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We investigate the out-of-equilibrium dynamics of viscous fluids in a spatially flat Friedmann-
Lemâıtre-Robertson-Walker cosmology using the most general causal and stable viscous energy-
momentum tensor defined at first order in spacetime derivatives. In this new framework a pressure-
less viscous fluid having equilibrium energy density ρ can evolve to an asymptotic future solution in
which the Hubble parameter approaches a constant while ρ → 0, even in the absence of a cosmolog-
ical constant (i.e., Λ = 0). Thus, while viscous effects in this model drive an accelerated expansion
of the universe, the equilibrium energy density itself vanishes, leaving behind only the accelera-
tion. This behavior emerges as a consequence of causality in first-order theories of relativistic fluid
dynamics and it is fully consistent with Einstein’s equations.

I. INTRODUCTION

Given the ubiquity of viscous phenomena around us, it is only natural to wonder how cosmological obser-
vations can constrain the presence, or not, of viscous effects at different stages in the large scale evolution of
the universe. In fact, dissipative processes in the early universe have been studied for quite some time [1–3].
In isotropic and homogeneous spacetimes dissipation can only appear from scalar sources, which motivated
early on the study of bulk viscosity in the expansion of the universe [4, 5]. Since this effect is expected to
contribute negatively to the pressure of an expanding universe, bulk viscosity-driven inflation has also been
examined [6–11]. More recently, after the discovery of the current accelerated expansion of the universe [12],
the possibility of unifying dark matter and dark energy as a single viscous fluid generated a lot of interest
[13–27] (for a recent review, see [28]).
Before statements concerning the suitability of viscous dark matter models to match cosmological obser-

vations can be reliably made, it is important to keep in mind that there are still fundamental theoretical
questions concerning the description of viscous effects in general-relativistic fluids that are very relevant to
this problem. In fact, in standard approaches viscous processes fundamentally alter the equations of motion
of relativistic fluids through the addition of new terms containing space-like derivatives1 of the hydrodynamic
variables in the fluid’s energy-momentum tensor. This occurs, for instance, in the famous theories pioneered
by Eckart [29] and Landau and Lifshitz [30]. However, these modifications seem to be incompatible with
general relativity. Indeed, the theories proposed by Eckart and Landau and Lifshitz are acausal [31, 32],
which makes them unsuitable for the investigation of real-time viscous processes in relativity. Furthermore,
it is known that such theories are unstable against perturbations around the thermodynamical equilibrium
state [32]. This is a consequence of the more general statement that acausal dissipative theories cannot be
stable in relativity [33].
One could at first sight think that the Eckart and Landau and Lifshitz theories are still suitable for

cosmological investigations despite their acausality and instability because the symmetry assumptions made
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in cosmological models imply that the dynamic evolution is described by a system of ordinary differential
equations, whereas causality and stability are concepts applicable only to partial differential equations.2

Nevertheless, such a description given in terms of ordinary differential equations implicitly assumes that
the underlying system of partial differential equations (from which the ordinary differential equations arise
upon imposing symmetry conditions) is well posed. More precisely, since the symmetry assumptions of
cosmology are only approximately satisfied (e.g., the universe is not perfectly homogeneous nor isotropic
in large scales), the actual system’s description is given in terms of the full Einstein-matter equations as
partial differential equations. Only if the ordinary differential equations provide a good approximation to the
underlying partial differential equations can one take their solutions as a good approximation to the actual,
not perfectly symmetric, system. This requires the system of partial differential equations to be well-posed
[34], a property that fails for the Eckart and Landau and Lifshitz theories [31].
In sum, the above facts hamper the application of Eckart’s and Landau and Lifshitz’s theories in questions

concerning the cosmological evolution of the universe. The same can be said about the fate of cosmological
fluctuations in such viscous fluid models. Therefore, conclusions obtained from such models must be taken
with a grain of salt (at best).
Israel and Stewart (IS) put forward an approach [35] where linearized disturbances around global equi-

librium can be causal and stable [36], if certain conditions for the fluid’s equation of state and transport
coefficients (e.g., bulk and shear viscosities) are fulfilled. However, despite recent progress [37, 38], very little
is known about the properties and the constraints that must be fulfilled in these theories in the nonlinear
regime, which can be important in simulations already in flat spacetime [39] and, also, when embedding such
fluid models in dynamical spacetimes. In fact, in the context of viscous dark fluid modeling, it is not known
how the recently found nonlinear constraints [37, 38] coming from causality affect previous conclusions drawn
from such Israel-Stewart-like models (e.g., [10, 26, 27]). The constraints become especially relevant in the
far-from-equilibrium regime where viscous effects are large, which is probed in viscous dark fluid models that
attempt to unify dark matter and dark energy in an accelerating universe. In addition, well-posedness of
the Israel-Stewart equations remains an open question, except in some very particular cases [37]. This is a
potential drawback given the importance of well-posedness for an accurate description of the evolution, as
explained above.
In this work, we investigate how viscous effects can affect the evolution of fluids in isotropic, homogeneous,

and spatially flat spacetimes using the new general effective-theory formalism originally proposed in [40] and
further developed in [41–44]. In this approach, known as BDNK in the fluid dynamical literature after
the initials of the authors of [40, 41], the viscous contribution to the energy-momentum tensor is expanded
according to a well-defined power-counting scheme in terms of all the possible time-like and space-like
derivatives of the hydrodynamic variables (e.g. density, flow velocity) compatible with the symmetries, in
contrast to standard formulations [29, 30] where only terms defined using space-like derivatives are included.
The full system of equations of motion describing the evolving viscous fluid coupled to Einstein’s equations
has been proven to be causal and strongly hyperbolic [43], hence well-posed, even in the full nonlinear
regime.3 Therefore, this framework is uniquely suited to investigate real-time dynamical problems, and also
mathematical questions, concerning the coupling of Einstein’s equations to viscous fluids in general relativity.
Numerical solutions of this theory can already be found in [45–48] while systematic derivations of BDNK
theory from kinetic theory and holography were presented in [49, 50] (see also [51]). Some recent applications
can be found in Refs. [52, 53].
We focus in this work on the simple dynamics displayed by a viscous fluid in Friedmann-Lemâıtre-

Robertson-Walker spacetime [54], in the absence of a cosmological constant (Λ = 0). We show through
a variety of examples that an initially dust-like matter component (cold dark matter) can drive an accel-
erated expansion at late times when viscous effects are included. This implies that the previous intuition
concerning the effects of viscosity acquired from inconsistent, or less well understood, fluid models was well
motivated. However, the consistent treatment of causality at all levels in our approach predicts a curious new
effect that is only possible in general relativity: the viscous fluid does not asymptotically achieve a constant

2 One can of course talk about stability of ordinary differential equations. But the type of stability discussed in the context of
Eckart and Landau and Lifshitz theories requires at least two independent variables.

3 Hydrodynamic stability around equilibrium has also been established, see [40–44].
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equilibrium density in accelerating cosmologies; instead, this density decays away as a power of the scale
factor. This occurs even though the cosmological constant is set to zero. In other words, the equilibrium
contribution of the viscous fluid disappears at late times leaving only the acceleration of the universe behind
even though there is no cosmological constant. Surprisingly enough, this phenomenon is fully consistent with
Einstein’s equations.
This “Cheshire Cat”-like behavior [55] during accelerated expansion is a consequence of causality in this

approach and it cannot be reproduced by any previous model without a cosmological constant where the
equilibrium density must remain nonzero when the universe is accelerating. Although different types of
behavior for the evolution of the cosmological scale factor are possible, for completeness we show that an
appropriate choice of model parameters can produce evolution that almost exactly mimics ΛCDM. While
we are not advocating here that viscous fluids provide an alternative way to fully describe cosmological
observations by unifying dark energy and dark matter, it is amusing to see that the more sophisticated and
theoretically consistent framework employed in this work does not seem to be incompatible with this idea
(at least when it comes to the average properties of the universe).
This paper is organized as follows. In the next section we lay out the general properties of first-order

theories of relativistic fluid dynamics and discuss their dynamics in Friedmann-Lemâıtre-Robertson-Walker
spacetime. We discuss the case of radiation and also present some new features of such theories in the case of
accelerated expansion. In section III we analyze the stability property of the equations of motion and their
fixed points. In section IV we consider whether the theory presented here can lead to cosmological evolution
consistent with observations. Our final remarks can be found in section V.
Notation: We use natural units ~ = c = kB = 1, a 4-dimensional spacetime metric gµν with a mostly plus

signature, and Greek indices run from 0 to 3 while Latin indices run from 1 to 3.

II. COSMOLOGY WITH FIRST-ORDER GENERAL-RELATIVISTIC VISCOUS FLUID

DYNAMICS

Let us briefly review the effective theory approach to relativistic viscous fluid dynamics introduced in Ref.
[40] and further developed in [41–44]. As usual [34], one starts by decomposing the energy-momentum tensor
of a fluid in a general out of equilibrium state in terms of irreducible structures constructed using a time-like
future-directed 4-velocity vector uµ (where uµu

µ = −1):

T µν = Euµuν + P∆µν + πµν + uµQν + uνQµ, (1)

where E = uµuνT
µν is the total energy density seen by an observer comoving with the fluid, P = ∆µνT

µν/3
is the total fluid pressure defined using the space-like projector ∆µν = gµν + uµuν orthogonal to uµ, Qµ =
−∆µ

λuνT
νλ describes energy diffusion, and πµν = ∆µναβTαβ is the shear-stress tensor defined using the

symmetric, rank-4 traceless projector ∆µναβ = 1
2

(

∆µβ∆να +∆µα∆νβ
)

− 1
3∆

µν∆αβ [34].
In an equilibrium state, πµν and Qµ vanish, E becomes the equilibrium energy density ρ, and P the corre-

sponding thermodynamic pressure P (ρ) of the system determined by its equation of state. The corresponding
equilibrium energy-momentum tensor is then T µν

0 = ρuµuν + P∆µν . In a general out-of-equilibrium state,
one may write E = ρ+A and P = P + Π, where A and the bulk scalar Π represent the out of equilibrium
corrections to the energy density and pressure, respectively, as long as they vanish in equilibrium. In this
case, the most general energy-momentum tensor that can describe an out-of-equilibrium state can be written
as

T µν = (ρ+A)uµuν + (P (ρ) + Π)∆µν + πµν + uµQν + uνQµ. (2)

Constraints on the out-of-equilibrium contributions can be readily obtained by the dominant energy con-
dition [56], which imposes that ρ + A ≥ 0 and QµQ

µ ≤ (ρ + A)2. This naturally places a bound on the
size of some of the out-of-equilibrium corrections. However, we note that the conservation of energy and
momentum, ∇µT

µν = 0, is not enough to fully determine the evolution described by the 14 dynamical vari-
ables {ρ, uµ,A,Π,Qµ, πµν}. Therefore, some procedure must be implemented to fully specify the system’s
dynamics. Instead of treating the non-equilibrium corrections as new degrees of freedom (and consequently
postulating new additional equations of motion for them) as in Israel-Stewart-based approaches and ex-
tended irreversible thermodynamics [57], here we consider the case where the effective theory describing the
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macroscopic motion of the system is defined solely in terms of the standard hydrodynamic variables already
present in equilibrium, which in our case are {ρ, uµ}. In this approach, the dissipative contributions must
be given in terms of the hydrodynamic fields {ρ, uµ} and their derivatives, which may be organized through
a relativistic derivative expansion. Assuming that deviations from equilibrium are small, the most general
theory compatible with the symmetries that can be written in terms of first-order derivatives is defined by

A = χ1
uα∇αρ

ρ+ P
+χ2∇αu

α, Π = χ3
uα∇αρ

ρ+ P
+χ4∇αu

α, Qµ = λ

(

∆ν
µ∇νP

ρ+ P
+ uα∇αuµ

)

, πµν = −2ησµν , (3)

where σµν = ∆αβ
µν∇αuβ is the shear tensor. Above, the shear viscosity η, and the coefficients λ and χ1, χ2,

χ3, and χ4 are in principle known functions of ρ, which are determined from the underlying microscopic
theory. The bulk viscosity coefficient is given by the combination [41, 42]

ζ = χ3 − χ4 + c2s(χ2 − χ1), (4)

where c2s = dP/dρ is the equilibrium speed of sound squared. The transport coefficients η and ζ determine
how the long wavelength limit of hydrodynamic modes (i.e., sound and shear disturbances) are damped and
the amount of entropy produced [41], while three out of the four χ coefficients determine the scales associated
with non-hydrodynamic4 modes.
It is important to stress a few properties of the expressions above. First, given that in equilibrium

uµ/T (with T being the temperature) is a Killing vector [36] and ρ = ρ(T ), every single term in A and

Π separately vanishes in equilibrium, while
∆ν

µ
∇νT

T + uα∇αuµ = 0 =⇒ Qµ = 0. We also note that in
this approach time-like derivatives of the density, uα∇αρ, appear in the constitutive relations. This fact is
crucial for ensuring that the evolution is causal [40] and linearly stable around equilibrium. Indeed, precise
conditions for the coefficients {η, λ, χ1, χ2, χ3, χ4} can be found that guarantee causality, stability, strong
hyperbolicity and, thus, local well-posedness of solutions of Einstein’s equations coupled to the viscous fluid
equations [42, 43]. These conditions are violated in the Landau-Lifshitz theory [30], which corresponds to
setting χ1 = χ2 = χ3 = λ = 0 and χ4 = −ζ.
In this work we initiate the investigation of the possible cosmological consequences of this approach.

We consider the viscous fluid theory defined by (2) and (3) coupled to Einstein’s equations (without a
cosmological constant) in spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime described
by the line element [58]

ds2 = −dt2 + a2(t)δijdx
idxj , (5)

where a(t) is the cosmological scale factor. Homogeneity and isotropy impose that the shear-stress tensor
and the energy diffusion exactly vanish, and our tensor becomes simply

T µν =

(

ρ+ χ1
uα∇αρ

ρ+ P
+ χ2∇αu

α

)

uµuν +

(

P + χ3
uα∇αρ

ρ+ P
+ χ4∇αu

α

)

∆µν . (6)

We use uα = (1, 0, 0, 0) and ∇µu
µ = 3H(t), where H(t) = ȧ(t)/a(t) is the Hubble expansion rate (with

notation ȧ = da/dt). Using (5), Einstein’s equations dictate that the spatial derivative ∂iρ = 0, and one
finds the following set of equations of motion for ρ and H :

Ḣ +H2 = −
1

6

[

ρ+ 3P +
3χ3 + χ1

ρ+ P
ρ̇+ 3(3χ4 + χ2)H

]

, (7a)

H2 =
1

3

(

ρ+
χ1

ρ+ P
ρ̇+ 3χ2H

)

, (7b)

where we have appropriately normalized the fields above to take into account the 8πG constant factor present
in Einstein’s equations. As in the ideal fluid case, the equations of motion of the fluid ∇µT

µν = 0 follow

4 Those describe linearized disturbances around equilibrium that carry energy even in the homogeneous limit.
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directly from those above. Since causality requires χ1 > 0 [42], it is convenient to rewrite (7a) as

Ḣ +H2 = −
1

2

[

P −
χ3

χ1
ρ+

χ1 + 3χ3

χ1
H2 − 3χ2

(

χ3

χ1
−

χ4

χ2

)

H

]

. (8)

Finally, it is useful to define the variable

w =
P

ρ
(9)

to investigate the out-of-equilibrium properties of the fluid for different types of equation of state.

A. Radiation

For radiation w = 1/3 and the imposition of conformal invariance implies that χ = χ1 = χ2 = 3χ3 =
3χ4 ∼ ρ3/4 (hence, ζ = 0) [40] and we obtain from (7b) and (8)

ρ̇+ 3Hρ
(

1 + w
(r)
eff

)

= 0 and Ḣ + 2H2 = 0, (10)

where w
(r)
eff = 1

3 + 4
9Hχ

(

ρ− 3H2
)

. One recognizes that the Hubble parameter decouples from the energy

density as it obeys the well-known equation found for radiation in equilibrium in FLRW [58], with general
solution H(t) = H0/(1 + 2H0t). Furthermore, we note that ρ = 3H2 is a solution of the equation of
motion for the energy density. Though at first one may think that the equation of motion for ρ in (10)
should have a complicated solution, the uniqueness property to the solutions of the equations of motion (i.e.,
well-posedness) directly implies that the general solution for the energy density equation is indeed simply
ρ = 3H2, just as in the ideal fluid case. Therefore, as expected, out-of-equilibrium corrections vanish exactly
for pure (conformal) radiation in FLRW where ζ = 0. This is also true in the Landau-Lifshitz theory.
Besides indicating theoretical consistency, this result is also important from the standpoint of observational

cosmology as the behavior of the universe when it is dominated by radiation is tightly constrained both by
Big Bang nucleosynthesis (BBN) [59] and by observations of fluctuations in the cosmic microwave background
(CMB) [60]. Thus, any model for viscosity that strongly alters the expansion history of the universe during
the radiation-dominated era can be ruled out. As our theory produces no change in the radiation equation
of state, it automatically satisfies this constraint.

B. Zero entropy production limit away from conformal invariance

Above, we saw that for conformal radiation viscous effects drop out of the Friedmann equation entirely
and no entropy is produced, as expected. We have no similar requirement on the values of the χ’s for other
equations of state, but we can derive the requirements on these parameters such that out-of-equilibrium
corrections vanish. One can see that if χ3 = χ4 in (8) and χ1 = χ2 in (7b), then again 3ρ = H2 is a solution
of the equation of the equations of motion, which reduce to those of an ideal fluid. Again, well-posedness
implies that the solutions are unique and, thus, as long as these two conditions for the χ parameters are
satisfied, the out-of-equilibrium corrections to the Friedmann equations vanish. Note that this conclusion
is independent of the ρ-dependence of any of the χ parameters. Also, we remark that when χ1 = χ2 and
χ3 = χ4 one finds that ζ = 0, so indeed no entropy [41] is produced in this case.

C. Landau-Lishitz theory

In the absence of a cosmological constant, in Landau-Lifshitz theory where χ1 = χ2 = χ3 = 0 and
χ4 = −ζ the viscous dark matter evolves, at late times, to a fluid with a constant density thus mimicking the
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evolution of dark energy. This can be easily understood because in this model there are no out-of-equilibrium
corrections to the energy density (A = 0) and Einstein’s equations become (taking w = 0 for simplicity)

H2 =
ρ

3
and Ḣ +H2 = −

1

6
(ρ− 9ζH) . (11)

One can see that here a constant energy density implies a constant Hubble expansion rate, with nonzero
solution H = ζ that is positive for ζ > 0. Therefore, in Landau-Lifshitz theory it is possible for viscous
matter to behave at late times as dark energy at the background level.5 This result motivated the creation
of many unified viscous dark matter scenarios [28] and, in fact, it is known that this model can provide a
good description of the background expansion of the universe [15]. However, density perturbations in this
scenario based on Landau-Lifshitz theory are rapidly damped out, which leads to severe constraints when
attempting to reconcile it with precision cosmology data [15, 21, 62].
We emphasize that such constraints relied on theories known to be acausal or for which nonlinear causality

remains open. We contend that decisive conclusions about the viability of the viscous dark matter idea should
be based exclusively on viscous theories that satisfy causality and well-posedness, in the nonlinear regime and
also when coupling to Einstein’s equations, and for which linear stability in flat spacetime also holds. In Ref.
[61] it was proven that IS theories, in the absence of shear viscosity and heat flow, fulfill these requirements
(we note that cosmological perturbations in bulk viscous IS-like theories were studied in [20]). However, we
point out that since effects from shear and heat flow do contribute when the spacetime is not homogeneous
and isotropic, their influence on the evolution of cosmological perturbations must also be investigated [63].
To the best of our knowledge, the general first-order theory studied here is now the only framework that
fulfills the consistency conditions mentioned above and can, thus, be used to reliably study the effects of
bulk, shear, and heat flow even in viscous inhomogeneous cosmological applications in a model independent
manner.

D. The Cheshire Cat mechanism

We show below that our approach differs from earlier attempts to model dark energy as a viscous phe-
nomenon in an interesting way. In the model investigated here, the equilibrium component of the density of
the viscous dark matter is driven asymptotically to zero. Because of the way that the Friedmann equation is
altered by viscous effects in this model, the universe continues to accelerate even after the driver of this ac-
celeration effectively disappears. Therefore, we refer to this as the “Cheshire Cat” mechanism for generating
accelerated expansion6.
This effect can be most easily illustrated by the following analytical example. For simplicity, let us assume

a constant non-negative w ≪ 1 so the viscous matter has very small equilibrium pressure, which works as
the small parameter in the perturbative argument that follows. Assume that the matter is such that η ≥ 0
and ζ = 2ηw(13 −w). The conditions for causality, well-posedness, and stability are satisfied if, for instance,
χ1 = λ = 4ηw, χ2 = 2η(1 − w), χ3 = wχ1, and χ4 = 4ηw/3 [42]. We note that the viscosity coefficients
are, thus, very small and when w = 0 we recover an ideal fluid with a matter-like, pressureless equation of
state7. We take η (and, thus, ζ) to be constant. Under these conditions, assuming that H is constant and
non-negative, the general solution of the equations of motion (7b) and (8) can be found analytically

H = H0 =
ζ

1 + w
and ρ(t) =

ρ0 β

(ρ0 + β)etβ/α − ρ0
, (12)

where α = 4ηw/(1 + w) and β = αH0(3 − w)/2w. Therefore, even though H is constant, we note that
the energy density still varies with time, decreasing exponentially towards zero even though there is no

5 The same result holds for standard IS theories such as those considered in [61].
6 Note that the term “Cheshire Cat” has been used in an entirely different way in the context of quantum measurement theory
[64].

7 Note that η and λ need not to be zero even though shear and heat flux vanish. The latter vanish because of symmetries and
not because the coefficients are zero.
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cosmological constant8. We remark that for this type of matter the Hubble constant is very small, as small
as w, and that the energy density still varies in time (i.e, it is not a cosmological constant).
In an accelerated expansion driven by dark energy, the universe expands at a constant rate and the

dark energy density remains constant. In the example above, the cosmological scale factor a(t) increases
exponentially but causality generally imposes that the energy density must lag behind, varying on time
scales of the order of χ1/(ρ(1+w)). According to the theory presented here, this is a general consequence of
causality and energy-momentum conservation in out of equilibrium systems described by first-order theories
of relativistic viscous fluid dynamics. We shall return to the Cheshire Cat mechanism in Section IV.

III. FIXED POINT ANALYSIS

Here we set w = 0, i.e., P = 0, and study the fixed points and the stability properties of the equations of
motion. We also assume that χ1 > 0. We start by rewriting the relevant equations of motion as

χ1ρ̇+ 3Hρχ2 + ρ
(

ρ− 3H2
)

= 0 (13)

and

2χ1Ḣ = χ3ρ− 3H2 (χ1 + χ3) + 3H (χ2χ3 − χ1χ4) . (14)

We assume as before that χi = χi(ρ). Let ρ0 and H0 be the fixed points of the equations above so Ḣ0 =
ρ̇0 = 0. Consider now fluctuations around the fixed points ρ(t) → ρ0 + δρ(t) and H(t) → H0 + δH(t). Note
that fluctuations also act on the transport coefficients, i.e., χi(ρ) → χi(ρ0)+χ′

i(ρ0)δρ(t), where χ
′

i = dχi/dρ.
To zeroth order in the fluctuations we obtain

ρ0
(

ρ0 + 3H0χ2(ρ0)− 3H2
0

)

= 0 (15)

and

3H0χ1(ρ0) (H0 + χ4(ρ0)) = χ3(ρ0)
(

ρ0 + 3H0χ2(ρ0)− 3H2
0

)

. (16)

We see that Eq. (15) implies that ρ0 = 0 or ρ0 + 3H0χ2(ρ0) = 3H2
0 . Clearly, the latter can be complicated

since one must know how χ2 depends on ρ to solve it.

A. ρ0 = 0 and H0 = 0

It is easy to see that ρ0 = H0 = 0 is a fixed point. In fact, this fixed point is very general as it does not
depend on the properties of the χi’s. Let us now study the linear stability properties of this fixed point. The
linearized equations for the fluctuations are

δρ̇ = 0, (17)

2δḢ =
χ3(0)

χ1(0)
δρ+ 3 (χ2(0)χ3(0)− χ1(0)χ4(0)) δH. (18)

We can write this in matrix form, which reveals that the eigenvalues of the matrix are 0 and
(3/2) (χ2(0)χ3(0)− χ1(0)χ4(0)). Since one of the eigenvalues vanishes (in fact, the determinant of the
matrix vanishes), this is a marginal case where one does not have an isolated fixed point. In this case, a
linear stability analysis is not guaranteed to give the correct information about the stability properties of
the system [65]. In any event, this is not a physically interesting case.

8 For a comparison, consider the evolution of an ideal fluid with equation of state given by P = wρ, in the presence of a positive
cosmological constant Λ (constant dark energy). Asymptotically, 3H2

→ Λ and the ideal fluid energy density vanishes. The
difference here in the viscous case is that the energy density evolves toward zero when H is constant and in the absence of a
cosmological constant.



8

B. ρ0 = 0 and H0 6= 0

In this case, assuming that χ1(0) + χ3(0) 6= 0, one finds

H0 =
(χ2(0)χ3(0)− χ1(0)χ4(0))

χ1(0) + χ3(0)
. (19)

We will now find the conditions that ensure that H0 > 0 and ρ0 = 0 is an attractor (i.e., a stable isolated

fixed point). In this case, the equations for the linearized fluctuations ~v =
(

δρ
δH

)

become

d~v

dt
= A~v, (20)

where A is a 2 x 2 matrix that depends on χi(0) and χ′

i(0). The eigenvalues of A are

a1 = 3H0 (H0 − χ2(0)) , a2 = −
3

2χ1(0)
[χ2(0)χ3(0)− χ1(0)χ4(0)] . (21)

Thus, a stable fixed point occurs when a1 < 0 and a2 < 0 (note that both eigenvalues are real). We see that
a2 < 0 implies that

χ2(0)χ3(0)− χ1(0)χ4(0) > 0. (22)

Since that quantity appears in H0, which we consider to be positive, we see that this occurs then if χ1(0) +
χ3(0) > 0. The condition that a1 < 0 then occurs when χ4 > −χ2. When those conditions are met, the fixed
point is hyperbolic (see Chapter 6 of Ref. [65]), which means that the qualitative behavior of the system’s
phase portrait near the attractor is not changed even when small nonlinear terms are included. As a matter
of fact, the Hartman-Grobman theorem [65] states that the local phase portrait near a hyperbolic fixed
point is topologically equivalent to the phase portrait obtained via linearization and, thus, the conclusions
regarding the stability of the fixed point are the same as in the linearized system (in other words, the phase
portrait near this attractor is structurally stable).
Summarizing, we conclude that ρ = 0 with constant H0 > 0 is an attractor when the following conditions

are met:

χ2(0)χ3(0)− χ1(0)χ4(0) > 0 (23)

χ1(0) + χ3(0) > 0 (24)

χ4 > −χ2, (25)

which are compatible with the conditions found for causality and also linear stability around equilibrium
presented in Ref. [42].

IV. TOWARD A REALISTIC COSMOLOGY

In this section we investigate whether the viscous fluid presented here can produce cosmological evolution
consistent with observations, within a variety of different scenarios. In particular, we will be interested in
the types of models discussed in Refs. [16, 17] in which the universe contains a pressureless dark matter
component whose viscosity drives the accelerated expansion.
From an observational point of view, it is useful to redefine our evolution equations in terms of the scale

factor a instead of the time. Measurements of the dark energy density are effectively determinations of H(z),
where the redshift z is related to the scale factor as a = 1/(1 + z). Using d/dt = Had/da, we can rewrite
Eqs. (7a)-(7b) with the scale factor as the independent variable:

H ′a+
3

2
H = −

P

2H
−

1

2
χ3

ρ′

ρ+ P
a−

3

2
χ4, (26)
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H2 =
1

3

(

ρ+ χ1
ρ′

ρ+ P
aH + 3χ2H

)

, (27)

where we denote ′ = d
da . When P = 0, Eqs. (26) and (27) become

H ′a+
3

2
H = −

1

2
χ3

ρ′

ρ
a−

3

2
χ4, (28)

H2 =
1

3

(

ρ+ χ1
ρ′

ρ
aH + 3χ2H

)

. (29)

The χ parameters must satisfy the conditions for nonlinear causality and linear stability, which were obtained
in Ref. [42]. When P = 0 these conditions are

λχ1 ≥ λχ3 + χ2χ3 + χ1

(

4η

3
− χ4

)

≥ 0, (30)

χ2
1

(

4η

3
− χ4

)

+ λχ3(λ+ χ2) + χ1χ2χ3 ≥ 0, (31)

λ+ χ1 ≥ χ3 +
4η

3
− χ4 ≥ 0, (32)

subject to the constraints λ, χ1 > 0, η ≥ 0, and λ ≥ η. Furthermore, when P = 0, the bulk viscosity becomes
ζ = χ3 − χ4, which must be nonnegative in accordance with the second law of thermodynamics. Hence, we
have the further requirement here that

χ3 ≥ χ4. (33)

A. Constant χ1, χ2, χ3, and χ4

Let us first consider the case where all of χ coefficients are constant. As noted in the previous section,
there is generically an attractor solution with H → H0 = constant, with

H0 =
χ2χ3 − χ1χ4

χ1 + χ3
, (34)

as long as both the numerator and denominator on the right-hand side are positive. Substituting this
attractor into Eqs. (26)-(27), we find that aρ′/ρ also evolves to a constant, given by

a
ρ′

ρ
= −3

(

χ2 + χ4

χ1 + χ3

)

. (35)

Furthermore, we define an effective weff given by

1 + weff = −
1

3
a
ρ′

ρ
(36)

and we note that, in particular, the special case χ2 + χ4 = χ1 + χ3 gives weff = 0. Because the general
solution of (35) is

ρ ∝ a−3(1+weff ), (37)

one can again see the Cheshire Cat behavior noted earlier. When H → constant, the scale factor evolves as
a ∼ eH0t, so the equilibrium energy density of a fluid with constant weff will decay as a power-law in a, but
exponentially in t.
The evolution is particularly simple for the special case χ3 = 0. In this case, we can solve Eq. (28) exactly

to yield

H = Ca−3/2 − χ4, (38)
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with C a constant. As long as χ4 < 0, the Hubble parameter will evolve from initial dark matter dominated
evolution (H ∼ a−3/2) to evolution resembling a cosmological constant dominated universe (H ∼ constant).
Note, however, that ρ in this case does not evolve asymptotically to a constant. If we take H to be equal to
its asymptotic constant value (H = −χ4) in Eq. (29), we obtain

ρ =
3χ4(χ2 + χ4)

Da3(χ2+χ4)/χ1 + 1
, (39)

with D a constant. The causality and stability conditions require χ1 > 0, and we need χ2+χ4 > 0 to ensure
a positive density. Although Eq. (28) in this case becomes exactly what one would obtain in Landau-Lifshitz
theory with constant ζ (and the evolution of H(a) is therefore identical), the value of ρ in the corresponding
Landau-Lifshitz case evolves to a constant. In our approach, we once again see ρ evolving to zero while
viscous effects mimic a constant-density evolution for H .

B. Power-law density dependence of the χ parameters

Now consider the more general case where the χ parameters are not constant but evolve as functions of ρ.
For simplicity, we will assume a power law behavior and take all of the χ parameters to evolve as the same
power of ρ, namely, χi → χiρ

m, i = 1, 2, 3, 4, where the χi’s are constant. This is the analog of the case
considered by [15] in Landau-Lishitz theory where it was assumed that ζ ∼ ρm.
For this case, Eqs. (26)-(27) become

H ′a+
3

2
H = −

1

2
χ3ρ

m ρ′

ρ
a−

3

2
χ4ρ

m, (40)

H2 =
1

3

(

ρ+ χ1ρ
m ρ′

ρ
aH + 3χ2ρ

mH

)

. (41)

At early times, the density of the dark energy is observed to be negligible, and the universe is dominated by
dark matter with a density scaling as a−3. Thus, if we require that the “dark energy” corresponds to viscous
corrections to the dark matter evolution, then these corrections must vanish in the limit where a → 0. In
this limit, we require ρ to scale as a−3 and H to scale as a−3/2. Then in order for the viscous corrections
to be subdominant in Eqs. (40)-(41) as a → 0, we need either χ1 = χ2 and χ3 = χ4 (so that there are no
viscous corrections at all), or m ≤ 1/2.
For 0 < m ≤ 1/2, we find attractor solutions with w → constant, but H → 0. Hence, these do not

correspond to the observed universe if we want viscous effects to drive the present-day accelerated expansion.
When m < 0, we find an attractor solution for which H → ∞. This corresponds to phantom-like behavior
[66], and can be consistent with observations depending on the exact parameters of the expansion.

C. Inclusion of baryons

Finally, in order to derive results that could in principle be compared with observations, we must include
both a viscous dark matter component and the nonviscous baryons (see, e.g., similar treatments in Refs.
[14, 15]). If ρB is the density of baryons and ρD is the density of viscous pressureless dark matter, then we
can rewrite Eqs. (28)-(29) as

H ′a+
3

2
H = −

1

2
χ3

ρ′D
ρD

a−
3

2
χ4, (42)

H2 =
1

3

(

ρD + ρB + χ1
ρ′D
ρD

aH + 3χ2H

)

. (43)

These equations can be re-expressed in the form

H ′a = −
3

2

(

1 +
χ3

χ1

)

H +
3

2

(

χ2χ3

χ1
− χ4

)

+
1

2

(

χ3

χ1

)

ρD + ρB
H

, (44)
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ρ′Da =
ρD
χ1

(

3H −
ρD + ρB

H
− 3χ2

)

. (45)

The baryon density ρB scales exactly as a−3. In standard nonviscous models of cold dark matter we also
have ρD ∝ a−3 but here the evolution of ρD is determined instead by Eq. (45). However, observational
limits on the present-day dark matter density combined with high-redshift estimates of ρD from the cosmic
microwave background indicate that ρD must evolve approximately as a−3 up to the present.
By an appropriate choice of the χ coefficients it is possible to derive a model satisfying this constraint on

ρD that also closely approximates ΛCDM. We first take

χ3 = −χ1, (46)

χ4 = −χ2, (47)

where we choose χ1, χ2 > 0, so that χ3, χ4 < 0. This choice is consistent with the causality constraints.
Indeed, if we substitute Eqs. (46) and (47) into the causality constraint equations (30)-(32), we find that there
exist values for λ and η for which all of the constraint equations are satisfied as long as 4/3 ≥ χ2/χ1 ≥ 1.
Substituting these values for χ3 and χ4 into our evolution equations above, Eq. (45) is unchanged, while Eq.
(44) becomes

H ′a = −
1

2

ρD + ρB
H

. (48)

If we neglect ρB, these equations can be solved exactly. Dividing Eq. (45) by Eq. (48) yields

dρD
dH

−
2

χ1
ρD = −

6

χ1
H2 + 6

χ2

χ1
H, (49)

with solution

ρD = Ce2H/χ1 + 3H2 − 3(χ2 − χ1)H −
3

2
χ1(χ2 − χ1), (50)

where C is again a constant of integration. At early times (H → ∞) we must have ρ = 3H2, so C = 0 and
our solution is

ρD = 3H2 − 3(χ2 − χ1)H −
3

2
χ1(χ2 − χ1). (51)

Note that when χ1 = χ2, we once again obtain the evolution appropriate for nonviscous matter, namely
ρD = 3H2 (which is consistent with the fact that in this case ζ = 0). Substituting Eq. (51) back into Eq.
(45), we see that ρD evolves as

ρ′D
ρD

a = −3 +
3

2
(χ2 − χ1)/H. (52)

In order for Eqs. (51) and (52) to mimic ΛCDM, we make one further requirement: we take χ2/χ1 = 1+ ǫ,
with 0 < ǫ ≪ 1. (Note that this assumption means that the causality constraint 4/3 ≥ χ2/χ1 ≥ 1 will
automatically be satisfied.) With this assumption, the second term on the right-hand side of (51) is always
subdominant, and we have

H2 =
1

3
ρD +

1

2
χ1(χ2 − χ1). (53)

This has the form of standard ΛCDM, where we identify ρΛ = (3/2)χ1(χ2 − χ1). Furthermore, Eq. (53)
implies that H2 > (1/2)χ1(χ2 − χ1), so that 3

2 (χ2 − χ1)/H ≪ 1. Thus, ρD scales almost exactly as a−3, as
required. Note that this behavior for H , while identical to ΛCDM, is once again an example of Cheshire Cat
evolution: the acceleration is driven by viscous effects from the dark matter, whose equilibrium density is
driven to zero by the expansion. While we neglected ρB in this derivation, it is easy to see that the evolution
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will be unchanged when ρB is included since it scales in exactly the same way as ρD (∼ a−3), a result we
have verified with numerical integration of Eqs. (44) and (45).
Finally, we do not mean to imply that our choices for the χ coefficients in this case are the single set of

“correct” values of these parameters for pressureless dark matter. Instead, we simply wish to demonstrate
that causal and stable first-order viscous fluid theories can reproduce ΛCDM for at least one choice of these
parameters. It is quite possible that other choices for these parameters can similarly reproduce the current
observations.

V. CONCLUSIONS

This work represents the first examination of cosmology with a causal, stable, first-order theory of rela-
tivistic viscous fluid dynamics (the BDNK theory). We have shown that this effective theory approach to
relativistic viscous fluids has two very attractive properties from the standpoint of cosmology. First, viscosity
has no effect on the behavior of radiation, i.e., fluids with w = 1/3. Thus, the standard cosmology during the
radiation-dominated era simply carries over in this case without modification, including all of the successes
of BBN and the CMB. Second, under very general conditions on the viscosity parameters, a matter-like fluid
(i.e., one with w = 0) can generate an accelerated expansion, just as in the case of Landau-Lifshitz theory.
The major difference between this approach for relativistic viscous fluids and other previously-investigated

models such as the Landau-Lifshitz model lies in the modification to Eq. (7b). Previous models have modified
Eq. (7a), altering the effective pressure, but leaving the relationship between H and ρ as in the standard
cosmology (i.e., H2 = ρ/3). By altering this relationship, we decouple the behavior of H from that of the
equilibrium energy density ρ. Thus, while Landau-Lifshitz viscosity can cause a zero-pressure dark matter
fluid to behave as an effective dark energy component with constant density at late times, the BDNK theory
can produce an accelerated expansion even as the equilibrium density of the dark matter fluid goes to zero,
an effect we have dubbed the Cheshire Cat mechanism. It is important to remark that it is H(a), and not
the evolution of the dark energy density, that is actually the observable quantity in cosmology, so the model
presented here can be made consistent with current observations of dark energy. Indeed, by a suitable choice
of model parameters, this model can nearly exactly mimic ΛCDM at the background level.
As we have already noted, previous attempts to use Landau-Lifshitz viscosity with pressureless dark matter

to account for the accelerated expansion of the universe have produced acceptable results at background level
but have foundered on the issue of perturbation growth [15, 21, 62]. Thus, the results presented here are
necessary but not sufficient evidence that a viable cosmology can be constructed with dark matter and
BDNK viscous effects alone. The next step will be to examine perturbation growth in this theory to see if
it survives this further level of scrutiny. Only then one would be able to conclusively answer whether or not
viscous effects are compatible with cosmological observations.
Finally, it is important to remark that an accurate description of this vanishing equilibrium energy density

behavior is, formally, beyond the regime of applicability of the hydrodynamics expansion. This occurs
because in this case the out of equilibrium correction, A, becomes larger than the equilibrium piece ρ. This
issue is also present when considering higher-order theories, such as the generalized Israel-Stewart theories
constructed using a general hydrodynamic frame in Ref. [67]. Those should also display the properties found
here, given that BDNK can be seen as the first-order truncation of such generalized 2nd order theories.
Therefore, further investigation of this type of solution is needed. We defer a systematic investigation of
that to future work.
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