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In flat space and at finite temperature, there are two regimes of false vacuum decay in quantum
field theory. At low temperature, the decay proceeds through thermally-assisted tunneling described
by periodic Euclidean solutions — bounces — with non-trivial time dependence. On the other hand,
at high temperature the bounces are time-independent and describe thermal jumps of the field over
the potential barrier. We argue that only solutions of the second type are relevant for false vacuum
decay catalyzed by a black hole in equilibrium with thermal bath. The argument applies to a
wide class of spherical black holes, including d-dimensional AdS/dS-Schwarzschild black holes and
Reissner–Nordström black holes sufficiently far from criticality. It does not rely on the thin-wall
approximation and applies to multi-field scalar theories.

I. INTRODUCTION

False vacuum decay in field theory has been sub-
ject of extensive research, see [1] for a review. In flat
spacetime at zero temperature, the transition from the
false to true vacuum proceeds via tunneling through the
potential barrier separating the vacua. In the semi-
classical approximation, the tunneling is described by
bounce—regular solution of the field equations that sat-
isfies vacuum boundary conditions. The latter are conve-
niently formulated in the purely imaginary (Euclidean)
time τ [2, 3].

At finite temperature T , the tunneling is described by
thermal bounce which is periodic in τ with the period
1/T [4, 5]. The thermal bounces depend on τ below cer-
tain critical temperature, T < Tc, in which case they
are also called ‘periodic instantons’. At higher temper-
atures the bounces degenerate into τ -independent solu-
tion. Every constant-τ slice of this solution coincides
with sphaleron (or critical bubble), which is the saddle-
point configuration at the top of the barrier separating
the false and true vacua. This picture admits a natural
physical interpretation. While at T < Tc the vacuum
decay proceeds via quantum tunneling from an excited
state, at T > Tc thermal fluctuations of the field are
strong enough to drive the system over the barrier clas-
sically. Unless T is very large, the decay rate is exponen-
tially suppressed,

Γdecay ∼ e−Bλ , (1)
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and the suppression factor Bλ equals the Euclidean ac-
tion of the theory evaluated on the bounce solution. At
T > Tc this is simply given by the sphaleron energy di-
vided by T .

We illustrate this on fig. 1 where we plot Bλ in the
2-dimensional theory of the real scalar field ϕ with the
potential

V =
m2ϕ2

2
− g4ϕ

4

4
, (2)

where g4 > 0.1 In this theory the periodic instantons
smoothly merge to the sphaleron branch at Tc ∼ m.
Though the τ -independent bounces are still solutions of
the field equation at T < Tc, their Euclidean action is
larger than that of the periodic instantons. One can un-
derstand that they are not relevant for vacuum decay by
counting the number of their negative modes — linearly
independent perturbations reducing their Euclidean ac-
tion. A relevant bounce, being a saddle point of the
action, must have exactly one such mode [2, 3]. On the
other hand, the τ -independent bounces at T < Tc have at
least two. One of them corresponds to the change of the
sphaleron size and exists also at T > Tc. Another one ap-
pears only at T < Tc and corresponds to the deformation
into periodic instanton.

In general, the transition between periodic instan-
tons and τ -independent bounces can be discontinuous, as
e.g. in models admitting the thin-wall approximation in
spacetime with d > 2 dimensions [6]. Still, the presence

1 The model does not have a stable true vacuum since the potential
is unbounded from below at ϕ → ∞. This does not affect our
discussion.

mailto:vadim.briaud@phys.ens.fr 
mailto:ashkerin@umn.edu
mailto:ssibiryakov@perimeterinstitute.ca


2

g 4
B λ

/m
2

λ/m

g4Bs/m2

FIG. 1. Exponential suppression of false vacuum decay in 2-
dimensional flat spacetime at finite temperature T ≡ λ/(2π).
The dashed line shows the suppression Bs due to sphalerons.
We consider the scalar field theory with the potential (2).

of extra negative modes around τ -independent bounces
at low temperature persists and provides a clear signal
that these solutions are irrelevant for flat-space vacuum
decay [1].

The goal of the present paper is to understand how
the above picture of thermal vacuum decay is affected by
the curved metric of a black hole (BH). It is known that
a BH catalyzes the decay providing a nucleation site for
bubbles of the true vacuum [7–11]. Various aspects of
this effect and its possible relevance for the instability of
the electroweak vacuum of the Standard Model have been
discussed in [12–26]. Assume that a BH with Bekenstein–
Hawking temperature TBH is surrounded by thermal bath
with the same temperature. This equilibrium state is
known as the Hartle–Hawking vacuum [27], and its de-
cay can be studied in the Euclidean time formalism.2 For
a spherically symmetric BH in d dimensions this leads to
the theory on a Euclidean manifold M2 × Sd−2, where
Sd−2 is the (d− 2)-dimensional sphere, and M2 has ge-
ometry of a cigar with compactified Euclidean time τ
playing the role of the angular variable and the radial
coordinate covering the region outside the horizon [27].
This picture corresponds to the Euclidean partition func-
tion in the Hartle–Hawking vacuum, and the tunneling
solutions are saddles of this partition function.

Previous studies give rise to the following puz-
zle. Analysis of O(3)-symmetric configurations in
4d Schwarzschild background using the thin-wall ap-
proximation yields only τ -independent solutions of the
sphaleron type, with no analogs of periodic instantons
[9]. Similarly, still working within the thin-wall approx-
imation but with the gravitational back-reaction taken

2 The Euclidean time approach does not work in non-equilibrium
situations, such as e.g. a radiating BH in empty space described
by the Unruh vacuum [28]. The method applicable in this general
case has been developed in [24, 25].

into account, Refs. [11, 14] found that the dominant con-
tribution to the vacuum decay probability around a static
BH is always provided by the sphaleron. The absence of
periodic instantons is surprising, and one may wonder if
it is peculiar to the thin-wall regime.

We provide evidence that this is not the case. Namely,
we prove that for a general multi-scalar theory and a
wide class of spherically symmetric BHs in d dimensions
the τ -independent bounces centered on the BH have ex-
actly one O(d−1)-symmetric negative mode at any TBH.
This makes existence of any O(d − 1)-symmetric peri-
odic instantons around the BH unlikely.3 Throughout
our analysis we neglect the back-reaction of the scalar
field on the metric.

The paper is organized as follows. We first develop the
intuition for the proof on an example of 2-dimensional
dilaton BH in sec. II. The proof is then extended to gen-
eral d-dimensional BHs in sec. III. We discuss our results
in sec. IV. We work in the system of units ~ = c = G = 1.

II. DILATON BLACK HOLE IN TWO
DIMENSIONS

As discussed in [24], only the exterior region of a BH is
relevant for the computation of the vacuum decay proba-
bility. In this region the metric of a 2-dimensional dilaton
BH [29] can be written in the form,

ds2 = Ω(x)(−dt2 + dx2) , (3)

where −∞ < x <∞ and

Ω =
1

1 + e−2λx
. (4)

The parameter λ is related to the BH temperature,
λ ≡ 2πTBH. The horizon is located at x → −∞; in
the opposite limit the metric is asymptotically flat. We
analytically continue the metric to the Euclidean time by
replacing t 7→ −iτ . The Euclidean time is compactified
with the period 2π/λ to ensure the absence of conical
singularity at x = −∞.

Consider a scalar field ϕ with the potential V (ϕ) em-
bedded in this metric.4 The Euclidean action for ϕ reads,

S =

∫
dτdx

{
1

2

(
∂ϕ

∂x

)2

+
1

2

(
∂ϕ

∂τ

)2

+ ΩV (ϕ)

}
. (5)

We assume that V (ϕ) has a local metastable minimum
V = 0 at ϕ = 0. Then the equation of motion for ϕ
has a time-independent solution ϕs(x) — sphaleron —
which interpolates between ϕ = 0 at x → +∞ and a

3 This, of course, does not rule out periodic instantons far away
from the BH in the asymptotically flat region.

4 The potential can depend on the temperature due to thermal
loop corrections.
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FIG. 2. Exponential suppression of sphalerons in the back-
ground of 2-dimensional dilaton black hole in equilibrium with
thermal bath for the theory with the potential (2).

nonzero value at the horizon. It describes the saddle
point of the energy barrier separating the false and true
vacua. Note that the equation for ϕ contains the metric
function Ω(x) and hence ϕs parametrically depends on
the BH temperature λ.

The sphaleron gives rise to a τ -independent bounce.
The first indication that this bounce dominates the vac-
uum decay at any λ comes from considering its Euclidean
action Bs. For the model with the potential (2) it is
plotted in fig. 2 which must be contrasted with fig. 1
in flat space. At high temperature the behaviour of
the sphaleron suppression is qualitatively similar in both
cases. However, at low temperature it is dramatically
different. Instead of diverging at small λ as its flat-space
counterpart, Bs in the case of BH smoothly increases to-
wards a finite value B0 equal to the suppression of the
flat-space vacuum bounce. This is indeed the expected
behaviour of the false vacuum decay rate at low temper-
ature.

To see what happens in more detail, let us focus on the
near-horizon region, x < 0 and λ|x| � 1. The conformal
factor is then approximated as Ω ≈ e2λx. We substitute
this expression for Ω into (3) and make the following
change of variables

T =
1

λ
eλx sinλτ , X =

1

λ
eλx cosλτ . (6)

This brings the line element to the form ds2 = dT 2+dX2.
Thus, close to the BH horizon, the spacetime geome-
try is approximately flat. The coordinates (τ, x) define
the (Euclidean) Rindler frame in this flat space. In the
Lorentzian signature, the Rindler frame corresponds to
uniformly accelerating observers in the Minkowski space-
time. In particular, the line of constant x represents a
trajectory of an observer moving with the acceleration
λe−λx. The BH vicinity looks like the Rindler wedge—
the portion of the Minkowski spacetime accessible to the
observer, separated from the rest of the world by the
horizon.

Consider the flat-space vacuum bounce ϕ0(R), where

R =
√
T 2 +X2, centered around the origin of (T , X). 5

The transformation (6) converts it into a static solution
ϕ0

(
eλx/λ

)
. Thus, the decay of the Minkowski vacuum

in the Rindler frame is mediated by a τ -independent
bounce or sphaleron. This agrees with the fact that the
Minkowski vacuum corresponds to a thermal state from
the viewpoint of an accelerating observer [24, 31]. Note
that though in Lorentzian signature the Rindler coordi-
nates cover only half of the flat spatial slices, the Eu-
clidean action of the bounce computed in these coordi-
nates coincides with the full flat-space integration in the
Cartesian coordinates and equals B0. Returning to the
BH sphaleron, its physical size is much smaller than λ−1

in the limit λ � m. Hence it lies entirely in the near-
horizon region and coincides with the Rindler sphaleron,
ϕs(x) = ϕ0

(
eλx/λ

)
. This explains the smooth limit of

its suppression Bs → B0 at λ→ 0.

We can infer one more lesson from considering the
Rindler wedge. In Minkowski space centering bounce at
the origin is not the only possibility. We can as well
translate it to an arbitrary point. In particular, take
the bounce centered at T = 0, X = X0 and denote it
by ϕX0

. Switching to the Rindler frame converts it to
a τ -dependent periodic instanton which nevertheless has
exactly the same Euclidean action B0 as the sphaleron.
In other words, the Rindler space possesses a degener-
ate family of periodic Euclidean solutions—the ‘Rindler
valley’—parameterized by X0, with the limit X0 = 0 cor-
responding to the sphaleron. In the vicinity of the point
X0 = 0, the periodic instantons from the valley are ob-
tained from the sphaleron by a dipole perturbation

ϕX0
≈ ϕ0 +X0 cos θ

dϕ0

dR
, (7)

where θ = arctg T /X. The deviation of the BH metric
from Rindler tilts the valley. The direction of the tilt
is then crucial. If it is towards X0 = 0, the sphaleron
is less suppressed than any of the would-be periodic in-
stantons. And vice versa, a tilt away from X0 = 0 would
lead to periodic instantons being less suppressed that
the sphaleron. We are going to see that the first op-
tion is realized, ruling out periodic instantons connected
to sphaleron.

We presently prove that the τ -independent bounce has
only a single negative mode. Introducing polar coordi-
nates

σ = λ−1 arcsh(eλx) , θ = λτ , (8)

5 See [30] for the proof of O(2)-symmetry of the vacuum bounce
in 2 dimensions.
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the action (5) takes the form

S =

∫ 2π

0

dθ

∫ ∞
0

dσ thλσ

λ

{
1

2

(
∂ϕ

∂σ

)2

+
λ2

2 th2 λσ

(
∂ϕ

∂θ

)2

+ V (ϕ)

}
.

(9)

Note that the radial coordinate σ is chosen to measure
the geodesic distance to the horizon which ensures that
the term 1

2 (∂ϕ/∂σ)2 appears in the action with the same
coefficient as the potential term. The sphaleron has only
radial dependence and satisfies the equation,

− d2ϕs
dσ2

− 2λ

sh 2λσ

dϕs
dσ

+ V ′(ϕs) = 0 , (10)

where prime means derivative of the potential with re-
spect to the field. Due to the rotational invariance, the
eigenmodes of perturbations around ϕs decompose into
multipole sectors with the angular dependence e±inθ. A
radial eigenfunction χµ(σ) corresponding to the eigen-
value µ in the n-th sector obeys a Schrödinger-type equa-
tion

Heff,nχµ = µχµ (11)

with the effective Hamiltonian

Heff,n = − d2

dσ2
− 2λ

sh 2λσ

d

dσ
+ Ueff,n(σ) (12)

and

Ueff,n(σ) = V ′′
(
ϕs(σ)

)
+

n2λ2

th2 λσ
. (13)

Note that the Hamiltonian (12) is Hermitian with re-
spect to the positive measure

∫
dσ λ−1 thλσ and the po-

tential (13) is positive at σ →∞. Hence, negative modes
(µ < 0) of Heff,n, if any, form a discrete spectrum. We
will take them to be normalized.

First, note that in the monopole sector (n = 0)
the sphaleron has exactly one negative mode. Indeed,
monopole perturbations correspond to static configura-
tions whose Euclidean action is given simply by their
energy times 2π/λ. But the sphaleron is, by definition,
the saddle-point of the static energy functional and hence
the minimum of the energy in all but one direction.

Next we show that the spectrum in the dipole sector
(n = 1) is strictly positive. This is the key part of the
proof. We take the derivative of the sphaleron equation
(10) with respect to σ and obtain,

− d2ϕ̇s
dσ2

− 2λ

sh 2λσ

dϕ̇s
dσ

+ Ũeff(σ)ϕ̇s = 0 , (14)

where ϕ̇s ≡ dϕs/dσ and we have introduced a new effec-
tive potential

Ũeff(σ) = Ueff,1(σ)− λ2 th2 λσ . (15)

This implies that ϕ̇s is a zero mode of the new Hamilto-
nian

H̃eff = − d2

dσ2
− 2λ

sh 2λσ

d

dσ
+ Ũeff(σ) . (16)

The sphaleron is a monotonic function of σ, as can be
easily shown using the analogy between eq. (10) and the
equation of motion of a unit-mass particle moving with
the friction in the potential −V (ϕs) [2]. This means that
ϕ̇s does not cross zero and, hence, it is the ground state
of H̃eff . But Heff,1 differs from H̃eff by an addition of

a positive potential λ2 th2 λσ, and therefore, its discrete
eigenvalues are strictly larger than those of H̃eff . 6 Thus,
the ground state energy of Heff,1 is strictly positive.

Clearly, the last result also implies the positivity of the
spectrum in higher multipoles since Ueff,n(σ) > Ueff,1(σ)
for n > 1. Thus, we conclude that the only negative mode
of the τ -independent bounce resides in the monopole sec-
tor. This completes the proof.

The above proof is straightforwardly generalized to the
theory of several scalar fields ϕi. Proceeding as before,
one obtains two Hamiltonians: Heff,1 for the perturba-

tions in the dipole sector, and H̃eff arising upon differen-
tiation of the sphaleron equation. The difference between
Heff,1 and H̃eff is diagonal in the space of fields and is
manifestly positive. Hence, the eigenvalues of Heff,1 are

strictly larger than those of H̃eff . On the other hand, the
latter has the zero mode ϕ̇is. The only thing that needs

to be proven is that ϕ̇is is the ground state of H̃eff . Con-
sider the low-temperature limit in which, as we know, the
sphaleron is obtained from the flat vacuum bounce ϕi0(σ)
by the Rindler transformation. Since ϕi0 is a tunneling
solution, it has a single negative mode in the monopole
sector, and no negative modes in the dipole sector. Also
H̃eff = Heff,1 at λ = 0. Hence, ϕ̇is is the ground state of

H̃eff at small temperature and, by continuity, it remains
to be the ground state at all temperatures.

III. BLACK HOLES IN d DIMENSIONS

We are ready to address the case of a spherically sym-
metric BH in d > 2 dimensions. Consider the metric

ds2 = f(r)dτ2 +
dr2

f(r)
+ r2dΣ2

d−2 , (17)

where dΣ2
d−2 is the line element on the (d − 2)-

dimensional unit sphere. We do not specify f(r) at this
point, assuming only that it has horizon at r = rh, where
f(rh) = 0, f ′(rh) > 0, and that it is positive at r > rh.
We analyze explicitly the theory of a single real scalar

6 To prove this, consider a continuous deformation of H̃eff into
Heff,1 by monotonically increasing the potential and use δµ =
〈χµ|δH|χµ〉.
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field; the multi-field generalization is straightforward, as
in the 2d case studied above.

A theory with a metastable vacuum has a sphaleron
solution that inherits the O(d− 1) symmetry of the met-
ric. We want to prove that, for a broad class of BHs, it
has a single negative mode within the sector of O(d− 1)-
symmetric configurations. For such configurations the
Euclidean action reads,

S = Ad−2

∫
dτdr rd−2

{
f

2

(
∂ϕ

∂r

)2

+
1

2f

(
∂ϕ

∂τ

)2

+ V (ϕ)

}
=

2Ad−2

f ′(rh)

∫
dθdσ rd−2

√
f

{
1

2

(
∂ϕ

∂σ

)2

+
(f ′(rh))2

8f

(
∂ϕ

∂θ

)2

+ V (ϕ)

}
,

(18)

where Ad−2 = 2π
d−1
2 /Γ(d−1

2 ) is the surface area of a
unit (d − 2)-dimensional sphere, and in the second line
we introduced the geodesic coordinates

σ =

∫
dr√
f(r)

, θ =
f ′(rh)

2
τ . (19)

Note that σ is set to be zero at the horizon, σ(rh) = 0,
and θ is an angular variable with period 2π ensuring the
regularity of the Euclidean metric (17) at the horizon.

As in 2 dimensions, it is sufficient to focus on the dipole
perturbations of the form χµ(σ) cos θ. The radial func-
tion satisfies the equation

− d2χµ
dσ2

− d ln(rd−2
√
f)

dσ

dχµ
dσ

+Ueff,1(σ)χµ = µχµ (20)

with the effective potential

Ueff,1 = V ′′(ϕs) +
(f ′(rh))2

4f
. (21)

On the other hand, by taking the σ-derivative of the
sphaleron equation

− d2ϕs
dσ2

− d ln(rd−2
√
f)

dσ

dϕs
dσ

+ V ′(ϕs) = 0 , (22)

we obtain

− d2ϕ̇s
dσ2

− d ln(rd−2
√
f)

dσ

dϕ̇s
dσ

+ Ũeff(σ)ϕ̇s = 0 . (23)

As before, we have defined ϕ̇s ≡ dϕs/dσ and

Ũeff = V ′′(ϕs)−
d2 ln(rd−2

√
f)

dσ2

= V ′′(ϕs) +
(d− 2)f

r2
− (d− 2)f ′

2r
− f ′′

2
+

(f ′)2

4f
,

(24)

where f ′ stands for the derivative of f with respect to
r. We observe that ϕ̇s is the ground state7 with zero

7 ϕ̇s does not have nodes as long as ϕs(σ) is monotonic. A suffi-
cient condition for this is the positivity of the “friction” term in
eq. (22), d ln(rd−2

√
f)/dσ > 0.

energy of the Hamiltonian H̃eff corresponding to the po-
tential (24). Hence, eq. (20) does not have any negative

eigenmodes if Ueff,1 > Ũeff , or equivalently if

D(r) ≡ (f ′(rh))2 − (f ′)2

4

− (d− 2)f2

r2
+

(d− 2)ff ′

2r
+
ff ′′

2
> 0

(25)

at r > rh. This inequality provides a general suffi-
cient condition for the absence of non-monopole negative
modes on the τ -independent bounce. Note that it in-
volves only the properties of the metric, but not of the
scalar potential.

We now show that the condition (25) is satisfied
for several common BH metrics. We start with the
Schwarzschild metric, f(r) = 1 − 2M/rd−3. Instead of
computing D(r) directly, it is easier to find its derivative,

D′(r) =
2(d− 2)

r3

(
1− (d− 1)M

rd−3

)2

. (26)

We see that the latter is positive. Since D(rh) = 0, this
implies positivity of D(r) everywhere outside the hori-
zon. The argument extends to the Schwarzschild-(anti)
de Sitter metric,8 f(r) = 1− 2M/rd−3 ± r2/l2. Remark-
ably, l2 drops out of D′(r) which is still given by (26).

Next consider the Reissner–Nordström BH with

f(r) = 1− 2M

rd−3
+

Q2

r2(d−3)
, (27)

where M and Q are BH mass and charge, respectively.
Inequality (25) is satisfied outside the horizon as long
as |Q| is small enough. For example, in 4 dimensions
a numerical analysis yields the bound Q2 < Q2

∗, where
Q2
∗ ' 0.833M2.
On the other hand, a nearly critical BH provides a

notable violation of the condition (25). Computing D(r)
for Q = M we obtain,

D(r) = −d− 2

r2

(
1− M

rd−3

)4

< 0 . (28)

Recalling that D(r) sets the difference between Ueff,1 and

Ũeff , we conclude that in this case the τ -independent
bounce does have a negative dipole mode. Hence, for
a nearly critical BH, it is not a valid solution for the
false vacuum decay and we expect existence of periodic
instantons centered on the BH.

We focused above on O(d − 1)-symmetric configura-
tions. Our results do not exclude existence of extra neg-
ative modes which break this symmetry. In fact, pres-
ence of such negative modes is expected for large enough

8 The Schwarzschild-de Sitter metric has, apart from the BH hori-
zon, a cosmological horizon. We consider here a thermal ensem-
ble in equilibrium with the former, but not the latter.
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BHs. Indeed, consider the equation for a mode which
is τ -independent, but has non-trivial dependence on the
angles Σd−2,

−d2χµ
dσ2

−d ln(rd−2
√
f)

dσ

dχµ
dσ

+

(
V ′′(ϕs) +

L2

r2

)
χµ = µχµ .

(29)
Here −L2 is the eigenvalue of the Laplacian on a unit
(d − 2)-dimensional sphere. We know that for L2 = 0
this equation has a negative eigenvalue µ− < 0. Then,
since r is bounded from below by rh, the equations with
non-zero L2 also have negative modes if L2/r2

h < |µ−|.
This instability has an intuitive explanation. For large
rh the symmetric sphaleron looks like a shell stretched on
the BH horizon and locally has almost flat geometry. Not
surprisingly, it is unstable with respect to inhomogeneous
perturbations. Note that in this regime the sphaleron
suppression is proportional to the horizon area ∝ rd−2

h
and exceeds the suppression of flat-space bounces. Since
large BHs have low temperature TBH . r−1

h , we conclude
that low-temperature decays are dominated by bounces
away from the BH. This is an important difference of the
d > 2 case from the theory in 2 dimensions.

IV. DISCUSSION

We have shown for a large class of BHs that the
τ -independent O(d − 1)-symmetric bounce centered on
them has a single negative mode in the sector of O(d−1)-
symmetric perturbations. This negative mode is τ -
independent. Though this does not strictly rule out a
branch of O(d − 1)-symmetric periodic instantons com-
pletely disconnected from the sphaleron, we believe this
possibility to be unlikely. Asymmetric, but still τ -
independent, negative modes do exist for large (and cold)
BHs. In this case, however, the bounce centered on the
BH is more suppressed than the bounce in the asymptot-
ically flat region and is irrelevant for vacuum decay.

Our result has two implications. On the technical side,
it simplifies the analysis of BH catalysis of false vacuum
decay in thermal bath by sparing the task of looking for
periodic instantons. The latter requires solving nonlinear
elliptic partial differential equations, or a system thereof
for multi-field theories. By contrast, the static sphaleron
depends only on the radial coordinate and is found as
a solution of ordinary differential equations. This sim-
plification can be useful in various contexts where one
deals with thermal ensembles containing BHs, such as
e.g. cosmology [18–20] or holography [32–35].

From the physical perspective, the dominance of τ -
independent bounce suggests to interpret false vacuum

decay around the BH as driven by over-barrier transitions
at any TBH. This appears consistent with the fact that,
from the viewpoint of the asymptotic observer, the tem-
perature in the vicinity of the BH is blue-shifted and ex-
ceeds Tc close enough to the horizon leading to enhanced
thermal fluctuations. However, the clear distinction be-
tween quantum tunneling and over-barrier transitions is
absent in curved spacetime. This is known from the study
of Coleman–De Luccia [36] and Hawking–Moss instan-
tons [37] in de Sitter which can be interpreted either as
vacuum bounces in inflationary coordinates [38], or as
thermal sphaleron transitions in the static patch [39].
Another example is provided by the relation between
Minkowski and Rindler bounces [24, 31, 40] mentioned
in sec. II. Similarly, the static bounce in Schwarzschild
metric becomes time-dependent in a different reference
frame, such as e.g. Kruskal coordinates, and in this frame
corresponds to a vacuum bounce. Thus, the BH space-
time gives one more example that the question whether
the vacuum decay is due to quantum or thermal fluctua-
tions has no covariant meaning.

A notable exception to our proof is provided by nearly
critical Reissner–Nordström BH, in which case we expect
existence of periodic instantons centered on the BH. An
intuitive explanation why such BHs are special comes
from considering an exactly critical BH. This has zero
temperature and the state around it appears as vacuum
even for a static observer. The true bounce in this case
must be localized in the Euclidean time, as in Minkowski
space, whereas the τ -independent bounce has infinite
suppression.

In this paper we focused on thermal ensemble and did
not consider non-equilibrium situations, such as a BH
emitting Hawking radiation into empty space (Unruh
vacuum). It will be interesting to see if the approach
of this work can be used to get insight into the structure
of complex bounces describing false vacuum decay in this
case [24, 25]. Finally, it would be interesting to extend
our analysis by including gravitational back-reaction of
the bounce on the metric.
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