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The gravitational waves emitted by massive black hole binaries in the LISA band can be lensed.
Wave-optics effects in the lensed signal are crucial when the Schwarzschild radius of the lens is smaller
than the wavelength of the radiation. These frequency-dependent effects can enable us to infer the
lens parameters, possibly with a single detection alone. In this work, we assess the observability of
wave-optics effects with LISA by performing an information-matrix analysis using analytical solutions
for both point-mass and singular isothermal sphere lenses. We use gravitational-waveform models
that include the merger, ringdown, higher harmonics, and aligned spins to study how waveform
models and source parameters affect the measurement errors in the lens parameters. We find that
previous work underestimated the observability of wave-optics effects and that LISA can detect
lensed signals with higher impact parameters and lower lens masses.

I. INTRODUCTION

When electromagnetic (EM) waves travel near massive
objects over cosmological distances, they get gravitation-
ally lensed [1]. Gravitational lensing leads to many excit-
ing observations in the EM band, such as distortions of
galaxy images into long arcs or “Einstein rings,” multiple
images of the same supernova explosion, and statistical
distortions of background radiation in the limit of weak
lensing. Gravitational lensing of EM waves is widely uti-
lized in cosmology, astrophysics, and astronomy to reveal
evidence of dark matter [2, 3], discover exoplanets [4],
measure the Hubble constant [5], and uncover massive
objects and structures that are too faint to be detected
directly [6], for example.
Just like EM waves, gravitational waves (GWs) can

also get gravitationally lensed [7–12]. If observed, lensed
GWs could enable a plethora of new scientific studies.
When combined with EM lensing surveys, they may al-
low us to locate merging black holes at a sub-arcsecond
precision [13]. If accompanied by an EM counterpart, the
sub-millisecond lensing time-delay measurements granted
by GW observations could enable precision cosmogra-
phy [13–18]. It has also been suggested that lensed GWs
can be used to measure the speed and polarization content
of GWs [19–21], detect intermediate-mass and primordial
black holes through micro-lensing [22–24], and constrain
the population of lenses [25].
The prospect of observing GW lensing at low fre-

quencies with the Laser Interferometer Space Antenna
(LISA) [26] is particularly exciting. While the geometric-
optics approximation holds for the strongly-lensed stellar-
mass black-hole binary (BHB) mergers accessible to the
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ground-based GW detectors such as LIGO [27], Virgo [28],
and KAGRA [7, 9, 12, 29–32], the massive black-hole bi-
naries (MBHBs) detectable by LISA emit GWs at much
lower frequencies, allowing the possibility for wave-optics
effects (such as diffraction) to be detected in the lensed
signal. If the Schwarzschild radius of the lens is smaller
than the wavelength λ of the GWs, diffraction effects are
crucial. For diffraction to be prominent, the lens mass
ML must satisfy the condition [12]

ML . 105M�

(
f

Hz

)−1
, (1)

where f is the GW frequency.
Wave-optics effects can lead to frequency-dependent

amplitude and phase modulations in the GW detections.
Therefore, LISA detections of these lensing-induced effects
may be used to measure the lens parameters, such as the
redshifted lens mass MLz = (1 + zL)ML, where zL is the
redshift of the lens, and the position of the source in the
source plane. More ambitiously, if the event rates are large
enough, the measurement of lens parameters may even
enable us to probe the lens population. Furthermore, the
characteristic interference patterns observed in the signal
can be used to break the so-called mass-sheet degeneracy,
in part of the wave-optics regime and in the interference
regime, with only one lensed waveform [33].

Wave-optics effects in gravitational lensing of GWs have
been extensively studied in the literature [7, 11, 12, 24, 33–
38]. In their pioneering work, Takahashi and Naka-
mura [12] (henceforth TN) calculated how accurately the
lens parameters could be measured using an information-
matrix analysis. They considered GWs lensed by either
point-mass (PM) or singular isothermal sphere (SIS)
lenses in the mass range MLz ∈ [106, 109]M�. For
a LISA MBHB with detector-frame (redshifted) total
mass MTz = 2 × 106M�, and mass ratio q = 1, they
found that wave-optics effects allow for the measure-

mailto:caliskan@jhu.edu
mailto:lingyuan.ji@jhu.edu


2

ment of the lens parameters for SIS lenses in the range
MLz ≈ 106 − 108M�. However, TN found that lensing
magnification is negligible and that the lens parameters
are not well measured for MLz . 106M�; therefore, they
did not investigate the case of lower lens masses.

Recent work [34] claimed that over (0.1− 1.6)% of the
MBHBs with total (source-frame) mass 105 − 106.5M�
and redshift zS = 4 − 10 could have wave-optics effects
detectable by LISA even when the impact parameter y
is as large as y ' 50. This claim is noteworthy for three
reasons: (i) if robust, the lensing probability could be
an order of magnitude larger than what was claimed in
previous work; (ii) TN found that, for SIS lenses, wave-
optics effects would be detectable for impact parameters
as high as y ∼ 3, considerably smaller than the value
(y ' 50) found in [34]; and, (iii) according to Ref. [34],
wave-optics effects could be distinguishable for SIS lenses
with MLz = 101 − 104M�, several orders of magnitude
smaller than the value of MLz = 106M� considered in
the TN study. These interesting claims motivated us to
revisit the problem.

The authors of Ref. [34] defined detectability in terms
of the so-called “Lindblom criterion” [39–42], i.e., they
assumed the difference δh ≡ hL − hU between the lensed
waveform hL and the unlensed waveform hU to be dis-
cernible when 〈δh|δh〉 > 1. According to this rough
criterion, the wave-optics effects are measurable if the
signal-to-noise ratio (SNR) of the difference between the
lensed and unlensed waveform is greater than 1. The cri-
terion may be too optimistic because it assumes that the
deviations from the theoretical waveform are solely due to
lensing and might not account for possible degeneracies
between the source and lens parameters (see, e.g., [43]).
One of the main goals of this paper is to update the

pioneering TN exploration of the detectability and mea-
surability of lensing effects in the GW signals emitted
by MBHBs. The TN study predated the 2005 numerical
relativity breakthrough, and, therefore, used an inspiral-
only waveform based on the restricted post-Newtonian
approximation, which does not take into account the
merger, ringdown, and higher-order modes. In this
work we use two waveform models: (i) IMRPhenomD, a
(quadrupole-only) phenomenological waveform model de-
scribing the full inspiral, merger, and ringdown of aligned-
spin BHBs [44, 45], and (ii) IMRPhenomHM, a phenomeno-
logical waveform model that also includes the higher-order
modes [46]. The comparison between IMRPhenomD and
IMRPhenomHM allows us to investigate the effects of higher-
order modes on the measurability of lensing.
In their study, TN approximated lensed waveforms

using either the geometric-optics limit or the short-time-
delay limit. They also used the low-frequency approxi-
mation for the detector response, as opposed to the full
response. We use analytical solutions to the lensing diffrac-
tion integral in the wave-optics regime for both PM and
SIS lenses and use these solutions to obtain analytical
derivatives of the lensing diffraction integral. We use these
analytical derivatives to determine the precision with

which the lens parameters can be measured by extending
the information-matrix calculation implemented in the
lisabeta code [47], which computes the LISA detector
response in the Fourier domain. Our 13-dimensional ma-
trices include all source parameters (including aligned
spins) as well as the lens parameters and account for
possible degeneracies between them. In this way, we can
estimate the errors in the lens parameters for MBHBs
in a wide range of lens masses MLz ∈ [101, 109]M� and
impact parameters y ∈ [0.01, 200].
The paper is organized as follows. In Sec. II, we re-

view wave-optics effects in the gravitational lensing of
GWs and provide analytical solutions to the diffraction
integral for both PM and SIS lenses. In Sec. III, we de-
scribe the effect of lensing on GWs and provide examples
of lensed waveforms and the information-matrix formal-
ism used to estimate measurement uncertainties in the
MBHB and lens parameters. In Sec. IV, we discuss the
measurement errors of lensing parameters, and in Sec. V,
we present conclusions and possible directions for future
work. Throughout the paper, we assume a ΛCDM cosmol-
ogy with cosmological parameter values matching Planck
2018 [48]: Hubble constant H0 = 67.4 km s−1 Mpc−1, and
matter density Ωm = 0.315. Unless specified otherwise,
we work in geometrical units (G = c = 1).

II. GRAVITATIONAL LENSING AND WAVE
OPTICS

The effect of a lens on GW propagation can be obtained
by solving the complex-valued diffraction integral1 for a
given source frequency f [12]:

F (f,y) = DS(1 + zL)ξ2
0

DLDLS

f

i

∫
d2x exp[2πiftd(x,y)].

(2)
The integral is over all possible paths, including those
which are not geodesics. Here, DL, DS, and DLS are the
angular-diameter distances from the observer to the lens,
from the observer to the source, and from the lens to the
source, respectively. The dimensionless 2-vectors x and
y are defined as

x ≡ ξ

ξ0
and y ≡ η DL

ξ0DS
, (3)

where ξ and η are the physical coordinates of the image
in the lens plane and of the source in the source plane,
respectively.

The arbitrary length normalization ξ0 is usually chosen
to be the relevant scale of the problem. The time delay

1 We prefer to call this quantity the diffraction integral (rather
than the “amplification factor”, as it is also known) because, in
the regime of interest for this paper, lensing can induce frequency-
dependent modulations in both the amplitude and phase of the
GWs.
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Figure 1. Left panels: absolute value of the diffraction integral “contrast” |F (w, y)− 1|, multiplied by the impact parameter y to
compensate for the dynamic range. Right panels: phase factor argF (w, y). These quantities were computed by evaluating the
diffraction integral for the PM lens (top row) and SIS lens (bottom row), and they are shown as functions of the dimensionless
frequency w = 8πMLzf and impact parameter y. The top x-axis in each panel shows the physical frequency (in Hz) corresponding
to a redshifted lens mass MLz = 106 M�.

for a given path is defined as

td(x,y) = DSξ
2
0

DLDLS
(1 + zL)

[
1
2 |x− y|

2 − ψ(x) + φ(y)
]
,

(4)
where ψ(x) is the deflection potential. The quantity φ(y)
sets the zero point of the time delay for a given source
position y, and it does not affect the relative time delay
between different paths. For convenience, we set φ(y) so
that the minimum possible time delay minx td(x,y) is
zero.

From now on, for simplicity, we will restrict our dis-
cussion to spherically symmetric lenses. In this case, the
problem becomes one-dimensional, so ψ(x) = ψ(x), and
φ(y) = φ(y), where x ≡ |x| and y ≡ |y|. Without loss
of generality, the angular integral in Eq. (2) can be per-
formed by aligning the reference direction of the polar

coordinates with y, resulting in

F (w, y) = w

i
exp

{
iw

[
y2

2 + φ(y)
]}

×
∫ ∞

0
xdx exp

{
iw

[
x2

2 − ψ(x)
]}

J0(wxy). (5)

Here,

w ≡ DSξ
2
0(1 + zL)(2πf)
DLDLS

(6)

is a dimensionless frequency, and J0 denotes the zeroth-
order Bessel function. We will now apply Eq. (5) to two
specific mass distributions.

A. Point-mass lens

Let us first consider the simple case of a PM lens, for
which the mass density ρPM(r) = MLδ

3(r). Here, δ3(r)
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is the three-dimensional Dirac delta function. A natural
choice for ξ0 is the Einstein radius, i.e.,

ξ0 =
(

4MLDLDLS

DS

)1/2
. (7)

With this choice, we have ψ(x) = ln x, and the radial
integral can be solved analytically with the result [12]

F (w, y) = exp
{πw

4 + i
w

2

[
ln w2 − 2φ(y)

]}
× Γ

(
1− w

2 i
)

1F1

(
w

2 i, 1; wy
2

2 i

)
. (8)

Here, w = 8πML(1 + zL)f , φ(y) = (x+ − y)2/2 − ln x+,
x+ = [(y2 + 4)1/2 + y]/2, and 1F1(a, b; z) is the confluent
hypergeometric function.

B. Singular isothermal sphere lens

For a singular isothermal sphere with velocity dispersion
σv, the mass density reads ρSIS(r) = σ2

v/(2π|r|2). For
an axially-symmetric gravitational lens, the lens mass
ML is defined as the amount of mass enclosed within the
Einstein radius of the lens. Therefore, the total mass of
the lens and the lens mass are equivalent for a point-mass
lens. This may not be the case for other lens profiles; for
example, the total mass of a dark matter halo with the
SIS profile is different from the lens mass of the halo. For
the SIS profile, the lens mass is related to σv as

ML = 4π2σ4
vDLDLS

DS
. (9)

The Einstein radius is

ξ0 = 4πσ2
vDLDLS

DS
=
(

4MLDLDLS

DS

)1/2
, (10)

and w = 8πML(1 + zL)f (as in the case of a PM lens).
We choose the normalization to be ξ0, giving ψ(x) = x

and φ(y) = y + 1/2 in Eq. (5) for the SIS lens. The
resulting formula for the radial integral can be found
in Ref. [12]. The numerical evaluation of this formula
is difficult for large values of w and y since both the
exponential and Bessel-function factors in the integrand
can oscillate rapidly.
Several different numerical approaches have been pro-

posed to tackle this problem [12, 49, 50]. Here, we propose
and implement a simple, effective method based on a Tay-
lor expansion2 of the exponential factor exp[−iwψ(x)] in

2 After our pre-print appeared on the arXiv, Ryuichi Takahashi
brought to our attention that a perturbative expansion of the
lensing potential to find analytical solution of the diffraction
integral for SIS lenses was also proposed in Ref. [51].

Eq. (5). We begin our evaluation by defining the integral3

In(w, y) ≡
∫ ∞

0
xneiwx

2/2J0(wxy)xdx (11)

= 1
2

(
2i
w

)N
Γ (N) 1F1

(
N, 1;−iwy

2

2

)
, (12)

where N ≡ (n+ 2)/2. We also define the series expansion
of the exponential of the potential,

Ψ(w, x) ≡ e−iwψ(x) =
∞∑
n=0

Ψn(w)xn. (13)

Using these definitions, Eq. (5) can then be evaluated by
integrating the expansion term by term, which gives

F (w, y) = w

i
exp

{
iw

[
y2

2 + φ(y)
]} ∞∑

n=0
Ψn(w)In(w, y).

(14)
This series is usually only conditionally convergent or
even divergent, but it can be summed with the help of
series acceleration techniques. For an SIS lens, ψ(x) = x,
so Ψn(w) = (−iw)n/n!, and the Shanks transformation
(e.g., see [53]) performs well in accelerating the summation.
When (w, y) approaches the geometric-optics limit, this
series requires very-high floating-point precision and suffi-
ciently many terms to provide satisfactory convergence.
So, in practice, we use a piecewise strategy to evaluate
F (w, y) with the help of geometric-optics approximation,
detailed in Appendix A.
Diffraction integrals computed using Eq. (8) (for PM

lenses, top panels) and this analytical solution (for SIS
lenses, bottom panels) are shown in Fig. 1. For a given
impact parameter y, at sufficiently small values of the
dimensionless frequency w, the lensing effect is negligible
because the lens size is negligible compared to the wave-
length of GWs. As w increases, the effect of lensing starts
to be visible through the oscillations of F (w, y) as a func-
tion of w. The value of w marking the transition between
these two regimes depends on the impact parameter y.

In closing this section, let us note that the total mass of
the SIS profile is, strictly speaking, infinite. This nonphys-
ical behavior is conventionally regularized by introducing
an outer boundary at r = r∆ such that ρSIS(r∆) = ∆ρcr,
where ∆ is a dimensionless constant (we set ∆ = 200),
and ρcr = 3H2

L/(8π) is the critical density of the Uni-
verse at the redshift zL with the corresponding Hubble
parameter HL. In Appendix B, we demonstrate that this
truncation does not affect our results.

3 This integral corresponds to Eq. (6.631.1) in Ref. [52] if we make
the substitutions α = −iw/2, β = wy, µ = n+ 1, and ν = 0.
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Figure 2. Comparison between the frequency-domain amplitude of unlensed waveforms (solid lines) and waveforms lensed by a
PM (dotted) or SIS (dashed) lens. In the left panel, blue and red lines refer to the TDI observables ã and ẽ, respectively. The
right panel shows the TDI observable t̃, where the signal amplitude is much smaller. All results refer to a redshifted lens mass
MLz = 2× 107 M�, a lens redshift zL = 1, and an impact parameter y = 1.0. The source parameters are MTz = 6× 106 M�,
zS = 2, ι = 2.42, φc = 1.84, λ = 0.3, β = 0.3, ψ = 0.94, and χm = χp = 0.

III. LENSED GRAVITATIONAL WAVEFORMS
AND INFORMATION-MATRIX FORMALISM

The lensed gravitational waveform in the frequency
domain h̃L(f ;θS) ≡ h̃L

+ − ih̃L
× is given by the product of

the diffraction integral F (w, y) and the unlensed waveform
h̃(f)

h̃L(f ;θS,θL) = F (w, y)h̃(f ;θS) , (15)

where w = 8πMLzf , and y and F (w, y) are given
by Eqs. (3) and (5), respectively. The vector θS ≡
{MTz, q, dl, tc, ι, φc, λ, β, ψ, χm, χp} includes
11 source parameters: the detector-frame total mass
MTz, mass ratio q, luminosity distance to the source
dl, coalescence time tc, inclination angle ι, coalescence
phase φc, right ascension λ, declination β, polariza-
tion angle ψ, and two parameters – the “effective spin”
χp = (m1χ1 +m2χ2)/(m1 +m2) and the asymmetric spin
combination χm = (m1χ1 −m2χ2)/(m1 +m2) – for the
spins of the binary components, which we assume to be
aligned with the orbital angular momentum. The vector
θL ≡ {MLz, y} includes, in contrast, the lens parameters.
Using the decomposition of the waveform in spin-weighted
spherical harmonics h̃(f ;θS) =

∑
`,m −2Y`mh̃`m(f ;θS),

and Eq. (15), it is straightforward to derive the expres-
sion of the lensed GW modes h̃L

`m(f ;θS) as

h̃L
`m(f ;θS,θL) = F (w, y)h̃`m(f ;θS). (16)

A GW signal causes a shift in the frequency of the laser
traveling between spacecraft pairs in the LISA constel-
lation. This effect can be described using three reduced

time-delay interferometry (TDI) observables: ã(f), ẽ(f)
and t̃(f). These observables are mutually independent,
and they represent a particular combination of the shifts
in the laser frequency between spacecraft pairs that re-
duces the effect of the laser noise. Their definition is

ã(f), ẽ(f), t̃(f) =
∑
`m

T `ma,e,t(f)h̃`m(f ;θS), (17)

where T `ma,e,t(f) are mode-by-mode transfer functions de-
scribing the response of the LISA detector to the passage
of the GW signal defined in Eq. (20) of Ref. [54], and
h̃`m(f) are the modes of the gravitational radiation cross-
ing the LISA detector. In the case of a lensed signal, the
GW modes h̃`m(f ;θS) should be replaced by the lensed
modes h̃L

`m(f ;θS,θL) defined in Eq. (16).
In Fig. 2, we show the amplitude of the three reduced

TDI observables as a function of the GW frequency for
a reference source with binary parameters MTz = 6 ×
106 M�, zS = 2, ι = 2.42, φc = 1.84, λ = 0.3, β = 0.3,
and ψ = 0.94. We compare the unlensed GW signal
with the same signals lensed by either PM or SIS lenses
with redshift zL = 1, redshifted lens mass MLz = 2 ×
107 M�, and impact parameter y = 1.0. Diffraction effects
are clearly visible, and the amplitude and frequency of
the wave-optics modulations depend on the structure
of the lens. Both the PM and the SIS lenses induce
strong oscillations in the amplitude of the TDI reduced
observables at frequencies around 0.1 mHz because lensing
causes GWs to travel through different path lengths and
therefore produces interference.
We use the information-matrix formalism (or linear

signal approximation) [12, 55–57] to determine the uncer-
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tainties in estimating the parameters of the MBHB system
and the lens. This formalism is valid in the large-SNR
limit, and therefore it is expected to be accurate for most
LISA MBHBs. In the linear signal approximation, the
likelihood associated with each reduced TDI observable
in Eq. (17) is a multidimensional Gaussian of the form

p(∆θi) = N exp
{
−1

2ΓX̃ij∆θi∆θj
}
, (18)

where θ ≡ {θS,θL}, ΓX̃ij is the information matrix as-
sociated to each observable X̃ ∈ {ã, ẽ, t̃}, and N =√

det(Γ/2π) is a normalization factor. The information
matrix for each reduced TDI observable reads

ΓX̃ij =
(
∂X̃

∂θi

∣∣∣∣∣∂X̃∂θj
)
, (19)

where the inner product is defined as

(a|b) ≡ 4 Re
∫ ∞

0
df ã(f)b̃∗(f)

Sn(f) , (20)

and Sn(f) is the SciRDv1 [58] LISA power spectral den-
sity (PSD). In practice, for each binary, we fixed the
initial frequency of the integral in Eq. (20) to obtain a
time-to-merger of at most one year, with a lower bound-
ary of fmin = 10−5 Hz. The detailed calculation of the
derivatives of X̃ appearing in Eq. (19) is given in Ap-
pendix C. Since the TDI observables are independent,
the total likelihood is the product of the likelihoods, and
therefore the total information matrix is

Γ = Γãij + Γẽij + Γt̃ij . (21)

The uncertainties on the parameters θ can then be found
from the variance-covariance matrix (the inverse of the
information matrix):

〈∆θi∆θj〉 = (Γ−1)ij . (22)

IV. RESULTS

In this section, we investigate how waveform models
and source parameters affect the measurement of the lens
parameters for both PM and SIS lenses. We first inves-
tigate how the measurement of the lens parameters is
affected by different waveform models (Sec. IVA) and
source parameters (Sec. IVB). Then we present an exten-
sive exploration of lens-parameter-measurement accuracy
for a wide range of lens masses and impact parameters,
considering first PM lenses (Sec. IVC) and then SIS lenses
(Sec. IVD).

A. Effect of the merger, ringdown, and
higher-order modes on the measurement of the lens

parameters

Our goal is to improve over the pioneering TN analy-
sis [12] by considering the effects of the merger, ringdown,
and higher harmonics. In their work, the errors in the
lens mass and impact parameter were estimated for a
single MBHB and scaled by the source SNR to estimate
the measurement uncertainty of lens parameters for other
lensed MBHBs. More importantly, the TN analysis pre-
dated the 2005 numerical relativity breakthrough and
therefore neither included the merger and ringdown nor
higher harmonics. Furthermore, their work does not in-
clude an exploration of how other source parameters (such
as the binary’s inclination angle and component spins)
affect the measurement of the lens parameters.
We estimate measurement uncertainties on MLz and

y for O(100) MBHBs with fixed intrinsic parameters
(to begin with, we fix the detector-frame total mass
MTz = 2×106M�, mass ratio q = 1, and redshift zS = 1),
and randomly sampled extrinsic parameters (inclination
angle ι, coalescence phase φc, right ascension λ, declina-
tion β, and polarization angle ψ) over uniform distribu-
tions. To understand the effect of the merger/ringdown,
higher-order modes, and spins, we focus on four represen-
tative waveform models: (i) a nonspinning IMRPhenomD
model where the signal is truncated at the innermost
stable circular orbit (henceforth ISCO), which includes
only the inspiral part of the waveform and closely mim-
ics the TN results; (ii) a nonspinning IMRPhenomD model
including the merger and ringdown (MR); (iii) a nonspin-
ning IMRPhenomHM model including both MR and higher-
order modes (HM); (iv) an IMRPhenomHM model with ex-
tremal spins aligned with the orbital angular momentum
(χ1 = χ2 = 1), henceforth IMRPhenomHM+; and (v) an
IMRPhenomHM model with extremal spins anti-aligned with
respect to the orbital angular momentum (χ1 = χ2 = −1),
henceforth IMRPhenomHM-.

Figure 3 shows how well the observation of a “typical”
MBHB by LISA could constrain the mass of a PM lens in
the redshifted-lens-mass range MLz ∈ [103, 109]M�. For
concreteness, we focus on a single value of the impact
parameter y = 0.1. We consider the five waveform models
listed above, and we do not normalize the results by
the SNR. The general trend with mass is similar to the
findings of the inspiral-only TN analysis (see the left panel
of Fig. 7 in [12]), but our calculations allow us to quantify
the effect of the merger/ringdown, higher harmonics, and
spins. By comparing nonspinning binaries with the signal
truncated at the ISCO with those including merger and
ringdown (MR), we see that the inclusion of merger and
ringdown leads to improvements by about one order of
magnitude in the measurement of the lens mass. Models
with higher harmonics (IMRPhenomHM, in green) lead to
further improvements in measurement accuracy relative to
models without higher harmonics (IMRPhenomD, in red), as
expected. The dependence of the waveform on the angles
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Figure 3. Relative uncertainty on the redshifted lens mass, ∆MLz/MLz. Left: comparison between the “inspiral only” version
of IMRPhenomD truncated at the ISCO (orange), the IMRPhenomD model including the merger and ringdown (red), and the
IMRPhenomHM including also the higher harmonics (green). Right: comparison of IMRPhenomHM waveforms with different
spin magnitudes. The green curve refers to nonspinning binaries, while the blue (brown) curves refer to the IMRPhenomHM-
(IMRPhenomHM+) extremal anti-aligned (aligned) spin models. All results are for O(100) MBHBs with MTz = 2× 106 M�, q = 1,
and zS = 1, with extrinsic parameters (ι, φc, λ, β, and φ) randomly sampled over uniform distributions. Dark solid lines show
the median value of ∆MLz/MLz, while the shaded regions correspond to 1σ confidence intervals. Here we consider PM lenses
with a range of redshifted lens masses MLz, but we fix the impact parameter to y = 0.1.

is more pronounced when we include higher harmonics. As
a consequence, the measurement errors for IMRPhenomHM
have a larger “spread” around the median compared to
the measurement errors for IMRPhenomD. It is also well
known that aligned (anti-aligned) spins typically increase
(reduce) the SNR because of the orbital hang-up effect [59],
and indeed we find that measurement errors are smallest
for extremal aligned spins (IMRPhenomHM+, in brown) and
largest for extremal anti-aligned spins (IMRPhenomHM-, in
blue). For lens masses MLz & 107M�, the geometric-
optics limit is a good approximation, and ∆MLz/MLz
depends solely on the SNR and the impact parameter
y [12]. Since in this calculation we have fixed y, the
uncertainties in the large-MLz regime shown in Fig. 3 are
inversely proportional to the SNR of the signal.
Given the intrinsic parameters of an MBHB, we are

interested in estimating the “critical lens mass” M crit
Lz ,

defined as the lowest lens mass for which we can ex-
tract information on either MLz or y. We (somewhat
arbitrarily) define this threshold as the lens mass corre-
sponding to a 100% relative uncertainty on the respective
parameter. For the MBHB considered in Fig. 3, we find
M crit

Lz = 1.08+0.64
−0.40× 105M� for IMRPhenomD truncated at

the ISCO, M crit
Lz = 4.73+2.45

−1.75 × 103M� for IMRPhenomD,
M crit

Lz = 3.19+1.39
−1.17 × 103M� for IMRPhenomHM, M crit

Lz =
1.49+0.62

−0.49 × 103M� for IMRPhenomHM+, and M crit
Lz =

6.63+3.46
−2.24×103M� for IMRPhenomHM-. The quoted values

correspond to the median and 68% confidence interval
of each critical lens mass. We find that the critical lens

mass decreases when we include the merger and higher
harmonics in the waveform model, as well as for MBHBs
with large aligned spins, in agreement with the trends
described earlier.

We can estimate in a similar way the critical im-
pact parameter ycrit below which we can extract in-
formation on at least one of the lens parameters. We
consider the same MBHB, but we now assume a PM
lens with fixed redshifted mass MLz = 107M�, and we
vary the impact parameter in the range y ∈ [0.01, 200].
The relative uncertainty in y follows the same quali-
tative trends as the uncertainties in MLz as we vary
the waveform model, and the critical impact parame-
ters are ycrit = 52.6+17.4

−10.1 for IMRPhenomD truncated at the
ISCO, ycrit = 92.4+24.5

−16.6 for IMRPhenomD, ycrit = 92.0+36.5
−17.3

for IMRPhenomHM, ycrit = 114+39
−25 for IMRPhenomHM+, and

ycrit = 86.8+21.1
−19.4 for IMRPhenomHM-.

In summary: the inspiral-only waveforms used in TN
lead, in general, to an overestimate of measurement un-
certainties in the lens parameters relative to waveforms
including also the merger and ringdown. For this reason,
their results should be regarded as conservative. The
merger, ringdown, and higher-order modes can signifi-
cantly improve our ability to measure the lens mass, and
the “critical” measurable lens mass M crit

Lz varies by a
factor of ∼ 2 or 3 for MBHBs with large (anti)aligned
spins.
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Figure 4. Effect of the MBHB inclination angle ι on the estimation accuracy of the redshifted lens mass MLz. The results are
for an MBHB with MTz = 107 M�, q = 1.2, zS = 5, χ1 = χ2 = 0, and φc = λ = β = ψ = π/3, and a PM lens with impact
parameter y = 0.1. We show O(100) random realizations of ι (in beige) but also plot results for two selected values of ι = 0 and
π/2 (blue and green, respectively). In the left panel, all uncertainties have been rescaled to a fixed SNR = 1000. In the right
panel, this normalization was not applied.

B. Effect of the source parameters on the
measurement of the lens parameters

We now focus on the effect of the source parame-
ters on the measurement of MLz and y. We consider
IMRPhenomHM MBHB waveforms with MTz = 107M�,
q = 1.2, zS = 5, and five selected values of the aligned
binary component spins: χ1 = χ2 ∈ {−1,−0.5, 0, 0.5, 1}.
To begin with, we focus on PM lenses with y = 0.1 and
MLz ∈ [103, 109]M�.

We examine the effect of various parameters, namely:
the inclination angle ι; the magnitude of the spins; and,
finally, the sky location angles (right ascension λ and
declination β), mass ratio q, coalescence phase φc, and
polarization angle ψ. We consider O(100) random values
for each set of parameters that we vary and fix all angles
that are not being varied to an “intermediate” value of
π/3.

When we explore the effect of each source parameter,
we either normalize the resulting errors in the lens parame-
ters to a reference SNR = 1000, or we consider MBHBs at
fixed redshift. This allows us to understand whether the
lens parameter estimation accuracy is dominated by the
SNR of the source or by more subtle features related to
the specific parameter we vary. For example, higher har-
monics (when detectable) can reduce correlations between
parameters, and the relative importance of higher har-
monics is strongly affected by the inclination of the binary.
We will now describe our findings for each parameter.

1. Inclination angle

In Fig. 4, we plot ∆MLz/MLz as a function of MLz
for a sample of O(100) MBHBs obtained by drawing ι
uniformly in arccos(ι) ∈ [−1, 1]. In the left panel, all
errors are normalized to SNR = 1000; in the right panel,
the binary is located at a fixed redshift zS = 5.

Consider, first, the left panel. Face-on (ι = 0) and face-
off (ι = π) binaries yield the same lens mass uncertainties,
as we would expect based on symmetry, and therefore we
only show errors for ι = 0. Face-on and face-off binaries
yield the largest errors in MLz in the small-MLz, wave-
optics regime. This is because the amplitude of higher-
order modes, which are important to remove degeneracies
between parameters, are suppressed for these values of
ι. Indeed, the errors are smallest for edge-on binaries
(ι = π/2), when higher-order modes matter the most.
In the large-MLz, geometric-optics regime, ∆MLz/MLz
depends only on the impact parameter y and on the SNR
of the binary [12]. Since all of our binaries have the same
SNR = 1000 and we fix y = 0.1, ∆MLz/MLz tends to a
constant for large MLz, as expected.

Similar trends can be observed in the right panel. In the
large-MLz (geometric-optics) regime, the errors depend
solely on the SNR of the binary because y = 0.1 is fixed:
edge-on binaries (ι = π/2, which have the smallest SNR)
yield the highest errors, while face-on and face-off binaries
(ι = 0 and ι = π, which have the highest SNR) yield the
smallest errors. The situation is partially reversed in the
wave-optics regime because higher-order modes remove
degeneracies, partially compensating for the smaller SNR
of the edge-on binaries.
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Figure 6. Effect of the MBHB sky location (right ascension and declination) on ∆MLz/MLz. The results are for the same setting
as in Fig. 4, but now ι = π/3. Right panel: the median error is shown in black, the 1σ confidence interval is shown by dashed
black lines, and the individual realizations are in blue. Left panel: we only show the median since errors are dominated by the
SNR and the dispersion is minimal.

The critical redshifted lens mass above which lensing
effects become detectable is M crit

Lz = 9.91+2.81
−0.56× 104M�

for fixed SNR, andM crit
Lz = 1.23+0.26

−0.08×105M� for MBHBs
at fixed distance. Therefore, variations in the inclination
angle ι lead to a relative uncertainty of ≈ 30% (≈ 20%)
within the 1σ credible interval for binaries at fixed SNR
(fixed distance, respectively).

We explored different values of the impact parameter
and SIS lenses, finding qualitatively similar conclusions.
We also studied MBHBs with different total masses and

mass ratios. In general, higher harmonics are more impor-
tant for unequal-mass binaries, and this results in larger
variances in M crit

Lz as we vary ι.

2. Spins

In Fig. 5, we show how spins affect the estimate of the
lens mass. We consider five different spin combinations:
χ1 = χ2 ∈ {−1,−0.5, 0, 0.5, 1}.
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When we normalize to the SNR (left panel), large
aligned (anti-aligned) spins produce lower (larger) errors
in the wave-optics regime. All errors converge to the
same value in the geometric-optics regime for the reasons
explained above. The same trend is visible and more pro-
nounced for binaries at fixed redshift (right panel): large
aligned (anti-aligned) spins produce lower (larger) errors
in both the wave-optics and geometric-optics regimes.
Most of these trends are explained by the fact that

aligned (anti-aligned) spins increase (reduce) the SNR
because of the orbital hang-up effect [59]. Aligned spins
affect the measurement of the lens mass even at constant
SNR because the orbital hang-up effect causes the bi-
nary to spend more cycles in band and therefore reduces
parameter estimation errors.
By sampling O(100) MBHBs with χ1, χ2 uniformly

distributed in the range [−1, 1], while keeping all other
parameters fixed, we find a critical redshifted lens mass
of M crit

Lz = 7.63+2.04
−1.81 × 104M� (relative uncertainty of

≈ 25%) for fixed SNR, and M crit
Lz = 1.15+0.67

−0.63 × 105M�
(relative uncertainty of ≈ 50%) for fixed distance.

Qualitatively, we find similar results when we vary the
impact parameter, consider the SIS lens model, or change
the MBHB masses.

3. Sky location, mass ratio, coalescence phase, and
polarization angle

In Fig. 6, we consider O(100) MBHBs with sky location
(right ascension and declination) uniformly distributed
on the celestial sphere. The minimal dispersion of the
uncertainties seen in the left panel shows that while sky
location affects ∆MLz/MLz, the effect is predominantly
due to the different SNR of binaries located at different
positions in the sky. The critical redshifted lens mass
M crit

Lz = 8.35+3.93
−3.03× 104M� (with a relative uncertainty

of ≈ 45%) when the redshift is fixed; the median is the
same (but with a minimal relative uncertainty . 1%)
when we fix the SNR.

To understand the effect of varying mass ratio q, we
varied q uniformly in the range [1, 10] O(100) times. We
found M crit

Lz = 1.87+0.97
−0.73 × 105M� (with a relative un-

certainty of ≈ 50%) at fixed distance, and M crit
Lz =

7.34 1.01
−0.46 × 104M� (with a relative uncertainty of ap-

proximately ≈ 15%) at fixed SNR. As expected, varying
the mass ratio affects how pronounced the higher-order
modes are, which can lower measurement uncertainties.
However, changing the mass ratio also affects the SNR
of the signal. Therefore, both the effects (degeneracy re-
moval by higher-order modes versus reduced SNR) affect
the result when the SNR rescaling is not applied. This is
similar to the case of varying the inclination angle.

We also varied the coalescence phase in the range φc ∈
[0, 2π]. We found M crit

Lz = 1.08+0.15
−0.07 × 105M� (with a

relative uncertainty of ≈ 10%) at fixed distance, and an
even smaller uncertainty (. 6%) at fixed SNR. By varying
the polarization angle uniformly in the range ψ ∈ [0, 2π]

we find M crit
Lz = 1.23+0.08

−0.08× 105M� (≈ 6% uncertainty),
with an even smaller uncertainty (. 5%) at fixed SNR.

Once again, the results are qualitatively similar when
we vary the impact parameter, consider the SIS lens model,
or change the MBHB masses.

C. Point-mass lens

So far, we have investigated how the measurement of
lens parameters is affected by waveform modeling and
source parameters. We will now consider three represen-
tative MBHBs and compute lens parameter estimation
accuracy for a wide range of lens masses and impact pa-
rameters. In this section, we focus on PM lenses with
y ∈ [0.01, 200] and MLz ∈ [103, 109]M�.
In Fig. 7, we show contour plots of ∆MLz/MLz (left

panels) and ∆y/y (right panels) in the (MLz, y) plane.
Different rows refer to three different nonspinning MBHBs
with detector-frame mass MTz = 108M�, q = 1.2, zS = 1
(top); MTz = 107M�, q = 1.2, zS = 5 (middle); and
MTz = 106M�, q = 1.2, zS = 8 (bottom). These masses
and redshifts have been chosen as representative of typical
MBHB systems observable by LISA (see, e.g., [60–62]).
To reduce computational time, the angles ι, φc, λ, β and
ψ were all set to π/3. The range of variability of the
results around these “intermediate” values was discussed
in Sec. IVB above.

The SNRs of the unlensed signals from these MBHBs
are 697, 716, and 182 for the top, middle, and bottom
panels in Fig. 7, respectively. When the signals are lensed,
the SNRs increase up to ∼ 5970, ∼ 9180, and ∼ 2050 for
the top, middle, and bottom panels, respectively.
Three white contour lines in each panel highlight the

100%, 10%, and 1% relative uncertainty boundary re-
gions. In the black regions (outside the outermost white
contour), the relative uncertainty is greater than 100%,
and therefore at least one of the lensing parameters is
unmeasurable. In fact, in some regions of the parameter
space, we can measure only one of the lens parameters.

Consider, for example, an MBHB with MTz = 108M�
at zS = 1 (top row) with lens parameters MLz ≈ 107M�
and y ≈ 0.1: in this case the lens mass can be measured
with ≈ 10% relative uncertainty, but y is unmeasurable.
For this same binary, MLz is measurable when y . 30
and MLz & 106M� (top left panel), while y is measur-
able when y . 40 (top right panel). These “detectability
boundaries” are slightly different for lighter binaries. We
show representative examples in Table I. Based on this
extensive analysis, we conclude that the critical values
of ycrit and M crit

Lz are more optimistic than the TN pre-
dictions for PM lenses because the merger/ringdown and
higher-order modes sensibly reduce the errors in the lens
parameters.
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Figure 7. Relative errors in the redshifted lens mass ∆MLz/MLz (left panels) and impact parameter ∆y/y (right panels) in the
(MLz, y) plane for a PM lens. The rows refer to three different MBHBs, with parameters listed in the legend. White contour
lines correspond to 100%, 10%, and 1% relative errors. In the black regions, the relative errors are larger than 100%, and the
corresponding parameter is unmeasurable. The MBHBs’ unlensed SNR is 697.0, 715.8, and 181.8 from top to bottom.
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Figure 8. Same as Fig. 7, but for an SIS lens.

D. Singular isothermal sphere lens

We now consider the same MBHBs as in Sec. IVC, but
we extend the analysis to SIS lenses with y ∈ [0.01, 200]

and MLz ∈ [101, 108]M�. In Fig. 8, we show contour
plots of ∆MLz/MLz (left panels) and ∆y/y (right panels)
in the (MLz, y) plane. Once again, we set all angles (ι,
φc, λ, β, ψ) equal to π/3.
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Table I. Four binaries of various redshifted total masses (first
column), mass ratio (second column), and redshift (third
column), we list: the lowest redshifted lens mass Mcrit

Lz and
highest impact parameter ycrit for which MLz is measurable
(fourth and fifth columns); and the largest impact parameter
ycrit for which y is measurable (sixth column). The first three
rows refer to the binaries considered in Fig. 7; the fourth row
refers to the binary shown in Fig. 3 (where we fix the angles ι,
φc, λ, β, and ψ to π/3). All results in this table are for PM
lenses.

∆MLz/MLz ∆y/y

MTz [M�] q zS Mcrit
Lz [M�] ycrit ycrit

108 1.2 1 & 106 . 30 . 40

107 1.2 5 & 105 . 30 . 40

106 1.2 8 & 5× 104 . 15 . 20

2× 106 1 1 & 4× 103 . 60 . 80

The SNRs of the unlensed signals were listed in
Sec. IVC. When the signals are lensed, the SNRs in-
crease up to ∼ 2620, ∼ 7660, and ∼ 1180 for the top,
middle, and bottom MBHBs in Fig. 8.
For the binary with MTz = 108M� (top row), MLz is

measurable when y . 20 and MLz & 6 × 105M�, while
y is measurable when y . 45. In some regions of the
parameter space, we can measure only one of the lens
parameters. A qualitative difference with respect to PM
lenses is that ycrit is no longer (approximately) constant,
but it depends on MLz (as expected from, e.g., Fig. 10 of
TN). We summarize the results for each binary in Table II.

For the binary with MTz = 107M� (middle row), we
find that the highest ycrit corresponds to MLz ≈ 104M�.
Ref. [34] found the maximum value of the inner product
defining the Lindblom criterion, 〈δh|δh〉 ≈ 6, occurs for
a comparable value of MLz, and that 〈δh|δh〉 decreases –
while still satisfying the condition 〈δh|δh〉 > 1 – for lower
values of MLz. Note, however, that, according to our
analysis, none of the lens parameters is measurable for
MLz . 3× 103M�. This implies that the Lindblom crite-
rion is necessary but not sufficient to conclude whether
lensing is observable.
Our findings are significantly more optimistic than

those in TN: by including the merger, ringdown, and
higher harmonics, we can measure lens parameters for
higher values of y and lower values ofMLz than previously
thought. Even if we consider a more stringent measura-
bility criterion (setting the threshold at, say, 10% relative
uncertainty), we still find that we can extract information
about the lens parameters for higher values of y and lower
values of MLz than estimated by TN. As in the case of
PM lenses, the values of M crit

Lz and ycrit have a strong
dependence on the parameters of the source and the lens.
The simple estimates of lensing probability by TN as-
sumed ycrit to be constant, but a more careful estimate
should consider the dependence of M crit

Lz or ycrit on the

Table II. Same as Table I, but for an SIS lens.

∆MLz/MLz ∆y/y

MTz [M�] q zS Mcrit
Lz [M�] ycrit ycrit

108 1.2 1 & 6× 105 . 20 . 45

107 1.2 5 & 3× 104 . 25 . 40

106 1.2 8 & 2× 104 . 10 . 20

source and lens parameters.

V. CONCLUSIONS AND OUTLOOK

Wave-optics effects in lensed GW signals emitted by
MBHBs in the LISA band are important when the
Schwarzschild radius of the lens is smaller than the
wavelength of radiation [cf. Eq. (1)]. If detected, these
frequency-dependent wave-optics effects could lead to a
plethora of applications, such as precision cosmology or
constraints on the population of lenses.

We have studied the observability of wave-optics effects
by LISA. We computed the parameter-estimation errors
using analytical solutions for both PM and SIS lenses.
These analytical solutions allow us to compute the deriva-
tives of the diffraction integral F (w, y). In the context of
lensing, this is (to our knowledge) the first study using
gravitational-waveform models that include the merger,
ringdown, higher harmonics, and aligned spins. We found
that the inspiral-only waveforms used in previous work
overestimate measurement uncertainties in the lens pa-
rameters by about an order of magnitude. The merger,
ringdown, and higher-order modes significantly improve
our ability to measure MLz and y. The “critical” value of
the redshifted lens mass for which such measurements are
possible varies by a factor of ∼ 2 or 3 for MBHBs with
large (anti)aligned spins.

We selected three representative MBHBs that could be
detectable by LISA and performed an extensive param-
eter estimation survey for a wide range of lens masses
and impact parameters. The results for PM (SIS) lenses
are shown in Fig. 7 (Fig. 8) and Table I (Table II). We
found that the critical values of the lens mass and impact
parameter for which lensing is measurable depend very
strongly on the source parameters. Therefore, assum-
ing these critical parameters to be constant can lead to
incorrect estimates of the lensing probability.
As claimed by Ref. [34], the lens parameters could

be measurable for SIS lenses with impact parameters
satisfying y > 3. However, (contrary to the claims of
Ref. [34]) we found that none of the SIS lens parameters
are measurable forMLz . 3×103M�: this shows that the
Lindblom criterion is not accurate enough to determine
whether lensing is observable.

Our parameter-estimation study shows that GW lens-
ing of MBHBs with LISA may be more easily observable
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than previously thought. Estimating the rate of observ-
able lensing events requires population studies based on
astrophysical models [60–62], and it is an exciting topic
for future work.
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Appendix A: Evaluation of F (w, y) for Singular
Isothermal Sphere Lenses

We evaluate F (w, y) for an SIS lens using a piecewise
strategy: we sum the series in Eq. (14) for small (w, y),
and we use the geometric-optics approximation for large
(w, y). More in detail, we set

F (w, y) =
{
Fwave(w, y) (w < 250 ∧ wy < 250),
Fgeom(w, y) (otherwise).

(A1)

Here, Fwave(w, y) denotes the right-hand side of Eq. (14),
and Fgeom(w, y) is the geometric-optics approximation:

Fgeom(w, y) =
{
|µ+|1/2 − i|µ−|1/2 exp(2iwy) (y ≤ 1),
|µ+|1/2 (y > 1),

(A2)
where µ± = ±1 + 1/y is the magnification of the images
in the geometric-optics limit.
When numerically evaluating Fwave(w, y), we use

the nsum function from the package for real and
complex floating-point arithmetic with arbitrary pre-
cision mpmath v1.2.1 [64], with a floating-point
precision parameter dps = 50 and the options
{‘method’:‘shanks’,‘tol’:1e-15}. We have ver-
ified that these options can ensure convergence of the

series, as well as the convergence of the series expansions
required to evaluate the derivatives (see Appendix C 2),
in the (w, y) region relevant for our study. When using
the geometric-optics approximation Fgeom(w, y), we have
also verified that the error is always . 10%.

Appendix B: Singular Isothermal Sphere with an
Outside Boundary

In the main text, we noted that the total mass of the
SIS profile is formally infinite and that this divergence
is usually regularized by introducing an outer boundary
at r = r∆ such that ρSIS(r∆) = ∆ρcr, where ∆ is a di-
mensionless constant. Solving for r∆ as defined above
yields r∆ = [4/(3∆)]1/2σv/HL, which leads to a normal-
ized lens-plane coordinate x∆ ≡ r∆/ξ0. For the lensing
configurations relevant to this paper, x∆ is in the single-
image regime. We can thus compute the corresponding
impact parameter y∆ = x∆ − 1, with the result

y∆ = 1
2π
√

3∆

(
1

σvHL

)(
DS

DLDLS

)
− 1. (B1)

The velocity dispersion σv can then be related to the
redshifted lens mass MLz using Eq. (9). In Fig. 9, we plot
y200 as a function of zL and zS for three selected values
of MLz. We conclude that, for the lensing configurations
relevant to this paper, the impact parameter y200 corre-
sponding to the r200 boundary is greater than ∼ 100, and
thus the truncation of the SIS profile is irrelevant in the
range of potentially detectable values of y.

Appendix C: Analytical Derivatives

Equations (16) and (17) imply that the reduced TDI
observables X̃L of a lensed MBHB have the form

X̃L(θL,θS) = F (w, y)X̃(θS) . (C1)

From the analytical expressions of F (w, y) for the PM
and SIS lenses, we can get analytical expressions for
the derivatives of the lensed waveform appearing in the
information matrix as follows.
Using Eq. (C1), the partial derivative of the lensed

waveform with respect to any parameter γ reads

∂X̃L(θL,θS)
∂γ

=
(
∂F (w, y)
∂w

· ∂w
∂γ

+ ∂F (w, y)
∂y

· ∂y
∂γ

)
× X̃(θS) + F (w, y)∂X̃(θS)

∂γ
. (C2)

If γ ∈ θL, all terms proportional to ∂X̃(θS)/∂γ vanish.
Similarly, if γ ∈ θS, all partial derivatives of F (w, y) with
respect to γ vanish. We compute the numerical derivatives
with respect to the source parameters using the software
lisabeta [47]. The derivatives with respect to the lens

rockfish.jhu.edu
http://www.tacc.utexas.edu
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Figure 9. The impact parameter y200 corresponding to the r200 boundary as a function of the lens redshift zL and the source
redshift zS for three redshifted lens masses (left to right): MLz = {105, 107, 109}M�.

parameters are computed below, first for PM lenses and
then for SIS lenses.

In summary: the derivatives of the lensed waveforms
with respect to MLz involve Eqs. (C5) and (C9) for PM
lenses, and Eqs. (C14) for SIS lenses. The derivatives
with respect to y are given by Eq. (C10) for PM lenses,
and (C15) for SIS lenses. Once these derivatives are
known, we can use Eqs. (21) and (22) to estimate the
errors in any of the 13 source and lens parameters γ.

1. Point-mass Lens

The diffraction integral F (w, y) depends only on the
lens parameters MLz and y. From Eq. (8), we see that
we need derivatives of the gamma function Γ(z) with
respect to w, and derivatives of the confluent hypergeo-
metric function 1F1(a, b; z) with respect to both w and y.
The derivatives of the other terms in Eq. (8) are trivial.
The gamma function in the Weierstrass form [65] can be
written as

Γ(z) =
{
z ecz

∞∏
r=1

[(
1 + z

r

)
e−z/r

]}−1

, (C3)

where c is the Euler-Mascheroni constant [65], and z ∈ C.
Differentiating, we get

Γ′(z) = Γ(z) Ψ(z), (C4)

where Ψ(z) is the digamma function [52].
Now, set z = 1− wi/2 to find

∂Γ
(
1− w

2 i
)

∂w
= −1

2 i Γ
(

1− w

2 i
)

Ψ
(

1− w

2 i
)
. (C5)

The confluent hypergeometric function can be written
as

1F1(a, b; z) = 1 + a

b

z

1! + a(a+ 1)
b(b+ 1)

z2

2! + ... . (C6)
Since b = 1, the only required derivatives are those with
respect to a and z. The partial derivative of Eq. (C6)
with respect to z is given by

∂ 1F1(a, b; z)
∂z

= a

b
1F1(a+ 1, b+ 1; z) . (C7)

The partial derivative of Eq. (C6) with respect to a is
given by

∂ 1F1(a, b; z)
∂a

=
∞∑
k=0

(a)kΨ(a+ k)zk

k!(b)k
−Ψ(a)1F1(a, b; z) , (C8)

where (a)k = Γ(a+ k)/Γ(a) is the Pochhammer symbol,
and Ψ(z) is the digamma function as before.
Using Eqs. (C7) and (C8), we can find the partial

derivative of 1F1(a, b; z) with respect to w:
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∂ 1F1(a, b; z)
∂w

= ∂ 1F1(a, b; z)
∂a

· ∂a
∂w

+ ∂ 1F1(a, b; z)
∂z

· ∂z
∂w

= i

2 ·
∂ 1F1(a, b; z)

∂a
+ y2

2 i ·
∂ 1F1(a, b; z)

∂z

= i

2

∞∑
k=0

(iw2 )kΨ(iw2 + k)zk

k!(1)k
−Ψ

(
i
w

2

)
1F1

(
i
w

2 , 1; iwy
2

2

)
− wy2

4 1F1

(
i
w

2 + 1, 2; iwy
2

2

)
. (C9)

Then, ∂F (w, y)/∂w can be obtained by using Eqs. (C5)
and (C9) and applying the product rule. Setting w =
8πMLzf and using the chain rule gives ∂F (w, y)/∂MLz.

Similarly, the partial derivative of 1F1(a, b; z) with re-
spect to y is given by

∂ 1F1(a, b; z)
∂y

= wyi · ∂ 1F1(a, b; z)
∂z

= −w
2y

2 1F1

(
w

2 i+ 1, 2; wy
2

2 i

)
.

(C10)

Then, ∂F (w, y)/∂y can be obtained using Eq. (C10) and
applying the product rule.

2. Singular isothermal sphere lens

The diffraction integral F (w, y) for the singular isother-
mal sphere lens can be analytically obtained by the per-
turbative expansion described in Sec. II B. In this case,
F (w, y) is given by Eq. (14), and, again, it is only a func-
tion of MLz and y. To get the corresponding derivatives
of F (w, y), we need the derivative of Ψn(w) = (−iw)n/n!
with respect to w, and the derivatives of In(w, y) with
respect to w and y. The derivatives of the other terms in
Eq. (14) are trivial.
The derivative of Ψn(w) = (−iw)n/n! with respect to

w is given by

∂Ψn(w)
∂w

= (−i)n

(n− 1)!w
n−1 . (C11)

To obtain the derivative of In(w, y) [Eq. (12)] with
respect to w, we need to differentiate 1F1(N, 1;−iwy2/2)
with respect to w, where N = (n+ 2)/2. Using Eq. (C7),
we get

∂In(w, y)
∂w

= N

2

(
2i
w

)N
Γ(N)

[(
−iy

2

2

)
1F1

(
N + 1, 2;−iwy

2

2

)
− 1
w

1F1

(
N, 1;−iwy

2

2

)]
. (C12)

∂In(w, y)
∂y

= −iN wy

2

(
2i
w

)N
Γ(N) 1F1

(
N + 1, 2;−iwy

2

2

)
. (C13)

Using Eqs. (C11), (C12), and (C13), we get

∂F (w, y)
∂w

= ∂E(w, y)
∂w

∞∑
n=0

Ψn(w)In(w, y) + E(w, y)
∞∑
n=0

[
∂Ψn(w)
∂w

In(w, y) + Ψn(w)∂In(w, y)
∂w

]
, (C14)

where E(w, y) = (w/i) exp
{
iw
[
y2/2 + φ(y)

]}
. The par-

tial derivative of F (w, y) with respect to MLz can be
obtained by using the chain rule as before.

Finally, we have

∂F (w, y)
∂y

= ∂E(w, y)
∂y

∞∑
n=0

Ψn(w)In(w, y)

+ E(w, y)
∞∑
n=0

Ψn(w)∂In(w, y)
∂y

. (C15)
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