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Dynamical Friction in fuzzy dark matter: circular orbits

Robin Buehler 1, ∗ and Vincent Desjacques 1, †

1Physics department, Technion, Haifa 3200003, Israel

Dynamic friction (DF) is the gravitational force experienced by a body moving in a medium
as a result of its density wake. In this work, we investigate the DF acting on circularly-moving
perturbers in fuzzy dark matter (FDM) backgrounds. After condensation in the early Universe, FDM
is described by a single wave function satisfying a Schrödinger-Poisson equation. An equivalent,
hydrodynamic formulation can be obtained through the Madelung transform. Here, we consider
both descriptions and restrict our analysis to linear response theory. We take advantage of the
hydrodynamic formulation to derive a fully analytic solution to the DF in steady-state and for
a finite time perturbation (corresponding to a perturber turned on at t = 0). We compare our
prediction to a numerical implementation of the wave approach that includes a non-vanishing FDM
velocity dispersion σ. Our solution is valid for both a single and a binary perturber in circular motion
as long as σ does not significantly exceed the orbital speed vcirc. While the short-distance Coulomb
divergence of the (supersonic) gaseous DF is no longer present, DF in the FDM case exhibits an
infrared divergence which stems from the (also) diffusive nature of the Schrödinger equation. Our
analysis of the finite time perturbation case reveals that the density wake produced by perturbers
diffuses through the FDM medium until it reaches its outer boundary. Once this transient diffusive
regime is over, both the radial and tangential DF oscillate about the steady-state solution with a
decaying envelope. Steady-state is never achieved. We discuss two astrophysical applications of our
results: we revisit the DF decay timescales of the 5 Fornax globular clusters, and point out that
the inspiral of compact binary may stall because the DF torque about the binary center-of-mass
sometimes flips sign to become a thrust rather than a drag.

I. INTRODUCTION

The lack of evidence for weakly interactive massive
particles at current collider experiments strongly advo-
cates the exploration of alternative dark matter scenar-
ios. In the fuzzy dark matter (FDM) scenario [1–3],
dark matter is in the form of ultra-light bosons that are
an extrapolation of the QCD axion [4–6] down to very
small masses [see 7, for a review]. While QCD axions
have masses in the range 10−10 . ma . 10−3 eV, the
FDM particles can have masses as low as ma & 10−21

eV without spoiling cosmic microwave background and
large scale structure constraints [8–10]. This lower limit
is supplemented by observations of a variety of astro-
physical systems [11–13], which are currently sensitive to
axion masses as high as ma & 10−19− 10−18 eV [14, 15].
Higher axion masses can also be probed with the super-
radiant instability of spinning black holes [16].

Light bosons generically undergo Bose-Einstein con-
densation in the early Universe [17–19], after which
their spatial distribution is characterized by a (classical)
wave function satisfying a nonlinear Schrödinger equa-
tion. This condensate behaves like non-relativistic, cold
dark matter (CDM) on scales larger than the de Broglie
wavelength of the particles [e.g. 20]. Therefore, gravita-
tionally bound structures form hierarchically like in CDM
cosmologies, though virialized FDM halos grow solitonic
cores at their center [21–26]. These dense central cores
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are surrounded by a large atmosphere of fluctuating gran-
ules [27–29].

The motion of extended or compact objects in a FDM
background generates a dynamical friction (DF) as in any
other ambient medium [30, 31]. The gravitational field of
a perturber moving in a discrete or continuous medium
induces a density fluctuation or wake. DF is the grav-
itational force exerted on the perturber by the density
wake. The studies of [30, 32] considered a perturber lin-
early moving in a collisionless medium, whereas [31, 33–
42] focused on a gaseous medium. Dynamical friction in
FDM and Bose-Einstein condensates has been explored
only recently in, e.g. [28, 29, 43–49]. In particular, [50]
considered DF in a Bose-Einstein condensate (BEC) with
weak self-interactions, while [45, 51] numerically investi-
gated the DF induced by linearly and circularly moving
point masses taking into account the self-gravity of the
FDM background.

In this work, we will investigate the DF acting on point
masses in circular motion using the analytical approach
outlined in [41]. While the validity of this approach is
restricted to linear response theory, it provides a versa-
tile tool to explore DF across a wide parameter range.
Here, we apply this methodology to point mass per-
turbers circularly moving in FDM backgrounds. Starting
from the hydrodynamic (Madelung) formulation of the
Gross-Pitaievskii-Poisson (GPP) system, we will derive
new analytical predictions which we compare to the DF
computed in the wave (Lippmann-Schwinger) approach.
We will also consider finite time perturbations (i.e. the
perturber is turned on at t = 0) and explore the conver-
gence to steady-state.

Our paper is organized as follows. Sec. §II introduces
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the key scales and dimensionless parameters that con-
trol DF for the systems of interest. Sec. §III summa-
rizes the application of linear response theory to a FDM
background, and presents numerical solutions for den-
sity wakes. In Sec. §IV, we briefly recapitulate the ap-
proach of [41] before we spell out the derivation of DF
for circularly-moving perturbers in FDM backgrounds
and perform a number of numerical tests. In Sec. §V,
we discuss some astrophysical implications of our results
pertaining, in particular, to the infall times of globular
clusters and the stagnation of binary inspirals. We con-
clude in Sec. §VI. Technical details of the derivation of
our analytic results are summarized in a few appendices.

II. CHARACTERISTIC SCALES

Our aim is to calculate the linear theory DF acting
on perturbers moving on circular orbits in a FDM back-
ground. The results depend on a few characteristic scales
and key dimensionless parameters, which encode the rele-
vant physical effects. We spell them out here. For conve-
nience, we also introduce the notation of [44] to facilitate
a comparison with their results.

The point-like perturber of mass M moves on circu-
lar orbits of radius r0 and frequency Ω. These physical
quantities will be used to define dimensionless variables
labeled with a tilde symbol such as a rescaled length and
wavenumber (r̃, k̃) = (r/r0, r0k), and a rescaled time and
frequency coordinate (t̃, ω̃) = (Ωt, ω/Ω).

Furthermore, the perturbers of mass M evolve on cir-
cular orbits in a background of FDM particles which they
perturb through gravity. Following [28, 44], we can iden-
tify three characteristic velocities: the velocity dispersion
σ of the FDM particles, the orbital velocity vcirc = Ωr0 of
the perturber, and a ”quantum” velocity vQ ≡ GMma/~
where ma is the mass of the FDM particle. The lat-
ter can be interpreted as the perturber’s escape veloc-
ity at a distance equal to the gravitational Bohr radius
(~/ma)2/GM . The velocities σ, Ωr0 and vQ can be used
to define three distinct de Broglie wavelengths :

λσ ≡
~

maσ
(1)

' 1.918× 10−2 pcm−1
18

( σ

100 km s−1

)−1

λΩ ≡
~

maΩr0
(2)

' 1.060× 10−6 pcm−1
18

(
Ω

yr−1

)−1(
r0

pc

)−1

λQ ≡
~

mavQ
(3)

' 854.1 pcm−2
18

(
M

M�

)−1

.

where m18 ≡ ma/10−18 eV. λσ and λΩ are the scales as-
sociated with the FDM velocity dispersion and the FDM-

perturber relative velocity. λQ can be thought of as the
gravitational Bohr radius of the perturber [44]. Using
the orbit size (2r0) as reference, these wavelengths imply
three dimensionless ratios

Rσ ≡
2r0

λσ
(4)

' 104.3m18

( σ

100 km s−1

)( r0

pc

)

RΩ ≡
2r0

λΩ
(5)

' 1.887× 106m18

(
Ω

yr−1

)(
r0

pc

)2

RQ ≡
2r0

λQ
(6)

' 2.342× 10−3m2
18

(
M

M�

)(
r0

pc

)
.

They can be interpreted as a characteristic angular mo-
mentum (in unit of ~) associated with the FDM velocity
dispersion, the relative velocity Ωr0 and the perturber’s
gravity. The larger their value the stronger the corre-
sponding effect. Their ratios lead to the Mach numbers
Mσ = RΩ/Rσ and MQ = RΩ/RQ introduced in [44]:

Mσ ≡
Ωr0

σ
(7)

' 1.809× 104
( σ

100 km s−1

)−1
(

Ω

yr−1

)(
r0

pc

)

MQ ≡
Ωr0

vQ
(8)

' 8.056× 108m−1
18

(
M

M�

)−1(
Ω

yr−1

)(
r0

pc

)
.

Our definition of MQ recovers that of [44] in the linear
motion case.

Finally, our treatment assumes linear response theory.
Therefore, it is valid so long as fractional density pertur-
bations are smaller than unity. For the FDM considered
here, the scale λNL below which nonlinearities are signif-
icant is obtained upon equating the ”escape” velocity vQ
with the circular velocity Ωr0:

λNL ≡
2vQ
Ω

(9)

' 4.589× 10−9 pcm18

(
M

M�

)(
Ω

yr−1

)−1

.

This scale naturally emerges from our calculations as the
distance (from the perturber) at which the wake over-
density is of order unity (see Sec. §III A 3). λNL ∝ ma

because an increase in axion mass weakens the FDM
”quantum pressure” that can oppose the gravitational
pull. Eq. (9) should be contrasted to expression of
λNL ≡ GM/c2s in a gaseous medium with sound speed
cs, which is the Bondi radius [52]. Our analysis will be
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FIG. 1. The orbital radius r0 for which λNL = 0.1r0 (i.e. α0

defined in Eq. 25 is α0 = 0.1) is shown as a function of the
total binary mass M and the axion mass m18. The nonlinear
scale λNL is calculated assuming circular Keplerian motion.
The contour levels indicate the value of r0 above which higher
order contributions to the linear response approach considered
here become larger than & 10%.

robust to nonlinear corrections provided that r0 � λNL,
that is, MQ � 1.

In order to gain insight into these parameters, let us
assume m18 = 1 and a FDM root-mean-square (rms)
velocity dispersion σ = 100 km s−1 appropriate to a
Milky-Way size halo. m18 = 1 will be our fiducial axion
mass. This choice is motivated by recent astrophysical
constraints (see Sec. I). Furthermore, we shall consider
the following two configurations throughout this paper:

• A single perturber of mass 1 M� on a circular or-
bit of radius r0 = 10−3 pc around a super-massive
black hole (SMBH) of mass M• = 106 M�. The
key parameters are

Rσ ' 0.104 (10)

RΩ ' 3.95

λNL ' 2.19× 10−9 pc ,

whereas RQ ∼ 10−6, MQ ∼ 2× 106 and Mσ ∼ 40

• A compact, equal-mass binary of total mass 20 M�
on a circular orbit of semi major axis r0 = 10−3 pc,
in which case

Rσ ' 0.104 (11)

RΩ ' 1.77× 10−2

λNL ' 4.90× 10−6 pc .

For this system, we have RQ ∼ 10−5, MQ ∼ 400
and Mσ ∼ 0.2.

Note that, while r0 � λNL in both cases, a globular clus-
ter of mass 105 M� on a circular orbit of radius 1 Kpc in
a dwarf galaxy halo of mass 108 M� implies a nonlinear-
ity scale of λNL ∼ 20 Kpc much larger than the orbital
radius.

Fig. 1 displays the orbital radius r0 for which λNL =
0.1r0 as a function of the total binary mass M and the ax-
ion mass m18. Contour levels indicate the r0 above which
higher order contributions to the linear response theory
considered here roughly exceeds 10%. This characteristic
radius decreases with increasing axion mass because the
”smoothing” from quantum pressure becomes weaker.

III. PERTURBING THE GPP SYSTEM

Fuzzy dark matter is in the form of a BEC and is thus
described by a single wave function ψ(r, t). Neglecting
any possible self-interaction, the latter satisfies the (non-
linear) Schrödinger equation

i∂tψ = − ~
2ma

∆rψ +
ma

~
Φψ (12)

where Φ is the gravitational potential and ∆r ≡ ∇2
r is the

Laplacian. This notation makes clear that quantum me-
chanical effects appear only through the non-zero Comp-
ton length ~/ma of the particle [see, e.g., 28, 53, 54, for
a discussion].

Equation (12) is supplemented by the Poisson equation

∆rΦ = 4πGρ , ρ ≡ |ψ|2 (13)

to form the Gross-Pitaievskii-Poisson (GPP) system.
The presence of a point-like perturber is included in the
gravitational potential Φ = Φ0 + Φp, which is the sum of
the self-gravity Φ0 of the BEC and the potential Φp of
the perturber. Namely,

∆rΦp = 4πGM h(t) δD
(
rp(t)− r

)
(14)

where h(t) = 1 if the perturber is ”turned on” and zero
otherwise, and rp(t) = (r0 cos(Ωt), r0 sin(Ωt), 0)T is the
perturber’s position.

Two different routes can be taken to compute the linear
response of the GPP system to a gravitational perturber:
i) a wave scattering approach based on the Lippmann-
Schwinger equation and ii) a sound propagation approach
based on the Madelung form of GPP. Both are equiv-
alent (so long as fully destructive interferences are ab-
sent). The former can easily incorporate interference ef-
fects present in the atmosphere of FDM halos. However,
it has a major drawback: the analytic calculation of DF
is more challenging than in the hydrodynamic treatment.
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A. Madelung hydrodynamic approach

To obtain the hydrodynamic form of the GPP system,
we apply the Madelung transform [55]

ψ =
√
ρ eiθ (15)

where the phase θ is the velocity potential of a pure gra-
dient flow

v =
~
ma
∇rθ . (16)

Substituting Eq. (15) into the Schrödinger equation and
extracting the real and imaginary part eventually leads
to a continuity and momentum conservation equations
reminiscent of ideal (non-viscous) hydrodynamics,

∂tρ+∇r(ρv) = 0 (17)

∂tv + (v · ∇r)v = −∇r(Q+ Φ0 + Φp) .

Here,

Q ≡ − ~2

2m2
a

∆r
√
ρ

√
ρ

. (18)

is the ”quantum pressure” arising from the de-
localization of the FDM particles.

1. Linear ”wave” equation

On splitting the fluid variables into a (homogeneous)
mean and a perturbation, ρ → ρ̄ + δρ and v → v̄ + δv,
and linearizing Eqs (17) in the velocity perturbation δv
and the fractional overdensity

α(r, t) ≡ ρ(r, t)

ρ̄
− 1 , (19)

we obtain

∂tα = −(v̄ · ∇r)α−∇rδv (20)

∂tδv = −(v̄ · ∇r)δv −∇r

(
Φ0 + Φp +

~2

4m2
a

∆rα

)
.

Moving to the fluid rest frame (v̄ = 0) and ignoring
its self gravity Φ0, these equations reduce to a wave-like
equation with a source term:

∂2
t α+

~2

4m2
a

∆2
rα = −∆rΦp . (21)

Green’s method can now be applied to compute the den-
sity contrast α and, thereby, the DF in linear response
theory.
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FIG. 2. The retarded Green’s function Eq. (23) assuming

RΩ = 4. For convenience, Gret(r̃, ) is normalized to RΩ

4πΩr30

and both r̃ and t̃ axes are logarithmic. The white contours
indicate the locus for which Gret vanishes.

2. Green’s function

Transforming to the dimensionless variables k̃, ω̃, the
retarded Green’s function for the wave equation (21) can
be expressed as the Fourier transform

Gret(r, τ) =
1

Ωr3
0

lim
ε→0+

∫

k̃

∫

ω̃

ei(k̃·r̃−ω̃τ̃)

k̃4/R2
Ω − (ω̃ + iε)2

(22)

This makes clear that Gret has dimensions of [TL−3] as it
should. Our shorthand notation is

∫
ω

= 1
2π

∫∞
−∞ dω and∫

k
= 1

(2π)3

∫ 2π

0
dϕk

∫ 1

−1
d cos(ϑk)

∫∞
0

dk k2 in the spheri-

cal coordinates used here (so that k = (k, ϕk, ϑk)). The
condition ε > 0 (i.e. the poles lie in the lower half of the
imaginary ω-plane) enforces causality.

This integral can be solved analytically upon apply-
ing Cauchy’s integral formula to the ω integration before
performing the k integral. We find

Gret(r, t) =
H(t)RΩ

4πr̃Ωr3
0

=
[
erf

(
1 + i

2
√

2

√
RΩ

r̃√
t̃

)]
, (23)

where r̃ = |r̃|, H(t) is the Heaviside function, =(z) is the
imaginary part of z and erf(z) is the Error function.

The Green’s function is displayed in Fig. 2 as a func-
tion of r̃ and t̃ assuming RΩ = 4. In addition to
the overall 1/r̃ decrease of its amplitude, Gret oscillates
around zero for large values of r̃. The onset of oscilla-

tions follows the relation r̃/
√
t̃ ∼ const encoded in the

functional dependence Eq. (23). This is very different
from the gaseous case, for which the Green’s function
Gret(r, t) = 1

r δ
D(t − r/cs) is non-vanishing on the line

r = cst solely and cannot be negative. This forbids α < 0
and also leads to sharp discontinuities in the recovered
density contrast unlike what is found in the FDM case
(see for example Fig. 3). In the latter case, the oscilla-
tions and the absence of sharp features and high density
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caustics can be seen as a manifestation of the de-localized
nature of FDM.

3. Density contrast

Setting τ̃ = t̃ − t̃′ and ũ(t̃′) = r̃ − r̃p(t̃
′) to be the

dimensionless time difference and separation vector, re-
spectively, the retarded Green’s function (23) yields the
density contrast

α(r, t) = α0

∫ ∞

0

dτ̃
h(t̃− τ̃)

|ũ(t̃− τ̃)|=
[
erf

(
1 + i

2
√

2

√
RΩ

ũ√
τ̃

)]

(24)
where, again, h(t̃) = 1 only when the perturber is turned
on. The normalization amplitude α0 is given by

α0 ≡
2GM

λΩ(Ωr0)2
=

2

MQ
=
λNL

r0
. (25)

It is identical to the normalization obtained in the case of
a classical gas with negligible sound speed, for which the
Bondi radius also is GM/(Ωr0)2, except for 1/r0 being
replaced by 1/λΩ. Assuming Ω independent of r0, we
have α0 ∝ 1/r0 The value of r0 for which α0 ≡ 1 matches
the nonlinearity scale Eq. (9).

Our results readily extend to a binary with component
masses M1 = q1M and M2 = q2M where M = M1 +M2

is the total binary mass. The overdensity produced by
the j-component (j = 1, 2) can be expressed as

αj(r̃, t̃) = qjα0

∫ ∞

0

dτ̃
h(t̃− τ̃)

|ũj(t̃− τ̃)|

× =
[
erf

(
1 + i

2
√

2

√
RΩ

ũj√
τ̃

)]
, (26)

where ũ1(t̃′) = r̃− q2r̃p(t̃
′) and ũ2(t̃′) = r̃− q1r̃p(t̃

′ + π).
The total overdensity is the sum of these two contribu-
tions:

α(r̃, t̃) = α1(r̃, t̃) + α2(r̃, t̃) . (27)

Results for both the single perturber and binary case are
presented in Sec. §III C.

B. Lippmann-Schwinger approach

The Schrödinger equation Eq. (12) can also be recast
into the form

(
Ê − Ĥ

)
ψ = maΦψ (28)

where Ê = i~∂t and Ĥ = − ~2

2ma
∆2
~r are operators, and

maΦ can be treated as a (long-range) scattering poten-
tial.

1. Born approximation

The Lippmann-Schwinger approach reformulates the
solution ψ of this scattering problem as an integral equa-
tion. In plain words, one writes

ψ = ψ0 +
1

Ê − Ĥ
maΦψ (29)

where ψ0 is the homogeneous solution (free particle) to
the Schrödinger equation. The Born series offers a recur-
sive solution to this equation whereby, instead of search-
ing for the full solution directly, (finite) successive ap-
proximations are produced iteratively starting from ψ0:

ψ1 = ψ0 +
1

Ê − Ĥ
maΦψ0

ψ2 = ψ1 +
1

Ê − Ĥ
maΦψ1

...

Since we work in linear response theory throughout, we
limit ourselves to the Born approximation (first order
solution)

ψ1 = ψ0 +
1

Ê − Ĥ
maΦψ0 ≡ ψ0 + δψ . (30)

We write the homogeneous solution as a superposition of
plane waves [e.g. 29]

ψ0(r, t) =

∫

k0

ϕ(k0) eik0·r−iω0t (31)

which fulfill the dispersion relation

ω0 =
~k2

0

2ma
, (32)

while ϕ(k0) is a distribution to be determined later. In
the first part of the following calculation, we will restrict
ourselves to a monochromatic wave of arbitrary wave-
mode k0 and normalized such that |ψ0|2 = ρ for simplic-
ity. The distribution ϕ(k0) will be reintroduced below.

Our next focus is the (retarded) Green’s function (Ê−
Ĥ)−1 which can be expressed as

Gret(r, t) = lim
ε→0+

∫

k

∫

ω

e−iωt+ik·r

~(ω + iε)− ~2

2ma
k2

(33)

upon a Fourier transformation. Finally, the last ingredi-
ent is the external potential Φ of the perturber,

Φ(r, t) = −h(t)
GM

|r− rp(t)|
. (34)

The self-gravity of the FDM component is, as before,
neglected [see, e.g., 45, 51, for treatments with the FDM
self-gravity]
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the few percents level. The parameter values RΩ = 4 and Rσ = 0.1 adopted here match our single perturber configuration.

2. Density contrast

Substituting Gret and Φ into the Born approximation
yields

δψ(r, t) = ma

∫
dr′3

∫
dt′Gret(r−r′, t−t′) Φ(r′, t′)ψ0(r′, t′)

(35)
This integral can be carried out with aid of the con-
volution theorem (further details are presented in Ap-
pendix A). In short, the Fourier transforms of Φ and
ψ0 can be combined with that of the Green’s function
(Eq. 33) and after performing all possible integrals, yields

δψ(r̃, t̃) = i
α0

2
ψ0(r0r̃, t̃/Ω)

∫ ∞

0

dτ̃ h̃(t̃− τ̃)

×
erf
(

1−i
2

√
RΩ

2τ̃ |ũ(t̃− τ̃)− 2
RΩ
τ̃ k̃0|

)

|ũ(t̃− τ̃)− 2
RΩ
τ̃ k̃0|

(36)

which is expressed in terms of the dimensionless vari-
ables.

Our calculation is thus far limited to a monochromatic
wave, but it can be readily extended to any superposition
of plane waves with arbitrary amplitudes ϕ(k̃0) along the
lines of [28, 29, 44]. Incoherent superposition of FDM
granules or wave packets occurs, for instance, inside viri-
alized halos [23, 24, 27]. Interpreting the group velocity

of (almost monochromatic) wave packets v = ~k̃0/mr0

as the velocity of FDM quasi-particles, we draw the am-
plitudes ϕ(k̃0) from a Maxwell-Boltzmann distribution

f(k̃0) =

(
2

π

)3/2
ρ

R3
σ

e
− 2k̃2

0
R2
σ (37)

normalized such that

〈
|ψ0|2

〉
=

∫

k̃0

f(k̃0) = ρ . (38)

Assuming that the amplitudes ϕ(k̃0) are statistically in-
dependent, we require

〈
ϕ(k̃0)ϕ∗(k̃′0)

〉
= f(k̃0) δD(k̃0 − k̃′0) . (39)

The ensemble average is performed over realizations of
FDM backgrounds with prescribed velocity dispersion σ
and spatial average density ρ.

Introducing δψ′ = δψ/ψ0, the ensemble average den-
sity contrast is now calculated as

〈α〉 =
1

ρ

〈
|ψ|2

〉
− 1

=
1

ρ

∫

k̃0

f(k̃0)
(
2<(δψ′) + |δψ′|2

)
. (40)

Here again, the result for the single perturber case easily
extends to a compact binary upon defining

δψ′j(r̃, t̃) = i qj
α0

2

∫ ∞

0

dτ̃ h̃(t̃− τ̃)

×
erf
(

1−i
2

√
RΩ

2τ̃ |ũj(t̃− τ̃)− 2
RΩ
τ̃ k̃0|

)

|ũj(t̃− τ̃)− 2
RΩ
τ̃ k̃0|

(41)

This allows us to express the average density wake pro-
duced by a compact binary as

〈α〉 =
1

ρ

∫

k̃0

f(k̃0)
(
2<(δψ′1)+2<(δψ′2)+ |δψ′1|2 + |δψ′2|2

+ δψ′1δψ
′∗
2 + δψ′∗1 δψ

′
2

)
. (42)

A Maxwell-Boltzmann distribution for f(k̃0) will be as-
sumed like in the single perturber case.
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FIG. 4. Similar to Fig. 3 but for our fiducial compact binary with mass ratios q1 = q2 = 0.5, RΩ = 0.0177 and Rσ = 0.1. The
predicted wave- and fluid-like overdensities αLS and αM are normalized to α0 (see text for details). The right panel shows the
difference αLS − αM. The current position of the binary components are indicated by white filled symbols, while the binary
orbit is shown as a thin white circle.

C. Density wakes

1. Numerical implementation

The density wakes α(r, t) presented in this Section are
produced by numerically solving the initial value prob-
lem in the Madelung and Lippmann-Schwinger approach
on a regular, 2-dimensional mesh of 64 × 64 grid points
covering the domain [−4r0,+4r0]× [−4r0,+4r0].

In the hydrodynamic approach, we use an initially ho-
mogeneous density distribution which we evolve accord-
ing to Eq. (24) (single perturber) and to Eqs. (26) –
(27) (compact binary). In the wave approach, we solve
Eq. (40) (single perturber) and Eq. (42) (compact binary)
after the substitution of Eq. (36).

These numerical results thus correspond to the ”fi-
nite time perturbation” case and, as we will see below,
never achieve steady-state. We discuss the convergence
to steady-state further in Sec. §IV B 2 and §IV D when
we explore DF. For the latter, sampling along the z-axis
is also needed. We consider a 643 cubical grid of size 8r0

although, in practice, we take advantage of the planar
symmetry and add 32 evenly distributed points in the
interval [−4r0, 0] along the z-direction. The comparison
between DF computed from these numerical results and
from our analytical expressions can be found in Sec. IV D.

All our simulations have absorbing boundary condi-
tions to prevent the artificial reflection of the density
wake.

2. Results

Fig 3 displays the density wake created by our fiducial
single perturber after it is turned on at t̃ = 0. Results are
shown both in the Lippmann-Schwinger approach (αLS,
left panel) and in the Madelung approach (αM, middle
panel). The density contrast α(r, t) is plotted in the or-

bital plane after the completion of 1.25 rotations. The
white symbol indicates the perturber’s position on its
circular orbit. The wake produced by the perturber’s
gravitational disturbance is a deformed ellipsoid in the
vicinity of the circular orbit. The inner overdense wake is
surrounded by an underdense, outwardly spiraling whose
tip slightly lags behind the perturber. The main differ-
ences with the wake pattern in the gaseous case [see for
instance 38, 41, 56] are the existence of underdense re-
gions together with the absence of sharp discontinuities
and caustics (the latter arise in the gaseous case when
the motion is supersonic). In the FDM case, small scale
density features are smoothed out by the ”quantum pres-
sure” Eq. (18), reflecting the de-localized nature of the
FDM particles.

Likewise, the density wake for the compact binary case
shown in Fig. 4 is smoothly distributed around the binary
center of mass, with a slight elliptic asymmetry aligned
with the position of the bodies. The outer, underdense
spiraling region visible in the single perturber case is not
present for the equal mass binary considered here because
the two bodies produce a spiral of equal size in a sym-
metric fashion, which adds up to a circular distribution.
Increasing RΩ away from the fiducial value RΩ = 0.0177
lessens the smoothing due to λΩ and produces (weak)
deformations of the wake’s circular shape, albeit noth-
ing comparable to the spirals seen in the single perturber
case. As expected, unequal mass binaries produce more
asymmetric distributions.

The prefactor α0 = λNL/r0 controls the convergence
of the perturbative solution both in the Madelung and
in the Lippmann-Schwinger approach. As a result, the
contribution proportional to |δψ′|2 in Eq. (40) formally is
second order. For our choice of fiducial parameters that
ensures α0 � 1, it is negligible relative to the first order
term. Therefore, we have discarded these second order
terms in the calculation of αLS.

The right panel of figs 3 and 4 shows the differ-



8

ence between the overdensity αLS and αM computed
in the wave and hydrodynamic approach, respectively.
Our Madelung prediction αM is equal to 2<(δψ′) eval-
uated at k0 = 0. Therefore, it misses the contribution

2
RΩ

k̃0τ̃ = ~
ma

k0τ to the separation vector in Eq. (36).
This additional term is the distance traveled by a FDM
quasi-particle with group velocity ~

ma
k0 in the time in-

terval τ . The Maxwell-Boltzmann distribution implies
that the relevant wavenumbers satisfy k̃0 . Rσ/2. This
defines a characteristic scale (Rσ/RΩ)τ̃ = τ̃ /Mσ over
which the FDM quasi-particles are redistributed and the
wake density contrast is smoothed.

The impact of the FDM velocity dispersion is small in
the single perturber case becauseMσ � 1 for our fiducial
choice of parameters. The density wake αLS computed
with a Maxwell-Boltzmann distribution has an amplitude
lower by about 0.2% in overdense regions relative to αM,
and larger by at most 3% in underdense regions. By
contrast, the difference between αLS and αM is markedly
stronger in the binary case since we now have Mσ � 1.
In the center where the overdensity is highest, the FDM
velocity dispersion lowers the wake amplitude by roughly
38%. This suppression reaches up to 42% in the outer
region of lower (but still positive) overdensity.

IV. DYNAMICAL FRICTION

In this Section, we present details of the calculation of
the dynamical friction. Our methodology and key results
are:

• We express the complex friction coefficient I as
a multiple expansion (Eq. 45), which sums over
a scattering amplitude S (Eq. 46). The real and
imaginary part of I encode the radial and tangen-
tial part of the DF force.

• The multipole expansion converges quickly and can
be truncated at some lmax . 100 (see Fig. 6) for a
wide range of parameter choices.

• For a single perturber, the friction coefficient I for
FDM background does not show the features seen
in the gaseous case (see Fig. 5). This is due to
the FDM quantum pressure, which smoothes the
trailing density wake.

• The (also-)diffusive nature of the Schrödinger equa-
tion implies that the DF force never reaches steady
state, although the finite time perturbation result
oscillates around the steady-state solution as soon
as the density perturbation has diffused throughout
the system (see Fig. 8 and 10).

• For a binary perturber, there exist configurations
for which the tangential and radial part of the force
can be a thrust and a lift rather than a drag and a
weight (see Fig. 9).

The reader interested mainly in the astrophysical impli-
cations can skip this Section and jump to Sec. §V.

Our calculation of DF follows the approach outlined in
[41] which we shall briefly summarize to begin with.

A. Multipole expansion

The dynamical friction can be expressed as

FDF(t) = GMρ

∫
d3u

u

u3
α(u, t) , (43)

where u is the separation vector between the current po-
sition rp = rp(t) of the perturber and the wavefront
produced by it from an earlier position r′p = rp(t

′) at
the retarded time t′ < t. For the FDM medium consid-
ered here, the overdensity α(u, t) is computed either in
the Madelung or in the Lippmann-Schwinger approach
as discussed above.

The hydrodynamic formulation has the advantage
that, in linear response theory, α is given by the convolu-
tion Eq. (23) of the source with the Green’s function like
in the gaseous case explored in [41]. On expanding part of

the complex exponential eik̃·r̃ (here, r̃ = 1
r0

(rp− r′p +u))
in plane waves, decomposing the force into a helicity ba-
sis and performing the integral over the orientation of k̃,
the DF can be re-expressed as

FDF(t) = −4π

(
GM

Ωr0

)2

ρ
(
<(I) r̂(t) + =(I) ϕ̂(t)

)
(44)

where r̂(t) and ϕ̂(t) are unit vectors in the radial and
tangential direction, respectively. <(I) and =(I) are the
real and imaginary part of a dimensionless function I =
I(RΩ) which, on exploiting symmetry relations of Wigner
3j symbols, can be recast into the form

I =

∞∑

l=1

l−2∑

m=−l
(−1)m

(l −m)!

(l −m− 2)!
(45)

× Sl,l−1(m,RΩ, t)− S ∗l,l−1(m+ 1, RΩ, t)

Γ( 1−l−m
2 )Γ(1 + l−m

2 )Γ( 3−l+m
2 )Γ(1 + l+m

2 )
.

Here, Γ(z) is the usual Gamma function while the ”scat-
tering amplitude”

Sl,l−1(m,RΩ, t) = lim
ε→0+

∫

ω̃

∫ ∞

−∞
dτ̃ h(t̃− τ̃) ei(m−ω̃)τ̃

×
∫ ∞

0

dk̃
k̃ jl(k̃) jl−1(k̃)

k̃4/R2
Ω − (ω̃ + iε)2

(46)

involve products of radial standing waves (spherical
Bessel functions) jl(z). The sign of <(I) and =(I) deter-
mines whether the radial DF force is a weight (<(I) > 0)
or a lift (<(I) < 0), and the tangential DF force a drag
(=(I) > 0) or a thrust (=(I) < 0).

A comparison with [28, 44] shows that their friction
coefficient C is equivalent to our =(I). In the circular
case, I is a ”complex friction” which encodes also the
lift/weight in the radial direction.
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FIG. 5. The real and imaginary part of the function I(RΩ)
(solid curves). in FDM backgrounds calculated from Eq. (45)

with (48) to (50) with k̃min = 0.3. For comparison, we also
show the corresponding gaseous I(Mg) (dashed curves) com-
puted in [41]. Although the quantity RΩ plays a role similar
to the gas Mach numberMg, we show I(RΩ) as a function of√
RΩ for convenience. Furthermore, we have rescaled the real

and imaginary parts of I such that they all asymptotes to a
constant in the limit of large RΩ or Mg. For the imaginary
part of I(RΩ), this rescaling leads to an artificial divergence at
RΩ = 0. The multipoles have been summed up to lmax = 100
in both the gas and FDM case.

B. Single perturber

1. Steady state

For a perturber in steady state (labeled with ”Sty”),
h(t) = 1 and the integral of τ in Eq. (46) returns
2πδD(mΩ − ω) independently of t. This can be used
to simplify the scattering amplitude further to

SSty
l,l−1(m,RΩ) = lim

ε→0+

∫ ∞

0

dk̃ k̃
jl(k̃)jl−1(k̃)

k̃4/R2
Ω − (m+ iε)2

(47)

This integral can be solved upon expressing the spherical

Bessel functions in terms of the Hankel functions h
(1)
l (z)

and h
(2)
l (z) and applying Cauchy’s integral formula. De-

tails of the calculation can be found in Appendix B. The
result can be compressed further with the aid of several
identities of spherical Bessel functions, and eventually re-
cast into

SSty
l,l−1(m,RΩ) =

iπRΩ

4m

[
jl(
√
mRΩ) h

(1)
l−1(

√
mRΩ)

+
i√
mRΩ

Il+1/2

(√
mRΩ

)
Kl−1/2

(√
mRΩ

)]
. (48)

This expression is strictly valid for azimuthal numbers
m 6= 0 only. When m = 0, the integrand of Eq. (47) ex-
hibits a single pole at k = 0 and a very different behavior
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1

10

1 10 100

ℑ(
I
)

lmax

RΩ = 0.5
RΩ = 4

RΩ = 25
RΩ = 100

1

FIG. 6. The imaginary part =(I) of the ”complex friction”
I(RΩ) is shown for different values or RΩ as a function of the
the upper limit lmax of the (truncated) multipole expansion
Eq. (45). Unlike the gaseous case, =(I) converges to any
desired accuracy for finite values of lmax.

depending on the value of l. When l 6= 1, the scattering

amplitude SSty
l,l−1(0, RΩ) is finite and equal to

SSty
l,l−1(0, RΩ) =

3πR2
Ω

18− 80l2 + 32l4
. (49)

When l = 1, the purely real amplitude SSty
1,0 (0, RΩ) has an

infrared divergence which we regularize by introducing a
lower cut-off k̃min:

SSty
1,0 (0, RΩ) = R2

Ω

∫ ∞

k̃min

dk̃

k̃3
j1(k̃)j0(k̃) (50)

=
R2

Ω

40k̃5
min

[
4− 4πk̃5

min +
(
4k̃4

min − 2k̃2
min − 4

)

× cos(2k̃min) + k̃min

(
2k̃2

min − 3
)

sin(2k̃min)

+ 8k̃5
minSi(2k̃min)

]
.

Here, Si(z) is the sine-integral. The previous expressions
are all that we need in order to compute the ”complex
friction” I(RΩ) in the steady-state regime.

In Fig. 5, we compare the steady-state FDM I(RΩ)
predicted by the Madelung approach with the corre-
sponding gaseous solution I(Mg) given in [41]. The FDM
parameter RΩ plays a role similar to the gas Mach num-
ber Mg, at least in the way it appears in the scatter-
ing amplitude (compare the k-integrand of Eq. (47) with
that of Eq. (17) in [41]). Nevertheless, we have plotted
I(RΩ) as a function of

√
RΩ so that =(I(RΩ)) approxi-

mately reaches its maximum where =(I(Mg)) does. In
the gaseous case, we normalize the real part <(I(Mg))
such as to emphasize that it asymptotes to M2

g in the
limit of large Mach numbers. We use the same normal-
ization for =(I(Mg)). In the FDM case, =(I(RΩ)) is
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fully determined by SSty
l,l−1(m,RΩ) with m 6= 0, which de-

pends linearly on RΩ. However, <(I(RΩ)) also depends

on SSty
l,l−1(0, RΩ), which is quadratic in RΩ. This leads

to a linear dependence at small RΩ and a quadratic one
at large RΩ. Showing <(I(RΩ))/R2

Ω as done in the fig-
ure filters out the large-RΩ asymptotic, and leads to the
artificial divergence seen at small RΩ.

The quantity =(I(RΩ)) reaches a maximum for RΩ ∼
O(1) around which the synchronization between the per-
turber and its wake is most efficient. In the gaseous case,
this occurs at Mg = 1. However, I(RΩ) exhibits less
features relative to I(Mg) owing to the quantum pres-
sure. Another important difference can be spotted upon
comparing our Fig. 6 to Fig. 3 of Ref. [41]. Both of them
display the dependence of the imaginary part =(I) (for
a few different values of RΩ and Mg, respectively) on
the upper limit lmax of the sum defining I in Eq. (45).
While the gas case exhibits a logarithmic divergence for
supersonic Mach number, there is no such behavior for
FDM. The k4-scaling of the (Fourier space) Greens’ func-
tion ensures the convergence of the multipole expansion
regardless of the value of RΩ. In Fig. 6, the series con-
vergence is achieved for lmax & 100. We also checked the

real part assuming k̃min = 0.3 and found even faster con-
vergence. For RΩ = 100 for instance, <(I) has already
converged by lmax ≈ 20.

The different behavior of the gaseous I(Mg) and FDM
I(RΩ) is related to the features seen in Fig. 2 and Fig. 3
and discussed at the end of Sec. §III A. The quantum
pressure prevents the FDM density wake to form jump
discontinuities whereas, in a gaseous medium, there are
sharp discontinuities at which the density increases to-
wards the perturber. They lead to the short-distance
(ultraviolet) divergence of =(I(Mg)) for point-like per-
turbers [see 38, 41].

2. Finite time perturbation

The ”finite time perturbation” (labeled with ”Ftp”)
corresponds to a perturber ”turned on” at time t = 0 and
can be straightforwardly explored with numerical simula-
tions. Details of the derivation are given in Appendix C.
In short, h(t − τ) = 0 for τ > t such that the integral
over τ̃ becomes

∫ t̃

−∞
dτ̃ ei(m−ω̃)τ̃ = lim

η→0+

ei(m−ω̃)t̃

i
(
m− ω̃ − iη

) . (51)

The resulting scattering amplitude can be written as

SFtp
l,l−1(m,RΩ, t) = SSty

l,l−1(m,RΩ)+STra
l,l−1(m,RΩ, t), where

the transient amplitude (labeled with ”Tra”) is obtained
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FIG. 7. The imaginary part of the transient amplitude STra
l,l−1

normalized to its steady-state counterpart as a function of the
(dimensionless) time t̃. Results are shown for a few choices
of multipole l. The azimuthal number is fixed to m = 1 and
a parameter value RΩ = 4 is assumed. All the transient am-
plitudes shown here fall below the steady-state result after
completing one rotation. Their envelope approximately de-
cays as STra

l,l−1 ∝ t−l+1/2.

upon taking the limit ε→ 0+ of

STra
l,l−1(m,RΩ, t) = −RΩ

2
eimt̃

∫ ∞

0

dk̃

k̃
jl(k̃)jl−1(k̃)

×
(

e−i(k̃
2/RΩ−iε)t̃

k̃2/RΩ −m− iε
+

ei(k̃
2/RΩ+iε)t̃

k2/RΩ +m+ iε

)
. (52)

Notice that we have STra
l,l−1(m,RΩ, 0) = −SSty

l,l−1(m,RΩ)
at t = 0, which ensures that the DF initially vanishes.

For (l,m) = (1, 0), Eq. (52) is purely real. Like the cor-

responding steady-state SSty
1,0 , the transient STra

1,0 exhibits
an infrared divergence which can be again remedied by in-
troducing a lower cut-off k̃min in the k̃-integration. How-
ever, we have not been able to find an analytic expression
for t̃ > 0.

For (l,m) 6= (1, 0), we can apply Cauchy’s integral
formula and rewrite Eq. (52) as

STra
l,l−1 = −RΩ

2
eimt̃

∫ ∞

0

dχ̃

χ̃

[
jl((1 + i)χ̃)jl−1((1 + i)χ̃)

− jl((1− i)χ̃)jl−1((1− i)χ̃)
]

× e−2t̃χ̃2/RΩ

2iχ̃2/RΩ +m+ iε
, (53)

which makes clear that the transient contributions STra
l,l−1

decay so long as (l,m) 6= (1, 0).

Numerical evaluations of STra
l,l−1 are shown in Fig. 7

as a function of the dimensionless time t̃ for a fixed az-
imuthal number m = 1 but different choices of multipole
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FIG. 8. The finite time perturbation amplitude SFtp
l,l−1 in the

special case l = 1 and m = 0. Results are shown as a function
of the number of rotations t̃/2π (in unit of RΩ) for different

lower cut-off wavenumbers k̃min as indicated on the figure. All
the curves assume RΩ = 4, while the empty symbols represent
the particular case (k̃min, RΩ) = (0.3, 1). The (also) diffusive
nature of the Schrödinger equation leads to the square root

behavior SFtp
1,0 ∝

√
t̃ at early time. Arrows mark the esti-

mated timescale at which the initial (t = 0) perturbation has
diffused throughout the medium (see text). The horizontal
lines indicate the steady-state limit which the finite time per-
turbation result converges to.

l. A value of RΩ = 4 is assumed. The transient am-
plitudes shown here are normalized to their steady-state

counterpart SSty
l,l−1 to facilitate the comparison. Their en-

velope decays with time according to (the empirical law)

STra
l,l−1 ∝ t−l+1/2. Consequently, with the notable excep-

tion of STra
1,0 (0, RΩ, t), essentially all the transient contri-

butions drop below the steady-state result after a rota-
tion at most, regardless of the value of l. Consequently,

SFtp
l,l−1 ≈ SSty

l,l−1 at better than a percent level after a few
rotations solely.

Nonetheless, neither the radial nor the tangential com-
ponent of the finite perturbation time DF ever reaches
the steady-state regime. In the radial direction, the con-
vergence depends on <(I) and, therefore, is slowed down
by the infrared divergence present for (l,m) = (1, 0).
This is emphasized in Fig. 8, in which we plot the purely

real SFtp
1,0 (0, RΩ, t) (in unit of R2

Ω) as a function of the

number of rotations t̃/2π (in unit of RΩ). All the curves

assume the same RΩ = 4 but a different k̃min as la-
beled on the figure. The empty symbols show results
for RΩ = 1 in the particular case k̃min = 0.3, while the
horizontal lines indicate the steady-state solution. For a

cut-off wavenumber as small as k̃min = 0.1, SFtp
1,0 (0, RΩ, t)

does not (even) reach the magnitude of the steady-state

solution after 20 rotations. For larger k̃min & 0.3 how-
ever, convergence to steady-state occurs faster.

The physical origin of this behavior stems from the
wave and diffusive nature of the free Schrödinger equa-
tion, in which β = ~/2ma can also be regarded as a
diffusion coefficient [see 57, 58]. Diffusion (of the conden-
sate wave function) in 3-dimensional space then implies
〈r2〉 = 6βt. Therefore, the timescale corresponding to
a diffusion length ∼ π/kkmin is tdiff = (π/kmin)2/6β or,
equivalently,

t̃diff

2π
=

(
π

12

)
RΩ

k̃2
min

. (54)

In Fig. 8, this characteristic time is indicated as verti-
cal arrows. Eq. (54) reasonably captures the RΩ and

k̃min dependence of the timescale marking the transition
from a (radially) diffusive regime to damped oscillations
around the steady-state result.

C. Compact circular binary

The same techniques can be used to derive analytic
results in the compact binary case. Let M denote the
total mass of the binary system and q1M and q2M (with
q1 + q2 = 1) the mass of the individual components. To
account for their different distance to the binary center-
of-mass, we must also change the argument of the spher-
ical Bessel function in Eq. (46). As a result, the denom-
inator of Eq. (45) is replaced by

q2
a

[
Sa,al,l−1(m,RΩ, t)− Sa,a ∗l,l−1 (m+ 1, RΩ, t)

]

+(−1)mqaqb

[
Sa,bl,l−1(m,RΩ, t) + Sa,b ∗l,l−1(m+ 1, RΩ, t)

]
.

The steady-state solution reads
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FIG. 9. Contour levels of <(I)/R2
Ω (top panel) and =(I)/RΩ in the plane (RΩ, q1) where q1 is the (normalized) mass of the

first binary component. A value of k̃min = 0.3 is assumed for the computation of I(RΩ). The green contours indicate the zero
level. The increase in the magnitude of <(I) towards smaller RΩ is artificially caused by the normalization <(I)/R2

Ω adopted
here. <(I) linearly depends on RΩ for RΩ . 1, but exhibits a quadratic dependence ∝ R2

Ω for RΩ � 1. Both <(I) and =(I)
can be positive or negative depending on (RΩ, q1).

Sa,bl,l−1(m,RΩ) = (55)

πRΩ

4





i
m

[
h

(1)
l (qa

√
mRΩ)jl−1(qb

√
mRΩ)− i Kl+1/2(qa

√
mRΩ)Il−1/2(qb

√
mRΩ)√

qaqbmRΩ
+

ql−1
b

ql+1
a

2i
|m|RΩ

]
(qa > qb) ∧m 6= 0

RΩ( qbqa )l−1 4(3+4l(2+l))q4
a+2(9−4l2)q2

aq
2
b+(3+4l(l−2))q4

b

(9−40l2+16l4)q2
a

(qa > qb) ∧m = 0

i
m

[
jl(qa
√
mRΩ)h

(1)
l−1(qb

√
mRΩ) +

i Il+1/2(qa
√
mRΩ)Kl−1/2(qb

√
mRΩ)√

qaqbmRΩ

]
(qa < qb) ∧m 6= 0

−RΩ( qaqb )l
(2l−3)q2

a−(2l+3)q2
b

9−40l2+16l4 (qa < qb) ∧m = 0
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with (qa, qb) equal to (q2, q1) (resp. (q1, q2)) if the DF
acting on object 1 (resp. object 2) is desired. Like in the
single perturber case, this expression is not valid for l = 1
and m = 0 and a lower cut-off k̃min must be introduced to
regularize the infrared divergence. An analytic solution
can still be found in this case, but it is lengthy and,
therefore, presented in Appendix D solely.

The resulting function I(RΩ) is shown in Fig. 9 as-

suming k̃min = 0.3 for illustration. The top and bottom
panels display contour levels of the real and imaginary
part <(I) and =(I) as a function of RΩ and the mass
0 < q1 < 1 of the first binary component. There are
combinations of RΩ and q1 for which the radial and tan-
gential component of DF change sign. When q1 > 0.5,
the radial DF force is mostly directed inward (<(I) > 0)
while the tangential component points forward along the
direction of motion (=(I) < 0) for 0.5 < RΩ < 20. When
q1 < 0.5, DF pushes the point mass outward (<(I) < 0)
for RΩ < 0.2 while it generally slows it down in the tan-
gential direction (=(I) > 0).

D. Comparison between Lippmann-Schwinger and
Madelung DF

As discussed above, both treatments have their ad-
vantages. While the Lippmann-Schwinger approach can
easily incorporate wave superposition and interference
effects, the Madelung approach allows for the fully an-
alytical solution to DF presented in Sec. IV B 1 owing
to its convenient hydrodynamic form. More specifically,
wave interference in the atmosphere of virialized halos
creates a haze of fluctuating granules or wave packets
with a distribution of velocities [23, 24, 27]. Such an
interference pattern can be easily accounted for in the
Lippmann-Schwinger formulation. However, this inclu-
sion is less straightforward in the Madelung approach,
and our implementation of the latter assumes zero veloc-
ity dispersion. Therefore, it is instructive to compare the
DF obtained in both implementations.

To compute DF in the Lippmann-Schwinger approach,
we calculate the overdensity α directly from Eqs. (36)
and (40) over the simulation box before integrating
Eq. (43) numerically. Namely, on rewriting Eq. (43) in
terms of dimensionless variables, we arrive at

FDF(t̃) =

(
GM

Ωr0

)2

ρRΩ

∫
d3ũ

(
ũ

ũ3

)
α(ũ, t̃)

α0
. (56)

where α0 is the characteristic amplitude of the overden-
sity wake, Eq. (25). The field α(ũ, t̃) is then computed
on a regular cubical of size 8r0 with 643 mesh points (see
Sec. §III C 1 for the details of the numerical implemen-
tation). Splines are used to interpolate this data and
numerically evaluate Eq. (56).

The resulting DF is shown in the top panel of Fig. 10
as the cross symbols for our fiducial single perturber (i.e.
RΩ = 4 and Rσ = 0.1 ) turned on at t = 0. It is com-

pared to the steady state solution Eqs. (48) – (50) ob-
tained from the Madelung approach (dashed curves) and
to the finite perturbation time result Eq. 53 (solid curves)

assuming a lower cut-off k̃min = 1/8. This wavenumber
value corresponds to a scale equal to the side length 8r0

of the cubical box. This choice is motivated by the ab-
sence of power on scales larger than the simulation box.
The bottom panel of Fig. 10 displays the fractional differ-
ence between the numerical prediction of the Lippmann-
Schwinger approach and the analytic prediction of the
Madelung formulation.

As expected, the radial DF strongly depends on the

behavior of the purely real amplitude SFtp
1,0 . At early

times, SFtp
1,0 is not very sensitive to the exact choice of

k̃min ∼ 0.1 (see Fig. 8). Notwithstanding, a low cut-off
wavenumber implies that the radial DF grows through
diffusion for a longer time before oscillating around the
steady-state solution. For k̃min = 1/8, the steady-state
radial DF is ≈ −76.6 in the scales of the figure and,
therefore, does not appear on it. As a result, the radial,
steady-state solution is a poor approximation to the fi-
nite time perturbation result so long as t̃ . O(10− 100)
rotations. By contrast, the tangential part rapidly initi-
ates damped oscillation around the steady state solution.
One should however bear in mind that neither the radial
nor the tangential DF attain the equilibrium steady-state
regime in a finite time.

The finite time perturbation results agree very well for
both the tangential and radial DF component. Although
our Lippmann-Schwinger implementation of DF is more
complete from a modeling point of view (it includes the
granularity of the FDM background), it is matched by
the Madelung analytical prediction to a high degree. In
the radial direction, the relative difference between the
wave-like and fluid-like predictions never exceeds 3%. In
the tangential direction, the agreement is equally good
during the first rotation, yet the relative difference be-
tween the wave and hydrodynamic prediction increases
with time. This reflects the fact that, in the Lippmann-
Schwinger approach, the tangential component converges
significantly faster to steady-state.

We emphasize that the comparison carried out here is
somewhat limited since the regimeMσ � 1 (our fiducial
single perturber) solely was tested. A more exhaustive
comparison is beyond the scope of this paper. Notwith-
standing, the differences in the α-predictions seen in the
binary case withMσ . 1 (Fig. 4) suggest that the agree-
ment between the Lippmann-Schwinger and Madelung
DF shall worsen in the single perturber case as the
FDM velocity dispersion σ or, equivalently, the Mach
number Mσ decreases. While a non-vanishing σ likely
changes the convergence rate to steady-state (i.e. the de-
cay timescale of the oscillatory envelope), it is unclear
whether the steady-state solution is also affected.
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FIG. 10. Top panel : radial (r̂) and tangential (ϕ̂) components of the DF force in the finite time perturbation case for our

fiducial single perturber. The DF force is normalized to ρRΩ

(
GM
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)2

. The cross symbols are the outcome of a numerical

implementation of the Lippmann-Schwinger approach on a 3-dimensional grid, whereas the solid and dashed curves show the
analytic predictions obtained from the Madelung approach (see text for details). We have adopted a cut-off wavenumber

k̃min = 1/8 which matches the size of our simulation boxes. The steady-state tangential DF is shown as the horizontal dashed

line. In the radial direction, the steady-state DF is ' −76.6 for k̃min = 1/8. Hence, it is not visible on the figure. Bottom
panel : fractional difference between our wave and hydrodynamic predictions of the radial and tangential DF.

CDM FDM linear FDM circular

n r0 [ Kpc] M [105M�] C τ [Gyr] C τ [Gyr] RΩ =(I) τ [Gyr]

1 7.60 0.37 4.29 112 2.46 215 17.8 1.46 362

2 1.05 1.82 3.32 9.7 1.88 12 10.08 1.64 14

3 0.43 3.63 2.45 0.62 0.29 2.2 1.94 0.39 1.63

4 0.24 1.32 2.50 0.37 0.033 10 0.62 0.078 4.23

5 7.79 1.76 3.46 21.3 2.32 31 15.58 1.41 51

TABLE I. A comparison between the orbital decay timescale obtained for a perturber moving linearly in a CDM medium
(”CDM”), in a FDM background (”FDM linear”), and for a circularly-moving perturber in FDM (”FDM circular”). Results
are shown for the 5 globular clusters of the Fornax dwarf spheroidal. This table is adapted from Table I of [28] from which the
”CDM” and ”FDM linear” predictions are taken.

V. ASTROPHYSICAL IMPLICATIONS

In this Section, we present two astrophysical applica-
tions of our results. We also speculate on the behavior
of DF for self-interacting axions.

A. Orbital decay of globular clusters

Massive satellites orbiting around a galaxy are affected
by the dynamical friction caused by the dark matter halo.
This leads to their orbital decay if the dark matter den-
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sity is high enough and its velocity dispersion is low [30].
Following [28], let L = MΩr2

0 be the angular momentum
of, say, a globular cluster of mass M . The corresponding
DF timescale is given by

τ =
L

r0|ϕ̂ · FDF|
,

where r0|ϕ̂ ·FDF| is the torque produced by DF. For the
slow orbital decay of circular orbits, this timescale can
be expressed as

τ =
M(< r0)3/2

4πG1/2Mρr
3/2
0 =(I)

, (57)

with M(< r0) being the total (dark matter and baryons)
mass enclosed within the orbital radius.

A well-known example of application is the Fornax
dwarf spheroidal, which contains 5 widely spread glob-
ular clusters. These should have already spiraled toward
the center and merged with the nucleus [59]. To resolve
this issue, various explanations have been put forward,
including the presence of a constant-density core that can
stall the inspiral [60]. However, this might not be suffi-
cient to explain the Fornax observations [61, 62]. Ref. [28]
assessed how the DF timescale is modified if the dark
matter in Fornax and, more generally, in dwarf galaxies
is comprised of FDM rather than CDM. For this pur-
pose, they derived an expression for the DF produced by
a FDM medium on a perturber in linear motion (see their
Sec. § III.J).

To compare our circular motion prediction with their
result, we use the fact that their drag coefficient C corre-
sponds to our =(I) (the radial DF is irrelevant here) and,
moreover, their choice of kr is equivalent to our RΩ/2.
Assuming likewise an axion mass m18 = 3 × 10−4, the
nonlinearity scale is λNL ∼ 10−3 pc much smaller than
the orbital radius of the globular clusters (r0 ≈ 1 Kpc)
considered here. Therefore, our linear response theory
can be safely applied here. Furthermore, our analysis
of the finite time perturbation indicates that our steady-
state solution provides a reasonable approximation to the
tangential DF at all time (see Fig. 10). Therefore, we
shall use it to compute the orbital decay timescales de-
termined by Eq. (57).

To illustrate how the DF decay timescale changes
quantitatively when our circular motion result is used
instead of the linear motion expression of [28], we have
extended their Table.I into a new table I, in which we
quote τ obtained from our ”FDM circular” and their
”FDM linear”, respectively. Using our circular motion
DF increases or decreases τ by up to ∼ 70% depend-
ing on the value of RΩ. To understand this, recall that
the (tangential) FDM friction coefficient =(I) peaks for
values of RΩ ∼ O(1) (see Fig. 5). This corresponds to
a configuration in which the perturber’s motion is best
synchronized with the gravitational wake it generates,
thereby increasing the strength of the tangential DF. At
large RΩ � 1, the weaker synchronization between the

perturber’s motion and the induced density wake reduces
the tangential DF. Overall, there is no dramatic change
from the linear motion calculation.

B. Stagnation of binary inspiral

Dynamical friction generally leads to the dissipation
of energy and angular momentum. We will now demon-
strate that, in a FDM background, DF can stall the or-
bital evolution. In what follows, M is the total binary
mass and q1M , q2M are the masses of the components.

Consider first the motion of the binary center-of-mass
of position rCM. If the binary is not of equal mass, a net
force accelerates the center-of-mass according to

M
d2rCM

dt2
= FDF,1 + FDF,2 (58)

= −4πρ

(
GM

Ωr0

)2 [(
<(I1)−<(I2)

)
r̂(t)

+
(
=(I1)−=(I2)

)
ϕ̂(t)

]
,

where r̂(t) and ϕ̂(t) are unit vectors in the x − y plane
directed along the component separation vector r(t) ≡
r2(t) − r1(t) and perpendicular to it. Decomposing the
total force into this radial and tangential direction,

Fr ≡ 4πρ

(
GM

Ωr0

)2 [
<(I1)−<(I2)

]
(59)

Fϕ ≡ 4πρ

(
GM

Ωr0

)2 [
=(I1)−=(I2)

]
,

and rewriting the equation of motion in Cartesian x− y
coordinates (we omit the z component as it is irrelevant),
we get

M
d2rCM

dt2
= −

(
Fr cos(Ωt)− Fϕ sin(Ωt)

Fr sin(Ωt) + Fϕ cos(Ωt)

)
(60)

Assuming the steady state solution for I1 and I2 makes Fr
and Fϕ independent of time and the differential equation
straightforward to solve. For a binary system initially
at rest at rCM(0) = (Fr/MΩ2, Fϕ/MΩ2)>, the motion
of the center of mass describes a circle about the origin
r = 0 at a frequency Ω. The radius of this circular orbit
is

rDF =
1

MΩ2

√
F 2
r + F 2

ϕ (61)

' 2.5× 10−28 pc

(
ρ

M� pc−3

)

×
(
M

M�

)(
Ω

yr−1

)−4(
r0

pc

)−2

×
√(
<(I1)−<(I2)

)2
+
(
=(I1)−=(I2)

)2
.
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Therefore, rDF reassuringly is orders of magnitude
smaller than the orbital radius even for k̃min � 1. More
precisely, parameter values as extreme as k̃min = 0.001
and RΩ = 100 are required such that the difference be-
tween I1 and I2 reaches O(105). Even in this case would
the radius rDF be of the order of 10−23 solely, that is,
orders of magnitude below λNL. There seems to be no
realistic scenario in which the motion of the center-of-
mass caused by DF can have any significant impact on
the motion of the perturber.

Turning now to the center-of-mass frame, the energy
E = 1

2µṙ
2 − GMµ

r and angular momentum L = µr× ṙ of
the binary, where µ = q1q2M is the reduced mass, evolve
according to

dE

dt
= ṙ · (q1FDF,2 − q2FDF,1) (62)

dL

dt
= r× (q1FDF,2 − q2FDF,1) .

For the homogeneous medium and circular motions con-
sidered here, we have L = Lẑ with

dL

dt
= −4πr0ρ

(
GM

Ωr0

)2 (
q1=(I2) + q2=(I1)

)
. (63)

Assuming an adiabatic sequence of circular orbits, we
have L2 = GM2µr0 and, therefore,

dr0

dt
= −8πρ

√
Gr5

0

µ

(
q1=(I2) + q2=(I1)

)
. (64)

The radial part of DF is irrelevant here as it mainly af-
fects the eccentricity [38, 63]. Note also that the right-
hand side of Eq. (64) is invariant under the exchange of
indices 1 ↔ 2. Since the DF acting on the binary de-
pends on r0, ma and M through the parameter RΩ, it
is convenient to introduce a characteristic orbital radius
rΩ. For simplicity, we set

rΩ ≡
1

GM

(
~

2ma

)2

(65)

' 171.2 pcm−2
18

(
M

M�

)−1

which corresponds to the orbital radius such that RΩ = 1.
Furthermore, we take into account the energy/angu-

lar momentum loss by radiation of gravitational waves
(GW). The orbit average change of r0 reads ([64])

〈
dr0

dt

〉
= −64

5

G3M2µ

c5r3
0

.

Adding this loss term to Eq. (64) yields

dr0

dt
= −8πρ

√
Gr5

Ω

µ

[
8

5π
aGW

(
r0

rΩ

)−3

(66)

+

(
r0

rΩ

)5/2 (
q1=(I2) + q2=(I1)

)
]
.
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FIG. 11. Stable fixed points r∗0 of the one-dimensional dy-
namical system Eq. (66) as a function of q1 (q2 = 1 − q1).
When aGW = 0, there is one stable orbital radius for each
q1 shown as the solid (black) curve. When aGW 6= 0, there
are no stable orbits for q1 in the range [qmin, 0.5]. Vertical
lines mark qmin for the different values of aGW indicated on
the figure. For each q1 in the range [0, qmin[, there is, again,
a unique stable orbit. Whenever they exist, the stable orbital
radii r∗0 change by at most 1% as aGW is varied in the range
0 < aGW < 1. Therefore, the solid (black) curve computed
for aGW = 0 accurately characterize the fixed point also for
0 < aGW < 1 (leftward of the corresponding vertical line).

The relative strength of the loss by gravitational waves
is given by

aGW ≡
√
G5M4µ3

c10r11
Ω ρ2

(67)

' 5.03× 10−34

(
µ

M�

)3/2(
M

M�

)2(
rΩ

pc

)−11/2

×
(

ρ

M� pc−3

)−1

.

For our fiducial binary system (see 11) and a FDM den-
sity of ρ = 0.01 M� pc−3 comparable to that of the solar
neighborhood, this gives

rΩ ' 8.56 pc

aGW ' 1.67× 10−33 .

For a given choice of q1 and q2, the friction coefficient
=(I1,2) can change sign as RΩ is varied (seen in Fig. 9).
Friction becomes a ”thrust” (rather than a ”drag”) when
the binary extracts angular momentum from the FDM
medium. Furthermore, at fixed ma and M , the value
of RΩ depends only on r0 (through Kepler’s third law).
Therefore, the right-hand side of Eq. (66) should be re-
garded as a function of r0 only, say, g(r0). This one-
dimensional dynamical system can exhibit stable fixed
points for r0 ≡ r∗0 whenever g(r∗0) = 0 and g′(r∗0) < 0.
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When there is no loss from GW emission, there is ex-
actly one stable orbit for each choice of q1 except q1 = 0.5.
In Fig. 11, the solid (black) curve shows the stable or-
bital radius r∗0 as a function of q1 for our fiducial bi-
nary system. At small q1, the stable radius is r∗0 ≈ 400
(in unit of rΩ) and varies slowly until q1 ≈ 0.2, be-
yond which the stable orbit quickly drops towards smaller
radii. Adding the GW emission affects the stable orbital
radius only marginally at low q1: the change never ex-
ceeds 1% even for aGW = 1.0. The most notable effect
of a non-vanishing aGW is to prevent stable fixed points
in the q1-range [qmin, 0.5]. In Fig. 11, vertical lines mark
qmin for different values of aGW. The q1-range for which
there are no stable orbits grows from 0.5 downward with
increasing values of aGW. This follows from the r−3

0 de-
pendence of the GW loss, which becomes relevant only
when the stable orbit wanders to the small radii obtained
for q1 . 0.5. A larger aGW increases the orbital radius be-
low which GW emission dominates over DF. Note that,
since the DF only depends on ma via RΩ solely, any
change in the axion mass can be absorbed by a rescaling
of rΩ according to Eq. (65). In other words, changing ma

leaves Fig. 11 unchanged.
For our fiducial choice of parameters, the character-

istic radius rΩ ∼ 10 pc is about 3 orders of magni-
tude larger than any viable upper limit on galactic bi-
nary separations [65, 66]. Consequently, binaries of mass
M ∼ O(10) M� and viable separations will not inspi-
ral through the fixed point unless q1 is very close to 0.5.
However, as the axion mass is increased, the character-
istic radius drops according to rΩ ∝ m−2

a so that stable
orbits with realistic r∗0 appear for a larger range of q1. In
the absence of external perturbations
cite[see, e.g.,][for a discussion]ginat/perets:2021, binaries
would eventually stagnate around this stable orbit (pro-
vided they started with a larger orbital radius). This
could have an impact on merger rates.

C. Axion self-interactions

Axions self-interactions will change the structure of
the Green’s function. For axions which acquired a mass
through non-perturbative effects (such as the QCD ax-
ion), this self-interaction is attractive and, owing to the
enormous phase space density, can counteract the quan-
tum pressure. This leads to an instability which has been
explored in, e.g., [22, 67–77].

At the level of the Green’s function of the linearized
theory, a self-interaction manifests itself as a pressure
with an (effective) sound speed c2s > 0 or (c2s < 0) if the
self-interaction is repulsive (attractive). In plain words,
G is of the form

G̃(k, ω) =

(
c2sk

2 +
~2k4

4m2
a

− ω2

)−1

(68)

in Fourier space. Our present work, together with the
analysis of [41], suggests that the resulting DF should be

free of any infrared and ultraviolet divergence since, for
ω = 0, the divergence of G in the limit k → 0 is only
quadratic whereas its high-k limit is regularized by the
k4 term. We defer a thorough exploration of this case to
future work.

VI. CONCLUSION

We investigated the dynamical friction (DF) acting on
circularly moving perturbers in a background of FDM
particles. Starting from the Gross-Pitaievskii-Poisson
system which describes a self-gravitating FDM medium,
we considered two different routes to solve for the den-
sity wake and DF: the Madelung (hydrodynamic) and
Lippmann-Schwinger (wave) approach. Although the lat-
ter can more straightforwardly account for the fluctuat-
ing nature of FDM halo atmospheres, the former is more
amenable to an analytic treatment of DF. For this reason,
our hydrodynamic implementation assumes a perfectly
uniform FDM background, whereas our wave implemen-
tation describes the medium as a superposition of FDM
quasi-particles. Furthermore, we restricted our analy-
sis to linear response theory. The astrophysical systems
considered here are well within the validity range of this
linear approximation.

We derived a fully analytical solution to the dynamical
friction using the Madelung formulation. Our circular-
orbit solution, based on the approach outlined in [41],
covers steady-state as well as the finite time perturba-
tion case (the perturber is turned on at t = 0). Although
it does not include the velocity dispersion of FDM quasi-
particles, it provides a versatile tool to explore DF for
a wide range of parameters. We compared the two ap-
proaches at the level of the density wake and the DF
produced by single and binary compact perturbers in cir-
cular motion. The velocity dispersion σ of FDM quasi-
particles generally lowers the overall density contrast, the
effect increasing with smaller values of the Mach number
Mσ = vcirc/σ. Moreover, for the finite time perturba-
tion, our analytical solution to DF agrees very well with
that extracted from our limited numerical investigations
of the wave formulation.

The distinctive form of the FDM and gaseous Green’s
functions considered here and in [41], respectively, leads
to critical differences in the behavior of the dynamical
friction. While the ultraviolet divergence (seen for super-
sonic motion in the gaseous medium) is no longer present
in the FDM case, the latter exhibits instead an infrared
divergence which originates from the (also) diffusive na-
ture of the free Schrödinger equation. Our analysis of
the finite time perturbation case reveals that the den-
sity wake produced by the perturber(s) diffuses through
the medium with a diffusion coefficient β = ~/2ma (ma

is the axion mass). Only when the characteristic diffu-
sion length reaches the size of the system does DF stabi-
lize around the steady-state result. This diffusive process
affects the radial component of DF solely. Once the ini-



18

tial perturbation has diffused through the whole medium,
both the radial and tangential DF oscillate about the
steady-state solution with a decaying envelope. Strictly
speaking, steady-state is thus never attained within a fi-
nite time. Our numerical implementation of the wave
approach, which includes a non-vanishing FDM velocity
dispersion, indicates that the convergence rate is some-
what sensitive to the value of σ. Although we have not
determined the extent to which the steady-state solution
depends on σ 6= 0, we speculate (in light of our single per-
turber test case) that the Madelung prediction remains
valid so long as Mσ � 1. Notice also that the damped
oscillations seen in the tangential DF only arise from mul-
tipoles with (l,m) 6= (1, 0), which are insensitive to the
outer boundary conditions. These oscillations thus have
a physical origin different from those studied in [40].

We applied our results to two different astrophysical
scenarios. Firstly, we revisited the DF decay timescale of
the 5 Fornax globular clusters using our circular-motion
prediction, and compared them to the linear-motion es-
timates of [28]. In the circular setting, the imaginary
part =(I) of the ”complex friction” I encodes the drag
in the direction parallel to the instantaneous perturber’s
velocity. At fixed axion mass, our circular-motion result
increases the decay time relative to the linear-motion pre-
diction when RΩ ∝

√
r0 � 1, i.e. for large orbital radii,

and decreases it for small r0. This follows from the fact
the interaction between the perturber and its wake is
maximized for RΩ ∼ O(1). While the relative change
can be as large as 70%, our revised DF decay timescales
are still larger than that obtained for a CDM medium.
Secondly, we explored the stagnation of compact binary
inspirals assuming an adiabatic sequence of circular or-
bits. The motivation is the presence of a novel feature in
the tangential DF acting on binaries: it can change sign

and act as a ”thrust” (rather than a ”drag”) for some
range of mass ratios. This effect could stall binary inspi-
rals and lead to their stagnation if there are stable orbits
(provided that external perturbations are small). This
might also impact binary merger rates.

Ignoring energy/angular momentum loss through grav-
itational wave (GW) emission, a stable circular orbit ex-
ists for any compact binary, except for equal-mass sys-
tems. The inclusion of GW emission prevents the ex-
istence of stable orbits for near equal-mass binaries. A
stronger GW loss implies a smaller range of stable cir-
cular orbits but, for conservative assumptions, this effect
is small. For our fiducial axion mass ma ∼ 10−18 eV,
most of the stable orbits are far outside the range of vi-
able binary orbital radii. However, larger axion masses
would move them in the interesting range r0 . 0.01 pc.
To conclude, we stress that this effect is not restricted to
FDM backgrounds. It can arise in any medium as long as
the tangential DF can change sign, and sometimes be a
thrust rather than a drag. Note also that it is physically
different from the core-stalling discussed in [78]. It would
be interesting to explore this further taking into account
the orbital eccentricity.
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[8] V. Irši č, M. Viel, M. G. Haehnelt, J. S. Bolton, and

G. D. Becker, Phys. Rev. Lett. 119, 031302 (2017).
[9] E. Armengaud, N. Palanque-Delabrouille, C. Yèche,
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Appendix A: Born approximation to the perturbed wave function

In the (first order) Born approximation, the Lippmann-Schwinger approach returns

δψ(r, t) = ma

∫
dr′3

∫
dt′Gret(r− r′, t− t′) Φ(r′, t′)ψ0(r′, t′) , (A1)
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where the building blocks of this expression are given by Eqs. 31, 33 and 34. The Convolution theorem can be apply
for the computation of this integral. This requires the combined Fourier transform of Φ and ψ0:

˜(Φψ0)(k, ω) = −
∫

dr3

∫
dt eiωt−ik·r Φ(r, t)ψ(r, t) (A2)

= −
∫

dr3

∫
dt eiωt−ik·rh(t)

GM

|r− rp(t)|
√
ρ e−iω0t+ik0·r

= −GM√ρ
∫

dt ei(ω−ω0)t−i(k−k0)·rp(t) h(t)

∫
d3u

e−i(k−k0)·u

u
(A3)

= −GM√ρ
∫

dt ei(ω−ω0)t−i(k−k0)·rp(t) h(t)
4π

|k− k0|2
,

where u = r− rp(t) and, in the last equality, the Fourier transform of the Coulomb potential is used. Together with
the Fourier transform of the retarded Green’s function, this leads to

δψ(r, t) = ma

∫

k

∫

ω

e−iωt+ik·r G̃(k, ω) ˜(V ψ0)(k, ω) (A4)

= 4πGMma lim
ε→0+

∫
dt′ h(t′)

√
ρ e−iω0t

′+ik0·rp(t′)

∫

k

∫

ω

e−iω(t−t′)+ik·(r−rp(t′))

~(ω + iε)− ~2k2

2ma

1

|k− k0|2

= 4πGMma lim
ε→0+

∫
dt′ h(t′)ψ0(rp(t

′), t′)
∫

k

∫

ω

e−iωτ+ik·u(t′)

~(ω + iε)− ~2k2

2ma

1

|k− k0|2
.

Once again the Cauchy integration formula is used to solve the ω-integral. There is only one pole at ω = ~
2ma

k2 − iε,
which is in the lower half of the complex plane. For the integral to be non-zero, a contour through the lower half
plane has to be chosen (similar to C2 in the left panel of Fig. 12), and the arc through the complex plane only gives
vanishing contribution when τ > 0. This ensures causality. The solution to the ω-integral is given by

∫

ω

e−iωτ

~(ω + iε)− ~2k2

2ma

= − i
~
H(τ)e−iτ( ~k2

2ma
−iε) , (A5)

at which point we can safely take the limit ε → 0. Inserting this result into the expression for δψ, the latter can be
further simplified to

δψ(r, t) = i
4πGMma

~

∫
dt′ h(t′)H(τ)ψ0(rp(t

′), t′)
∫

k

eik·u(t′)−iτβk2 1

|k− k0|2
(A6)

= i
4πGMma

~

∫
dt′ h(t′)H(τ)ψ0(rp(t

′), t′)
∫

k′
ei(k

′+k0)·u(t′)−iτβ(k′+k0)2 1

k′2

= i
4πGMma

~

∫
dt′ h(t′)H(τ)ψ0(rp(t

′), t′) eik0·u(t′)−iτβk2
0

∫

k′
eik
′·(u(t′)−2τβk0)−iτβk′2 1

k′2

upon substituting k′ = k− k0 and the diffusion coefficient β = ~/2ma. The first part is independent of k′ and, with
help of the dispersion relation Eq. (32), simplifies to ψ0(~r, t) which is independent of the remaining integration over
k′. Performing the latter leads to

∫

k

eik
′·(u(t′)−2τβk0)−iτβk′2 1

k′2
=

1

2π2

∫
dk′ j0

(
k′|u(t′)− 2τβk0|

)
e−iτβk

′2
(A7)

=
1

2π2

π

2
(1 + i)

[
S
(
|u(t′)−2τβk0|√

2πβτ

)
− iC

(
|u(t′)−2τβk0|√

2πβτ

)]

|u(t′)− 2τβk0|
,

where C(z) and S(z) are the Fresnel integrals. Using their connection with the Error function,

S(z) =
(1 + i)

4

[
erf

(
1 + i

2

√
πz

)
− i erf

(
1− i

2

√
πz

)]
(A8)

C(z) =
(1− i)

4

[
erf

(
1 + i

2

√
πz

)
+ i erf

(
1− i

2

√
πz

)]
,
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FIG. 12. Left panel: poles and semi-circular contours C1 and C2 used for the calculation of the steady-state amplitude Eq. (47).

The poles are located at k̃0 = 0, k̃1,2 = ±
√
mRΩ + iε and k̃3,4 = ±i

√
mRΩ + iε. We choose to shift the k̃ = k̃0 pole into the

upper half plane. The contour C1 (C2) extents from −∞ to ∞ on the real axis and is completed in the upper (lower) half
plane. Right panel: The contours C3 and C4 used for the calculation of the transient amplitude Eq. (C3). For C3 (C4), the
circular arc subtends an angle π/4 and lies in the upper (lower) half plane. The two contours are closed by a diagonal line at
an angle ϑ = ±π

4
which can be parameterized by k = (1± i)χ with χ in the range [0,∞[.

we eventually arrive at

δψ(r, t) = i
GMma

~
ψ0(r, t)

∫
dt′ h(t′)H(τ)

erf
(

1−i
2
|u(t′)−2τβk0|√

2βτ

)

|u(t′)− 2τβk0|
(A9)

which gives Eq. (36) after substituting the dimensionless variables.

Appendix B: Scattering amplitudes in the steady-state regime

In this Appendix, we provide details of the calculation of the scattering amplitudes SSty
l,l−1 in the steady-state regime,

beginning with Eq. (47).

First, the spherical Bessel functions is split into a sum of Hankel functions jl(z) = 1
2 (h

(1)
l (z) + h

(2)
l (z)), and the

integral acquires a factor of 1/2 while its limits are extended to −∞ to∞. Since h
(1)
l (z) ∝ eiz and h

(2)
l (z) ∝ e−iz, each

of the terms resulting from the product of the two spherical Bessel functions is proportional to a complex exponential
with a positive, zero or negative phase which determines the contour to be chosen.

Poles are found at k̃0 = 0, k̃1,2 = ±√mRΩ + iε and k̃3,4 = ±i√mRΩ + iε as indicated in the left panel of Fig. 12.

k̃0, k̃1 and k̃3 are enclosed in the contour C1 relevant for the terms with a positive phase. It is trivial to show that the
contour integral over the semi-circle vanishes. Similarly, the contour C2, which contains the poles at k2 and k4, must
be selected for the terms with a negative phase. The choice of C2 is also more convenient when the phase is zero.

The residues are independent of the exact combination of h
(1)
l (z) and h

(2)
l (z). Therefore, we introduce below the

generic notation (x) or (y) to label the Hankel functions. Both (x) and (y) can be either (1) or (2). Furthermore.

we use the shorthand notation (x̄) to indicate that a h
(1)
l (z) was transformed into a h

(2)
l (z) or conversely through the
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relation h
(1)
l (−z) = (−1)lh

(2)
l (z). Taking the limit ε→ 0+, we have:

Res

(
kh

(x)
l (k̃)h

(y)
l−1(k̃)

k4/R2
Ω −m2

, k̃0

)
=

i

m2
(B1)

Res

(
kh

(x)
l (k̃)h

(y)
l−1(k̃)

k4/R2
Ω −m2

, k̃1

)
=
RΩ

4m
h

(x)
l (
√
mRΩ) h

(y)
l−1(

√
mRΩ)

Res

(
kh

(x)
l (k̃)h

(y)
l−1(k̃)

k4/R2
Ω −m2

, k̃2

)
= −RΩ

4m
h

(x̄)
l (
√
mRΩ) h

(ȳ)
l−1(

√
mRΩ)

Res

(
kh

(x)
l (k̃)h

(y)
l−1(k̃)

k4/R2
Ω −m2

, k̃3

)
= −RΩ

4m
h

(x)
l (i

√
mRΩ) h

(y)
l−1(i

√
mRΩ)

Res

(
kh

(x)
l (k̃)h

(y)
l−1(k̃)

k4/R2
Ω −m2

, k̃4

)
=
RΩ

4m
h

(x̄)
l (i

√
mRΩ) h

(ȳ)
l−1(i

√
mRΩ) .

All of these contributions combine to give

SSty
l,l−1 =

iπ

4

RΩ

4m

[
4i

mRΩ
+ 2h

(1)
l (
√
mRΩ) h

(1)
l−1(

√
mRΩ) + h

(1)
l (
√
mRΩ) h

(2)
l−1(

√
mRΩ) (B2)

+ h
(2)
l (
√
mRΩ) h

(1)
l−1(

√
mRΩ)− (

√
mRΩ ⇔ i

√
mRΩ)

]
,

where (
√
mRΩ ⇔ i

√
mRΩ) indicates that all the terms involving Hankel functions are repeated but with their

argument replaced by i
√
mRΩ. Using h

(1)
l (x) = jl(x) + iyl(x), h

(2)
l (x) = jl(x) − iyl(x), as well as the Wronskian

relation jl(x)yl−1(x)− jl−1(x)yl(x) = x−2, the sum of terms with argument q =
√
mRΩ can be simplified to

2h
(1)
l (q) h

(1)
l−1(q) + h

(1)
l (q) h

(2)
l−1(q) + h

(2)
l (q) h

(1)
l−1(q) +

2i

q2

= 4jl(q) jl−1(q) + 4ijl(q) yl−1(q)− 2i(jl(q) yl−1(q)− jl−1(q) yl(q)) +
2i

q2

= 4jl(q) (jl−1(q) + iyl−1(q))

= 4jl(q) h
(1)
l−1(q) ,

and likewise for the terms with argument q = i
√
mRΩ. These simplifications yield

SSty
l,l−1 =

iπRΩ

4m

[
jl(
√
mRΩ) h

(1)
l−1(

√
mRΩ)− jl(i

√
mRΩ) h

(1)
l−1(i

√
mRΩ)

]
. (B3)

For the final step of the calculation, the identities jl(ix) = ili
(1)
l (x) and h

(1)
l (ix) = − 2

π i
lkl(x) are exploited and lead

to Eq. (48),

SSty
l,l−1 =

iπRΩ

4m

[
jl(
√
mRΩ) h

(1)
l−1(

√
mRΩ) +

1√
mRΩ

Il+1/2

(√
mRΩ

)
Kl−1/2

(√
mRΩ

)]
,

upon substituting i
(1)
l (x) =

√
π
2x Il+1/2 and kl(x) =

√
π
2xKl+1/2(x) for numerical convenience.

Appendix C: Scattering amplitudes for the finite time perturbation

For the finite time perturbation, we insert Eq. (51) into Eq. (46) and obtain

SFtp
l,l−1 = lim

ε→0+

∫

ω

ei(m−ω̃)τ̃

i(m− ω̃ − iη)

∫ ∞

0

dk̃ k̃
jl(k̃)jl−1(k̃)

k̃4/R2
Ω − (ω + iε)2

, (C1)
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where it is understood that η > 0. In a first step, the integral over ω̃ is solved with the Residue theorem. We choose
the contour C2 as in the left panel of Fig. 12, with a semicircular arc in the lower half of the complex plane. There
are three poles at ω̃0 = m− iη, ω̃1 = k̃2/RΩ − iε and ω̃2 = −k̃2/RΩ − iε. They are all located in the lower half plane
and, therefore, all contribute as Residues. Taking η → 0 yields

SFtp
l,l−1 = − lim

ε→0+

∫ ∞

0

dk̃ k̃ jl(k̃) jl−1(k̃) eimt̃

[
eimt̃

(m+ iε)2 − k̃4/R2
Ω

(C2)

+
RΩ

2k̃2

(
e−i(k̃

2/RΩ−iε)t̃

k̃2/RΩ −m− iε
− e−i(−k̃

2/RΩ−iε)t̃

−k̃2/RΩ −m− iε

)]
.

Upon taking the limit η → 0, the first term in the square brackets can be identified as the steady-state amplitude
Eq. (47). It is discussed in Sec. §B and we shall thus ignore it here. The second term defines the transient amplitude

STra
l,l−1:

STra
l,l−1 ≡ −

RΩ

2
eimt̃

∫ ∞

0

dk̃

k̃
jl(k̃) jl−1(k̃)

(
e−i(k̃

2/RΩ−iε)t̃

k̃2/RΩ −m− iε
+

ei(k̃
2/RΩ+iε)t̃

k̃2/RΩ +m+ iε

)
. (C3)

To compute this amplitude, we use the contours C3 and C4 in the upper and lower half plane, respectively, as indicated

in the right panel of Fig. 12. The piece proportional to eik̃
2 t̃/RΩ is evaluated with C3. However, the relevant poles k̃3

and k̃4 are not enclosed by C3. Cauchy’s integral formula thus implies that its line integral is zero. Since the integral
over the circular arc vanishes when its radius tends to infinity, this also implies that the integral over the positive
real axis k̃ ∈ [0,+∞[ is minus the line integral over the diagonal parameterized by k̃ = (1 + i)χ, χ ∈ [0,+∞[. The

same reasoning applies to the contribution proportional to e−ik̃
2 t̃/RΩ , the contour C4 and the relevant poles k̃1 and

k̃2. Adding up the two contributions eventually gives Eq. (53) :

STra
l,l−1 = −RΩ

2
eimt̃

∫ ∞

0

dχ̃

χ̃

[
jl((1 + i)χ̃)jl−1((1 + i)χ̃)− jl((1− i)χ̃)jl−1((1− i)χ̃)

] e−2t̃χ̃2/R2
Ω

2iχ̃2/RΩ +m+ iε
(C4)

This expression makes clear that STra
l,l−1 must tend to zero in the limit t̃→∞ so long as m 6= 0.

Appendix D: Analytic expression for Sa,bl,l−1(m,RΩ) with (l,m) = (1, 0)

They can be obtained with a software such as MATHEMATICA [79]. For q1 > q2, we have

Sa,bl,l−1(0, RΩ) =
R2

Ω

240k̃5
minq

2
1q2

{
πk̃5

minq2

(
− 15q4

1 − 10q2
1q

2
2 + q4

2

)
(D1)

+ k̃5
min

[
(3q2 − 4)(1− 2q2)4Si(k̃min − 2k̃minq2) + (4− 5q2)Si(k̃min)

]

+ k̃minq1 cos(k̃minq1)
[
2
(
k̃2

min

(
2q2

1 + q2
2

)
− 12

)
sin(k̃minq2) + k̃minq2

(
k̃2

min

(
11q2

1 + q2
2

)
− 6
)

cos(k̃minq2)
]

+ 2 sin(k̃minq1)

[
k̃minq2

(
k̃2

min

(
7q2

1 − q2
2

)
+ 6
)

cos(k̃minq2)

+
(
k̃4

min

(
−4q4

1 − 9q2
1q

2
2 + q4

2

)
+ k̃2

min

(
8q2

1 − 2q2
2

)
+ 24

)
sin(k̃minq2)

]}

whereas, for q2 > q1, we obtain

Sa,bl,l−1(0, RΩ) =
R2

Ω

240k̃5
minq

2
1q2

{
4πk̃5

min(q2 − 1)3
(

6q2
2 − 2q2 + 1

)
(D2)

+ k̃5
min

[
(3q2 − 4)(1− 2q2)4Si(k̃min − 2k̃minq2) + (4− 5q2)Si(k̃min)

]

+ 2k̃min cos(k̃minq1)
[
4
(
−3k̃2

minq2 + k̃2
min + 6q2 − 6

)
sin(k̃minq2) + k̃min

(
11k̃2

min − 6
)
q2 cos(k̃minq2)

]

+ 2 sin(k̃minq1)
[
4
(
k̃2

min

(
k̃2

min(4q2 − 1)− 4q2 + 2
)

+ 6
)

sin(k̃minq2) + k̃min

(
7k̃2

min + 6
)
q2 cos(k̃minq2)

]

+ 2k̃2
minq

2
2

[(
k̃2

min(2(17− 6q2)q2 − 33) + 6
)

cos(k̃min − 2k̃minq2) + 2k̃min(3q2 − 7) sin(k̃min − 2k̃minq2)
]}
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