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We continue examining statistical data assimilation (SDA), an inference methodology, to infer
solutions to neutrino flavor evolution, for the first time using real – rather than simulated – data. The
model represents neutrinos streaming from the Sun’s center and undergoing a Mikheyev-Smirnov-
Wolfenstein (MSW) resonance in flavor space, due to the radially-varying electron number density.
The model neutrino energies are chosen to correspond to experimental bins in the Sudbury Neutrino
Observatory (SNO) and Borexino experiments, which measure electron-flavor survival probability at
Earth. The procedure successfully finds consistency between the observed fluxes and the model, if
the MSW resonance – that is, flavor evolution due to solar electrons – is included in the dynamical
equations representing the model.

I. Introduction

Neutrinos are ubiquitous in astrophysical environ-
ments. In stars like the Sun, they are a byproduct of the
nuclear reactions that provide the energy flux counter-
acting gravity. Proto-neutron stars formed following the
core collapse in a supernova cool by emitting copious
neutrino pairs, and similar neutrino emission takes place
following neutron star mergers. Observations of those
neutrinos would provide not only valuable information
about the interior of the star and collapse mechanism,
but also the nature and properties of neutrinos. In partic-
ular, neutrino "flavor," a property that dictates neutrino
interaction with matter, significantly affects the physics
of these events [1–14].

A complete description of neutrino flavor evolution
and transport in astrophysical environments is techni-
cally very involved. Powerful numerical integration
codes exist for obtaining solutions to the flavor evolu-
tion problem in compact object environments [15–22].
Many of these codes, however, require adopting rather
rigid physical assumptions regarding the symmetries of
the problem, and it has been shown in recent years that
relaxing these assumptions reveals physics that had been
artificially hidden (e.g., see Ref. [23, 24] and references
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therein). Further, because of the large density of neu-
trinos in these regimes, neutrino-neutrino interactions
introduce nonlinear elements in the transport, render-
ing the problem computationally taxing for the existing
large-scale codes. Additionally, these nonlinear "collec-
tive oscillations" could exhibit signatures of many-body
quantum correlations among neutrinos (e.g., [25–33]).
Hence it is helpful to explore the suitability of different
computational tools to treat neutrino flavor evolution
and transport.

In previous papers [34–38], we applied an inference
technique – a fundamentally different framework com-
pared to forward integration – to examine nonlinear col-
lective oscillations in core-collapse supernovae (CCSN).
Inference is a means to optimize a model given measure-
ments, where measurements are assumed to arise from
model dynamics.

The specific technique used is statistical data assimila-
tion (SDA), which was invented for numerical weather
prediction [39–44] for the case of sparse data. It has since
gained considerable traction in neurobiology [45–51],
and within astrophysics has been applied to exoplanet
modeling [52] and solar cycle prediction [53, 54].

To date, we have applied SDA to small-scale neutrino
flavor evolution models, using simulated data. Our first
work [36] established that SDA is capable – in princi-
ple – of finding solutions to the flavor evolution prob-
lem, given Earth-based measurements together with
assumptions regarding flavor states at emission. Next,
in Ref. [37] we devised a litmus test for identifying cor-
rect solutions, and Ref. [38] compared the efficacy of our
SDA technique to alternative (e.g. "neural differential
equations") approaches. More recently, we challenged
SDA to solve problems that forward integration renders
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difficult to access: 1) direction-changing scattering in the
model dynamics [35], and 2) unknown initial conditions
of the neutrino flavor field at emission from the CCSN
core [34].

In this paper we seek, for the first time, to test the SDA
procedure using real neutrino data from experiments.
Data on neutrinos from CCSN are limited to one event:
SN1987A [55–57], wherein about 20 neutrinos were de-
tected – not a sufficiently large sample to robustly in-
vestigate flavor evolution signatures. Hence we turn to
an environment from which neutrino data are copious:
the Sun. Our purpose here is to explore the efficacy
of inference to describe the matter-enhanced neutrino
oscillations in the Sun. Furthermore, it is worthwhile to
investigate possible improvements that inference might
offer for the analysis of solar neutrino data. In par-
ticular, inference might offer an independent check on
new methods to remove cosmogenic-induced spallation
in Super-Kamiokande, a recent effort to improve the
precision of solar neutrino data [58].

To that end, we challenge the SDA procedure to find
a solution – in terms of neutrino flavor evolution with
radius, in a steady-state model – that is consistent with
three elements: the standard solar model, a model of
neutrino flavor evolution, and observed neutrino fluxes
at Earth. In addition, we explore the significantly more

complex problem of state prediction simultaneous with
the estimation of unknown model parameters.

II. Input

A. Neutrino flavor evolution

We consider two-flavor mixing of solar neutrinos,
which is a good approximation because of the small
value of the mixing angle θ13 [59]. Hence the angle θ12
describes the effective mixing between the electron neu-
trinos, ψe, and a linear combination of the muon and tau
neutrinos, ψx. Hereafter we set θ = θ12, dropping the
subscripts. We assume that flavor evolution is driven
entirely by coherent forward-scattering. This arises from
neutrino-matter interactions, and leads to an in-medium
effective neutrino mass level crossing, referred to as
the “MSW resonance.” [60–62]. The MSW resonance is
associated with an enhanced e ↔ x flavor conversion
probability. The neutrinos are produced at the core of
the Sun as electron neutrinos, then they undergo flavor
oscillations while also forward-scattering off the back-
ground electrons as they travel through the Sun. For
each neutrino, this propagation is described either by
the equation:

i
d
dr

(
ψe
ψx

)
=

ω

2

(
V(r)

ω − cos 2θ sin 2θ

sin 2θ −V(r)
ω + cos 2θ

)(
ψe
ψx

)
(1)

or by the equation [63, 64]:

d~P
dr

=
(

ω~B + V(r)ẑ
)
× ~P, (2)

where ω = δm2/(2E) is the vacuum oscillation fre-
quency of a neutrino with energy E, δm2 being the
mass-squared difference in vacuum. The unit vector
~B = sin(2θ)x̂− cos(2θ)ẑ represents flavor mixing in vac-
uum, with mixing angle θ. The function V(r) arises from
neutrino interactions with the background electrons. As-
suming that flavor evolution is driven entirely by coher-
ent forward-scattering, V(r) is given by the Wolfenstein
correction to the neutrino mass: V(r) =

√
2GF Ne(r) [62],

where Ne is the electron density, taken from the Stan-
dard Solar Model [65]. Finally, the relation between the
dynamical variables in Eq. (1) and Eq. (2) is: Px

Py
Pz

 =

 ψeψ∗x + ψ∗e ψx
i(ψeψ∗x − ψ∗e ψx)
|ψe|2 − |ψx|2

 . (3)

In Eq. (2), the flavor state of the neutrino is charac-

terized by the “polarization vector” ~P. Eq. (3) shows
that the components of the polarization vector are real
numbers. In the inference method adopted in this work,
the dynamical variables and input parameters need to
real. For that reason, in this paper we adopt Eq. (2) to
describe neutrino evolution. The density matrix ρ of the
system can also be written in terms of the polarization
vector as:

ρ =
1
2

(
1 +~σ · ~P

)
. (4)

Here, the ẑ component of the neutrino polarization
vector denotes the net flavor content of electron flavor
minus the superposition of muon and tau flavors. Hence
in the Sun, Eq. (1) is solved with the initial conditions
ψe(0) = 1, ψx(0) = 0, or equivalently, Eq. (2) is solved
with the initial conditions Pz = +1, Px = Py = 0. In
this configuration, the density matrix as defined in Eq.
(4) represents a pure quantum state. In the forward-
scattering regime, this purity (i.e. ρ2 = ρ) is preserved
through the course of flavor evolution, and one therefore
has |~P|2 = 1 throughout the evolution.
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We solve Eq. (2) inside the Sun, using the inference
procedure to be described in later sections. In particular,
the solution includes a prediction of ~P at the surface of
the Sun. As our model does not extend beyond the Sun,
we need to use the time evolution operator to relate ~P at
the endpoint of our model (i.e. the solar surface) to the
measured electron flavor survival probability, Psurvival,
at Earth’s surface1.

Neutrino propagation from the solar surface (denoted
by ‘�s’) to Earth (denoted by ‘⊕’) can be analytically
calculated to obtain the density matrix on Earth:

1
2

U(L)
(

1 +~σ · ~P�s

)
U†(L) =

1
2

(
1 +~σ · ~P⊕

)
, (5)

where the operator U is:

U =

(
ψe (L) −ψ∗x (L)
ψx (L) ψ∗e (L)

)
. (6)

In Eq. (6) the entries are calculated by solving Eq. (1)
in vacuum:

ψe(L) = cos ωL− i cos 2θ sin ωL, (7)
ψx(L) = i sin 2θ sin ωL. (8)

where L is the Earth-Sun distance. If one uses only
the ‘day’ data (so that the measured neutrinos haven’t
passed through the earth), as we do, then ~P⊕ represents
the flavor state of the neutrino at the detector. Hence for
the z component of ~P⊕ on or near the surface of Earth,
we have:

P⊕,z =
(

1− 2 sin2 2θ sin2 ωL
)

P�s,z −
(

2 cos 2θ sin 2θ sin2 ωL
)

P�s,x −
1
2
(sin 2ωL sin 2θ) P�s,y. (9)

Averaging over ωL (that is, over multiple oscillation
cycles in vacuum), we obtain:

P⊕,z =
(

1− sin2 2θ
)

P�s,z − cos 2θ sin 2θ P�s,x. (10)

P⊕,z can be related to the measured Psurvival using:

P⊕,z = 2Psurvival − 1, (11)

and hence we have the following constraint on the ‘final’
(i.e., solar surface) values of our state variables:(

1− sin2 2θ
)

P�s,z − cos 2θ sin 2θP�s,x = 2Psurvival − 1.
(12)

Eq. (12) yields a linear relation between Pz and Px at the
surface of the Sun.

B. Neutrino data

To test the inference procedure, we use 8B day-time
neutrino flux observed by the SNO [66] and Borexino
[67] experiments.

1 We note one consideration that was not made in this paper, but
which might be important in future work. In calculating this evolu-
tion over long distances during which no measurements are made,
it might be important to consider the phenomenon of neutrino
state decoherence due to spatial separation of mass eigenstates; see
Appendix for more details.

For the Borexino data, we use only the observed pp-
chain neutrinos, and not the CNO neutrinos. This is a
reasonable choice for the Sun, as its core temperature
is relatively low, meaning that few CNO neutrinos are
produced. In addition, for simplicity we use day data
only. The Borexino survival probabilities are listed for
three discrete energies [67].

The SNO collaboration used an analytic fitting for-
mula for the survival probability Psurvival [66] as a func-
tion of neutrino energy Eν. For daytime data only, the
formula is:

Psurvival (Eν)

= c0 + c1 (Eν − 10 MeV) + c2 (Eν − 10 MeV)2 ,
(13)

where the best-fit values of the coefficients c0, . . . , c2,
along with the uncertainties, are given in Table I. For the
neutrino oscillation parameters δm2 and θ, we use the
following values:

δm2 = 7.530× 10−17 MeV2 (14)
θ = 0.5838 radians (15)

III. Inference Methodology

A. General formulation

Statistical data assimilation is an inference procedure
wherein measured quantities are assumed to arise from
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a dynamical physical model. It is designed for cases
wherein only a subset of the model state variables can
be experimentally accessed. We write this model F in
D ordinary differential equations:

dxa(r)
dr

= Fa(x(r),p(r)); a = 1, 2, . . . , D, (16)

where r is the parameterization – for example, distance
or time. Components xa of vector x are the model state
variables. The p are any unknown parameters to be
estimated, and they may vary with r.

Measured quantities comprise a subset L of the D
state variables. We seek to estimate the evolution of all
state variables that is consistent with measurements, and
to predict model evolution at parameterized locations
where measurements do not exist.

B. Optimization formulation

We use a path-integral formulation of SDA, which can
be summarized in three equations. The path integral is
an integral representation of the master equation for the
stochastic process represented by Eq. (16). We seek the
probability of obtaining a path X in the model’s state
space given observations Y :

P(X |Y ) = e−A0(X ,Y ). (17)

This expression states: the path X for which the probability
- given Y - is greatest is the path that minimizes the quantity
A0, which we call our action. A formulation for A0 will
permit us to obtain the expectation value of any function
G(X) on a path X :

G(X) = 〈G(X)〉 =
∫

dXG(X)e−A0(X ,Y )∫
dXe−A0(X ,Y )

. (18)

Expectation values are the quantities of interest when
the problem is statistical in nature. For many estima-
tion problems, the quantity of interest is the path itself:

G(X) = X . The action is written in two terms:

A0(X ,Y ) = −∑ log[P(x(n + 1)|x(n))]

−∑CMI(x(n),y(n)|Y (n− 1)).
(19)

The first term describes Markov-chain transition prob-
abilities governing the model dynamics. The second
term is the conditional mutual information (CMI) [68],
which asks: "How much information, in bits, is learned
about event x(n) upon observing event y(n), conditioned
on having previously observed event(s) Y (n - 1)?”2. Sim-
plifications are then made to write a computationally-
functional form of A0, and model-specific equality con-
straints may be added. See Ref. [69] for a derivation of
Eq. (19).

The SDA problem is then cast as an optimization,
where the action is a cost function - a succinct and
powerful equivalency. The cost function of the op-
timizer is equivalent to the action on paths in the
state space that is searched. Generally, the action sur-
face is ((D + p)× (N + 1))-dimensional, where N + 1
is the number of discretized model locations, taken
to be independent dimensions. One seeks the path
X0 = {x(0), . . . ,x(N),p(0), . . . ,p(N)} in state space
on which A0 attains a minimum value. Minima are
found by requiring that small variations to the action
vanish under small perturbations [70], thereby enforc-
ing the Euler-Lagrange equations of motion upon any
path. We extremize the cost function via the variational
method.

After many simplifications (see Appendix A of
Ref [36]), the Markov-chain term (first term of Eq. (19))
reduces to a “model error”, which describes the diver-
gence of the prediction from model dynamics. The
mutual information (second term of Eq. (19)) reduces
to a “measurement error”, describing the divergence of
the prediction from measurements. (For a pedagogical
treatment, see Ref. [69].) The action A0 used in this
paper is written as:

2 The measurement term can be considered a synchronization term,
which are often introduced artificially into control problems. Here,
however, the measurement term arises naturally through consider-
ing the effects of the information those measurements contain.
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A0 =R f Amodel + Rm Ameas

Amodel =
1

ND

N−2

∑
n∈{odd}

D

∑
a=1[{

xa(rn+2)− xa(rn)−
δr
6
[Fa(x(rn),p(rn)) + 4Fa(x(rn+1),p(rn+1)) + Fa(x(rn+2),p(rn+2))]

}2

+

{
xa(rn+1)−

1
2
(xa(rn) + xa(rn+2))−

δr
8
[Fa(x(rn),p(rn))− Fa(x(rn+2),p(rn+2))]

}2
]

Ameas =
1

Nmeas
∑

rm∈{meas}

d

∑
l=1

[
(yl (rm)− hl,m(x(rm))

2
]

(20)

The model error, Amodel, imposes adherence to the
model evolution of all D state variables xa. The outer
sum on n runs through all odd-numbered discretized
locations. The sum on a runs through all D state vari-
ables. The terms within the first and second sets of curly
brackets represent the errors in the first and second
derivatives, respectively, of the state variables.

The measurement error, Ameas, imposes adherence to
measurements. The variables yl , for l = 1, . . . , d, repre-
sent the d quantities measured at locations rm ∈ {meas},
where Nmeas is the total number of locations. These are
to be compared against the quantities hl,m(x), where
hl,m are transfer functions that relate the state variables
in the model to the quantities being measured, at each
location. In our optimization design, the measured quan-
tities are the values of Pz for each neutrino energy, at two
locations: (i) the center of the Sun, and (ii) the surface
of Earth. At the Sun’s center, the “measurement" of Pz

can be compared directly against the model Pz at the
same location, rendering the transfer functions trivial:
h0(~P) = Pz for each neutrino. On the other hand, since
our model grid does not extend beyond the solar surface
to the Earth, the Pz measurement at Earth is compared
against an extrapolated Pz value derived from the Polar-
ization vector at the Sun’s surface, as shown in Eq. (10).
In other words, measuring Pz at Earth is equivalent to
measuring a linear combination of Pz and Px at the sur-
face of the Sun. Therefore, the transfer function at the
Sun’s surface becomes:

h�s(~P) =
(

1− sin2 2θ
)

Pz − cos 2θ sin 2θ Px, (21)

for each neutrino energy3. The measurement term can
then be written as

Ameas =
1

Nmeas

Nν

∑
k=1

[(
Pmeas

z,k (0)− Pz,k (0)
)2

+
(

Pmeas
z,k (R� + L)− h�s

(
~Pk (R�)

))2
]

(22)

where k = {1, . . . , Nν} are the neutrino energy bins, ~Pk
is the polarization vector for the kth energy bin in the
model equations of motion (Eq. (2)), with components
Px,k, Py,k, Pz,k, and Pmeas

z,k is the measurement of Pz at the
specified location, directly associated with the survival
probability at that location (Eq. (11)). R� and L are the
solar radius and the earth-sun distance, respectively.

3 Note that in our previous papers [34–38], the transfer function was
always trivial, since we simply employed simulated data at the far
boundary of the model domain.

C. Identifying a lowest minimum of the action

The action surface of a nonlinear model will be non-
convex. To identify a lowest minimum, we perform an
iterative annealing in terms of the ratio of model and
measurement error, R f and Rm, respectively4 [71]. It
works as follows.

We define Rm to be a constant (in this paper it is 1.0),

4 More generally, Rm and R f are inverse covariance matrices for the
measurement and model errors, respectively. In this paper the
measurements are taken to be mutually independent, rendering
these matrices diagonal.
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and R f as: R f = R f ,0αβ, where R f ,0 = 10−3, α = 2.0,
and β – the annealing parameter – is initialized at zero.
Relatively free from model constraints, the action surface
is convex. Then we increase β recursively, each time
recalculating the action, toward the deterministic limit
of R f � Rm. The aim is to remain sufficiently near to
the lowest minimum so as not to become trapped in
a local minimum as the model dynamics resolve the
surface5.

IV. The task for optimization

Our model beams were assigned energies correspond-
ing to the experimentally detected neutrino energies. We
placed two constraints on each beam. One was an as-
sumed "measurement" of Pz at the center of the Sun: 1.0
for each beam, or: pure νe flavor. The other measurement
was Psurvival, the electron flavor survival probability of
neutrinos measured at Earth’s surface, related to the Pz
at earth through Eq. (11).

The task for the procedure, depicted in Fig. 1, was to
take those two constraints, together with the potential
V(r) from the standard solar model [65] and the dynam-
ics of flavor evolution (Eq. (2)), to find a solution – in
terms of the radial evolution of the polarization vectors
– that is consistent with model and data. We expected
this inference task to be a challenge, specifically for esti-
mating the polarization vector at the solar surface. From

5 The complete procedure – a variational approach to extremization
and an annealing method to identify a lowest minimum of the cost –
is termed variational annealing (VA).

FIG. 1. Schematic of the inference task. The constraints pro-
vided to the procedure are an assumed initial condition at the
solar center (blue circle) and a measured survival probability
at Earth (yellow circle). Meanwhile, the model consists of the
potential V(r) and flavor transformation dynamics (Eq. (2))
through the Sun. The inference task is to consider both the con-
straints and the model, to predict the flavor evolution within
the Sun (red region), while also accounting for the transfor-
mation (grey wave) of the Earth-based measurement (yellow
circle) to the solar surface (red circle).

Eq. (12), one can see that a single measured value of sur-
vival probability at Earth corresponds to a (Px,Pz) pair at
the solar surface. In principle, many possible pairs could
satisfy that relation. The SDA procedure is tasked with
finding a pair that also obeys model dynamics (Eq. (2)).

A. Details

The procedure is given full knowledge of model pa-
rameter values (except for the parameter estimation of
Section V B), all listed in Table I. The three energies EB, i
correspond to three discrete bins in the Borexino exper-
iment [67]; SNO employed an energy range, which we
discretized into eight values [66]. To assign a unique
value of the matter potential V(r) at each radial location,
we used a piecewise linear interpolation: the V(r) term
adopted from the solar model in Ref. [65] contains val-
ues at 1,219 discrete radial locations, while our model
contains 121,9016.

The optimization was performed by the open-source
Interior-point Optimizer (Ipopt) [72]. Ipopt employs a
Hermite-Simpson method of discretization and a con-
stant step size. We employed 121,901 steps and a step
size of δr of 2.85237. The discretization of state space,
calculations of the model Jacobean and Hessian matrices,
and the annealing procedure are performed via a Python
interface [73] that generates C code to be read by Ipopt.

6 Our choice to increase the number of discrete locations by a factor
of 100 was motivated by our aim to resolve the oscillations; namely,
the step size had to be sufficiently small.
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TABLE I. Model parameters taken to be known. The EB,i and ESNO,i correspond to the Borexino and SNO beams, respectively.
The Psurvival,B,i are the measured survival probabilities for each Borexino energy bin [67]. The ci values and uncertainties are
used in Eq. (13) to compute the survival probabilities for the SNO beams.

Parameter Value [MeV] Parameter Value
EB,1 7.4 Psurvival,B,1 0.39± 0.09
EB,2 8.1 Psurvival,B,2 0.37± 0.08
EB,3 9.7 Psurvival,B,3 0.35± 0.09

ESNO,1 8.5 c0 0.3435+0.0233
−0.0208

ESNO,2 9.0 c1 0.00795+0.00838
−0.00817 MeV−1

ESNO,3 9.5 c2 −0.00206+0.00336
−0.00336 MeV−2

ESNO,4 10.0
ESNO,5 10.5
ESNO,6 11.0
ESNO,7 11.5
ESNO,8 12.0

Simulations were run on a computing cluster equipped
with 201 GB of RAM and 24 GenuineIntel CPUs (64 bits),
each with 12 cores.

To compare solutions to the model dynamics, we gen-
erated a simulation via forward integration, with all
beams initialized at [Px,Py,Pz]=[0,0,1] at the solar core,
and using the same discretized grid as the optimization.
This integration was performed by Python’s odeINT
package, which uses an adaptive step. Our complete
procedure, including forward-integration codes, codes
to interface with Ipopt, instructions for designing and
running experiments on our supercomputing cluster,
and examples for new users, can be found in a publicly
available repository [74].

For all experiments to be described in Section V, four
independent paths were initialized randomly. That is,
each initialization consisted of as many random choices
as there are dimensions in the model7. The user-defined
search range for state variables (Px,Py, and Pz) was: [-
1.0:1.0], the full dynamical range for each. For the search
range used in parameter estimation, see Section V B.

V. Results

Key findings are as follows:

• When the MSW transition within the Sun is in-
cluded in the model dynamics, the procedure finds
a solution consistent with both model dynamics

7 As noted, generally the dimensionality of the action surface is
((D + p)× (N + 1)), where D, N + 1, and p are the number of state
variables, discretized model locations, and parameters, respectively.
All optimization procedures described in this paper, however, con-
tained at most one unknown parameter, which was assumed to
have the same value at all (N+1) discretized locations. Thus, the
dimensionality of these procedures was: D× (N + 1) + p.

and measured survival probabilities Psurvival at
Earth, within the published experimental errors
on Psurvival, for both SNO and Borexino data. (Al-
ternatively, when the MSW transition is ignored –
or, V(r) is set to zero – a solution compatible with
both model and measurements is not found.)

• A preliminary parameter estimation shows that
the measured survival probabilities contain infor-
mation about model mixing angle θ (Eq. (2)).

A. State prediction without parameter estimation

The left panel of Fig. 2 shows the logarithm of the
action as a function of annealing parameter β, over the
course of annealing, for the case in which the matter
potential V(r) is taken from the standard solar model
(Section III), a scenario wherein the electron number
density effects a significant MSW transition.

Beginning at β = 0, the action increases as the weight
of model error is increased. Gradually, however, it levels
off. This "plateau," around β ∼ 16 to 20, indicates that a
solution consistent with both model and measurements
has been found8 (for a detailed study of these action(β)
plots, see Ref. [37]). All four randomly-initialized paths
converged to an identical solution.

Indeed, the predictions of state variable evolution
well match the true model evolution. The left panel
of Fig. 3 shows the true (blue) versus predicted (red)
state variable evolution of Px (top), Py (middle), and Pz
(bottom), for the first of the three beams corresponding
to the Borexino data; the result is representative of all
beams in both SNO and Borexino models.

8 The further increase in the action beyond β ∼ 21 is most likely due
to discretization error, as the optimization technique uses a different
method of discretization compared to the forward integration.
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FIG. 2. Logarithmic plot of the action A0 as a function of annealing parameter β. Left: V(r) is taken from the standard solar
model [65]. At β = 0 the action begins to increase as model weight increases, then plateaus – at β ∼ 16–20 – as a solution is
found that is consistent with both model and measurement (the increase in action beyond β ∼ 20 is due to discretization error at
high model weight). Right: V(r) is set to zero. Now the action increases exponentially, indicating a failure to reconcile model
with measurement. (See Ref. [37] for a detailed study of the action(β) plot.)

FIG. 3. True (blue) and predicted (red) state variable evolution, given model dynamics (Eq. (2) and (21)) and Earth-based
survival probability. Left: for matter potential V(r) taken from the standard solar model; right: with V(r) set to zero. From top:
P1,x, P1,y and P1,z, for the first of three energy beams corresponding to the Borexino data. The units of distance are in percentage
of solar radius R�. Both left and right panels correspond to a value of annealing parameter β of 20. For the result at left, β = 20
lies on the "plateau" of Fig. 2, left panel – a solution consistent with both model and measurement. At right, a solution compatible
with model dynamics is not found. These results are representative of all beams across both Borexino and SNO data sets, and for
cases in which we added to the measurements the published maximum values of experimental error (not shown).

Fig. 4 shows detail that cannot be discerned by eye
on Fig. 3. At top are three segments of the evolution
of Pz: the first thousand steps, beginning at the solar
center (left), middle thousand (middle), and final thou-
sand ending at the solar surface (right); each section is
roughly one hundredth of the full 121,901-step series.
The blue solid dot at far left denotes the location of the
assumed initial conditions on Pz, and the red dot at
far right indicates the first location of prediction, given

the survival probability measured at Earth (Earth is not
depicted in the figure).

At bottom are the Fourier transforms of Pz correspond-
ing to each segment. The predicted oscillation frequency
throughout the Sun is perfect, to within the resolution
permitted by the density of sampled locations. These
results are insensitive to the addition of the published
maximum experimental errors on survival probability,
for both SNO and Borexino.
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FIG. 4. Details of the predictions shown in Fig. 3. Top: from left, three 1,000-point segments of the Pz evolution, beginning at
the solar center (far left) – where the blue dot denotes the assumed initial condition, and ending at the solar surface (far right) –
where the red dot denotes the location where Px and Pz must be consistent with the measurement at Earth (Earth is not depicted).
Bottom: Fast Fourier decomposition for the respective regions at top, showing that the oscillation frequency is well predicted
throughout the Sun.

As a test that the procedure recognizes consistency
between measurement and model, we set the matter
potential V(r) to zero and repeated the optimization.
Setting V(r) to zero essentially tells the procedure that
the electron number density inside the Sun is not suffi-
ciently high to effect an appreciable MSW transition.

The right panel of Fig. 2 shows the resulting plot of
action-versus-β. In contrast to our original result, here
the action never attains the signature "plateau" indica-
tive of a successful optimization. Rather, it increases
exponentially. The corresponding predictions appear
in the right panel of Fig. 3: agreement with true (blue)
model is poor. As with the original experiments, all
four randomly-initialized paths converged to this solu-
tion. Together, Figures 2 and 3 and convince us that the
MSW effect within the Sun cannot be neglected if one
seeks to account for the measured Earth-based survival
probabilities.

We conducted a further test that the SDA proce-
dure recognizes consistency between measurement and
model. As noted, one vital component of a successful
prediction was a (Px, Pz) pair at the solar surface that
was consistent with both the survival probability mea-
sured at earth and the model dynamics (Eq. (2)), together
with the Earth-Sun transformation function of Eq. (21).
With this in mind, we replaced the true published mea-
sured survival probabilities with "test" survival probabil-
ities that are not physically possible; specifically: values
above 1.0 and below 0.0. For these cases, the action(β)

plot behaved similarly to the right panel of Fig. 2: an
exponential increase (not shown). That is, the model
was unable to find a solution that satisfied both model
and measurements – as is the expected outcome.

B. State prediction with simultaneous parameter
estimation

Adding parameter estimation to the inference task
renders it significantly more challenging [75, 76]. The
root of the difficulty is that parameters – unlike state
variables – do not obey a known dynamical law, so there
is no straightforward way to correlate state variable
evolution with parameter estimate error9. With that
in mind, we took the preliminary step of setting the
mixing angle θ of Eq. (2) as an unknown parameter to
be estimated. In these tests, the true value of θ was 0.58,
and the permitted search range was 0.001 to 1.571.

Our first parameter attempt failed (not shown), and
to ascertain whether computational expense might be
the cause, we temporarily removed the Earth-to-Sun
transformation of Eq. (21) from the model dynamics.
To be clear: our aim here was to offset the increased

9 To first order, that correlation will be proportional to the model’s
Jacobian with respect to the parameter in question.
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computational expense incurred with parameter esti-
mation by decreasing the complexity of the equations
of motion, to identify whether computational expense
was the culprit in the failed first attempt. Across four
randomly-initialized paths, the resulting estimates of θ
were, respectively: [1.57, 0.98, 0.01, 0.59] radians. That
is, one of the four paths identified a solution near the
true value of 0.58. Fig. 5 shows the corresponding state
prediction for that estimate.

Encouraged by this mild success, we restored the
Earth-Sun transformation (Eq. (21)) – and in addition,
we amended the requirement regarding a match to the
Earth-based measurement of survival probability. Specif-
ically, instead of using only the final values of Px and
Pz at the solar surface, we averaged Px and Pz over the
last 1000 radial locations in the model and compared
those averages to the measured survival probability, us-
ing the Sun-Earth transformation described earlier. The
motivation for this change was that, without a fixed mix-
ing angle, the rapid oscillations in the predicted path
could, in principle, be out of phase with the model path.
With this change, the results improved: the estimates
of θ across four independent paths were: [0.79, 0.78,
0.56, 0.89] radians, respectively. Fig. 6 shows the cor-
responding state predictions for the closest estimate of
0.56.

There is much honing to be done to yield reliable re-
sults from parameter estimation. We need to ascertain
why the problem invites multiple solutions across inde-
pendent paths searched, and aim to increase the fraction
of successful paths. We note, however, that based on this
preliminary study, inference can indeed extract informa-
tion about the mixing angle in Eq. (2) from Earth-based
measurements.

VI. Conclusion

For the first time we have applied inference to astro-
physical neutrino data. The ability of the SDA procedure
to identify state predictions consistent with both model
and Earth-based measurements is encouraging, partic-
ularly given the multiple unphysical solutions at the
solar surface that those measurements permit. Further,
while the parameter estimation needs honing, the results
presented in Section V B indicate that inference-based
procedures do possess the capability to recognize the
dependence of Earth-based flavor survival probability
measurements on the neutrino mixing angle θ. Finally,
for the interested reader, the Appendix addresses a topic
noted briefly earlier: the phenomenon of decoherence
through neutrino propagation.

FIG. 5. State predictions akin to Fig. 3, now with mixing
angle θ recast as an unknown parameter to be estimated
– where the Earth-Sun transformation has been omitted in
the interest of easing computational expense. These predic-
tions correspond to an estimate of θ of 0.59 radians (true: 0.58),
where the permitted search range was [0.001,1.571]. The solu-
tion corresponds to a value of β of 20.

FIG. 6. State predictions akin to Fig. 3, again with mixing
angle θ recast as an unknown parameter to be estimated,
and including the Earth-Sun transformation. Importantly, in
this version of the experiment, the measurements were taken
to correspond not only to the (Px,Pz) pair at the solar surface
R�, but rather to the average of those two values over the
final 1,000 discretized model locations in the Sun. See text for
explanation. One out of four paths converged to this solution,
which corresponds to a value of θ = 0.56, taken at a value of β
of 20.
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Appendix: Coherent versus incoherent
detection

In Section II A, we wrote a transformation matrix to
carry the polarization vector between the Earth and Sun.
In doing so, we omitted an accounting of the loss of
coherence in the neutrinos, due to the constituent mass
eigenstates becoming separated in space on their way
to the detector. It might be valuable in the future to
investigate whether including this decoherence in the
model improves state and parameter estimation. It must
be noted that this loss of coherence is a well-understood
phenomenon that has been described in the context of
solar as well as supernova neutrinos (e.g., [77–79]). Here
we provide a brief overview to the interested reader of
how this decoherence may affect the final state that we
measure at earth.

When a neutrino arrives at earth from a sufficiently
distant source, it is in general a coherent superposition of
more than one mass (i.e., propagation) eigenstate. How-
ever, since the different propagation eigenstates have
different masses and therefore propagate at different
velocities, their wavepackets eventually become spatially
separated—to the extent that any neutrino interaction in
a detector would only involve the participation of one of
these mass eigenstates at a time.

Since the individual mass eigenstates themselves do
not oscillate in time (only their coherent superpositions
do), the probability of detecting a particular mass eigen-
state in a certain flavor (e.g., P1e = 〈νe|ν1〉) is indepen-
dent of time or position, once the neutrino is propagating
in vacuum (i.e., if there are no matter effects). For the
purposes of detection, since only one mass eigenstate
participates at a time (assuming sufficient wavepacket
separation), one may treat the neutrino flux arriving at
the earth as an incoherent mixture of mass eigenstates
rather than as a coherent superposition. Mathematically,
this can be described as follows.

Consider a single neutrino existing as a coherent su-

perposition of mass eigenstates. Its density matrix in the
mass basis may be written as follows:

ρν =

(
nν1 ρ12
ρ?12 nν2

)
, (23)

where nνi = 〈a†
νi

aνi 〉 are expectation values of the num-
ber operators for the mass eigenstates i ∈ {1, 2}, and
ρ12 depends on the relative phase between the mass
eigenstates. For a neutrino propagating in vacuum, the
nνi remain invariant in time, and only the off-diagonal
entries are time-dependent.

In contrast, for a neutrino that can be considered to
have essentially devolved into an incoherent mixture of
mass eigenstates, the density matrix is simply

ρν =

(
nν1 0
0 nν2

)
. (24)

In each case, one may ask the question of how much
can be learned from a measurement (i.e., a detection).
First, let us define the quantities nνe and nνx , which
are the expectation values of the flavor-basis number
operators. These can be calculated as follows:

nνe = 〈a†
νe aνe〉 = Tr

{
ρν a†

νe aνe

}
= nν1 cos2 θ + nν2 sin2 θ + 2 Re{ρ12} sin θ cos θ,

nνx = 〈a†
νx aνx 〉 = Tr

{
ρν a†

νx aνx

}
= nν1 sin2 θ + nν2 cos2 θ − 2 Re{ρ12} sin θ cos θ.

(25)

Here, we have used the definitions from earlier in the
section, and the familiar unitary transformation between
the flavor and mass eigenbasis:(

aνe

aνx

)
=

(
cos θ sin θ
− sin θ cos θ

)(
aν1
aν2

)
. (26)

Suppose, for instance, one detects enough neutrinos at
a certain energy so as to statistically obtain a sufficiently
accurate determination of nνe and nνx at a given location.
Then, in case of neutrinos that are still coherent superpo-
sitions by the time of arrival at the detector, one cannot
uniquely determine nν1 and nν2 from nνe and nνx , unless
one also measures ρ12, which is physically impossible.
Instead, a possible workaround may be to measure nνe

and nνx at multiple locations, as was explored in Ref. [34]
in the context of supernova neutrino detection.

On the other hand, if the neutrinos that arrive at the
detector are an incoherent mixture, then ρ12 = 0, and
a measurement of nνe and nνx at a single location is
sufficient to uniquely determine nν1 and nν2 .
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