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We constrain the distribution of merging compact binaries across the celestial sphere using the
GWTC-3 catalog from the LIGO-Virgo-KAGRA Collaborations’ (LVK) third observing run. With
63 confident detections from O3, we constrain the relative variability (standard deviation) of the rate
density across the sky to be . 16% at 90% confidence assuming the logarithm of the rate density
is described by a Gaussian random field with correlation length ≥ 10◦. This tightens to . 3.5%
when the correlation length is ≥ 20◦. While the new O3 data provides the tightest constraints on
anisotropies available to-date, we do not find overwhelming evidence in favor of isotropy, either.
A simple counting experiment favors an isotropic distribution by a factor of Biso

ani = 3.7, which is
nonetheless an improvement of more than a factor of two compared to analogous analyses based on
only the LVK’s first and second observing runs.

I. INTRODUCTION24

The observation of gravitational waves (GWs) from25

the coalescence of compact binaries provides a new way26

to study how these systems form, evolve, and are dis-27

tributed throughout the universe (see Ref. [1] and refer-28

ences therein). In particular, the spatial distribution of29

GW sources can test the cosmological principle: is the30

universe statistically homogeneous and isotropic? De-31

viations from perfect homogeneity have already been32

proposed as a way to infer cosmological parameters33

through cross-correlations of clustering within GW and34

electromagnetic observations (see, e.g., [2, 3]). How-35

ever, these studies assume a priori that GW events fol-36

low anisotropies measured from electromagnetic surveys.37

That is, they do not directly measure anisotropies from38
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the GW data. Our goal in this paper is to constrain39

anisotropies in the population of merging binaries using40

only GW data.41

Although large deviations from isotropy are not ex-42

pected, it behooves us nevertheless to check this, similar43

to the motivation within Ref. [4]. Directly constrain-44

ing anisotropies with GW catalogs may be of interest45

in several astrophysical situations. For example, resolv-46

ing clustering scales from GW data alone may be used47

to test the assumption that GW sources are always as-48

sociated with galaxies. Along these lines, GW sources49

could be used to directly trace clustering scales; see, e.g.,50

Refs. [5, 6] for discussion of this in the context of 3rd gen-51

eration detectors. Similarly, the identification of individ-52

ual host galaxies for specific events and/or the statisti-53

cal association between the full GW catalog and different54

types of galaxies may suggest, perhaps through the mass-55

dependent galaxy clustering scale, which types of galaxies56

most often host compact binary coalescences [7, 8]. This57

could be combined with knowledge of the star formation58
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history to in turn constrain the delay time distribution59

between binary formation and coalescence [9]. See, e.g.,60

Ref. [10] for a similar application to short gamma-ray61

bursts (GRBs).62

It is also worth remembering that the LIGO-Virgo-63

KAGRA (LVK) collaborations [11, 12] search for unmod-64

eled “burst” events in addition to compact binaries [13].65

Given that the source of such events will not be known a66

priori, their spatial distribution will likely provide crucial67

clues as to their origins. Indeed, determining whether68

burst events correlate with local structure will inform69

the distance to the sources and therefore their intrinsic70

energy scales, analogous to GRBs [14] and other high-71

energy astrophysical phenomena.72

The detection of anisotropies within the distribution73

of merging binaries could be the signature of more exotic74

physics, such as wormholes that may effectively tunnel75

to larger volumes and therefore higher number of merg-76

ing binaries [15] or lensed events, which appear as re-77

peated signals from the same part of the sky [16, 17].78

In particular, strong lensing may distort the shape of79

the waveform, particularly the relative phasing between80

different harmonics [18]. These effects may be difficult81

to distinguish from more general alternative theories of82

gravity [19], and the identification of anisotropies may be83

a cleaner signature of lensing than the waveform’s phas-84

ing alone. Indeed, many searches for lensed events begin85

with overlaps on the sky.86

Several authors have already studied the distribution87

of merging binaries with the LIGO-Virgo Collabora-88

tions’ [11, 12] first catalog of 11 detections (GWTC-89

1 [20]). Specifically, Ref. [21] modeled anisotropies with90

12 pixels of equal area and a set of Euler angles that91

rotated the pixelization across the sky. Using an approx-92

imation of the catalog’s sensitivity that assumed constant93

and equal power spectral densities for both LIGO detec-94

tors throughout the run, neglecting the presence of Virgo,95

but accounting for the diurnal cycle and correlations in96

when the LIGO interferometers recorded science-quality97

data [22], they found weak evidence in favor of isotropy.98

Similarly, Ref. [23] used the same 11 events but a different99

estimate of survey sensitivity to constrain anisotropies100

with a model constructed from a low-order spherical har-101

monic expansion. They considered several models with102

different numbers of harmonics up to lmax = 5, finding103

equivalently weak evidence in favor of isotropy regardless104

of lmax. Finally, Ref. [24] attempted to measure the two-105

point correlation function of GW events with a spherical106

harmonic decomposition of the sum of individual event107

localizations while assuming the sensitivity of the detec-108

tor network was uniform over the entire sky. They also109

found no evidence for an excess of correlation at any an-110

gular scale.111

Maps of upper limits on anisotropies in the stochastic112

GW background are routinely produced under various113

assumptions in either the pixel or spherical-harmonic do-114

mains. Although no statistically significant detection has115

been made, these analyses typically make assumptions116

about the power spectrum of the stochastic GW back-117

ground and produce maximum likelihood estimates of the118

angular distribution of the intensity. See Ref. [25] for a119

review. While there has been no unambiguous detection120

of the stochastic GW background to date, let alone the121

detection of anisotropies, there may still be information122

about the distribution of merging binaries at high red-123

shift encoded in the nondetection (see, e.g., Ref. [26]).124

Additionally, anisotropies are of general interest in125

other high-energy astrophysical phenomena. Analyses of126

GRBs show that they are consistent with isotropic distri-127

butions, regardless of how the catalog is subdivided [14],128

the distribution of fast-radio bursts (FRBs) is an active129

area of research [27], and multiple groups have claimed130

detections of anisotropies in the arrival directions of cos-131

mic rays [28–31].132

Therefore, it is of general interest to develop meth-133

ods to constrain the rate of mergers as a function of134

their position on the celestial sphere. We use hierarchi-135

cal Bayesian inference to construct posterior processes for136

the distribution of merging compact binaries over the sky137

using 63 confidently detected binaries, including binary138

black hole (BBH), neutron star-black hole (NSBH), and139

binary neutron star (BNS) sources, from the the LVK’s140

third observing run (O3, 1 April 2019–27 March 2022 [32–141

34]). In addition to the nearly 6-fold increase in sample142

size from GWTC-1, our analysis benefits from estimates143

of survey sensitivity derived from simulated signals in-144

jected into real detector noise and processed directly with145

the searches used to construct the catalog [35]. These146

injections implicitly account for variability in each de-147

tector’s sensitivity and correlations between the times148

when detectors record data.1 This improves upon pre-149

vious estimates of survey sensitivity, which depended on150

approximations with poorly quantified systematic uncer-151

tainties [21, 23]. We also self-consistently incorporate152

realistic models of the masses, spins, and redshift distri-153

butions of merging binaries derived from GW observa-154

tion [1, 36].155

We find mild evidence in favor of isotropy. This agrees156

with Refs. [21] and [23], but we place tighter constraints157

on anisotropies because of the larger sample size now158

available. In fact, we find Bayes factors in favor of159

isotropy (Biso
ani) similar to Refs. [21, 23] when we use only160

events from GWTC-1, and these increase by a factor of 2161

when we only use the 63 events from O3. Although there162

are a few persistent “hot pixels” from O3 in all our mod-163

els on average, we cannot confidently bound the rate den-164

sity in these directions to be inconsistent with isotropy.165

Indeed, we bound the relative variability (standard devi-166

ation) in the rate density to . 16% of the isotropic rate167

at 90% credibility if the correlation length scale in the168

rate density is ≥ 10◦, and this is improved to . 3.5% if169

the length scale is ≥ 20◦.170

1 Appendix B shows that the O3 catalog’s sensitivity is nearly uni-
form over the entire sky, although measurable deviations exist.
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The rest of this paper is structured as follows. In171

Sec. II, we perform a simple counting experiment by di-172

viding the sky into hemispheres, showing that most of173

the information about (an)isotropy comes from the best174

localized events (less than half our catalog). Sec. III175

presents additional models of varying complexity, includ-176

ing pixelized representations like Ref. [21] (Sec. III B 1)177

and representations based on low-order spherical har-178

monic expansions like Ref. [23] (Sec. III B 2), culminating179

in a nonparametric description of the rate density as a180

Gaussian random field (Sec. III C). We discuss implica-181

tions of current constraints and conclude in Sec. IV.182

II. COUNTING EXPERIMENTS183

We begin with a simple counting experiment: divide184

the sky into two hemispheres and “count” the number of185

events that fall within each.2 In the context of GW cat-186

alogs, this simple model is useful because of the symme-187

try inherent in the sensitivity for current interferometers.188

Each interferometer’s sensitivity has even parity when re-189

flected across the plane defined by its arms. This means190

that the sensitivity to each hemisphere will be equal re-191

gardless of how many interferometers participate in the192

survey and exactly where hemispheres are drawn as long193

as they divide the sky in half equally.194

To wit, we construct a model that divides the sky195

in half, assigning a different rate density to each hemi-196

sphere: the expected fraction of events coming from the197

“northern” hemisphere is f , and the corresponding frac-198

tion from the “southern” hemisphere is 1 − f . We also199

consider all possible hemispheres by sampling over Eu-200

ler angles that rotate the simple north-south hemisphere201

model into arbitrarily oriented hemispheres. This ro-202

tated model is similar to the approach in Ref. [21]. In-203

ference proceeds by effectively counting the number of204

events consistent with each hemisphere and infering the205

expected fraction of events and the hemispheres’ orienta-206

tion most consistent with the observations. Uncertainty207

in the fraction of events in a particular hemisphere, then,208

roughly corresponds to counting uncertainty from a Bino-209

mial distribution. We list the prior ranges for the Rotated210

Hemisphere model and compare it to others in Table II.211

Much of the information about isotropy comes from212

the best-localized events, and we find that the data prefer213

equal fractions of events from each hemisphere (f = 0.5)214

by a factor of Biso
ani = 3.7, assuming uniform priors for f215

and the Euler angles and calculating Biso
ani via the Savage-216

Dickey density ratio [37] (Fig. 1). The model also finds217

no preference for specific rotations, which is expected if218

f ∼ 0.5. Furthermore, the number of events in one hemi-219

sphere is binomially distributed, and the uncertainty in220

2 Because GW events often have very broad localizations, we al-
ways employ hierarchical Bayesian inference to account for mea-
surement uncertainty. See Sec. III A for more details.

0.0 0.2 0.4 0.6 0.8 1.0
f

p(
f)

prior
posterior
isotropy

FIG. 1. Marginal prior (blue) and posterior (orange) for the
mixing fraction in the Rotated Hemisphere model (Table II).
The data favor isotropy (grey, f = 0.5) by a factor of Biso

ani =
3.7 and rule out anisotropies bigger than 3:1.

the fraction of events will be σ2
f = f(1 − f)/N with N221

events. With our selection of 63 events and assuming222

isotropy, we expect σf = 6.3%. However, this is signif-223

icantly smaller than the actual standard deviation ob-224

served in Fig. 1, which corresponds to only 23.5 effective225

events (σf = 10.3%). While this could be due in part to226

the trials factor associated with sampling over possible227

rotations, it is likely because many of the events in our228

catalog have uninformative broad localization uncertain-229

ties. Indeed, if we only use the 25 best-localized events230

from our catalog,3 we find σf = 12.6% and Biso
ani = 2.7,231

only slightly less constraining than the uncertainty ob-232

tained with the full catalog. Similarly, if we only include233

the 10 best-localized events, we obtain σf = 17.5% and234

Biso
ani = 1.9, only slightly worse than expected from the235

binomial distribution (σf = 15.8% with 10 events).236

This should be contrasted with the constraints ob-237

tained using only GWTC-1: Biso
ani = 1.3 and σf = 18.9%.4238

Ref. [21] found Biso
ani = 1.3 and Ref. [23] quote Biso

ani ∼ 1.1 -239

1.6 depending on how many spherical harmonics they in-240

clude. We see, then, that our larger sample size provides241

the tightest constraints to-date.242

Note that one could combine all events from O1, O2,243

and O3 in order to obtain an even tighter constraint on244

anisotropy under the Rotated Hemisphere model with-245

out accurate estimates of search sensitivity because of the246

symmetry in the model. We avoid this because of the ex-247

pectation that systematic uncertainty from the relatively248

strong assumptions behind the shape of anisotropies al-249

lowed by this model will be more important than any250

improved statistical uncertainty, and therefore focus on251

more flexible models of isotropy, for which accurate esti-252

3 In general, selecting events in this way may significantly com-
plicate our estimate of the catalog’s sensitivity. However, our
Rotated Hemisphere model is immune to such considerations be-
cause of the symmetry of the interferometer antenna patterns.

4 Although our sensitivity estimates only cover O3, we can analyze
GWTC-1 without accounting for selection effects because of the
symmetry in this model.
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mates of search sensitivity are more important, in what253

follows.254

III. HIERARCHICAL MODELS255

We now consider several additional representations of256

the distribution of merging binaries and construct maps257

of the merger rate across the sky with each. Section III A258

briefly reviews hierarchical Bayesian inference before Sec-259

tion III B presents our results. Comparing different mod-260

eling choices allows us to examine, to some extent, which261

features are constrained by the data and which are dom-262

inated by our modeling choices.263

In what follows, we assume fixed distributions for the264

source-frame component masses, redshift, spins, inclina-265

tion, orientation, and arrival time of GWs from binary266

systems. These are described in Table I. In order to fo-267

cus on isotropy, we only infer the parameters of the dis-268

tribution over right ascension (α) and declination (δ).269

While we do not expect the assumption of, e.g., fixed270

masss, redshift, and spin distributions to affect our con-271

clusions about (an)isotropy, it would be worthwhile to272

check this. However, we leave studies of possible cor-273

relations between the direction to the source and other274

source properties to future work.275

We only consider events from O3 (GWTC-2 [32],276

GWTC-2.1 [33], and GWTC-3 [34]), as the publicly avail-277

able set of simulated signals processed with real searches278

used to estimate the catalog’s sensitivity only covers279

O3 [35]. However, we consider all events from O3, in-280

cluding BNS, NSBH, and BBH systems. We approxi-281

mate the catalog selection by requiring the false alarm282

rate (FAR) from at least one pipeline within GWTC-3283

to be ≤ 1/year.5 With this selection threshold, we retain284

63 events from O3. See Appendix B for more details.285

A. Formalism286

We employ hierarchical Bayesian inference to infer the287

rate density of merging compact binaries:288

dN

dθ
= Rp(θ|Λ) (1)

where each event is described by parameters θ (masses,289

redshift, right ascension, declination, etc), the popula-290

tion distribution p(θ|Λ) is described by some set of pa-291

rameters Λ (minimum and maximum masses, anisotropy292

parameters, etc), and R acts as an overall normalization293

constant.294

5 We include all searches present in GWTC-3: both modeled (Gst-
LAL, MBTA, PyCBC broad, and PyCBC BBH) and unmodeled
(cWB) searches. See Ref. [34] for more details about individual
searches.

Specifically, we sample from the rate-marginalized in-295

homogeneous Poisson likelihood for the observed data296

{Di} from N events297

p({Di}|Λ) =

N∏
i

∫
dθ p(Di|θ)p(θ|Λ)∫
dθ P (det|θ)p(θ|Λ)

(2)

with a corresponding prior for Λ. Here, P (det|θ) is the298

(time-averaged) probability of detecting a signal with pa-299

rameters θ. Eq. 2 implicitly assumes p(R) ∼ 1/R within300

the marginalization over R. We estimate the numera-301

tors in Eq. 2 via Monte Carlo importance sampling of302

single-event posterior samples for each event, and the de-303

nominator with a set of detected simulated signals (Ap-304

pendix B). See, e.g., Refs. [39–42] and references therein305

for more details.306

B. Cartography307

Within the hierarchical framework, we consider several308

different representations of the distributions over the sky.309

Broadly, these can be classified as those based on pix-310

elizations (like the Rotated Hemisphere model in Sec. II)311

and those based on spherical harmonic decompositions.312

Table II summarizes our models, their parameters, and313

the priors chosen for those parameters. While there is314

no fundamental difference between the two approaches,315

each introduces different priors on the types of variation316

over the sky. Nonetheless, as we will see, we obtain com-317

parable results regardless of the precise model choices.318

1. Pixelized Representations319

The simple Rotated Hemisphere model (Section II)320

found weak evidence for isotropy, but this could be due321

to the assumptions implicit in the model. We now fo-322

cus on pixelization schemes that allow for more complex323

anisotropies. Fig. 2 shows Mollweide projections of p(Ω)324

derived from different modeling assumptions. Specifi-325

cally, we employ the Healpix pixelization scheme [43] and326

consider models with 12, 48, and 192 pixels, respectively.327

In each model, the rate density in each pixel is indepen-328

dently, exponentially distributed a priori. The exponen-329

tial distribution is convenient because it only has sup-330

port for non-negative rate densities. Furthermore, the331

independent priors for each pixel give models with more332

pixels more freedom. That is, as the number of pixels in-333

creases, the prior not only allows for, but actually prefers334

increased variation across the sky.335

We additionally consider a radically different pixeliza-336

tion scheme: the 88 constellations6 defined by the In-337

ternational Astronomical Union (IAU) [44]. Although338

6 Although there are only 88 constellations, we fit the rate in 89
pixels, dividing Serpens (Ser) into its two disjoint regions.
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TABLE I. Fixed population models for the source-frame primary mass (m1), secondary mass (m2 ≤ m1), Cartesian spin vectors
for each component (~s1, ~s2), and redshift (z). We employ the maximum a posteriori values for the Broken Power-Law + Dip
model from Ref. [36] as well as a flat ΛCDM cosmology with H0 = 67.32 km/s/Mpc, ΩM = 0.3158, and ΩΛ = 1 − ΩM (first
column of Table 1 in Ref. [38]). While there is evidence that the (BBH) population evolves with redshift and the spins are not
isotropically distributed, these effects are not expected to strongly influence our inference for the right ascension and decliation.
We also assume events’ orbital inclinations are isotropically distributed, events’ phases at coalescence and polarization angles
are uniformly distributed throughout their physical ranges, and that events’ arrival times are uniformly distributed throughout
the duration of the experiment.

Variates Name/Description Functional Form Visualization

m1, m2

Broken Power-Law
+ Dip

(BPL+Dip)

p(m1,m2)
∝ p(m1)p(m2)
× ppair(m2,m2/m1)

see Refs. [1, 36]

100 101 102

m [M ]

m
p(

m
)

100 101 102

m1 [M ]

100

101

102

m
2
[M

]

log10(m1m2p(m1, m2))

z
uniform in

comoving volume
& source-frame time

p(z) ∝ (dVc/dz)/(1 + z)

0 2 4
z

p(
z)

~s1, ~s2
uniform in magnitude
& isotropic orientation

p(~si) = 1/4π|~si|2

0.0 0.2 0.4 0.6 0.8 1.0
sx

p(
s x

)

0.0 0.2 0.4 0.6 0.8 1.0
sx

0.0

0.2

0.4

0.6

0.8

1.0

s y

log10(p(sx, sy))

we expect the IAU constellations to be completely un-339

related to GW events, which come from much greater340

distances than the stars that make up the constellations,341

they provide a convenient and memorable alternative pix-342

elization. As with the Healpix models, the rate in each343

constellation is independently exponentially distributed344

a priori. Because we parametrize the model in terms of345

the rate (count per steradian) within each constellation,346

this implies that the expected number of events from a347

constellation scales with the constellation’s area.348

Unlike our Rotated Hemisphere model and Ref. [21],349

we do not consider rotations of these pixelizations.350

Ref. [21] only used 12 pixels and introduced 3 Euler an-351

gles to attempt to control for model systematics associ-352

ated with the placement of the 12 pixels. We instead use353

models with more pixels and different methods of parti-354

tioning the sky to test for model systematics.355

Fig. 2 shows one-dimensional summary statistics de-356

fined for each direction on the sky. We show the average357

a posteriori rate for each direction (Ω)358

〈p(Ω)〉 =

∫
dΛ p(Λ|{Di})p(Ω|Λ) (3)

where p(Λ|{Di}) is the hyperposterior distribution in-359

ferred via Eq. 2. This average is normalized by the equiv-360

alent rate for an isotropic distribution: p(Ω|iso) = 1/4π.361

We also show the difference 〈p(Ω)〉 − p(Ω|iso) divided by362

the standard devitation of the one-dimensional marginal363

posterior distribution: σp(Ω).364

We find similar features with all models. Although365

there are “hot pixels” throughout the sky for each, on366



6

TABLE II. Population models for the distribution over right ascension (α) and declination (δ). See text for more detailed
definitions of each model’s parameters. We denote the uniform distribution between X and Y as U(X,Y ), the exponential

distribution with scale parameter Z as Exp[Z] (p(x) = Z−1e−x/Z), and the multivariate Normal distribution with mean vector
µ and covariance matrix Ξ as N (µ,Ξ). Where relevant, we denote the area of pixel i with Ai.

Variates Name Parameters Functional Form Example

Ω ≡ α, δ

Rotated Hemisphere
(RH)

f ∼ U(0, 1)
Rotate by Euler angles (φ, θ, ψ).

α, δ → α̃, δ̃
In the rotated frame

p = (fΘ(δ̃ > 0) + (1− f)Θ(δ̃ < 0))/2π

φ ∼ U(0, 2π)

θ ∼ U(0, 2π)

ψ = 0

Simple Dipole
(SD)

|~b| ∼ U(0, 1)
p = (1 +~b · Ω̂)/4π

|~b| ≤ 1
arctan(by/bx) = φ ∼ U(0, 2π)

bz/|b| = cos θ ∼ U(−1,+1)

Healpix pixelization
(HP: Npix = 12, 48, 192)

fi ∼ Exp(A−1
i )

∀ i ∈ [1, · · · , Npix]

p =
Npix∑
i
fiA

−1
i Θ((α, δ) ∈ Ai)

Npix∑
i
fi = 1

IAU Constellations
(IAU: Npix = 89)

Gaussian Random Field
(GRF)

log(fi/Ai) ∼ N (0,Ξij)

Ξij = σ2
wnδij + σ2e−(∆θij)2/ϑ2

ϑ ∼ U(ϑmin, π/3)

σ ∼ U(0, 3)

σwn = σ/10

Exponentiated
Spherical Harmonics

(ESH: lmax = 1, 2, 3, 4)

R{bm=0
l≤lmax

} ∼ U(−10,+10)

p ∝ exp

(∑
lm

bml Y
m
l (α, δ)

)
b−ml = (b+ml )∗

I{bm=0
l≤lmax

} = 0

R{bm>0
l≤lmax

} ∼ U(−10,+10)

I{bm>0
l≤lmax

} ∼ U(−10,+10)

average (left column of Fig. 2) there is a consistently367

hot pixel near (α, δ) = (−45◦,+10◦). This hot spot lies368

within Equuleus (Equ: the “little horse”), which has the369

second smallest area of any of the IAU constellations and370

is associated with a handful of relatively well localized371

events (see Appendix B). Even though the horse is little,372

at face value it may play a big role in GW anisotropy373

measurements. However, while hot pixels can at times374

correspond to rates several times larger than the rate for375

an isotropic distribution, there is still significant uncer-376

tainty in the posterior. In fact, the expected value of the377

rate in any pixel is always less than ±1.5 standard devi-378

ations away from isotropy a posteriori (right column of379

Fig. 2).380

We note that the size of the deviations from isotropy381

are less significant within models with more pixels. This382

is because there are fewer expected events per pixel and383

therefore greater relative uncertainty in each pixel’s rate384

density. Indeed, while there are always some pixels for385

which the rate is not confidently bounded away from zero,386

there are (many) more poorly constrained pixels for mod-387

els with larger Npix. See Appendix A for more discussion.388

While comparisons based on only one-dimensional389

marginal posteriors do not actually represent a full test390

of isotropy (the rate density must be consistent with391

isotropy in all pixels simultaneously, not just separately392

for each pixel), this is nevertheless suggestive. We also393

eschew Biso
ani for these models due to the possibly strong394

dependence on our prior choices (see discussions in, e.g.,395

Refs. [45, 46]). We quantify constraints on anisotropies396

in more detail in Section III D.397

2. Spherical Harmonic Representations398

We now turn our attention to representations of p(Ω)399

based on spherical harmonic decompositions. There are400

many ways to construct a representation of a positive401

semi-definite function defined on S2 in terms of spherical402
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Npix mean significance

12

48

196

89

FIG. 2. Mollweide projections of the posterior for the rate density across the sky with pixelized representations. (top to
bottom) Healpix pixelizations with 12, 48, and 192 pixels as well as a pixelization based on the 88 IAU Constellations (89
pixels; Serpens is divided into two disjoint regions). (left) The average rate density a posteriori scaled by the rate for an
isotropic distribution. (right) A measure of statistical significance: the difference between the average rate density and the rate
for an isotropic distribution scaled by the standard deviation of the rate density in each pixel a posteriori.

harmonics. We explored several models of the form403

p(Ω) = F

(
lmax∑
l=0

m=+l∑
m=−l

bml Y
m
l (Ω)

)
(4)

with the additional constraint b−ml = (b+m
l )∗ to ensure404

the sum is real, where (·)∗ denotes complex conjugation.405

To begin, we consider a Simple Dipole model described406

by a single vector ~b so that407

p(Ω) =
1

4π

(
1 +~b · Ω̂

)
, (5)

with |~b| ≤ 1. This model is similar to the Rotated Hemi-408

sphere model from Sec. II, but avoids sharp features in409

the rate density. It corresponds to F (x) = x and lmax = 1410

in Eq. 4. With a uniform prior over |~b| and isotropic411
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lmax mean significance

1

2

3

FIG. 3. Mollweide projections of the posterior rate density across the sky when it is represented by a spherical harmonic
decomposition. Analogous to Fig. 2. (top to bottom) Spherical harmonics are included up to lmax = 1, 2, and 3. As more
harmonics are included, we observe structure across the sky similar to what is found with the pixelized representations. However,
as in Fig. 2, the fluctuations in the posterior are larger than the difference between the mean a posteriori and an isotropic
distribution.

priors on its orientation, we constrain |~b| ≤ 0.5 at 90%412

credibility, in agreement with the Rotated Hemisphere413

model. We also find Biso
ani = 2.5, slightly smaller than the414

Rotated Hemisphere model. This is because the simple415

dipole lacks sharp features in p(Ω) and therefore larger416

anisotropies are harder to constrain.417

We now additionally consider lmax ≥ 1. Although we418

find consistent results with several choices of F (x),7 we419

7 Ref. [23] chose F (x) = x2, and we also explored F (x) = |x|.
However, both of these approaches complicate the interpretation
of the model as they introduce strong degeneracies. That is, mul-
tiple distinct sets of bml can produce similar p(Ω). For example,
a distribution with only b01 6= 0 produces similar p(Ω) to a distri-
bution with only b02 6= 0. It is this mixing between different l can
be difficult to interpret. These degeneracies render the posterior
for {bml } multimodal, which in part motivated Ref. [23]’s choice
to limit the magnitude of bml to small values a priori.

focus on F (x) = ex, which we refer to as the Exponen-420

tiated Spherical Harmonic (ESH) model. That is, we421

model the logarithm of the probability density with a422

spherical harmonic decomposition. This preserves the423

parity of all Y m
l , thereby removing many of the degen-424

eracies introduced by other choices and simplifying the425

interpretation of posterior constraints for bml .426

We consider independent, uniform priors for the real427

and imaginary parts of bml (subject to the reality con-428

straint) up to several maximum harmonic numbers429

(lmax). Just as larger Npix allow for more model free-430

dom, larger lmax allow the spherical harmonic decompo-431

sition to represent more complex distributions over the432

sky. Fig. 3 shows maps constructed with this Exponen-433

tiated Spherical Harmonic model for lmax = 1, 2, and434

3.435

As a rule of thumb, constraints on low-l coefficients436

weaken as lmax increases. However, we consistently find437

that the l = 1 (dipole) coefficients are constrained to438
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FIG. 4. Prior (blue) and posterior (orange) for the spherical harmonic coefficients (bml ) with lmax = 2. Other lmax produce
similar behavior. (lower left) Distributions over bml . Although the marginal posteriors for some bml>0 peak at nonzero values,
they are all consistent with isotropy. Our priors are, perhaps, unrealistically broad, but were intentionally chosen to be much
broader than the posterior. (upper right) Distributions over the power in each angular harmonic. Even though isotropy is
strongly disfavored a priori, the data constrain the power in higher harmonics to be small compared to the prior.

be rather small, consistent with the Rotated Hemisphere439

and Simple Dipole models. Constraints on higher har-440

monics are weaker, but they are also all constrained to be441

relatively small. Fig. 4 shows the prior and posterior for442

individual bml when lmax = 2. We again eschew Biso
ani for443

this model because of ambiguity in the choices for the444

prior bounds on the {bml }. Indeed, because the posterior445

is consistent with isotropy, we can make Biso
ani as large as446

we like by simply increasing the extent of the prior.447

When lmax ≥ 2, we begin to see structure appear across448

the sky on average a posteriori (Fig. 3). This resem-449

bles the structure observed with pixelized representation,450

and, like the pixelized representations, there are large451

fluctuations in the posterior that render the difference452

between the marginal means and isotropy statistically453

insignificant. Another way to view this is to examine the454

power in each harmonic. Fig. 4 shows these distributions455

as well. Indeed, the power allowed in each harmonic a456

posteriori is larger for higher harmonics, but it is always457

much smaller than the prior, showing that the data favor458
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FIG. 5. Posterior probability for GRF parameters (σ:
marginal uncertainty; ϑ: correlation length) assuming inde-
pendent, uniform priors for each (see Table II) when we use
Healpix decompositions with (light blue) 192, (dark blue) 768,
and (green) 3072 pixels. The distributions do not depend
strongly on the number of pixels used.

isotropy.459

C. Gaussian Random Fields460

We complete our survey of the impact of model choices461

by modeling the (logarithm of the) rate density as a462

Gaussian random field (GRF, also known as a Gaussian463

process [47]).464

Specifically, we assume a Healpix pixelization scheme
with many pixels but, importantly, do not assign inde-
pendent priors to each pixel. Instead, we assume the rate
density in each pixel is correlated with neighboring pixels
according to a covariance kernel

Cov [p(Ωi), p(Ωj)] ≡ Ξij

= σ2
wnδij + σ2 exp

(
− (∆θij)

2

ϑ2

)
(6)

composed of a white noise component (uncorrelated vari-465

ance within each pixel scaled by σ2
wn) and a squared ex-466

ponential component (described by a marginal variance467

σ2 and correlation length scale ϑ) that correlates neigh-468

boring pixels based on the angular separation between469

their centers (∆θij). We fix σwn = σ/10, as we wish470

pixels to be significantly correlated and only include the471

white-noise variance for numerical stability. While this472

choice was made primarily to guarantee numerical sta-473

bility within Cholesky decompositions of (at times) ill-474

conditioned covariance matrices with large ϑ, it also in-475

troduces a natural resolution scale at which σwn from476

many pixels tends to dominate the variance in p(Ω) over477

the sky. For large ϑ (strong squared-exponential correla-478

tions), we expect σwn to contribute a significant fraction479

of the overall variability when Npix & 100 if σwn = σ/10.480

However, for ϑ ∼ 60◦, this increases to Npix ∼ 1100, and481

for ϑ ∼ 10◦ it increases to Npix ∼ 41, 000. We therefore482

expect our results to not depend strongly on the choice483

σwn = σ/10 given the range of ϑ included and the number484

of pixels used. We confirmed this by also investigating485

σwn = σ/100 and σwn = σ/1000, finding consistent re-486

sults.487

Just as our GRF model is related to our pixelized488

models with a different prior, it can also be expressed489

in terms of a spherical harmonic representation. Specif-490

ically, the bml are independently, Normally distributed491

within a GRF prior, and their individual variances de-492

pend on the form of the covariance kernel (see, e.g.,493

Ref. [48, 49]). The GRF prior controls how the prior un-494

certainty in bml decreases as l increases; the contribution495

of high-l modes are limited and the resulting rate density496

is smooth. Similarly, the same prior controls how quickly497

the rate density is allowed to vary from pixel to pixel.498

The key advantages of the GRF approach are that it499

is straightforward to learn the correlation parameters at500

the same time we fit the data and that it does not depend501

strongly on how many pixels or harmonics are included.502

That is, we need not make strong (and poorly under-503

stood) prior choices about how many pixels or bml to in-504

clude. The data itself will determine which correlations505

are preferred. Fig. 5 shows the resulting posteriors for the506

GRF parameters. The data prefer small σ when ϑ & 15◦,507

and are consistent with the isotropic limit (σ → 0) for all508

ϑ.509

The data do not strongly constrain the correlation510

length, although the constraints on σ are more stringent511

for longer ϑ. In other words, if neighboring pixels are512

significantly correlated, then the data are less consistent513

with large fluctuations in the rate density across the sky.514

This is similar to the fact that we are able to more tightly515

constrain the low-l coefficients in the spherical harmonic516

model compared to high-l coefficients.517

Finally, Fig. 6 shows Mollweide projections analogous518

to Figs. 2 and 3 when we impose several lower limits on519

the correlation length (ϑ ≥ ϑmin). The key differences520

between Figs. 6 and 2 are that the most extreme excur-521

sions of the posterior’s mean are smaller for the GRF522

models due to the correlations between neighboring pix-523

els from the prior. We also note that, correspondingly,524

the fluctuations that do occur in the GRF model appear525

even less significant.526

Nevertheless, we see features reminiscent of individual527

events within the posterior process’s mean when ϑmin is528

small. This is not unexpected, as the posterior mean is529

related to the sum of individual events’ posteriors when530

the anisotropies are small. Appendix A describes this in531
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10◦

5◦

FIG. 6. Mollweide projections of the mean and significance of the rate density marginalized over correlation parameters within
the GRF model with Npix = 3072. We observe generally consistent results with the rest of our models, with a decrease in the
difference between the posterior mean and isotropy as the minimum allowed correlation length (ϑmin) increases.

more detail.532

D. Quantifying Constraints on Anisotropy533

As we have discussed, it can be difficult to interpret534

Bayes factors within our models because of ambiguity535

in the choices of prior ranges. For example, Biso
ani can be536

made as large or as small as one would like within the Ex-537

ponentiated Spherical Harmonic model by changing the538

prior ranges allowed for each bml . Therefore, we propose539

a more direct measure of the extent of anisotropies: the540

variance of the rate density across the sky,541

σ2
p(Ω) ≡

1

4π

∫
dΩ

(
p(Ω)− 1

4π

)2

. (7)

This is closely related to the GRF model’s σ parameter.542

Isotropy corresponds to the limit σp(Ω) = 0.543

In both the Healpix and Exponentiated Spherical Har-544

monic models, we find that the posterior supports larger545

amounts of variability as we increase Npix or lmax. That546

is, the data does not strongly constrain rapid oscillations547

within the distribution over the sky, and the variability548

in the inferred distribution is dominated by the prior in-549

duced over these high-l modes. In particular, both the550

Healpix and Exponentiated Spherical Harmonic a priori551

have vanishingly small support for small variance over552

the sky. This carries over to the posterior, and any upper553

limit on the variance will strongly depend on the prior.554

The GRF model, on the other hand, naturally avoids555

this issue by simultaneously sampling over both the cor-556

relation parameters and the distribution over the sky.557

Because the GRF model contains support for all correla-558

tion lengths (ϑ), as opposed to a fixed choice of Npix or559

lmax, we do not observe vanishing support for small vari-560

ances. Indeed, we obtain a consistent upper limit within561

the GRF model when ϑmin & 10◦ regardless of the num-562

ber of pixels used. The distribution of merging binaries563

produces σp(Ω) . 16% of the isotropic rate at 90% credi-564

bility when ϑ ≥ 10◦. That is, the rate density fluctuates565
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by . 16% across the sky. When ϑ ≥ 20◦, this is reduced566

to . 3.5%.567

Additionally, we compare multiple representations of568

the rate-density in order to assess possible model sys-569

tematics associated with each. These systematics can be570

thought of as correlations within the prior process for571

the distribution over the sky that determine the allowed572

shapes of the distribution. See Ref. [50] for more dis-573

cussion in the context of the Neutron Star equation of574

state. These correlations can be very high-dimensional575

and therefore difficult to visualize. What’s more, statis-576

tics based on one-dimensional marginal prior distribu-577

tions analogous to those shown in Figs. 2, 3, and 6 are578

uninformative; our priors were intentionally designed to579

have the same marginal distribution for the rate in all580

directions (although this is only approximately true for581

the ESH models).582

Because the high-dimensional correlations induced by583

different model assumptions are difficult to visualize di-584

rectly, we only compare a few summaries of the posterior585

process over the sky. Nevertheless, these show that prior586

assumptions can strongly affect the types of anisotropies587

inferred a posteriori. While we leave a full investigation588

to future work, Appendix A presents techniques to help589

diagnose which features are constrained by the data and590

which are constrained by the prior.591

IV. DISCUSSION592

Using 63 confidently detected GW sources from the593

LVK’s third observing run, including BNS, NSBH, and594

BBH systems, we constrained the distribution of merging595

binaries across the celestial sphere. Our constraints im-596

prove upon previous work that used the 11 events from597

GWTC-1, finding constraints on anisotropies (Biso
ani) that598

are a factor of a few stronger. However, because of ambi-599

guity in the interpretation of Biso
ani due to arbitrary prior600

choices, we instead quantify constraints on anisotropies601

with a direct measure of how much p(Ω) varies over the602

sky. Modeling anisotropies as a Gaussian random field,603

we constrain the fluctuations to be .16% if the field604

is correlated with a length scale ≥ 10◦. That is, the605

distribution of merging binaries varies by . 16% of the606

isotropic rate at 90% credibility.607

We also observe consistently hot pixels within all of608

our models of p(Ω). While none of these are statisti-609

cally significant, the brightest pixel is in the direction of610

the constellation Equuleus. Our hot pixels tend to fall611

near the equator on average, and they do not match the612

hot spots found in previous work with GWTC-1 [21, 23].613

This is consistent with the expectation that the distribu-614

tion is isotropic, and we are in effect “fitting noise” when615

we construct maps of the mean p(Ω).616

Nonetheless, it may be interesting to extend this work617

in the future. In particular, we have only studied618

isotropy, and the cosmological principle also predicts619

homogeneity. It may be of interest to not only con-620

sider clustering in three spatial dimensions,8 but also621

correlations between intrinsic source properties (masses,622

spins, etc) and extrinsic properties (location, orientation,623

etc). Furthermore, correlating anisotropies and/or inho-624

mogeneities in GW catalogs with other catalogs will be625

of increasing importance. Under the assumption that626

GW events only come from galaxies, current galaxy cat-627

alogs have been used to provide a weak constraint on the628

Hubble parameter [2]. With larger GW catalogs, it may629

be possible to directly test the assumption that GWs630

only come from galaxies, or to determine which types631

of galaxies are more likely to host GW sources [7, 8].632

More generally, this may constrain cosmic structure, and633

clustering scales in GW catalogs could connect to the634

mass scales of typical host galaxies [9]. Of course, there635

may also be synergies from connecting the distribution636

of nearby, well-resolved systems with the stochastic GW637

background from the myriad more distance sources [26].638

The LVK also searches for unmodeled “burst” events.639

If such events are detected and no obvious source presents640

itself, determining whether the sources are isotropically641

distributed or correlated with local structure can inform642

the distance to the events and therefore their energy643

scale. Demonstrating the ability to perform such a mea-644

surement and determining the size of the catalog needed645

to rule out isotropy9 may be worth establishing before646

such events are detected.647

For all these reasons and more, it is worth studying648

in greater detail which properties of individual events649

make them informative and over what angular scales.650

Indeed, as the size of the catalog grows, we may wish651

to know whether the isotropy constraints will always be652

dominated by the best-localized events or whether the le-653

gion of poorly localized events will eventually dominate654

through sheer force of numbers. We have also shown that655

most of the information about (an)isotropy is carried by656

the best-localized events. As searches become more sen-657

sitive to quieter events and/or events detected in a single658

interferometer, we may expect the rate at which isotropy659

constraints improve to slow as a larger fraction of GW660

catalogs will have large, uninformative localizations.10
661

Here we used 63 confident BNS, NSBH, and BBH de-662

tections from O3 to place limits on the anisotropy of663

gravitational wave events on the sky. We do not find664

any evidence for anisotropy. On the contrary, using flex-665

ible and data-driven models we bound the variability of666

8 The rate of GW sources almost certainly evolves over cosmic
time [1, 51]. This means we will need to consider the effect of
lookback time when considering inhomogeneities in the spatial
distribution.

9 Note that even a single event may rule out the correlation with
local structure, and therefore ruling out isotropy when the events
do correlate with local structure is likely to be of greater interest.

10 Appendix A introduces an eigenvalue analysis of which
anisotropies can be best constrained with current data. The
magnitude of the eigenvalues rapidly decreases, suggesting that
it may take many more events to precisely constrain high-l modes
compared to low-l modes.



13

the gravitational wave merger rate over the sky to . 16%667

on scales larger than 10◦, or . 3.5% on scales larger than668

20◦. As the GW catalog continues to grow, implementa-669

tion of our methodology will lead to more definitive mea-670

surements. Understanding the homogeneity and isotropy671

of GW sources is an important astrophysical and cosmo-672

logical probe of this newly discovered population. There673

are still many unknowns about the distribution of merg-674

ing binaries, and future catalogs will continue to provide675

surprises if we continue to look for them.676
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Appendix A: Perturbative Analysis for Small Anisotropies989

We consider in detail how the data constrain different degrees of freedom in the distribution of merging binaries.990

Ref. [58] introduced expressions for the Fisher information matrix that describes how constraining the data is expected991

to be on average. We instead consider the constraints from a particular realization of data by perturbing the likelihood992

directly.993

In particular, we construct a model that perturbs a “base distribution” over the single-event parameters θ by a994

small amount. That is, we consider a rate density995

dN

dθ
= Rp(θ|Λ)(1 + η(θ)) (A1)

with |η| � 1 ∀ θ. Inserting this into the inhomogeneous Poisson likelihood [39–41, 58], we obtain

ln p({Di}|R,Λ, η) = N ln [R]−R
∫
dθ P (det|θ)p(θ|Λ)(1 + η(θ)) +

N∑
i

ln

[∫
dθ p(Di|θ)p(θ|Λ)(1 + η(θ))

]

= N ln [R]−R
∫
dθ P (det|θ)p(θ|Λ) +

N∑
i

ln

[∫
dθ p(Di|θ)p(θ|Λ)

]

−R
∫
dθ P (det|θ)p(θ|Λ)η(θ) +

N∑
i

[∫
dθ p(Di|θ)p(θ|Λ)η(θ)∫
dθ p(Di|θ)p(θ|Λ)

− 1

2

(∫
dθ p(Di|θ)p(θ|Λ)η(θ)∫
dθ p(Di|θ)p(θ|Λ)

)2

+ · · ·

]
(A2)

We recognize996

p(Di|θ)p(θ|Λ)∫
dθ p(Di|θ)p(θ|Λ)

= p(θ|Di,Λ) (A3)

and, retaining only terms up to second order in η, obtain

ln p({Di}|R,Λ, η)− p({Di}|R,Λ, η = 0) = −
∫
dθη(θ)

[
RP (det|Λ)p(θ|det,Λ)−

N∑
i

p(θ|Di,Λ)

]

− 1

2

∫
dθdθ′η(θ)

[
N∑
i

p(θ|Di,Λ)p(θ′|Di,Λ)

]
η(θ′) (A4)

We see, then, that the inhomogeneous Poisson likelihood naturally induces a Gaussian process over small perturbations997

away from a base distribution. In particular, the Gaussian process has a positive semi-definite inverse covariance matrix998

Cov−1[η(θ), η(θ′)] =

N∑
i

p(θ|Di,Λ)p(θ′|Di,Λ) (A5)

Examining the mean vector in more detail, we see that it is proportional to the difference of two terms. Taking999

the maximum likelihood estimate for R conditioned on Λ and N , we expect RP (det|Λ) = N . Therefore, the mean1000

vector is proportional to the difference between the distribution over θ for detectable sources and the average of the1001

single-event posteriors. This is intuitively appealing and explains why stacking (adding) posteriors can often produce1002

useful diagnostics even if it is not the correct way to perform a hierarchical inference [39]. This is also why the mean of1003

the GRF model in Sec. III C at times displays features reminiscent of individual events. Some events are well localized1004

relative to p(θ|det,Λ) and therefore the mean looks as if we simply summed the posteriors of each event (compare1005

Fig. 6 to Fig. 9).1006

We can also consider which types of features are constrained by the data by examining the eigenvectors and1007

eigenvalues of the inverse covariance matrix. While this analysis is completely general,11 we specialize to the case at1008

11 Similar “semi-parametric” analyses have been conducted for the
mass distribution, although they implemented a spline model for
the deviations from the base model [59]. However, considering
the full Gaussian process induced by the likelihood and adopting
a conjugate prior may allow for a clearer determination of exactly
which features are driven by the data and which are driven by

the prior assumptions, particularly when the correlations in the
prior span high-dimensional spaces. Furthermore, this type of
perturbative analysis can be conducted completely post hoc given
any base distribution, even semi-parametric or non-parametric
representations of p(θ|Λ).
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FIG. 7. Non-vanishing eigenvalues and example eigenvectors from the perturbative analysis of 63 events from O3. (top, left to
right) The best-constrained eigenvector and two less constrained eigenvectors. (bottom) The distribution of eigenvalues, which
decays roughly exponentially up to the 63rd eigenvalue. After that, the eigenvalues for the remaining eigenvectors are many
orders of magnitude smaller.

hand: an isotropic base distribution with masses, spins, and redshifts distributed as in Table I. We also only perturb1009

the distribution over the sky. Immediately, we see that the only pixels that are constrained by the data are those1010

that have non-zero probability of containing at least one event under the base model (p(θ|Di,Λ) 6= 0 for at least1011

one Di). It is natural to control these poorly constrained eigenvectors with a Gaussian process prior, like the one1012

introduced in Sec. III C. Indeed, if we fix the base distribution (including the rate), then we can construct a posterior1013

for η analytically.1014

What’s more, the magnitude of the inverse-covariance matrix’s eigenvalues rapidly decays. Fig. 7 demonstrates1015

this with our selection of 63 events from O3. As such, we can always expect there to be many eigenvectors that are1016

dominated by the prior for any finite catalog. Fig. 7 also shows a few eigenvectors. Typically, the best-constrained1017

eigenvectors resemble well-localized individual events, or just a few pixels on the sky, while less constrained eigenvectors1018

resemble the overlap of multiple events.1019

Appendix B: Selected Events and Catalog Sensitivity1020

For completeness, we present the estimates of our survey’s sensitivity (false alarm rate for any search ≤ 1/year)1021

across the sky assuming the mass, spin, and redshift populations in Table I. As the injected distribution within1022

Ref. [35] is somewhat complicated and not particularly astrophysically motivated, we have reweighed the injections so1023

the injected distribution matches the distributions listed in Table I. Fig. 8 shows the distribution of detected events1024

from an isotropic source distribution.1025

While the search sensitivity is nearly uniform, we do observe slight excesses of detected injections from the mid-1026

latitudes and a dearth of detections near the equator, in agreement with Fig. 1 of Ref. [22]. We also note that the1027

diurnal cycle identified by Ref. [22] during the first observing run (O1) is not apparent in O3. This is likely due to1028

a combination of factors: the detector duty cycles were higher in O3 than in O1 [60], and O3 lasted for nearly a full1029

calendar year, thereby washing out the impact of a diurnal cycle (determined by the Earth’s orientation to the Sun)1030

when projected on the celestial sphere.1031

Fig. 9 shows the superposition of all the individual events’ localizations assuming an isotropic distribuiton and1032

reweighing individual events’ posterior samples to match the mass, spin, and redshift populations listed in Table I.1033

Overdensities of points correspond to hot-spots in Fig. 6, as expected based on the analysis in Appendix A. Table III1034

shows the medians and 90% symmetric credible intervals for the component masses, spins, and redshifts of each of1035

the 63 selected events after reweighing the posteriors samples so the prior matches the distributions in Table I and1036

an isotropic distribution over the sky.1037
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FIG. 8. Distribution of detected injections from O3 [35] assuming an isotropic population with mass, spin, and redshift
distributions listed in Table I. (left) Scatter plot of detected events in a Mollweide projection. (right) Marginal distributions
of the detected population (red) and the isotropic distribution (black) for reference. Shaded regions correspond to 1-, 2-, and
3-σ uncertainty on the detected distribution’s marginals from the finite number of injections.

FIG. 9. Superposition of localization estimates from all 63 events considered in this study. Each point is a fair draw from
one event’s posterior assuming an isotropic distribution over the sky and the mass, spin, and redshift distributions in Table I.
Darker shading corresponds to areas with many overlapping events or extremely well localized events, and roughly correspond
to the hot-spots seen in the posterior means in Fig. 6. See Table III for individual events’ localizations.

Single-event posterior samples for all events detected during the first half of O3 (O3a; GWTC-2 [32]) were1038

taken from Ref. [61], with the exception of two events first published in GWTC-2.1 [33]: GW190725 174728 and1039

GW190805 211137. Posterior samples for these events are available in Ref. [62]. Samples for events from the second1040

half of O3 (O3b; GWTC-3 [34]) are available within Ref. [63].1041

Although only used to benchmark our constraints from O3, posterior samples for events from GWTC-1 are available1042

in Ref. [64]. Because these samples do not include all the Cartesian spin components and because spin inference largely1043

decouples from localization, we do not include the prior for the spin within analyses of GWTC-1.1044
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TABLE III. Medians and 90% symmetric credible regions for each of our 63 events assuming an isotropic source distribution
and the mass, spin, and redshift distributions from Table I. We also show the smallest area on the sky that contains 90% of the
posterior probability and a scatter plot of posterior samples. Brighter colors in scatter plots correspond to higher likelihoods,
and each point is a fair draw from the posterior.

name m1 [M�] m2 [M�] z DL [Mpc] ∆Ω90%[deg2] skymap

GW190408 181802 22.89+4.14
−2.11 19.88+2.60

−3.20 0.29+0.07
−0.10 1540.36+427.70

−601.78 179.2

GW190412 26.10+5.91
−6.26 9.45+3.06

−1.53 0.14+0.03
−0.04 694.54+174.19

−217.11 83.3

GW190413 052954 29.96+8.25
−5.29 25.65+6.03

−5.34 0.60+0.26
−0.24 3633.56+2041.16

−1627.01 1425.1

GW190413 134308 41.19+10.54
−7.08 35.24+8.75

−7.96 0.74+0.30
−0.31 4734.55+2403.83

−2238.56 562.5

GW190421 213856 38.18+7.54
−5.33 33.24+6.73

−5.93 0.50+0.19
−0.20 2936.10+1363.16

−1339.61 1033.4

GW190424 180648 37.30+7.63
−5.57 32.78+6.24

−5.79 0.41+0.21
−0.19 2297.44+1483.64

−1174.10 25972.7

GW190425 1.90+0.45
−0.23 1.44+0.18

−0.25 0.04+0.01
−0.02 161.23+65.85

−72.41 8517.3

GW190503 185404 38.26+7.94
−5.17 31.87+5.56

−7.00 0.29+0.11
−0.12 1519.47+692.77

−695.95 108.3

GW190512 180714 18.86+5.65
−2.52 15.12+2.33

−3.04 0.28+0.09
−0.10 1470.52+577.61

−595.76 245.9

GW190513 205428 28.33+7.97
−3.93 23.24+4.30

−5.91 0.38+0.13
−0.15 2096.74+900.07

−941.55 462.5

GW190517 055101 33.08+7.38
−5.58 27.98+5.03

−5.61 0.36+0.23
−0.15 1998.60+1622.41

−940.58 429.2

GW190519 153544 59.04+11.70
−12.54 44.10+9.68

−10.02 0.49+0.30
−0.16 2835.40+2212.13

−1092.74 820.9

GW190521 82.90+19.55
−12.45 70.36+17.39

−13.88 0.72+0.29
−0.28 4514.92+2346.49

−2003.55 887.6

GW190521 074359 40.25+5.25
−3.87 34.61+4.23

−5.26 0.24+0.07
−0.10 1252.81+405.74

−552.87 491.7

GW190527 092055 30.70+8.05
−5.44 25.67+6.36

−6.12 0.44+0.27
−0.20 2506.95+1986.41

−1268.74 3329.4

GW190602 175927 61.27+12.96
−9.71 51.57+10.20

−11.95 0.51+0.25
−0.18 2982.27+1881.03

−1207.87 725.1

GW190620 030421 48.09+12.52
−7.76 39.74+8.43

−9.34 0.54+0.21
−0.21 3185.49+1588.11

−1422.76 6158.8
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name m1 [M�] m2 [M�] z DL [Mpc] ∆Ω90%[deg2] skymap

GW190630 185205 31.73+5.66
−3.57 26.65+3.24

−4.89 0.17+0.11
−0.06 837.61+619.59

−336.30 1558.4

GW190701 203306 49.52+8.74
−5.85 43.15+6.51

−8.13 0.38+0.11
−0.11 2096.04+738.49

−712.16 66.7

GW190706 222641 55.49+15.88
−10.15 43.59+10.47

−10.37 0.82+0.29
−0.31 5335.31+2430.24

−2363.03 620.9

GW190707 093326 10.58+1.95
−0.97 9.06+0.90

−1.32 0.17+0.06
−0.08 857.19+333.14

−427.25 1416.8

GW190708 232457 16.31+2.76
−1.32 14.20+1.37

−2.16 0.17+0.06
−0.07 876.65+334.85

−383.05 10021.6

GW190719 215514 28.97+9.29
−5.41 24.50+6.37

−5.60 0.64+0.31
−0.28 3942.61+2475.88

−1938.22 2579.4

GW190720 000836 10.94+2.69
−1.29 9.21+1.07

−1.71 0.18+0.11
−0.07 882.93+668.84

−372.22 616.7

GW190725 174728 9.32+2.69
−1.01 7.88+0.99

−1.64 0.20+0.10
−0.09 1034.40+598.20

−476.09 2162.7

GW190727 060333 35.37+6.95
−4.66 30.87+5.82

−5.50 0.56+0.20
−0.22 3367.62+1488.39

−1502.40 741.7

GW190728 064510 10.74+2.26
−0.85 9.25+0.87

−1.49 0.17+0.05
−0.07 856.36+271.90

−355.00 325.0

GW190731 140936 36.95+9.29
−6.92 31.37+7.43

−7.46 0.58+0.31
−0.26 3535.48+2373.90

−1769.26 3091.9

GW190803 022701 33.81+7.51
−5.18 29.19+6.34

−5.74 0.57+0.24
−0.24 3412.79+1822.16

−1610.66 1458.4

GW190805 211137 41.34+11.95
−8.35 34.74+9.88

−8.26 0.89+0.44
−0.39 5914.41+3760.37

−2975.96 3533.6

GW190814 23.41+1.12
−0.92 2.57+0.08

−0.09 0.05+0.01
−0.01 245.77+40.13

−43.26 29.2

GW190828 063405 30.67+4.91
−3.15 27.12+4.26

−3.70 0.38+0.10
−0.15 2128.25+668.61

−928.63 475.0

GW190828 065509 17.39+6.81
−2.57 13.44+2.19

−3.22 0.32+0.10
−0.11 1714.51+658.82

−682.49 745.9

GW190910 112807 41.62+6.16
−5.53 36.51+5.31

−5.82 0.29+0.16
−0.10 1535.74+1021.35

−604.01 9838.2

GW190915 235702 30.84+5.22
−3.61 26.76+3.91

−4.28 0.31+0.10
−0.11 1699.15+678.11

−649.29 362.5
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name m1 [M�] m2 [M�] z DL [Mpc] ∆Ω90%[deg2] skymap

GW190924 021846 7.20+1.90
−0.59 6.06+0.56

−1.11 0.12+0.04
−0.05 572.77+215.26

−229.08 358.4

GW190929 012149 50.07+17.25
−11.85 35.38+11.44

−11.85 0.71+0.35
−0.30 4440.24+2803.54

−2138.08 1954.3

GW190930 133541 10.58+2.24
−0.95 9.02+0.91

−1.48 0.15+0.06
−0.06 758.74+351.63

−328.50 1683.5

GW191103 012549 10.33+2.24
−0.97 8.98+1.01

−1.61 0.19+0.08
−0.09 968.08+488.21

−468.99 2558.5

GW191105 143521 9.69+1.96
−0.86 8.41+0.89

−1.42 0.22+0.07
−0.09 1147.37+406.73

−479.83 820.9

GW191109 010717 60.18+10.44
−10.59 48.18+12.55

−11.35 0.27+0.22
−0.13 1409.53+1453.76

−760.26 1579.3

GW191127 050227 32.60+13.87
−6.59 28.11+10.78

−7.04 0.52+0.42
−0.33 3041.05+3244.28

−2094.05 1029.2

GW191129 134029 9.18+2.47
−0.79 7.77+0.85

−1.58 0.15+0.05
−0.06 765.83+269.14

−328.52 1333.4

GW191204 171526 10.82+2.41
−0.95 9.03+0.85

−1.54 0.13+0.04
−0.05 632.63+192.64

−234.48 329.2

GW191215 223052 22.85+4.53
−2.76 19.76+2.98

−3.37 0.34+0.14
−0.14 1879.79+940.85

−851.88 562.5

GW191216 213338 10.40+2.76
−0.83 8.82+0.73

−1.70 0.07+0.02
−0.03 338.99+113.86

−133.57 241.7

GW191222 033537 41.82+8.59
−6.58 36.40+7.70

−7.21 0.50+0.24
−0.24 2903.37+1792.76

−1574.71 1991.8

GW191230 180458 44.21+9.88
−7.17 38.46+8.55

−7.67 0.72+0.25
−0.27 4529.72+2043.75

−1969.25 1100.1

GW200105 162426 9.13+2.40
−1.57 1.89+0.29

−0.31 0.06+0.02
−0.02 271.86+113.79

−112.24 7496.4

GW200112 155838 33.67+5.33
−3.29 29.29+3.40

−4.90 0.24+0.07
−0.09 1276.29+431.75

−490.32 3204.4

GW200115 042309 6.32+1.19
−1.08 1.37+0.23

−0.16 0.06+0.03
−0.02 288.40+128.24

−93.89 366.7

GW200128 022011 38.41+9.03
−6.73 33.34+8.24

−6.95 0.57+0.28
−0.27 3399.78+2147.79

−1801.03 2466.8

GW200129 065458 33.66+5.33
−2.63 29.55+3.27

−5.16 0.19+0.04
−0.07 942.17+250.98

−387.45 45.8
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name m1 [M�] m2 [M�] z DL [Mpc] ∆Ω90%[deg2] skymap

GW200202 154313 9.17+1.81
−0.60 8.09+0.59

−1.28 0.09+0.03
−0.04 411.93+140.20

−176.53 158.3

GW200208 130117 34.53+6.52
−4.44 29.72+4.72

−5.62 0.40+0.14
−0.14 2244.01+992.89

−901.31 33.3

GW200209 085452 32.47+7.19
−5.42 27.99+6.79

−5.49 0.56+0.24
−0.29 3352.15+1852.25

−1931.87 1025.1

GW200216 220804 41.65+11.55
−7.80 35.68+8.75

−9.53 0.68+0.35
−0.34 4272.53+2811.53

−2392.08 3104.4

GW200219 094415 34.11+7.64
−5.13 29.40+6.34

−5.71 0.58+0.22
−0.24 3522.91+1680.98

−1655.16 745.9

GW200224 222234 38.35+5.64
−3.64 33.67+4.29

−5.22 0.32+0.08
−0.12 1725.50+488.84

−691.54 50.0

GW200225 060421 17.91+3.22
−2.11 15.44+1.96

−2.93 0.22+0.09
−0.09 1104.17+526.97

−493.85 616.7

GW200302 015811 31.47+8.84
−5.68 24.26+5.11

−6.64 0.30+0.16
−0.13 1608.82+1041.31

−780.03 8684.0

GW200311 115853 32.60+4.69
−3.04 28.83+3.49

−4.53 0.23+0.05
−0.08 1169.68+284.52

−433.83 45.8

GW200316 215756 11.00+3.10
−1.17 9.20+0.97

−1.77 0.22+0.08
−0.08 1120.21+448.67

−437.91 370.9
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