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In the framework of gravothermal evolution of an ideal monatomic fluid, I examine the dynam-
ical instability of the fluid sphere in (N+1) dimensions by exploiting Chandrasekhar’s criterion to
each quasi-static equilibrium along the sequence of the evolution. Once the instability is triggered,
it would probably collapse into a black hole if no other interaction halts the process. From this
viewpoint, the privilege of (3+1)-dimensional spacetime is manifest, as it is the marginal dimen-
sionality in which the ideal monatomic fluid is stable but not too stable. Moreover, it is the unique
dimensionality that allows stable hydrostatic equilibrium with positive cosmological constant. While
all higher dimensional (N > 3) spheres are genuinely unstable. In contrast, in (2+1)-dimensional
spacetime it is too stable either in the context of Newton’s theory of Gravity or Einstein’s General
Relativity. It is well-known that the role of negative cosmological constant is crucial to have the
Bañados-Teitelboim-Zanelli (BTZ) black hole solution and the equilibrium configurations of a fluid
disk. Owing to the negativeness of the cosmological constant, there is no unstable configuration for
a homogeneous fluid disk to collapse into a naked singularity, which supports the Cosmic Censorship
Conjecture. However, BTZ holes of mass MBTZ > 0 could emerge from collapsing fluid disks. The
implications of spacetime dimensionality are briefly discussed.

Black holes (BHs) are the most profound prediction
of Einstein’s General Relativity (GR), though its exis-
tence is questionable in the early days. Oppenheimer and
Snyder [1] first demonstrated the dynamical process of
forming a BH from dust collapse, and the spacetime sin-
gularity is inevitable. However, the idealized collapsing
process of spherical symmetry might be unrealistic. Until
1965, Penrose showed [2] mathematically that whenever
matter satisfies reasonable energy conditions, BH is a
generic consequence of GR regardless of spherical sym-
metry. In astrophysics, BH is the end state of a conven-
tional star running out of fuel. But it could also emerge
from the direct collapse of clouds of gas without igniting
a nuclear reaction.

In the context of Newtonian Gravity (NG), the self-
gravitating ideal monatomic fluid is too stable [3]. The
pressure always counteracts gravitational attraction and
stabilizes the fluid. In GR, the pressure in the fluid is a
double-edged sword. Because not only the energy density
but also the pressure is sourcing gravity, once the pres-
sure starts to dominate energy density at some point, it
will destabilize the fluid. And this is why the instabil-
ity and collapse into BHs from a fluid can happen in the
framework of GR. All of the above concern BHs in (3+1)-
dimensional spacetime. Of course, there is nothing to
hinder theorists from considering BHs in (N+1) dimen-
sions with N 6= 3. BHs in higher dimensions have been
studied thoroughly in the literature [4–6]. Although the
stability of a fluid sphere and its dimensional constraint
has been explored somewhat [7], it is less investigated
the instability condition of the higher-dimensional BHs
coming from collapsing fluids. As we shall see, the ideal
fluids in the context of NG are genuinely unstable for
N > 3, and the GR effect makes the situation worse.
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However, the presence of cosmological constant λ will
modify the situation, in particular, λ < 0 can stabilize
the fluid sphere. We also note that the dynamical insta-
bility of stellar equilibrium for N = 3 with cosmological
constant was studied to some extent in Refs. [8–10].

In lower dimensions, i.e. N = 2, gravity is bizarre.
The Bañados-Teitelboim-Zanelli (BTZ) BH solution ex-
ists only if a “negative” cosmological constant λ =
−1/`2 < 0 is introduced, where ` is the background
radius of curvature [11]. This can be understood from
the unit of Newton’s constant in (N+1) dimensions:
[GN ] = [M]−1[L]N [T]−2. For N = 2, setting c = 1 deter-
mines the fundamental “mass scale” in terms of the New-
ton’s constant G2, but the fundamental “length scale”
cannot be settled down. Thus an independent length
scale ` = (−λ)−1/2 must be introduced independently.
Moreover, the negativeness of λ permits the BH solu-
tion [12]. In addition, there is no Newtonian limit in
(2+1) dimensions. Gravity has no local degrees of free-
dom (locally flat), thus no gravitational wave (or gravi-
ton) can propagate. This reflects the fact that static
particles do not gravitate [13–15]. In contrast, the col-
lective behavior of thermal particles will gravitate and
demand the fluid description under its self-gravity. Cru-
cially, λ < 0 is also to guarantee the hydrostatic equilib-
rium (the pressure is monotonically decreasing) [16].

The basic mechanism of hierarchical structure forma-
tion (stars, galaxies, halos, etc.) relies on the Jeans in-
stability [17], which determines the largest mass (Jeans
mass, also called Bonnor-Ebert mass [18, 19]) of an
isothermal gas sphere can still remain in hydrostatic equi-
librium. For the gas sphere heavier than this, it will
further collapse or fragment into smaller and denser ob-
jects [20]. Then it transitions into gravothermal evolu-
tion. As a gravitationally bound system, it gets hotter
and hotter as it releases thermal energy through dissi-
pation [21–23]. If the mass sphere is sufficiently heavy
(& 106M�), this process will persist without triggering
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the thermonuclear sources of energy, while it behaves as
a “supermassive star.” Nevertheless, the gravothermal
evolution will end eventually and probably collapse into a
BH once relativistic instability is triggered [24]. It serves
as the prototype of supermassive BHs from direct col-
lapse of pristine gas [25–29] or dark matter halo with
self-interaction [30–34].

As long as heat transport occurs, a self-gravitating
monatomic fluid (or supermassive star) will relax and
shrink automatically due to the negative specific heat
of a gravitationally bound system [31, 34]. During the
gravothermal process in hydrostatic limit, the thermal
evolution time scale of the contraction is much larger its
free-fall (dynamical) time scale tff ∼ 1/

√
GNρ, where

ρ is the (mean) energy density of the fluid [3]. In this
scenario, we can idealize the evolution process by a se-
quence of virialized quasi-equilibria characterized by the
mass and radius of the fluid sphere. In particular, the
particles in the fluid will follow the same distribution
function, albeit the dispersion varies during the process
until the onset of relativistic instability. Moreover, we
assume no extra degrees of freedom, e.g. nuclear reac-
tion of our universe in (3+1) dimensions, will be ignited
to halt the direct collapse into a BH. We note that the
final BH formation near the end of the gravothermal evo-
lution requires dynamically evolving the fluid and the
spacetime given initial data [35–38], which is beyond the
scope of this study. Without cosmological constant in
(3+1), it has been shown that unstable static spherical
Tolman-Oppenheimer-Volkoff solutions exist on saddle
points that, when perturbed from their unstable equi-
librium, will tend to either black hole formation or a per-
turbed stable solution [38]; while with positive cosmolog-
ical constant, the dynamical evolution of a homogeneous
dust would drag the entire spacetime into a “big crunch”
singularity if the fluid mass is sufficiently large [35].

The goal of this Letter is to examine the sufficient
condition that can naturally trigger the instability of a
self-gravitating monatomic fluid in (N+1) dimensions, in
particular, in the presence of cosmological constant. We
adopt homogeneous solutions, which are adequate for the
purpose. In the end, we will briefly discuss the implica-
tions on the dimensionality of spacetime. The geometric
unit GN = c = 1 is used, unless noted otherwise.

Dynamical instability in (N+1) dimensions.— The
method exploited by Chandrasekhar [39] is to examine
the radial pulsation equation of a perturbed fluid sphere
of mass M within radius R:

δR̈+ ω2δR = 0 with ω2 ∝ 〈γ〉 − γcr, (1)

where the ω is oscillation frequency, the critical adiabatic
index γcr depends on the given equilibrium configuration,
and the 〈γ〉 is the pressured-averaged adiabatic index of
the fluid sphere. Thus the stability problem boils down
to the Sturm-Liouville eigenvalue problem. The sufficient
condition for the fluid to become unstable is γcr > 〈γ〉
such that ω2 < 0, implying the perturbation δR ∼ eiωt

would be an exponentially growth.

The adiabatic index of a fluid

γ =

(
∂ ln p

∂ lnn

)
s

, (2)

is a stiffness/compressibility parameter signifying how
the fluid pressure p responds to the adiabatic (ds = 0)
compression on number density n. In particular, an ideal
fluid parametrized by the γ-law form p = K(mn)γ [40],
where m is the particle’s mass, satisfies the above defi-
nition as long as γ and K are not explicit functions of
n under adiabatic perturbation. The first law of ther-
modynamics results in [3, 41, 42] γ = 1 + p/(ρ − mn).
Given a distribution function f(x,p) of monatomic par-
ticles with phase space measure dNx dNp, the adiabatic
index of the ideal fluid merely depends on its velocity dis-
persion v ≡

√
Np/ρ < 1 and the degrees of freedom N ,

specifically

γ = 1 +
1 +
√

1− v2

N
(3)

ranges from 1 + 2/N (non-relativistic v → 0) to 1 + 1/N
(ultra-relativistic v → 1) [42].

Considering NG in (N+1)-dimensional spacetime, one
can derive the critical adiabatic index [42]:

γcr(NG) = 2

(
1− 1

N

)
. (4)

In order to have a stable configuration, it is neces-
sary that 〈γ〉 > γcr(NG). For ultra-relativistic (non-
relativistic) ideal fluids, this implies the spatial dimen-
sions must be N < 3 (N < 4) in order to have a stable
sphere. From this viewpoint, the privilege of (3+1) di-
mensions is manifest because the fluid sphere is stable
but not too stable. However, in (2+1) dimensions the
fluid disk is too stable because γcr(NG) = 1 < 1.5 (2) = γ
as always for an ultra-relativistic (non-relativistic) fluid.
Nevertheless, in the context of GR the pressure effect is
crucial to destabilize the fluid disk. Besides, in order for
the fluid to have equilibrium configurations and BTZ so-
lution, a negative cosmological constant is required [11].

Thus we have to first examine the equilibrium configu-
rations with cosmological constant λ = ±1/`2 in (N+1)
dimensions. For homogeneous solutions, the critical adi-
abatic index1

γcr(GR) =
λR2

(N − 2)M/RN−2 − λR2

+
∑

j,k=0,1,...

f
(N)
jk

(
M

RN−2

)j (
λR2

)k
, (5)

1 The exact expression is derived in Ref.[42] and see also Supple-
mental Material for a full GR expression.
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where the post-Newtonian coefficients f
(N)
jk depend on

the density distribution and spatial dimensions N , except

f
(N)
00 = γcr(NG); and the stabilizer/destabilizer :

λR2

(N − 2)M/RN−2 − λR2

{
stabilizer if negative

destabilizer if positive

(6)
characterizes the relative competition between compact-
ness and background curvature. We note that its appear-
ance is generically from GR as long as λ is switched on,
and cannot be regarded as post-Newtonian correction.

Qualitatively, the GR instability depends on the pres-
sure effect of the fluid through p/ρ ∝ M/RN−2 ≡ CN ,
the compactness parameter in (N+1) dimensions. On
the other hand, the stability of a fluid will also depend
on the relative size of the fluid to the radius of curvature
of the space, specifically, the curvature parameter λR2.
As was mentioned, in the context of NG, fluid spheres
are genuinely subject to dynamical instability for N > 3.
Even worse, the corrections from GR deteriorate the sit-
uation, especially if λ > 0. However, it is possible to
have stable hydrostatic equilibrium if λ < 0. We also
note that for λ = 0 the post-Newtonian approximation

f
(3)
10 = 19/21 is exactly the result shown in Ref. [39].
Gravitationally bound systems.— In GR, the gravi-

tational mass of a fluid sphere M is the corresponding
Schwarzschild mass (N ≥ 3) if it were to collapse into
a BH. It includes the energy of self-gravity due to the
curved spacetime, which is thus not conserved during the
gravothermal evolution. By contrast, the rest massMrest

of the fluid is conserved (see Appendix B for definition).
It is the mass of total particles in the fluid when they are
dispersed to infinity. Therefore, to form a gravitationally
bound state the total internal energy must be

M−Mrest < 0. (7)

Before we are able to examine the dynamical instability
reasonably, it is necessary to see if the quasi-static equi-
librium is gravitationally bound during the gravothermal
evolution. The solutions can be categorized as stable or
unstable only if they are gravitationally bound. If the
initial configuration is a unbound state,M−Mrest > 0,
dynamical evolution of the fluid and the spacetime is re-
quired to determine the final fate (BH or naked singular-
ity) [36], which is again beyond the scope of the paper.

Fluid spheres in (3+1) and higher dimensions.— As-
suming a fluid sphere in (N+1) dimensions is in hydro-
static quasi-equilibrium, the fluid (rest) mass Mrest =
const. during the gravothermal evolution. The radius will
contract such that CN increases gradually as more and
more thermal energy dissipates until reaching the criti-
cal compactness as 〈γ〉 = γcr. Given λ = const., we can
tell from the phase diagrams (Figs. 1 and 2) that when
the phase transition into BH could be triggered. For

N ≥ 3 the evolution follows Mrest |λ|(N−2)/2
= const.,

only those paths passing through stable bound region will
be in the “long-lived” stage of gravothermal evolution.

As we have already noted, a fluid sphere is genuinely
unstable for N ≥ 4, and λ > 0 just deteriorates the situ-
ation. Remarkably, the privileged position of N = 3 can
be seen also from the fact that it is the unique dimen-
sionality that allows stable hydrostatic equilibrium with
positive cosmological constant. From Fig. 1, we see that
for λ > 0 stable hydrostatic equilibrium exists only be-
tween some upper bound and lower bound of compact-
ness, and the stable region of compactness diminishes as
λR2 increases; for λ < 0, the stable region enlarges as∣∣λR2

∣∣ increases until the critical compactness C3 = 0.248
at causal limit vc = 1. However, bound states no longer
exist well before this critical point. The orange path
(λ = 0) will gravothermally transition from stable re-
gion into unstable one after passing critical compactness
C3 = 0.189 and the collapse into BH might ensue. The
blue path (I), which follows Mrest

√
|λ| = 0.02(λ < 0),

will be gravothermally transitioning from stable region
into unstable one after hitting the marginal stable curve
if it starts from the region of bound states; while the
blue path (II), which follows Mrest

√
|λ| = 0.01(λ > 0),

starting from unstable region could directly collapse into
the stable region of gravothermal evolution until ex-
ceeding the upper critical compactness; however, if the
mass is sufficiently heavy as blue (dashed) path (III)

with Mrest

√
|λ| = 0.02(λ > 0), there is no long-lived

gravothermal evolution of the fluid.

On the other hand, in Fig. 2, we see that for N = 4
there is no stable hydrostatic equilibrium for λ ≥ 0. A
stable region emerges if λ < 0, and the critical compact-
ness increases as

∣∣λR2
∣∣ increases until C4 = 0.117505 at

vc = 1. Nevertheless, no bound state exists in the domain
of λ ≤ 0. For instance, there is no stable bound state
along the orange dashed path (λ = 0). Although the
blue dashed path (I), followingMrest |λ| = 0.002(λ < 0),
could transition from the stable region into an unstable
one, it is by no means gravothermal as no static bound
state is available along this path. Finally, the blue dashed
path (II), which followsMrest |λ| = 0.001(λ > 0), always
lies in unstable region no matter it starts from a bound
or unbound state. The phase diagrams are similar for
N > 4 but it becomes less compact on the marginal
stable curves as N increases. In Table I, we show the
end points (vc = 1) of the marginal stable curves for
N = 2, 3, 4, 5, 6 and 7.

Remarkably, the region of bound states never over-
laps with the stable region for N ≥ 4. Dynamically,
if the fluid starts from any point on the dashed paths in
Figs. 1 and 2, BH formation, dispersal of the fluid to infin-
ity, or gravitationally bound and oscillatory states could
be the possible outcome depending on the initial veloc-
ity perturbation and density [38], which deserves further
investigation.

Fluid disks in (2+1) dimensions.— By matching the
junction conditions, the mass of BTZ BH is related to
the gravitational mass of the fluid disk by [42]

MBTZ = 2M− 1, (8)
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TABLE I. End points of marginal stable curves for N =
2, 3, 4, 5, 6, and 7 with λ < 0 at causal limit vc = 1.

N CN λR2 〈γ〉 = γcr

2 0.518001 −0.060912 1.81893

3 0.248179 −0.094853 1.56387

4 0.117505 −0.134605 1.43352

5 0.062846 −0.151149 1.35328

6 0.037099 −0.154395 1.29861

7 0.023595 −0.151406 1.25884
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FIG. 1. C3 − λR2 phase diagram of homogeneous fluid
spheres in (3+1) dimensions. Bound states are to the right
of the brown dashed line. The stable and unstable regions
are separated by the marginal stable curve (black solid), and
the black dot denotes the end point (−0.0949, 0.248) at the
causal limit. As the radius contracts withMrest = const., the
orange path follows λ = 0, and the circle denotes the critical
point (0, 0.189) of instability; the blue paths (I), (II), (III)

follow Mrest

√
|λ| = 0.02(λ < 0), 0.01(λ > 0), 0.02(λ > 0),

respectively.
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FIG. 2. C4−λR2 phase diagram of homogeneous fluid spheres
in (4+1) dimensions. Bound states are to the right of the
brown dashed line. The stable and unstable regions are sepa-
rated by the marginal stable curve (black solid), and the black
dot denotes the end point (−0.135, 0.118) at the causal limit.
As the radius contracts withMrest = const., the orange path
follows λ = 0, which is unbound; the blue paths (I), (II) fol-
low Mrest |λ| = 0.002(λ < 0), 0.001(λ > 0), respectively.

thus M > 0.5 is the threshold to have MBTZ > 0, the
excited state, if collapse ensues. Dynamical collapse into
BTZ BHs and naked singularities has been shown pos-
sible from pressureless dust [43]. However, static stars
of perfect fluid qualitatively differ in their behavior from
static stars of dust [13], it is curious to see if the GR in-
stability will be triggered in (2+1), especially under the
influence of negative cosmological constant.

Therefore we have to examine the critical adiabatic
index for N = 2:

γcr(GR) = −1 +
∑

j,k=0,1,...

f
(2)
jk M

j
(
λR2

)k
(9)

starts from −1 + f
(2)
00 = −1 + γcr(NG) = 0 with “post-

Newtonian” corrections, thus the Einsteinian stars are
much stabler than Newtonian stars in (2+1). We note
that for N = 2 the “compactness” parameter reduces to
M, the gravitational mass of the disk itself. That man-
ifests the reason why there is no Buchdahl-like bound
in (2+1) dimensions [16]. Furthermore, this also im-
plies that a self-gravitating disk cannot gravothermally
evolve to a singular state on its own because the com-
pactness M always decreases with Mrest = const. due
to the gravothermal dissipation. However, it can become
unstable by external agents, such as compression by ex-
ternal force while adding mass to keep M large [42].

To illustrate, we see from Fig. 3 that as the negative
cosmological constant is switched on, there is no unsta-
ble configuration for γcr to cross 〈γ〉 of the fluid disk as
the fluid mass grows from M = 0 to 0.5 (the would-be
MBTZ = −1 toMBTZ = 0), which means there is no in-
stability for a fluid disk to collapse into a naked singular-
ity from an ideal fluid within causal region vc ≤ 1. There-
fore, along the solid blue path (I): Mrest = 0.5 in Fig. 3,
the compactness decreases from M = 0.495 to 0.375
during the gravothermal shrinking, it never meets the
instability. That is to say, although dissipation or ther-
mal radiation can make the disk shrink naturally given
λ = const., it never drives the fluid into an unstable state.
Nevertheless, in the range −0.061 . λR2 < 0 a BTZ BH
could emerge from a collapsing fluid of 0.5 <M . 0.518
without violating causality. For example, under the back-
ground λ = const. this can be achieved by “adding more
mass” to the fluid disk, while the radius remains fixed,
as shown dashed blue path (II): λR2 = −0.02 in Fig. 3.

Discussions and implications.— In the context of
gravothermal evolution, we have examined the dynami-
cal instability of a self-gravitating fluid sphere in (N+1)-
dimensional spacetime by adopting homogeneous fluid
solutions. Although the critical CN may vary quanti-
tatively depending on the density distribution, the main
conclusion generally hold as it is based on the three as-
sumptions made implicitly [42]: (i) The monatomic fluids
obey the first law of thermodynamics, and the pressure
is isotropic due to equipartition theorem. (ii) The par-
ticles composing the fluid follow the mass-energy disper-
sion relation. (iii) Gravity is governed by Einstein field
equations in (N+1) dimensions.
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FIG. 3. C2−λR2 phase diagram of homogeneous fluid disks in
(2+1) dimensions. Bound states are to the right of the brown
dashed line. The stable and unstable regions are separated
by the marginal stable curve (solid black), and the black dot
denotes the end point (−0.0609, 0.518) at the causal limit.
The shaded region (λ > 0) is forbidden to have hydrostatic
equilibrium. The circle denotes M = 0.5 exactly at λ =
0, which is independent of central velocity dispersion [13].
The upper bound of fluid mass is M = 0.5208 at the causal
limit. Region under M = 0.5 is stable, which means that no
homogeneous fluid disk can trigger the instability and collapse
into a naked singularity. Path (I) follows Mrest = 0.5 under
gravothermal evolution; (II) follows λR2 = −0.02 by adding
mass. Only path (II) could transition into a BTZ BH under
the causal limit.

From the dynamical instability viewpoint, we can re-
examine why (3+1) is privileged rather than why it
must be (3+1). If BH is the pathway to generate a
baby universe [44–49], the collapsing matter squeezes into
a (N+1)-dimensional BH near the classical singularity
would result in a newborn universe of arbitrary dimen-
sions. If the spacetime dimensionality reshuffling [50] is

a random process in the reign of quantum gravity near
singularity, it repeats this process again and again un-
til the new-born universe is just (3+1)-dimensional, in
which the fluid sphere is stable but not too stable. As a
self-gravitating fluid sphere (or a star) in N ≥ 4 is gen-
uinely subject to dynamical instability, and could tran-
sition into a BH automatically without undergoing the
stage of long-lived gravothermal evolution. Although a
fluid star can be stabilized by introducing a negative cos-
mological constant, no gravitationally bound state of a
monatomic fluid could exist in this region.

Remarkably, (3+1) is the unique dimensionality that
allows stable hydrostatic equilibrium with positive cos-
mological constant. Given the cosmological constant ob-
served [51] (or ` ∼ 1061`Pl, where `Pl is the Planck
length), the mass of a virialized stellar object, e.g., dark
matter halo, must be M � 0.02`c2/G3 ∼ 1021 M�
(see Fig. 1) in order to avoid the dynamical instabil-
ity and a possible BH formation from its direct col-
lapse. However, a big crunch singularity would form if
M > (1/3

√
3)`c2/G3 ∼ 1022 M� [35]. On the other

hand, (2+1)-dimensional gravity is bizarre. The fluid
disk cannot gravothermally evolve into a singular state
through dissipation, but a BTZ hole could emerge from a
collapsing fluid disk with external agents. While a naked
singularity cannot emerge from a fluid disk, which sup-
ports the Cosmic Censorship Conjecture [52].
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