (for a detailed discussion, see Appendix A 1). There-
fore, accidental overlap due to errors in the parameter estima-
tion is less likely to happen, reducing the false alarm proba-
bility.

a. Effects of different mass distributions and more strin-
gent SNR thresholds. We compute the overlap in detector-
frame chirp masses for different assumptions for the mass dis-
tribution of the unlensed population and analyze the effect of
applying a more stringent SNR threshold, ρobs > 24, on the
FAPper pair as described in Sec. II A.

In Fig. 4, we present the probability distribution function
for the primary component mass of the BBHs based on dif-
ferent populations on the left side. The green and the blue
represent two power-law distributions with different indices
(α = −2.35 and α = −1.6, respectively). The orange rep-
resents the case in which the primary component mass dis-
tribution is a Gaussian, as described in Sec. II A. This is an
extreme, limiting case motivated by the observation of a peak
in the mass distribution at ∼ 35 M� [89], which is consistent
with the prediction of pulsational pair instability supernova
theory [90]. On the right side of Fig. 4, we present the CDF
of the Bhattacharyya coefficient similarly to Fig. 3. Here,
the dashed lines represent the cases in which we apply the
ρobs > 24 condition.

In each case, the unlensed pairs still mimic lensing (F >
0.42 in 9% and 10% of the simulated pairs with p(m1) ∝
m−2.35

1 and p(m1) ∝ m−1.6
1 , respectively). Doubling the
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SNR threshold (ρobs > 24) lowers the false alarm proba-
bility per pair (F > 0.42 in 5% of the simulated pairs with
p(m1) ∝ m−2.35

1 and p(m1) ∝ m−1.6
1 ). For the distribution

with the Gaussian peak, F > 0.42 in 37% of the simulated
pairs, implying that if the underlying mass distribution has
peaks at given mass values, the FAP would increase consider-
ably due to the increased mass overlap. Although we do not
consider spin in this analysis, uncertainties in the spin would
similarly contribute to the number of false alarms. Thus the
underlying distribution of masses can significantly alter the
false alarm probabilities. We summarize the results based on
different thresholds for these populations in Table I.

Table I. Summary of the FAPper pair based on mass overlaps of un-
lensed populations for different assumed mass distributions and dif-
ferent overlap thresholds.

Unlensed Population FAPper pair

99%
(1st percentile)

95%
(5th percentile)

50%
(median)

p(m1) ∝ m−2.35
1 0.09 0.06 0.005

p(m1) ∝ m−2.35
1 (ρobs > 24) 0.05 0.03 0.004

p(m1) ∝ m−1.6
1 0.10 0.07 0.006

p(m1) ∝ m−1.6
1 (ρobs > 24) 0.05 0.03 0.004

Gaussian Peak 0.37 0.27 0.03
BBHs in GWTC-2 0.20 0.12 0.005

B. Sky map overlap

We continue our analysis by computing the overlap in the
sky maps, O(d1, d2). We present the results for our simulated
population of lensed and unlensed events in Fig. 5.

The purple line in Fig. 5 shows the CDF of O(d1, d2) for
the lensed BBHs in our simulation. The 1st percentile, the 5th

percentile, and the median values of O(d1, d2) for the lensed
population are Olensed

0.01 = 1.26×10−6, Olensed
0.05 = 4.11×10−6,

and Olensed
0.5 = 2.88× 10−5, respectively. Similarly to Figs. 3

and 4, we show the threshold based on the upper 99% of the
lensed pairs with the purple dotted vertical line.

Even though the lensed BBH pairs produce significantly
higher sky map overlaps (O > 1.26 × 10−6 at 99% con-
fidence), the unlensed pairs can still mimic lensing (O >
1.26 × 10−6 in 1% of the simulated pairs). These unlensed
pairs with high sky map overlaps lead to false alarms. Increas-
ing the network SNR threshold ρobs from 12 to 24 improves
the localization, resulting in a significant decrease in the false
alarm probability per pair (O > 1.26 × 10−6 in 0.2% of the
simulated pairs with ρobs > 24). We present the results based
on different thresholds in Table II, and an illustrative exam-
ple of sky maps of lensed and unlensed pairs can be seen in
Fig. 6. An alternative to the high SNR cut would be to focus
on three-detector detections since their localization is highly
improved.

Table II. Summary of FAPper pair based on sky map overlaps of dif-
ferent network SNR thresholds.

Network SNR Threshold FAPper pair

99%
(1st percentile)

95%
(5th percentile)

50%
(median)

ρobs > 12 0.01 0.005 6× 10−4

ρobs > 24 0.002 9× 10−4 2× 10−4

C. Coalescence phase overlap

Finally, we compute the probability that the coalescence
phase difference coincides with the strong lensing prediction.
Our results are given in Fig. 7. First, we simulate a set of 1000
coalescence phase difference posteriors with fixed dispersion
and random mean values. We choose σ = 0.7 following the
joint PE analysis of [29]. For each of these simulations we
compute the probability of µ = ∆ϕc for the lensing phase
shifts ∆ϕc = 0, π/4, π/2, 3π/4. This corresponds to the left
panel of Fig. 7. In this case, 10% of the events will have a
probability of coincidence with lensing larger than 99%. This
is a rough, conservative value and more detailed analyses are
necessary.

Since the phase difference dispersion value is the crucial
parameter in this calculation, we repeat the above exercise for
different values from 0.1 to 2π. As plotted in the right panel
of Fig. 7, there is a rapid increase of mimicking the lensing
prediction as a function of σ, with a better-measured phase
reducing the phase FAP. In Appendix B, we discuss a more
adequate choice of the phase that is designed to match the

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Overlap ([ra, dec]) ×10−4
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Lensed BBHs in Simulation (ρobs > 12)
Unlensed BBHs in Simulation (ρobs > 12)

1st Percentile Value (Lensed) = 1.26×10−6

Figure 5. Cumulative distribution function of the overlap of sky
maps of simulated lensed (purple) and unlensed (green) binaries. Al-
though the lensed BBH pairs produce significantly higher sky map
overlaps (O > 1.26 × 10−6 at 99% confidence), the unlensed pairs
can still mimic lensing (O > 1.26 × 10−6 in 1% of the simulated
pairs). These unlensed pairs with high sky map overlaps lead to false
alarms. We generate and localize these lensed and unlensed events
using BAYESTAR [79].
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Figure 6. Examples of possible sky maps of a lensed pair (left) and two unlensed events (right). The sky map overlaps of the lensed and
unlensed pairs are Olensed = 8.28 × 10−5 and Ounlensed = 2.72 × 10−5, respectively. Even though the overlap of the lensed pair is higher,
the unlensed pair pair also exhibit a high amount of overlap (above the 95% threshold), mimicking lensing.

actual phase measured by a GW detector. A more detailed
analysis will be granted in future work.

As an alternative to the phase overlap, one could use the fact
that type II lensed images may exhibit waveform distortions
to identify them as strongly lensed [36]. However, these dis-
tortions are subdominant unless higher-order modes are well
measured, or the signal is very loud. Therefore, these types
of searches may be better suited for next-generation detectors
[31], although if a strongly lensed event is observed in con-
juction with higher-order modes, a joint analysis of the two
signals may reveal the small distortions [32, 33].

D. Total False Alarm Probability

We compute the false alarm probability per pair,
FAPper pair , based on the description in Sec. II C. Using the
threshold set by the overlaps produced by the upper 99% of
the lensed pairs, the FAPper pair (for the simultaneous over-
lap of mass, sky map, and shift in coalescence phase) is given
by

FAPper pair ≈ 0.09× 0.01× 0.10

≈ 10−4.
(15)

This implies that given 104 unlensed pairs, approximately 1
of them will mimic lensing and cause a false alarm.

When we consider the FAPper pair based on the same
threshold but with the more stringent SNR condition (ρobs >
24), we find

FAPρobs>24
per pair ≈ 0.05× 0.002× 0.1

≈ 10−5,
(16)

which means that if we only considered pairs of observations
for which ρobs > 24, then only 1 in 105 of these (unlensed)

pairs would be lensing false alarms. However, as a drawback,
we would be missing a large fraction of the true lensed events
if we set ρobs > 24. We report the results of FAPper pair for
the other populations and assumptions in Table III.

We calculate the total false alarm probability FAP based on
Eq. 14 using the FAPper pair value in Eq. 15. We plot the re-
sult as a function of the total number of detections in Fig. 8.
Our results indicate that if we detected a total of 100 events,
the probability of having at least one false alarm in this event
set is already approximately 1 (FAP ≈ 1). Assuming the
lensing rate is 10−3, then when we have a total of 103 events,
we would expect to see multiple false alarms even though we
would expect to see only 1 lensed event. Therefore, we may
observe multiple false alarms in the future if we base our anal-
ysis on waveform and sky map overlap.

Table III. Summary of FAPper pair for mass, sky map, coalescence
phase, and the simultaneous overlap of all the parameters. We as-
sume that FAPper pair based on coalescence phase shift is con-
stant for different thresholds. We use the network SNR threshold
ρthr = 12. For high ρthr, we fix the network SNR threshold to 24.

Parameter FAPper pair

99%
(1st percentile)

95%
(5th percentile)

50%
(median)

Mass 0.09 0.06 0.005
Mass (high ρthr) 0.05 0.03 0.004
Sky Map 0.01 0.005 6× 10−4

Sky Map (high ρthr) 0.002 9× 10−4 2× 10−4

Coalescence Phase 0.1 0.1 0.1
Combined 1× 10−4 3× 10−5 3× 10−7

Combined (high ρthr) 1× 10−5 3× 10−6 8× 10−8
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Figure 7. On the left, probability that the coalescence phase difference posterior is centered around the strong lensing prediction µ =
0, π/4, π/2, 3π/4 for a fixed value of the dispersion of the normal distribution σ = 0.7. On the right, fraction of events with a probabil-
ity of µ = ∆ϕc larger than 99% as a function of the dispersion. For example, for σ = 0.7 as in [29], the fraction of events is 10%.

E. Effect of triple and quadruple images and higher
signal-to-noise ratio thresholds

Some lensed BBHs may be triply or quadruply-imaged de-
pending on the source-lens configuration. We roughly esti-
mate FAPper triplet and FAPper quadruplet (the FAP per triplet
and the FAP per quadruplet) using the results of FAPper pair.
While the probability of a coincidental overlap of three or four
events is significantly lower (compared to only two events),
the number of lensed triplets and quadruplets is also much
lower.

We calculate the FAP using Eq. 14, but this time we use
Ntriple and Nquadruple, the number of triplets and quadruples,
instead of Npair. We plot the results as a function of the total
number of detections (including the ρobs > 24 condition) in
Fig. 8.

Even though the FAP is lower for triply-imaged events (and
even lower for the quadruply-imaged events), we find FAP ≈
1 for any case in consideration when we reach O(1000) total
events (corresponding to ∼ 106 unique pairs). Even for the
rarest cases, such as quadruple images with ρobs > 24, we
expect to see at least one false alarm once the total number of
detections is high enough to expect a quadruply lensed event
with ρobs > 24. Therefore, when the total number of events is
high enough to expect lensing to be present in the sample, the
probability of having a false alarm due to chance alignment is
already greater.

The reason that the false alarms inevitably dominate over
the true lensed populations is that the former grows much
faster than the latter. In particular, the total FAP for lensing
(for double images) is

FAP ∝ N2 FAPper pair , (17)

where N is the number of observed events. In other words,
it becomes increasingly likely that at least one pair of events
have overlapping detector-frame parameters and sky maps as
we observe more GW events. The expected number of lensed

events, on the other hand, is proportional to the total number
of detected events, ∝ N .

When we investigate triply and quadruply-imaged events,
which have lower false alarm probabilities for individual de-
tections compared to doubly-imaged events, this issue be-
comes more dominant since

FAP ∝ N3 FAPper triplet (18)

when we investigate triply-imaged events, and FAP scales ∝
N4 for quadruply-imaged events. In other words, although it
is less likely for any three or four random unlensed events to
have overlapping detector-frame parameters and sky location,
given a set of N events, there are O(N3) triplets and O(N4)
quadruples, meaning that the overall FAP will increase more
rapidly with an increasing number of events. In conclusion,
as the number of events increases, the number of lensing false
alarms will increase more rapidly than the number of actual
lensed events in our sample. Without improved lensed-event
selection, the true lenses will be lost in a sea of false ones.

F. Conclusive detection of lensing

Building upon our previous results, we investigate the pos-
sibility of the conclusive detection of strong lensing of GWs,
i.e., constructing a search such that the number of lensed
events is larger than the expected number of false alarms. To
be agnostic about the lens model, we calculate the expected
number of lensed events and false alarms as a function of the
total number of detections for three different lensing rates:
10−2, 10−3, and 10−4 [60]. We repeat this calculation for
two SNR thresholds, ρobs > 12 and ρobs > 24, and consider
both the 1st percentile (upper 99%) and median (upper 50%)
thresholds. For each case, we use the FAPper pair values pre-
sented in Table III.

Using the higher SNR threshold, ρnew
thr , significantly lowers

the FAPper pair at the cost of decreasing the sample size (by∼
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(ρthr/ρ
new
thr )3), and, therefore, reducing the number of lensed

events in the sample by the same factor. A similar reduction
occurs when we choose a stricter lensing threshold.
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Figure 8. False alarm probability as a function of the total number
of BBH mergers in the catalog. The black, blue, and red lines repre-
sent the FAP for double, triple, and quadruple images, respectively.
The dotted lines represent the more stringent case of ρobs > 24 for
their respective image numbers. For the double and triple images,
the false alarm probability is approximately 1 once the total event
number is O(1000). When we consider more stringent cases, such
as quadruple images with ρobs > 24, the false alarm probability is
still approximately 1 once the event number is high enough to expect
a quadruply lensed event with ρobs > 24. This means that when
the total number of events is high enough to expect lensing to be de-
tected, the probability of having false alarms is already comparably
high in each case.

We present our results in Fig. 9. We find that the number
of true lensed events dominates over the false alarms only for
a lensing rate of 10−2, a rate that is highly disfavored by the
current data [60, 69, 91]. For other lensing rates, when the
number of events is high enough to expect at least one lensed
event in the sample, there are already a greater number of ex-
pected false alarms.

This indicates that with our simple overlap criteria for cur-
rent detectors at design sensitivity, the false alarms will win
over realistic lensing rates (. 10−3) even when selecting the
highest SNR pairs. This result highlights the necessity to
design alternative identification criteria beyond simple wave-
form and sky location overlap for the conclusive detection of
strong lensing.

One could improve this issue by incorporating the time-
delay prior of lensing (effectively time windowing), which can
be obtained from electromagnetic lensing measurements [62,
63, 92]. The vast majority of galaxy lenses create time delays
of around minutes to months (with lower time-delay being fa-
vored), while the galaxy cluster lensing time delays could be
of the order of years. Therefore, we could preferentially fo-
cus on events separated by no less than a few minutes and no
more than a few years—alternatively, we could directly in-
corporate a full time-delay prior to our search. This approach
would reduce the number of relevant pairs to consider for pos-

sible lensing. We might achieve a similar reduction of the FAP
by introducing prior information on the magnification distri-
bution. However, in such cases, it will become important to
ensure that the results will not be dominated by uncertainties
in the time-delay or magnification distributions.

Another possible improvement could be provided by the
next-generation (3G) GW detectors, such as Cosmic Explorer
[93] and Einstein Telescope [94]. The improved parameter
estimation, especially the precise sky localization, could de-
crease the degree of coincidental overlap of parameters, and
significantly lower the FAP. Since these detectors are also ex-
pected to measure other parameters such as spin better, one
could consider these other parameters in addition to the over-
lap of mass, sky map, and phase. This could further decrease
the number of unlensed pairs mimicking lensing.

One could also use the waveform distortions exhibited by
type II lensed images to identify lensed events. Since these
distortions are not dominant unless higher-order modes, pre-
cession, or eccentricity are well measured [36], the next-
generation detectors could utilize searches involving these
waveform distortions to establish conclusive detection of lens-
ing.

Moreover, since these next-generation detectors are ex-
pected to detect a higher number of events each year, the
increased number of events could enable us to place higher
thresholds on the lensing candidates. We could select a higher
SNR threshold or only consider candidates with high amounts
of parameter/localization overlap and do so without lowering
the occurrence of lensing in the sample to a negligible rate.
However, the high number of observed events with the next-
generation detectors leads to significantly higher false alarm
probabilities since these increase as ∼ N2. We leave a de-
tailed study of lensing false alarms for the next-generation de-
tectors for future work.

Even though the parameter overlap might not provide a
conclusive detection of lensing, we can use a subset of the
candidate pairs that show high amounts of overlap as triggers
for electromagnetic searches. These electromagnetic searches
could look for lensing galaxies that match the expected lens
mass. Furthermore, if a BBH is strongly lensed, its host
galaxy could also be strongly lensed by the same lensing
galaxy. Therefore, these electromagnetic searches could also
utilize the magnification ratios between the lensed images in-
ferred using the GW detectors and look for lensed background
galaxies that have multiple images with the same magnifica-
tion ratios. One could perform cosmography studies if the
actual lensing galaxy and the host galaxy are found. [28]

To estimate how low the FAPper pair should be so that the
expected number of lensed events is higher than the expected
number of false alarms, we analytically calculate the critical
FAPper pair as a function of the number of detections, N , for
different lensing rates and SNR thresholds. This follows di-
rectly from the definition of the FAP in Eq. (14). We present
the results in Fig. 10. We find that, if the lensing rate is 10−3,
then the FAPper pair should be . 2 × 10−6 so that the ex-
pected number of false alarms is not higher than the expected
number of lensed events (which is 1 if the total number of
detections is 1000). If the FAPper pair value is higher than
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Figure 9. Expected number of lensed events and false alarms as a function of the total number of detections for different thresholds in terms of
the amount of overlap (1st percentile vs. median) as well as signal-to-noise ratio (SNR) cuts. Upper left: overlap threshold is based on the 1st

percentile value (upper 99%) of the lensed pairs; SNR cut is ρobs > 12. Upper right: overlap threshold is based on the median value (upper
50%) of the lensed pairs; SNR cut is ρobs > 12. Lower left: overlap threshold is based on the 1st percentile value; SNR cut is ρobs > 24.
Lower right: overlap threshold is based on the median value; SNR cut is ρobs > 24. Considering the number of detections needed to expect
one lensed event for each lensing rate, the only lensing rate that wins over the false alarms is 10−2. For other lensing rates, when the number
of events is high enough to expect one lensed event, the expected number of false alarms is already higher.

this, we will have multiple false alarms while we may only
have one lensed event, increasing the difficulty of confidently
distinguishing the true lensing event from the false ones.

IV. CONCLUSIONS

Strong lensing of GWs is a unique probe of the matter dis-
tribution in the universe and a magnifying glass to study the
properties of the population of compact objects [60]. How-
ever, definitively distinguishing pairs of lensed sources from
random associations presents complex data analysis problems.
As the number of events, N , in the GW catalogs increases,
the number of pairs of events increases as ∼ N2. This means
that the probability of having unlensed events which mimic
the parameter overlap in mass and sky localization expected
from strong lensing also increases as ∼ N2, thereby leading
to false alarms. Meanwhile, the number of lensed events will
increase linearly with N , implying that for sufficiently high

N , the false alarms will always dominate over the actual lens-
ing events.

We have constructed mock catalogs of lensed and unlensed
events and investigated the degree to which unlensed events
mimic lensed ones because of the overlap of parameters due to
a combination of random coincidence and errors in the param-
eter estimation. We find that the probability of a false alarm
based on coincidental overlap of the chirp mass, sky location,
and coalescence phase are approximately 9%, 1%, and 10%
per pair, respectively. Combining the three, we arrive at a
false alarm probability per pair of ∼ 10−4. We validate our
simulation against the GWTC-2 data, finding that the catalog
data is consistent with our expectations.

We find that if we consider a more stringent SNR thresh-
old, e.g., ρobs > 24, a smaller portion of the unlensed BBHs
mimics lensing due to improved parameter estimation. In this
case, we find that the probability of a false alarm based on
coincidental overlaps of chirp mass and sky location are ap-
proximately 5% and 0.2% per pair, respectively. As a result,
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Figure 10. Critical value of false alarm probability per pair,
FAPper pair, as a function of the total number of detections in
the GW transient catalog, N . This value represents how low the
FAPper pair should be for the expected number of lensed events to
be the same as the expected number of false alarms for a given N .
We present the result for three lensing rates: 10−2, 10−3, and 10−4.
For each of these lensing rates, we also consider the case in which
we select a higher signal-to-noise threshold, ρobs > 24. We indicate
the total number of detections for which we expect one lensed event
with the vertical dashed lines for each lensing rate. For the number
of lensed events to be higher than the number of false alarms in the
sample, the FAPper pair value should be lower than the critical value
shown in the plot.

we find that the combined false alarm probability per pair for
this SNR threshold is ∼ 10−5.

We summarize our results for the mass overlap in Figs. 3
and 4 and Table I, our results for the sky map overlap in Fig. 5
and Table II, our results for the phase overlap in Fig. 7, and our
combined results for all the parameters and all the different
overlap and SNR thresholds under consideration in Table III.

We find that the relative uncertainty of detector-frame chirp
mass is lower for low mass events than high mass events. As a
result, the FAPper pair based on the overlap of mass is lower if
the mass distribution of the BBHs has more low mass events
as opposed to high mass events. Moreover, we analyze the
effects of introducing a Gaussian peak to the distribution of
the primary component mass of the BBHs and find that in this
case FAPper pair based on mass increases to ∼ 37% (as com-
pared to ∼ 9% without the Gaussian peak). This result shows
that if there was a formation channel that created binaries with
a peak in mass, the false alarm probability might significantly
increase due to the increased mass overlap. Although we do
not consider the spin in this analysis, uncertainties in the spin
would similarly contribute to the number of false alarms. In-
deed, the number of false alarms depends sensitively on the
population of binaries in the Universe.

We show that sky map overlaps perform better than mass
and phase in terms of distinguishing lensed events. We find
that using stricter overlap thresholds (based on the lensed pairs
that show a higher amount of overlap) and having higher SNR

cuts decreases the FAPper pair. In turn, the overall FAP also
decreases. However, looking for a higher amount of overlap
reduces the number of unlensed pairs that mimic lensing at the
cost of missing some of the true lensed pairs (∝ ρ−3

thr).
Based on our results, we compute the false alarm probabil-

ity, i.e., the probability of having at least one false alarm, as a
function of N . We present our results in Fig. 8. We find that
if we detect O(100) events, the FAP approaches unity. As-
suming that the lensing rate is . 10−3, when we have a total
of 103 events, we would expect to see multiple false alarms
even though the expected number of lensed events would be
1. This suggests that we may face multiple false alarms in the
near future and that their number will dominate over the real
lensed events.

Strongly lensed events could lead to more than two de-
tectable images. Therefore, we estimate the FAP for triply and
quadruply-imaged events. We find that the FAPper triplet and
FAPper quadruplet are considerably lower than FAPper pair.
However, the number of possible triplets and quadruplets in
the catalog rapidly increases due to the larger number of
possible combinations. As a result, the FAP for triply and
quadruply-imaged events reaches unity before the total num-
ber of detections is high enough to expect one true lensed
event of this sort, as we show in Fig. 8.

We summarize our main results in Fig. 9, where we es-
timate when there will be a conclusive detection of strong
lensing, i.e., when the number of true lensing detections out-
numbers the false alarms. We find that for realistic lensing
rates (. 10−3), current detectors at design sensitivity (ob-
serving thousands of events per year) will be dominated by
false alarms. In addition, we analytically calculate how low
the FAPper pair should be in order to have more lensed events
than false alarms for a given number of detections in the GW
catalog (Fig. 10).

The results of this work demonstrate the necessity of de-
signing more robust identification criteria, beyond simple bi-
nary parameter and sky location overlap, to identify lensed
events. These are particularly important for next-generation
detectors such as Cosmic Explorer and Einstein Telescope,
for which hundreds of strongly lensed events are expected per
year. We discuss several possible improvements, including
sharper SNR cuts, improved parameter estimation, time delay
priors, and looking for distortions due to the lensing phase.
Our methods and results for the computation of FAP from
an astrophysical population of BBHs could be extrapolated
to the search of repeated GW signals from triple systems [95]
or echoes in modified gravity [96].
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Appendix A: Comparing the simulations with real events

In this section, we compare our simulations with the BBH
mergers in GWTC-2 [87, 88] as a sanity check of our results.
In Sec. A 1, we analyze the relative uncertainty of chirp mass
and total mass posteriors for low versus high mass events to
understand whether using one parameter over the other could
be more beneficial in terms of the false alarm probability de-
pending on how high (or low) the chirp mass/total mass is. In
Sec. A 2, we compare the relative uncertainty in the chirp mass
posteriors of the unlensed BBHs in simulation with those of
the BBHs in GWTC-2. In Sec. A 3, we compare the SNR of
both the unlensed and lensed BBHs in simulation with those
of the BBHs in GWTC-2.

1. Relative uncertainty of chirp mass and total mass for low vs.
high mass events

To assess whether the chirp mass or the total mass performs
better for low versus high mass events in terms of the false
alarm probability, we analyze the relative uncertainty of chirp
mass (total mass) as a function of chirp mass (total mass) and
the SNR. Figs. 11 and 12 show the contour maps for chirp
mass and total mass, respectively. As seen in Fig. 11, lower
mass events generally have better-constrained chirp mass pos-
teriors compared to higher mass events. Better-constrained
posteriors will decrease the false alarm probability since the
amount of coincidental overlap will be lower. Using chirp
mass overlap instead of total mass overlap for lower mass
events may be more beneficial in terms of the false alarm prob-
ability.

On the other hand, as seen in Fig. 12, higher mass events
generally have better-constrained total mass posteriors com-
pared to lower mass events. Then, using the total mass overlap
for higher mass events may be more beneficial in terms of the
false alarm probability. In either case, it could be more bene-
ficial to check the overlap of both of parameters (as opposed
to only checkingMz) when a lensing candidate is analyzed.
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Figure 11. Contour map of relative uncertainty of detector-frame
chirp mass as a function of detector-frame chirp mass and SNR.
Horizontal-axis: the SNR of the event. Vertical-axis: the detector-
frame chirp mass of the event. Right-bar: relative uncertainty of the
event (based on 95% confidence interval). Data points are BBHs in
GWTC-2 [87, 88]. The color of the data points represents the actual
relative uncertainty for the specific event. The rest of the contour plot
is completed by interpolation. Any point with relative uncertainty
higher than 15% is also represented by the yellow color. Lower-mass
events generally have a better-constrained chirp mass than high-mass
events.

2. Comparison of Uncertainties in Simulation and Catalog

Fig. 13 shows the PDF of relative uncertainty (95% confi-
dence interval) of the detector-frame chirp mass for the un-
lensed BBHs in simulation and the BBHs in GWTC-2. We
find that the distribution of the relative uncertainty of the
simulated events is consistent with the events in the catalog.
The catalog events have some high relative uncertainty events
(e.g., ∼ 45%) while the simulated events do not because we
assume the simulated events are detected by the LIGO-Virgo
detector network at design sensitivity.

3. Comparison of SNRs in Simulation and Catalog

Fig. 14 shows the PDF of the SNR for the unlensed and
lensed BBHs in simulation and the BBHs in GWTC-2. Some
of the simulated events have relatively higher SNRs. This is
because we assume that the simulated events are detected by
the LIGO-Virgo detector network at design sensitivity.
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Figure 12. Contour map of relative uncertainty of detector-frame
total mass as a function of detector-frame total mass and SNR.
Horizontal-axis: the SNR of the event. Vertical-axis: the detector-
frame total mass of the event. Right-bar: relative uncertainty of the
event (based on (95% confidence interval). Data points are BBHs
in runs GWTC-2 [87, 88]. The color of the data points represents
the actual relative uncertainty for the specific event. The rest of the
contour plot is completed by interpolation. Any point with relative
uncertainty higher than 15% is also represented by the yellow color.
Events with high masses generally have lower relative uncertainty
than low mass events.
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Figure 13. Probability density function of relative uncertainty (95%
confidence interval) of the detector-frame chirp mass for the unlensed
BBHs in simulation (blue) and the BBHs in GWTC-2 [87, 88] (or-
ange).

Appendix B: GW measured phase

For a GW, the dominant (22) quadrupolar radiation has a
form

h22 = A22 cos(2(Ω(t− tc) + ϕc)− χ22) (B1)
where

χ22 = arctan[F+(θ, φ, ψ), f22(ι)F×(θ, φ, ψ)] , (B2)

and

f22(ι) =
2 cos ι

1 + cos2 ι
. (B3)

The angle χ22 depends on the antenna pattern functions,
which are given by

F+ =
1

2

[
1 + cos2(θ)

]
cos(2φ) cos(2ψ)

− cos(θ) sin(2φ) sin(2ψ),

F× =
1

2

[
1 + cos2(θ)

]
cos(2φ) sin(2ψ)

+ cos(θ) sin(2φ) cos(2ψ).

Therefore, the particular phase that is well measured by LVK
is

Φ ≡ 2ϕc − χ22(θ, φ, ψ, ι) , (B4)

rather than ϕc. To test the lensing hypothesis, we need to
check if ∆Φ = 0, π/2, π [36]. One can use Fig. 7 to infer
the FAPper pair for the phase overlap of Φ given an estimate
of σ. Using a better-constrained phase will help reduce the
FAPper pair coming from the phase.
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Figure 14. The probability function of the SNR of catalog events
(blue) [87, 88], and lensed (purple) and unlensed (green) BBHs in
simulation.
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