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We construct the covariantly defined multipole moments on the common horizon of an equal-
mass, non-spinning, quasicircular binary-black-hole system. We see a strong correlation between
these multipole moments and the gravitational waveform. We find that the multipole moments are
well described by the fundamental quasinormal modes at sufficiently late times. For each nonzero
multipole moment with ` ≤ 6, at least two fundamental quasinormal modes of different ` are
detectable in the best model. These models provide faithful estimates of the true mass and spin of
the remnant black hole. We also show that by including overtones, the ` = m = 2 mass multipole
moment admits an excellent quasinormal-mode description at all times after the merger. This
demonstrates the perhaps surprising power of perturbation theory near the merger.

I. INTRODUCTION

The black hole (BH) no-hair theorem [1, 2] suggests
that the final state of a charge-neutral BH merger satis-
fies the Kerr solution, which is characterized by only two
parameters: mass and angular momentum (or equiva-
lently, spin). Numerical simulations of binary-black-hole
(BBH) systems have directly confirmed this theorem by
comparing the quantities in the final stage with the cor-
responding Kerr values [3–6]. The Kerr spacetime is ax-
isymmetric and has a simple geometry. In stark contrast,
as brought out by numerical simulations, the horizon of a
merged BH is highly distorted at its formation, and un-
dergoes large dynamical changes as it approaches equilib-
rium. For a BH merger to lose its hair and settle down
to the final Kerr state, the horizon distortion must be
washed away by general relativity in the ringdown phase.

In numerical relativity, an event horizon is not a conve-
nient notion of horizon, as it cannot be determined during
the evolution of the spacetime. It is typically found in
post-processing, once the complete spacetime is known.
Quasilocal objects like apparent horizons are more fa-
vored, because they can be computed on each time slice
without the knowledge of the complete spacetime. A re-
cent topic in the study of quasilocal objects is seeking
a quantitative description of the horizon behavior of a
BBH merger. One of the physical quantities used for
such an investigation is the gravitational flux falling into
a horizon. It turns out that the infalling energy flux is
correlated with the outgoing flux of gravitational waves
[7, 8]. This might seem slightly surprising at first glance
but is indeed reasonable, because both the ingoing and
outgoing flux are generated from the same gravitational
source. Besides the flux, another quantity that can be
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used in the analysis of BH horizons is the set of hori-
zon multipole moments. In the following discussion, we
will discuss the multipole moments only in the ringdown
phase, though this concept is also applicable in the in-
spiral phase (see, e.g., Ref. [9]).

Horizon multipole moments generalize the mass and
spin of a BH. It is fairly straightforward to define multi-
pole moments on the isolated horizon of a Kerr BH [10],
or on a dynamical horizon that is axisymmetric through-
out the whole ringdown phase [11]. This is because in
both situations, the horizon possesses a rotational Killing
vector, which is associated with a natural choice of an-
gular coordinates. In a more general BBH configuration,
however, choosing an appropriate definition of multipole
moments is a nontrivial task. One difficulty comes from
the nonaxisymmetry of the dynamical horizon. More-
over, the coordinate system used to express the compo-
nents of spacetime quantities varies from simulations to
simulations, which calls for an invariant notion of multi-
pole moments. Ashtekar et al. [12] provide a definition
of horizon multipole moments that is appropriate for this
task. They start with the axisymmetry of the final BH,
construct weighting fields subject to this axisymmetry,
and transport these weighting fields backward along the
dynamical horizon. The resulting multipole moments are
then spatially gauge independent on a given dynamical
horizon. This set of multipole moments will be the sub-
ject of this paper, and we will explain the construction
process in greater detail in later sections.

Regardless of different notions of multipole moments,
an important goal in studying them is to discover any uni-
versality in the horizon behavior of a remnant BH. A nat-
ural avenue is to find inspiration from multipole moments
of the gravitational waveform in the ringdown phase. BH
perturbation theory shows that the gravitational waves
radiated by a perturbed BH at late times can be charac-
terized by a superposition of exponentially damped os-
cillations, called the quasinormal modes (QNMs) [13–16].
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The frequency and the decay constant of each mode are
completely determined by the final mass and spin, con-
sistent with the no-hair theorem. The presence of quasi-
normal modes in the late-time behavior of post-merger
waveforms has already been confirmed in numerical simu-
lations (e.g., [17, 18]). Recently, Giesler et al. [19] discov-
ered that including overtones even allows a QNM model
to describe the waveform immediately after merger.

Although the waveform multipole moments are a su-
perposition of QNMs in the ringdown phase, we might
not expect this behavior in multipole moments of the dy-
namical horizon soon after the common horizon forms.
After all, this horizon is initially highly distorted com-
pared to a Kerr horizon, so we have no reason to expect
perturbation theory to be valid. Moreover, the time co-
ordinate of the simulation is quite arbitrary compared
to the time coordinate of an observer at infinity, which
is used to define the frequency of QNMs. Nevertheless,
there is strong evidence supporting the idea that hori-
zon multipole moments exhibit QNM behavior [8, 20–
22]. However, such evidence is based on either the spe-
cial case of a head-on collision of two BHs, or a definition
of multipole moments that does not refer to the connec-
tion among quasilocal horizons on different time slices. A
definition ignoring the diffeomorphism content of a dy-
namical horizon is subject to the arbitrariness of spatial
coordinates.

In this paper, we calculate the horizon multipole mo-
ments that are spatially gauge invariant on the com-
mon horizon of an equal-mass BBH system, following
the definition in Ref. [12]. To investigate the dynamics
of these multipole moments, we test their balance laws,
compare them with waveform multipole moments, and
model them as linear combinations of QNMs. Regarding
the QNM models, we use fundamental tones to analyze
the late-time behavior of multipole moments, and then
include overtones in the survey of their early-time pat-
terns. We will also consider the effect of mode mixing,
which turns out to be significant in most of the multipole
moments.

The rest of this paper is structured as follows. In
Sec. II, we introduce the notions of horizons and quasi-
normal modes. We also describe the construction process
of the horizon multipole moments proposed by Ashtekar
et al. [12]. In Sec. III, we describe the configuration
of our BBH simulation and implement the procedure to
extract multipole moments on the common horizon. In
Sec. IV, we first look for potential correlations between
horizon and waveform behavior in the context of their
respective multipole moments. Then, we investigate the
damped sinusoidal patterns of multipole moments using
QNM models, with or without the inclusion of overtones.
We finally summarize the results and give remarks on
possible future work in Sec. V.

II. PRELIMINARIES

A. Dynamical horizons

A spacetime is a 4-dimensional Lorentzian manifold
M equipped with a metric gab of signature (−,+,+,+).
Here, we only consider a vacuum spacetime that is
asymptotically flat.1 Let ∇a be the covariant deriva-
tive compatible with gab. Let S ⊂ M be a smooth,
orientable, spacelike 2-manifold with spherical topology
S2. Let q̃ab be the induced metric on S. (All symbols
with tilde in this paper represent quantities on or associ-
ated with S.) The outgoing and ingoing future-directed
null normals to S, denoted as la and na, are normalized
subject to l · n = lana = −1. The expansions of la and
na are

Θ(l) = q̃ab∇alb, (1)

Θ(n) = q̃ab∇anb. (2)

The shear of la is

σab = q̃ ca q̃
d
b ∇cld −

1

2
Θ(l)q̃ab, (3)

while the shear of na is not used in this paper. Note
that σab is related to but different from the shear spin
coefficient σ, which is usually defined using a complex
null tetrad.

A marginally outer trapped surface (MOTS) is a sur-
face S satisfying Θ(l) = 0 (following the convention in
Ref. [23]). A MOTS is called a future MOTS if Θ(n) < 0,
or a past MOTS if Θ(n) > 0. The notion of a MOTS
is quasilocal, which makes it very convenient because the
calculation does not require the knowledge of a full space-
time. In numerical simulations of BHs, there are efficient
algorithms [24–28] that compute MOTSs to locate BHs
on every Cauchy surface Σ.

A marginally trapped tube is a smooth 3-manifold H
foliated by future MOTSs [23]. The 3-manifold H is said
to be a dynamical horizon2 [23, 30–32] if it is spacelike,
or a timelike membrane if it is timelike. We call H a non-
expanding horizon if it is null3 [33–35]. A non-expanding

1 The concepts in this section can be generalized in a non-vacuum
spacetime.

2 Other literature may use different definitions of a dynamical hori-
zon. For example, Ref. [29] and the Appendix B of Ref. [30] allow
dynamical horizons to be timelike. We also note that the original
definition of a dynamical horizon does not require la and na to
be outgoing and ingoing [31].

3 The foliation in the definition of a non-expanding horizon only
requires MOTSs, instead of future MOTSs. To define a non-
expanding horizon in a non-vacuum spacetime, an additional
condition is imposed on the stress-energy tensor Tab: −TabUb
is causal and future directed for any future-directed null normal
Ub to H. This is an energy condition weaker than the dominant
energy condition.
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FIG. 1. Dynamical horizon in a numerical simulation. The
common horizon S is computed on the Cauchy surface Σ (the
horizontal plane). The dynamical horizon H (the paraboloid)
consists of a stack of S. Note that these shapes do not reflect
the actual appearance of these quantities. See Sec. II A for
the definitions of the vectors. This figure is a modification of
Fig. 1 of Ref. [12].

horizon is called an isolated horizon4 [33–35] if there is a

specific null normal l̊a to H such that

(Ll̊Da −DaLl̊)W
a = 0, (4)

for any tangent vector W a onH. Here Da is the covariant
derivative compatible with the (degenerate) metric qab
induced on H5 We are not interested in the specific form

of l̊a on an isolated horizon, though it can be constructed
from any null normal (see Sec. IV B in [35]).

After the merger of a BBH, the outermost MOTSs
(called the common horizons) on Cauchy surfaces trace
out a dynamical horizon.6 As we expect the remnant BH
to be Kerr, this dynamical horizon should asymptote to
an axisymmetric isolated horizon [33] as the BH settles
down. We are only interested in this dynamical horizon
(which is, the stack of common horizons) in the rest of
this paper, so we reserve the symbol H to represent this
dynamical horizon henceforth.

We visualize the relation among S, H, and Σ in Fig. 1.
The figure is based on Fig. 1 of Ref. [12], with slightly
different use of symbols. This figure is merely illustrative:

4 In a non-vacuum spacetime, matter fields must be “time” inde-
pendent on an isolated horizon as well, where “time” is under-
stood as the parameter generated by l̊a.

5 Since qab is degenerate, there exist infinitely many covariant
derivatives compatible with it. The covariant derivative Da here
is uniquely defined as the pullback of ∇a. This can be done,
because the non-expanding horizon is shear free.

6 Reference [29] shows that a tiny portion of early common hori-
zons may admit Θ(n) ≥ 0, so the 3-manifold foliated by these
early common horizons may not strictly obey the definition of
a dynamical horizon used in this paper. However, a portion of
Θ(n) ≥ 0 does not affect the conclusions of this paper.

the shapes of the objects in this figure do not reflect
their actual appearance in a numerical simulation. The
horizontal plane represents a Cauchy surface Σ, and the
circle on this plane represents the common horizon S.
The common horizons on all Cauchy surfaces constitute
a dynamical horizon H, shown as the paraboloid. There
are four vectors in this figure: t̂a is the unit timelike
normal to Σ, τ̂a the unit timelike normal to H within the
spacetime, r̂a the unit spacelike normal to S within H,
and ŝa the unit spacelike normal to S within Σ. Based on
these unit vectors, we fix the scaling freedom in l ·n = −1
by choosing

la = τ̂a + r̂a, na =
1

2
(τ̂a − r̂a). (5)

We also define another set of null normals that satisfy
the same normalization, {l′, n′}, such that

l′a = t̂a + ŝa, n′a =
1

2
(t̂a − ŝa). (6)

B. Multipole moments

The notion of multipole moments on horizons was first
introduced for an isolated horizon [10]. If an isolated
horizon is axisymmetric, multipole moments are defined
as the multipolar expansion of the Weyl scalar Ψ2. Mul-
tipole moments were later generalized to a dynamical
horizon in Refs. [11, 12, 20]. As mentioned in the pre-
vious section, we only consider a dynamical horizon H
that asymptotes to an axisymmetric isolated horizon. In
simulations, the late portion of H can be treated as an
axisymmetric isolated horizon to within numerical accu-
racy. We construct multipole moments on such a dynami-
cal horizon by following Ref. [12], and the majority of this
section is simply a review of materials from Ref. [12].

1. Spherical harmonics on an axisymmetric S

Let S be a general smooth, orientable, spacelike 2-
manifold with spherical topology S2. We start by choos-
ing a pair of angular coordinates (θ, φ) on S. If S is
axisymmetric (as in the late portion of H), there is a nat-
ural choice of (θ, φ) [10]. Let ϕa on S be the rotational
Killing vector field, which generates closed integral curves
and vanishes at exactly two points (the poles). Let φ be
the affine parameter of each closed integral curve with
range [0, 2π). We then pick a new curve that connects
the two poles and is orthogonal to ϕa everywhere, and
we set it to be the prime meridian φ = 0. We define a
variable ζ that satisfies

D̃aζ =
1

R2
ε̃baϕ

b, (7)˛
S
ζd2V = 0, (8)
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where D̃a is the covariant derivative compatible with q̃ab,
ε̃ab the area 2-form, d2V the corresponding area element,
R =

√
A/4π the areal radius, and A the area. It is

necessary that ζ has range [−1, 1]. We obtain the angle
θ via ζ = cos θ. Note that there is a rotational degree of
freedom in choosing the prime meridian, and we will fix
this freedom in Sec. III A.

In the (θ, φ) coordinates, the induced metric on S can
be written as [10]

q̃ab =
R4 sin2 θ

|~ϕ|2
(dθ)a(dθ)b + |~ϕ|2(dφ)a(dφ)b, (9)

where |~ϕ|2 = ϕaϕa. The compatible area element,
d2V = R2 sin θdθdφ, is the same as the area element of a
fictitious round 2-sphere metric,

q̊ab = R2[(dθ)a(dθ)b + sin2 θ(dφ)a(dφ)b]. (10)

Spherical harmonics7 are then defined as usual,

Y`m(θ, φ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
Pm` (cos θ)eimφ, (11)

where Pm` (x) are the associated Legendre polynomi-
als (with the Condon–Shortley phase convention) [36].
These Y`m are orthogonal on S:

˛
S
Y ∗`mY`′m′d2V = R2δ``′δmm′ , (12)

where * denotes complex conjugation, and the integra-
tion is with respect to the area 2-form of q̃ab.

2. Multipole moments on an axisymmetric isolated horizon

Let S be an axisymmetric MOTS of an axisymmetric
isolated horizon. On this S, we define mass multipole mo-
ments (or simply mass moments) I`m and spin multipole
moments (spin moments) L`m as

I`m =
1

4

˛
S
R̃Y ∗`md2V, (13)

L`m =
1

2

˛
S
ε̃abω̃bD̃aY

∗
`md

2V. (14)

Here, R̃ is the q̃ab-compatible Ricci scalar8 on S, and ω̃a
is the rotational 1-form,

ω̃a = −q̃ ba nc∇blc. (15)

7 Spin-weighted spherical harmonics can be defined similarly, but
we do not use them on a horizon in this paper.

8 We use the following convention of the spacetime Riemann tensor
(4)Rabcd: (∇a∇b−∇b∇a)vc = (4)Rabc

dvd for any 4D 1-form va.
The spacetime Ricci scalar is then defined as (4)R = (4)Rabab.
The Riemann tensor and Ricci scalar on a horizon follow similar
conventions.

These multipole moments are related to the Weyl scalar
Ψ2 by

I`m + iL`m = −
˛
S

Ψ2Y
∗
`md

2V, (16)

because Ψ2 on an isolated horizon satisfies [10]

Ψ2 = −1

4
R̃+

i

2
ε̃abD̃aω̃b. (17)

Although the m = 0 modes (I`,0 and L`,0) are the only
nonvanishing modes because of the axisymmetry of S, we
keep m arbitrary so that we can easily generalize multi-
pole moments on any MOTS of H in the coming sections.

At the end of Sec. II A, we fixed the scaling freedom in
{l, n}, so there is no ambiguity in the definition of ω̃a. As
the scaling freedom does not affect Ψ2 and L`m, we can
replace the current pair {l, n} in Eq. (15) by any other
null {l, n} subject to l · n = −1. For the purpose of this
paper, it is more convenient and stable to use the pair
{l′, n′} in the definition of a rotational 1-form. We define

ωa = −γ b
a n
′c∇bl′c = γ b

a ŝ
c∇bt̂c =

(
KΣ
)
ab
ŝb, (18)

where γab is the spatial metric induced on Σ, and(
KΣ
)
ab

= γ c
a ∇ct̂b is the extrinsic curvature9 of Σ within

the spacetime. Replacing ω̃a by ωa, we have an equiva-
lent definition of spin moments,

L`m =
1

2

˛
S
ε̃abωbD̃aY

∗
`md

2V. (19)

It is also useful to rewrite Eq. (19) as

L`m = −1

2

˛
S
ωaϕ

a
`md

2V, (20)

ϕa`m = ε̃abD̃bY
∗
`m. (21)

The vectors ϕa`m provide a complete basis for divergence-
free vectors on S [12], and the vector ϕa1,0 is parallel to
the rotational Killing vector field ϕa [see Eq. (7)].

3. 2+1 decomposition of H

Except in special situations (e.g., head-on collisions of
two BHs), an arbitrary MOTS S in H is not axisymmet-
ric. It then becomes tricky to choose a suitable pair of
angular coordinates (θ, φ). We cannot simply apply the
construction process in the previous section, since there is
no longer a rotational Killing vector field on an arbitrary
S. However, we can still take advantage of the axisym-
metry of those S in the late portion of H. In particular,
instead of defining (θ, φ) separately and locally on every
S, we adopt the idea in Ref. [12] and build a vector Xa

9 We use a sign convention different from Ref. [37].
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on H that connects (θ, φ) on all S in a canonical way. We
call Xa the stitching vector and regard the coordinates
(θ, φ) as “evolving” along Xa on H.

A dynamical horizon is essentially a stack of MOTSs,
so it naturally admits a 2+1 decomposition, similar to a
3+1 decomposition of spacetime (cf. [37] for an introduc-
tion of a 3+1 decomposition). Additionally, the foliation
by MOTSs is unique for a dynamical horizon, in contrast
to a non-expanding horizon [23]. We treat Xa as the time
vector of the 2+1 decomposition, which has the form,

Xa = α̃r̂a + β̃a, (22)

where β̃a is a tangent vector to be specified on S. The
scalar α̃ and the vector β̃a are the lapse and the shift in
this 2+1 decomposition. We call α̃ the 2-lapse and β̃a

the 2-shift, to distinguish them from the usual lapse α
and shift βa used in a 3+1 decomposition.

The 2-lapse is required to preserve the foliation of
MOTSs. Let the MOTSs be labeled by a parameter v
that is smooth on H. In other words, each MOTS cor-
responds to a v = constant surface. (We will identify
v with simulation time t in a numerical simulation, but
we continue using v here to keep the discussion general.)
For Xa being the time vector, we require v to be the
parameter of the integral curve generated by Xa, i.e.,
Xa = (∂v)

a. This implies

α̃ = (qabDavDbv)−1/2, (23)

where qab is the induced metric on H, and Da is the
covariant derivative compatible with qab.

10 Note that α̃
tends to 0 when qab approaches a degenerate metric, as
in the case when a merged BH approaches equilibrium.
However, Xa does not tend to 0, because the limiting
behavior of r̂a is nontrivial. This brings difficulties in the
numerical calculation of Xa, and we will handle them in
the next section.

Spin moments on an isolated horizon (or the late por-
tion of H) can be defined using a set of divergence-free
vector fields [Eq. (20)]. This inspires us to define spin mo-
ments on a general S that also uses divergence-free vector
fields. We can obtain a canonical set of divergence-free
vector fields on all S by imposing a mapping condition
on Xa: Xa maps divergence-free vector fields among
different S isomorphically. Specifically, once ϕa`m (the
divergence-free vectors on an axisymmetric S) are known,
we can Lie drag them along Xa to all other MOTSs. In
the mathematical language, we are looking for a vector
Xa on H, that satisfies the following statement. Given
a vector field ξa that is divergence free on a particular
MOTS S, i.e.,

Lξ ε̃ab
S
= 0, (24)

10 The definitions of qab and Da on a dynamical horizon are con-
sistent with the ones on an isolated horizon [Eq. (4)].

we can define ξa on other MOTSs via LXξa = 0, and the
resultant vector field stays divergence free on all MOTSs,
i.e.,

Lξ ε̃ab
H
= 0. (25)

The trivial choice β̃a = 0 does not satisfy this map-
ping condition. To see this, we first note that Eq. (25)
implies LXLξ ε̃ab = 0. Meanwhile, we know LXLξ ε̃ab =

LξLX ε̃ab = Lξ(α̃K̃) because LXξa = 0 and Lα̃r̂ ε̃ab =

α̃K̃ε̃ab. Here, K̃ab = q̃ ca q̃
d
b ∇cr̂d is the extrinsic curva-

ture of S within H, and K̃ = K̃a
a is its trace. The ex-

pression Lξ(α̃K̃) is generally nonzero, which contradicts
LXLξ ε̃ab = 0.

We can find a viable choice of β̃a by eliminating the
inhomogeneity in α̃K̃ from LX ε̃ab. In detail, the inho-
mogeneity is

α̃K̃ − 1

4πR2

˛
S
α̃K̃d2V = α̃K̃ − 2Ṙ

R
, (26)

where Ṙ = dR/dv. We choose β̃a such that11

D̃aβ̃
a = −(α̃K̃ − 2Ṙ/R), (27)

which implies LX ε̃ab = (2Ṙ/R)ε̃ab. Note that 2Ṙ/R is
only a function of v. The differential equation LXLξ ε̃ab =

LξLX ε̃ab = (2Ṙ/R)Lξ ε̃ab, together with the initial con-
dition Eq. (24), admits the unique solution Eq. (25). In

other words, this choice of β̃a [Eq. (27)] satisfies the map-
ping condition of Xa. In the numerical implementation
of Eq. (27), it is more convenient to define

β̃a = q̃abD̃bg (28)

and solve

q̃abD̃aD̃bg = −(α̃K̃ − 2Ṙ/R) (29)

for g on every S. The integration constant in the solution
of g does not affect β̃a and can be selected arbitrarily.

We have thus constructed the time vector Xa that sat-
isfies the following four properties:

1. Xa is constructed covariantly.

2. Xa preserves the foliation of H.

3. Xa maps divergence-free vectors isomorphically
among different S.

11 Constrained by the mapping condition of Xa, this choice of β̂a

is actually unique. To see this, we can first assume D̃aβ̃a =
−α̃K̃ + f for a general smooth scalar function f on H. Similar
to the argument made in the paragraph after Eq. (27), we have
LXLξ ε̃ab = fLξ ε̃ab + ε̃abLξf . Using Eq. (25), we simply have
Lξf = 0. As ξa is an arbitrary divergence-free vector on S, f

has to be constant on every S. Because the integration of D̃aβ̃a

over S vanishes, f is uniquely determined.
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4. If H is axisymmetric, Xa preserves the rotational
Killing vector.

Now, we are ready to define multipole moments on a gen-
eral dynamical horizon H whose late portion is axisym-
metric. We first construct Y`m(θ, φ) on an axisymmetric
but otherwise arbitrary S as described in Sec. II B 1. We
then extend Y`m(θ, φ) to the whole H by

LXY`m = 0. (30)

We define mass (multipole) moments I`m and spin (mul-
tipole) moments L`m as functions of v (or time t in nu-
merical simulations),12

I`m =
1

4

˛
S
R̃Y ∗`md2V, (31)

L`m =
1

2

˛
S
ε̃abωbD̃aY

∗
`md

2V, (32)

where R̃ still represents the q̃ab-compatible Ricci scalar
and ωa is still defined by Eq. (18). These multipole
moments are dimensionless, so they are sometimes re-
ferred to as geometric multipole moments. They extend
Eqs. (13) and (19), but the relation among Ψ2, R̃, and

ε̃abD̃aω̃b is not as simple as Eq. (17), so Eq. (16) no longer
holds on a general MOTS.13 Also, see Refs. [12, 20] for
other definitions of multipole moments on a dynamical
horizon.

4. Alternative calculation of Xa

The 2+1 decomposition, Eq. (22), nicely resembles the
3+1 decomposition of a spacetime, but there exist numer-
ical difficulties in the implementation. For example, as H
becomes null and qab becomes degenerate, α̃ tends to zero
and the components of r̂a diverge. References [12, 30]
discuss these ill behaviors and provide an alternative so-
lution to handle them. Using this alternative solution, we
can compute Xa stably on both dynamical and isolated
horizons, as described below.

Let V a be a normal to S within H such that

V aDav = 1. (34)

The vector V a is unique and well defined on both dynam-
ical and isolated horizons. It is null on an isolated horizon

12 We define multipole moments using the complex conjugates of
the spherical harmonics, instead of the spherical harmonics them-
selves. This is different from Ref. [12].

13 Penrose and Rindler studied the right-hand side of Eq. (17) and
called its additive inverse the complex curvature [38]

K =
1

4
R̃ −

i

2
ε̃abD̃aω̃b. (33)

They also provide the relation between Ψ2 and K in Ref. [38].
The complex curvature is closely related to horizon’s tendicity
and vorticity, which are visualized in Ref. [39].

and reduces to the spacelike vector α̃r̂a on a dynamical
horizon. Thus, it is more promising to use

Xa = V a + β̃a (35)

in numerical simulations. The 2-shift β̃a may also be
problematic because of its dependence on α̃ and K̃
[Eq. (29)]. As H becomes null, evaluating α̃ and K̃ may

become unstable. A better way to obtain β̃a is to use the
following differential equation for g,

q̃abD̃aD̃bg = −(
1

2
q̃abLV q̃ab −

2Ṙ

R
). (36)

This new equation generalizes Eq. (29), the original equa-
tion for g presented in Ref. [12], because q̃abLV q̃ab re-

duces to 2α̃K̃ on a dynamical horizon.
As a simple example, let us consider the event hori-

zon of a Kerr BH in the Boyer-Lindquist coordinates
{tBL, rBL, θBL, φBL}. This event horizon is automati-
cally an isolated horizon [33] and admits a foliation of

MOTSs labeled by v = tBL. The 2-shift β̃a vanishes on
the horizon, so Xa coincides with the null Killing vec-
tor V a = (∂tBL

)a + ΩH(∂φBL
)a, where ΩH is the horizon

angular velocity [40].

5. Balance laws

Let ∆H be the portion of a dynamical horizon H be-
tween any two MOTSs S1 and S2. The gravitational
energy flux across ∆H is defined as [30–32]

Fg(∆H) = Fg,σ(∆H) + Fg,ζ(∆H), (37)

where the first term on the right-hand side,

Fg,σ(∆H) =
1

16π

ˆ
∆H
|dR|σabσabd3V, (38)

arises naturally at a perturbed event horizon [41], and
the second term,

Fg,ζ(∆H) =
1

8π

ˆ
∆H
|dR|ζaζad3V, (39)

arises only when ∆H is not null. Here,

|dR| =
√
qabDaRDbR = Ṙ/

√
α̃, (40)

ζa = q̃abr̂c∇clb = ω̃a + D̃a ln |dR|, (41)

σab is defined in Eq. (3), and d3V is the volume element
determined by qab. It is feasible but inconvenient to use
the energy flux Fg(∆H) in numerical studies, because
the expression depends on two simulation times, t1 for
S1 and t2 for S2. A more practical choice is the time
derivative

dFg
dt

=
d

dt
Fg(∆H) = lim

t2→t1

Fg(∆H)

t2 − t1
. (42)
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We call dFg/dt the energy flux rate and may regard it as
the energy flux across a common horizon. Its constituents
dFg,σ/dt and dFg,ζ/dt can be defined similarly.

The difference between the areal radii R1 (of S1) and
R2 (of S2) is proportional to the energy flux [30–32]:14

R2 −R1 = 2Fg =
1

8π

ˆ
∆H
|dR|

(
σabσ

ab + 2ζaζ
a
)
d3V.

(43)

This is the area balance law for areal radii. The differen-
tial version is more convenient in numerical studies:

dR

dt
= 2

dFg
dt

. (44)

There are balance laws for multipole moments as well.
The difference in I`m and L`m between S1 and S2 can
also be expressed as a flux across ∆H [12]:15

I`m[S2]− I`m[S1]

=

ˆ
∆H
|dR|

(
1

4Ṙ
Y ∗`mLXR̃+

1

R
ζa∂aY

∗
`m

)
d3V

+

ˆ
∆H

|dR|
2R

(
σabσ

ab + 2ζaζ
a
)
Y ∗`md

3V, (45)

L`m[S2]− L`m[S1]

=
1

2

ˆ
∆H

[(
KH

)ab −KHqab]Da

(
ε̃bcD̃

cY ∗`m

)
d3V.

(46)

Here,
(
KH

)
ab

= q ca q
d
b ∇cτ̂d is the extrinsic curvature of

H within the spacetime M , and KH =
(
KH

)a
a

is its
trace. The differential versions of these two balance laws
are

dI`m
dt

=
d

dt

ˆ
∆H
|dR|

(
1

4Ṙ
Y ∗`mLXR̃+

1

R
ζa∂aY

∗
`m

)
d3V

+
d

dt

ˆ
∆H

|dR|
2R

(
σabσ

ab + 2ζaζ
a
)
Y ∗`md

3V, (47)

dL`m
dt

=
1

2

d

dt

ˆ
∆H

[(
KH

)ab −KHqab]
×Da

(
ε̃bcD̃

cY ∗`m

)
d3V. (48)

All these balance laws, Eqs. (43)-(48), offer internal
checks on numerical simulations, because both sides of
these equations can be calculated independently. We will
use them to check the correctness of our simulation in
Appendix A.

14 In a non-vacuum spacetime, matter fields would have contribu-
tion to the right-hand side.

15 The right-hand side of Eq. (46) can be treated as a “general”
gravitational angular momentum flux [30, 32]. We don’t have a
good physical interpretation for the flux terms on the right-hand
side of Eq. (45).

C. Quasinormal modes

Perturbations of the Kerr spacetime can be described
by the Teukolsky equation [13, 14]. It was first derived
using the Kinnersley tetrad [42] in Boyer-Lindquist co-
ordinates {tBL, rBL, θBL, φBL}. In this paper, we will
only be concerned with the Teukolsky equation govern-

ing gravitational perturbations. Let Ψ
(1)
0 and Ψ

(1)
4 denote

the first-order perturbation of the Weyl scalars Ψ0 and

Ψ4. Then, ψ = Ψ
(1)
0 has spin weight s = 2 and describes

the ingoing gravitational wave, while ψ = ρ−4Ψ
(1)
4 is a

spin-weight s = −2 quantity representing the outgoing
gravitational wave, where ρ is one of the spin coefficients
of the Kerr metric.

The Teukolsky equation is separable. With appropri-
ate boundary conditions imposed at horizons and spatial
infinity, it admits solutions

ψ`mn = e−iω`mntBLR(rBL) sY`m(θBL, φBL, aω`mn). (49)

The indices `,m represent angular modes, while n rep-
resents overtones. The indices take on integer values
and satisfy ` ≥ |s|, |m| ≤ l, and n ≥ 0. The quan-
tity ω`mn is a complex number called the quasinormal
mode frequency,16 which necessarily has a negative imag-
inary component [46–49] because the perturbed BH sys-
tem is dissipative. Besides (`,m, n), the frequency ω`mn
also depends on the spin weight s, the mass Mf ,17 and
the dimensionless spin χf of the unperturbed Kerr BH.
We calculate the values of ω`mn using the qnm package
[50]. The functions sY`m(θBL, φBL, aω`mn) are the spin-
weighted spheroidal harmonics, where a = χfMf is the
dimensionful spin (i.e., spin angular momentum per unit
mass). They reduce to the spin-weighted spherical har-
monics sY`m(θBL, φBL) [51] if a = 0, which further re-
duce to the usual spherical harmonics Y`m(θBL, φBL) if
s = 0. The radial part R(rBL) is not important in this
paper. For further discussion on the Teukolsky equation,
see Refs. [13, 14, 16, 52]. Also, see Ref. [44] for a review
of QNMs and Ref. [53] for details of the spin-weighted
spheroidal harmonics.

In a BBH simulation, one often expands a physical
quantity on a 2-sphere S2 into angular modes using
spherical harmonics. If one performs such an expansion
on a time collection of 2-spheres, then each angular mode

16 There are two distinct families of QNMs: the prograde modes,
ω+
`mn, that corotate with the BH, and the retrograde modes,

ω−
`mn, that counterrotate with the BH. They are related by

ω−
`(−m)n

= −(ω+
`mn)∗ [43–45]. In this paper, we will only con-

sider ω+
`mn for m 6= 0, but we will use both ω+

`mn and ω−
`mn for

m = 0. For the sake of readability, we drop these superscripts
and keep using the notation ω`mn throughout the paper. The
meaning should be clear from the context.

17 The final Kerr BH mass, Mf , is smaller than the initial total
ADM mass of the system, M . See Sec. III A for the numerical
value of their ratio in our simulation.
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is a function of simulation time t. To investigate potential
quasinormal behavior of a mode in the ringdown phase,
one then decomposes the mode into several damped sinu-
soids of t. For example, strain h is usually expanded into
h`m using the s = −2 spin-weighted spherical harmon-
ics. Then, the ringdown portion of h22 can be modeled
as a linear combination of e−iω22nt [19, 54, 55]. Also, see
Ref. [22] for the QNM description of the shear spin coef-
ficient σ on the horizon of a merged BH. Note that the
spherical harmonics used in simulations are constructed
with respect to some specifically chosen angular coordi-
nates, and different literature in general uses different
sets of angular coordinates.

Several groups have studied the quasinormal behav-
ior of mass moments [8, 20–22]. They either consider
head-on collisions of two BHs or use definitions of multi-
pole moments without referring to the connection among
MOTSs (i.e., no Lie dragging along the vector Xa). In
contrast, we will investigate the quasinormal behavior of
multipole moments for an orbiting BBH system, and the
definition of our multipole moments does take into ac-
count the relation among MOTSs. We will model mass
and spin moments as linear combinations of QNMs, and
choose different models for different moments. We will
describe these models explicitly in Sec. IV, but no matter
what models we apply, we determine coefficients in these
models by unweighted least square linear fitting.

III. NUMERICAL IMPLEMENTATION

A. Binary-black-hole simulation

We simulate the BBH system using the Spectral Ein-
stein Code (SpEC) [56], which adopts the first order
generalized harmonic formalism [57]. SpEC constructs
quasi-equilibrium initial data that is given by a Gaussian-
weighted superposition of two single-BH analytic so-
lutions [58]. Spacetime quantities are evolved in the
damped harmonic gauge after a smooth transition from
the quasi-equilibrium initial gauge [59]. SpEC uses ex-
cision boundaries that are placed slightly inside appar-
ent horizons [60–62], and imposes constraint-preserving
conditions on the outer boundary [57, 63]. Apparent
horizons are calculated using the fastflow method [26].
A SpEC simulation starts with a spectral grid contain-
ing two excised regions (within two apparent horizons),
and switches to a new grid that has only one excised re-
gion (within the common horizon) after merger. We con-
sider the merger as the instant when the common hori-
zon first appears. SpEC uses a dual-frame configuration
[64] whose domain arrangement is described in Ref. [65].
The adaptive mesh refinement algorithm, which SpEC
uses to dynamically control grid resolutions and domain
arrangement, is discussed in Refs. [66, 67].

We evolve an equal-mass, non-spinning, noneccentric
[68] BBH system. We use the same configuration as
SXS:BBH:0389 in the SXS catalog [69] and record the

TABLE I. Parameters for the BBH simulation studied in this
paper. The symbols q, D0, Ω0, ȧ0, and e represent the mass
ratio, initial coordinate separation, initial orbital frequency,
initial rate of change of separation, and eccentricity. The
symbols ~χA,B stand for the dimensionless spin vectors of the
two BHs. We choose the initial free data to be the Gaussian-
weighted superposition of two BHs in the Kerr-Schild coordi-
nates, and this is called superposed Kerr-Schild in SpEC [58].

Parameter Value

Initial free data superposed Kerr-Schild

q 1

D0 15.43M

Ω0 0.01525

ȧ0 −0.00003721

~χA,B (0, 0, 0)

e ∼0.0009

Number of orbits 18.6

TABLE II. The values of several spin-weight-2 QNM frequen-
cies ω`mn used in this paper. They are generated by the
qnm package [50], based on the remnant parameter Mf =
0.95162M and χf = 0.68644. QNM frequencies are com-
plex numbers. The real part, Re(ω`mn), is the oscillation
frequency, while the inverse imaginary part, −1/Im(ω`mn), is
the characteristic decay time. Note that we express the QNM
frequencies in the unit of M , instead of Mf .

`,m, n Re(ω`mn) [M−1] −1/Im(ω`mn) [M ]

2, 2, 0 0.5535 11.707

2, 2, 1 0.5410 3.8713

2, 2, 2 0.5180 2.2923

3, 2, 0 0.7920 11.235

4, 2, 0 1.0172 10.938

2, 0, 0 0.4132 11.236

simulation parameters in Table I. We simulate the BBH
system at two resolutions. The target truncation errors of
the adaptive mesh refinement algorithm are ∼ 5 × 10−8

for the higher resolution and ∼ 2 × 10−7 for the other
resolution. Unless specified, the results in this paper are
generated from the higher resolution run. We only focus
on the post-merger portion of our BBH simulation. We
set t = 0 at the merger (i.e., when the common horizon
first appears). We assume the merged BH settles down
to the Kerr state at tf = 500M (where M is the initial
total ADM mass of the BBH system), and we shall see in
Sec. IV A that this is a good assumption. The final Kerr
BH has dimensionless spin χf = 0.68644 (measured by
the method of approximate Killing vectors [58]) and mass
Mf = 0.95162M . Table II shows several ω`mn(χf ,Mf )
that are used in this paper.

We process the simulation following the procedure de-
scribed in Sec. II B. We first calculate the invariant spher-
ical coordinates (θ, φ) on the common horizon at t = tf ,
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when the common horizon is axisymmetric. With (θ, φ),
we immediately obtain a set of spherical harmonics Y`m
by Eq. (11) at t = tf . We then find V a by V a ⊥ S and
Eq. (34), find βa by Eqs. (28) and (36), and construct
the stitching vector Xa on H by Eq. (35). Next, we Lie
drag Y`m along Xa [Eq. (30)] backward in time, from the
final state t = tf to the merger t = 0. Finally, we calcu-
late the mass and spin moments by Eqs. (31) and (32).
Because of the symmetry of the BBH configuration, the
mass moments I`m are nonvanishing only for even ` and
even m, while the spin moments L`m are nonvanishing
only for odd ` and even m. To fix the rotational degree of
freedom mentioned in Sec. II B, we multiply I`m and L`m
by an m-dependent phase factor eimη, where η is some
real constant, such that I22 is real at t = 0. Under this
convention, the even-m modes are unambiguous, but the
odd-m modes are still determined up to a sign. We do
not choose a further convention to fix this sign, because
all odd-m modes are trivial in this paper.

Besides the coordinates {t, θ, φ} used above, we
sometimes need the notion of simulation coordinates
{t, x̀, ỳ, z̀} in this paper. These are the horizon-
penetrating Cartesian coordinates used directly to sim-
ulate the BBH system in SpEC, and they are called the
inertial coordinates in Ref. [61]. We also construct the

simulation spherical coordinates {t, r̀, θ̀, φ̀} such that

x̀ = r̀ sin θ̀ cos φ̀, (50)

ỳ = r̀ sin θ̀ sin φ̀, (51)

z̀ = r̀ cos θ̀. (52)

On a dynamical horizon, which is a 3D object, we only

need {t, θ̀, φ̀}. Note that in general, θ̀ 6= θ and φ̀ 6= φ.

B. Rotation procedure on multipole moments

To compare multipole moments with QNMs in this
simulation, we need to apply one more procedure on
these multipole moments. In Sec. II B 3, by Lie dragging
a spherical harmonic basis as in Eq. (30), we construct
an invariant basis of Y`m’s and use it to define multipole
moments. While this construction leads to an invariantly
defined set of multipole moments, this basis of Y`m’s is
not well adapted for the QNM analysis. In particular,
as the dynamical horizon H approaches the Kerr hori-
zon, the Lie dragged Y`m’s are rotating with respect to
the Kerr-Schild coordinates. This rotation can be under-
stood from the following chain of arguments.

1. In the limit at equilibrium, the right-hand side of
Eq. (36) vanishes, so Xa approaches V a.

2. Because V a is tangent to the horizon and perpen-
dicular to the foliation, it must be a null normal of
the Kerr horizon. This implies

Xa = f(ta + ΩHφ
a), (53)

where ta and φa are the timelike and rotational
Killing vector fields of the Kerr spacetime, ΩH is
the horizon angular velocity [40], and f is some
function.

3. This function f is actually a constant, since Xa pre-
serves the foliation and the foliation is known to be-
come stationary at late times. Moreover, the simu-
lation coordinates in SpEC are remarkably close to
the Kerr-Schild coordinates at late times,18 which
fixes the normalization f ≈ 1. Thus, we have

Xa∂a ≈ ∂t + ΩH∂φ̀, (54)

where we write the Killing vector fields explicitly

in the simulation coordinates t, φ̀. [Note that the
normalization is irrelevant to the Lie dragging pro-
cedure, Eq. (30).]

We now see that the azimuthal coordinate φ, being Lie
dragged along Xa, is rotating with frequency ΩH , rela-
tive to the Kerr-Schild azimuthal coordinate. In Kerr
perturbation theory, one uses a Kerr-Schild-like coordi-
nate system to obtain QNM frequencies. If we use an
azimuthal coordinate that is Lie dragged along Xa, we
expect different frequencies in the temporal behaviors of
perturbed quantities. We can, however, simply undo this
rotation by the transformation φ→ φ−Ωt, which yields
the transformation Y`m → Y`me

−imΩt. Crucially, this
transformation changes the temporal behaviors of hori-
zon multipole moments, and makes them more suitable
for the QNM analysis. However, we note that the trans-
formed φ is not covariantly defined, because the trans-
formation depends on the simulation time.

We will apply this procedure on multipole moments
in Sec. IV, specifically in Eqs. (59) and (67). Note that
we use a symbol Ω here instead of ΩH , because we will
choose a frequency value slightly different from ΩH . See
Sec. IV A for the detail of this choice of Ω.

IV. RESULTS

In this section, we analyze in detail both the mass and
spin moments extracted from the BBH simulation de-
scribed in Sec. III. In particular, we investigate the dom-
inant mass moment (I22) in Sec. IV A, the dominant spin
moment (L32) in Sec. IV B, and the I20 multipole moment
in Sec. IV C. We summarize the behaviors of other multi-
pole moments up to ` = 6 in Sec. IV D. For those readers
interested in the correctness of our simulation, we nu-
merically confirm the balance laws and demonstrate the
error convergence in Appendix A.

18 Ref. [70] found that an isolated BH in damped harmonic gauge
has lapse, shift, and extrinsic curvature nearly identical to that
of Kerr-Schild coordinates, only the spatial metric is different.
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A. (2,2) mass moment

The (2, 2) mass moment I22 is the dominant mode
among the I`m with nonzero m. Figure 2 shows the
(2, 2) mass moment as a complex function of t. In the
top panel, the magnitude (absolute value), the real part,
and the imaginary part of I22 are plotted in blue (solid),
orange (dashed), and purple (dotted). We use a linear
scale to demonstrate that both real and imaginary parts
alternate between positive and negative values. The lin-
ear scale also provides a better reading on the magnitude
of these curves before t < 30M . Note that the imaginary
part of I22 is 0 at t = 0, since we choose the convention
that I22 is real at t = 0 (see Sec. III). In the bottom panel,
we show |Re(I22)|, i.e., the absolute value of the real part
of I22, in cyan (solid). We use a logarithmic scale in this
panel to show the manifest pattern of damped oscillations
of I22. This curve decays exponentially until reaching a
floor at the level 4 × 10−6 after t ∼ 150M . Because I22

(and other I`m with nonzero m) should approach 0 be-
cause of the axisymmetry of the remnant BH, the floor
provides a measure of numerical error for I22. We can
remove this numerical floor by subtracting it from I22.
Specifically, we define

Ī22 = I22 −mean[I22(t ≥ 400M)], (55)

where mean[I22(t ≥ 400M)] refers to the average value19

of I22 over the range 400M ≤ t ≤ 500M . The bottom
panel displays |Re(Ī22)| in a pink dashed style. We ob-
serve that |Re(Ī22)| also possesses a pattern of damped
oscillation, but now the pattern extends to t ∼ 280M .
As Ī22 has a longer-lasting nontrivial behavior, we will
use Ī22 instead of I22 from now on. However, we keep in
mind that the t > 150M portion of Ī22 is within numer-
ical uncertainty, so we will only focus on t ≤ 150M from
now on. All conclusions in this paper are based on the
portion t ≤ 150M .

To further analyze the behavior of this mass moment,
we will implement the rotation procedure outlined in
Sec. III B. We first check the validity of Eq. (54) in the
simulation at late times by comparing ΩH with Ωt. Here,

Ωt is defined as the average value ofX φ̀ (the φ̀-component
of Xa) over the common horizon S at time t, i.e.,

Ωt = mean
S

(
X φ̀
)
. (56)

Note that in the simulation, the maximum deviation of

X φ̀ from Ωt on every S is within 10−5 for t ≥ 300M , as
expected. What is unexpected is shown in the top panel

19 Even more specifically, I22(t) is a series of discrete data points
generated from the simulation. They are equally spaced by 0.1M
in 400M ≤ t ≤ 500M . The quantity mean[I22(t ≥ 400M)] is the
unweighted mean of these data points, which is of the order of
10−6 in our simulation.

0 10 20 30 40 50 60 70 80
t/M

0.0

0.5

1.0 I22

|I22|
Re(I22)
Im(I22)

0 50 100 150 200 250 300 350 400
t/M

10-12

10-9

10-6

10-3

100
I22 Error-floor Correction

|Re(I22)|
|Re(Ī22)|

FIG. 2. The mass moment I22 and its floor correction. The
top panel shows |I22| in blue/solid, Re(I22) in orange/dashed,
and Im(I22) in purple/dotted. The bottom panel shows
|Re(I22)| in cyan/solid. This curve directly demonstrates the
damped oscillation pattern of I22. It also reveals a numerical
floor at the level 4 × 10−6 after t ∼ 150M . Subtracting this
floor from I22, we obtain the floor-corrected mass moment
Ī22, which is shown in pink/dashed in the bottom panel. The
pattern of damped oscillation extends to t ∼ 280M .

of Fig. 3: Although we expect Ωt to approach the horizon
angular velocity [40],

ΩH =
χf

2Mf

(
1 +

√
1− χ2

f

) = 0.208819M−1, (57)

it does not completely settle down even at t = tf =
500M . Nevertheless, as Ωt varies gradually near t =
500M , we set the rotational frequency of the transfor-
mation φ→ φ− Ωt in this paper to be

Ω = Ωt=500M = 0.208784M−1. (58)

All results in the following sections are based on this
choice. We also show the relative difference20 between
Ωt and ΩH in the inset.

We rotate the mass moments by defining

Ĩ`m(t) = Ī`m(t)e−imΩt. (59)

The bottom panel of Fig. 3 compares the rotated mass
moment |Re(Ĩ22)| (orange/dashed) with the nonrotated

20 In this paper, the relative difference/error between any two num-
bers, f and g, is defined as 2|f−g|/|f+g|. The relative difference
between ΩH and Ω is 1.7 × 10−4. This is the same as the dif-
ference between the surface gravity for V a and the Kerr surface
gravity, introduced in Appendix B.
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|Re(Ī22)|
|Re(Ĩ22)|

FIG. 3. The rotational frequency of Y`m and the rotated mass
moment. The top panel shows Ωt (purple/solid), the rota-
tional frequency of Y`m, as a function of time. The curve does
not settle down to a constant even at a very late time. This
panel also shows ΩH (cyan/dashed), the horizon angular ve-
locity, as a reference. The relative difference between Ωt and
ΩH is given in the inset. We show the comparison between
Ī22 (blue/solid) and its rotated version Ĩ22 (orange/dashed)
in the bottom panel. Applying the rotation does not alter the
decay rate, but it increases the frequency significantly.

one |Re(Ī22)| (blue/solid). The rotation does not change
the decay rate of the mass moment but greatly increases
its oscillation frequency: Ĩ22 oscillates almost four times
as quickly as Ī22. Thus, the use of Ī22 or Ĩ22 may lead
to very different conclusions. In this paper, we choose
to investigate the behavior of Ĩ22, namely the rotated,
error-floor-corrected (2, 2) mass moment. As we will see,
the behavior of this mass moment resembles that of a
gravitational waveform.

Our first step in the analysis of Ĩ22 is to compare it with
the waveform strain h.21 We extract h on the surfaces
of multiple concentric spherical shells of finite Euclidean
radii r, and extrapolate rh to I + as a function of re-
tarded time tret [72–76]. Then, rh22 is the (` = 2,m = 2)
coefficient in the s = −2 spin-weighted spherical har-
monic expansion of rh. Note that rh22 is both time
shifted and phase shifted in this paper: We set tret = 0
when |rh22| (not necessarily |rh|) reaches its maximum.

21 Comparison between horizon data and asymptotic data in SpEC
BBH simulations is not new. Reference [71] is such an example
that compares masses, spins, and recoil velocities of remnant
BHs.

0 20 40 60 80 100 120
Time [M]

10-7

10-5

10-3

10-1

Ĩ22 vs rh22

|Re(Ĩ22)|
|Re(rh22 × Ĩ22, t= 50M/rh22, t= 50M)|
t= 50M

FIG. 4. The comparison between the mass moment Ĩ22
(blue/solid) and the waveform rh22 (orange/dashed). The
mass moment is plotted as a function of simulation time t,
while the waveform is of retarded time tret. The waveform
is time shifted and multiplied by a constant factor, as de-
scribed in the main text. The black dotted vertical line marks
t = 50M , at which the values of two curves are matched.
We see strong correlation between these two quantities in
20M ≤ t ≤ 120M .

We also multiply rh22 by a constant complex factor such
that rh22(tret = 50M) matches Ĩ22(t = 50M)22. We

show both Ĩ22 (blue/solid) and rh22 (orange/dashed) in
Fig. 4. The graph displays the absolute values of their
real parts, so that we can compare the decay and oscil-
lation between the two curves simultaneously. The hor-
izontal axes represent the simulation time t for Ĩ22 and
the retarded time tret for rh22. We see from the graph
that Ĩ22 and rh22 are strongly correlated. Specifically, in
the range 20M ≤ t ≤ 120M , they share the same de-
cay constant and oscillation frequency. For t > 120M
(not shown), the comparison becomes meaningless, be-
cause the strain reaches its level of numerical error. For
t < 20M , Ĩ22 and rh22 are less correlated, possibly be-
cause the meaning of time (or the behavior of the lapse)
in the strong field regime is substantially different from
at infinity.

Figure 4 strongly suggests that the mass moment Ĩ22,
like h22, is described by the QNM of spin-weight s = −2
or s = 2. We include the possibility s = 2 here, because
the frequency of an s = 2 QNM is the same as that
of s = −2.23 In the following sections, we investigate
the quasinormal pattern of Ĩ22 quantitatively, by linearly
fitting Ĩ22 to multiple QNMs of spin weight s = 2 (or
equivalently s = −2).

22 Matching at any time between 25M and 95M yields a very sim-
ilar result.

23 It is interesting that Ĩ22, a spin-weight-0 quantity, is described
by spin-weight-±2 QNMs. Understanding this is an interesting
topic for future work.
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1. Mode mixing

We start with a model with only fundamental modes,

Ĩ22 =

L∑
`=2

C`20e
−iω`20(t−t0), (60)

with a fitting time range t0 ≤ t ≤ 120M . We choose
120M as the end fitting time, when the mass moment is
still slightly above the numerical error of Ĩ22 (see Fig. 2).
The parameters C`20 are to be determined by a linear fit.
(All the symbols C`mn in this paper should be understood
as fitting parameters.) We consider several L ≥ 2 and
allow t0 to vary. We measure the error of fit by the
mismatch between Ĩ22 and its fit. The mismatch between
two complex-valued functions f(t) and g(t) is defined as

M(f, g) = 1− Re(〈f |g〉)√
〈f |f〉〈g|g〉

, (61)

where

〈f |g〉 =

ˆ
f(t)g∗(t)dt, (62)

with integration domain over the fitting time range.
We first consider the simplest choice L = 2 in this

model, which means we fit Ĩ22 using only the fundamental
tone of (2, 2) QNMs. The mismatch M as a function of
the initial fitting time t0 is shown in blue (solid) in Fig. 5.
The curve decays from 10−2 to 10−5 before t0 = 18M .
This decay is expected, because the current model does
not include overtones, which are strongly excited near the
merger. However, it is surprising to see a wavy pattern in
the curve after t0 = 18M , since the QNM fit of rh22 does
not have such a feature [19, 54]. This oscillatory pattern
extends well beyond t0 = 70M , which is not shown.

This oscillatory pattern suggests that the L = 2 model
does not capture an essential feature of Ĩ22. We can rule
out the following two possibilities for this missing fea-
ture. First, this feature is not related to the oscillation
of Ī22, i.e., the nonrotated mass moment. This is be-
cause the period of the oscillatory pattern in the L = 2
mismatch curve (∼26M) differs from the period of Ī22.
Second, the missing feature is not related to the ω22n

overtones either, because the oscillatory pattern cannot
be eliminated by including them in the L = 2 model (not
shown). Accordingly, we consider one more possibility:
There is another fundamental tone, other than ω220, that
contributes to Ĩ22. Indeed, ω220 and ω320 share a similar
decay rate, and they can generate a beat period of 26.3M
(see Table II), which is close to the period of the oscil-
latory pattern (∼26M). So we now examine the model
Eq. (60) with L = 3. The orange dashed curve in Fig. 5
represents the mismatch using this model. It contains no
oscillatory pattern at late times, confirming the nonneg-
ligible contribution of the (3, 2) fundamental tone to Ĩ22.
The curve decreases steadily after the local maximum at
t = 27.4M , so we may treat t = 27.4M as the instant
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FIG. 5. The mismatch between Ĩ22 and its fit using ω`20
QNMs [Eq. (60)], plotted as a function of the initial fit-
ting time t0. Both the L = 2 (blue/solid) and L = 3 (or-
ange/dashed) curves decay sharply before t0 = 18M , because
overtones are not included in the model. The L = 2 curve,
which only uses the ω220 QNM, contains a persistent oscilla-
tory pattern after t0 = 18M . This is a beat pattern formed
by the ω220 and ω320 QNMs, and is removed in the L = 3
curve.

when overtones are negligible, and only two fundamental
tones dominate. We have also investigated the L = 4
and L = 5 cases, but they hardly improve the fit (not
shown).

We now connect the presence of the (3, 2) QNM in the

description of Ĩ22 to the concept of mode mixing. In BH
perturbation theory, the natural angular basis for strain h
(whose second time derivative is Ψ4) is the spin-weighted
spheroidal harmonics (Sec. II C). However, the natural
angular basis for h at future null infinity I+ is the basis
of the spin-weighted spherical harmonics [69]. This is the
basis used, for example, in LIGO-Virgo-KAGRA wave-
form analysis. The use of spherical harmonics intertwines
spheroidal modes of the same m but different ` [77]. For
example, the spherical mode h22 (i.e., the expansion co-
efficient corresponding to −2Y22) can be decomposed into
not only the ω22n modes, but also the ω32n modes, etc.
This phenomenon is called mode mixing. In our BBH
configuration (equal-mass, non-spinning), modes other
than ω22n may be ignored in h22’s decomposition. This
is because the ω22n modes are strongly dominant [18],
and the mixing of spheroidal and spherical harmonics
is tiny [77]. However, this argument does not apply to
mass moments I`m. The natural angular basis of the per-
turbed R̃ in Eq. (31) is neither spheroidal nor spherical
harmonics, but a complicated function of angles (θ, φ) in-
stead.24 The mixing of this complicated angular function
and spherical harmonics, if nonnegligible, would lead to
the presence of (3, 2) QNMs in Ĩ22. In this paper, we
refer to this phenomenon as mode mixing as well, but in
a somewhat broader sense.

Now that we know Ĩ22 can be well approximated by

24 The angular dependence of the perturbed R̃ is a surface deriva-
tive of spheroidal harmonics in certain coordinates. See Ref. [78]
for expressions of the perturbed R̃.
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FIG. 6. The mismatch between Ĩ22 and its fit using ω22n and
ω320 QNMs [Eq. (63)]. The N = 0 curve is, by construction,
the same as the L = 3 curve in Fig. 5. Adding higher over-
tones renders a better fit for all t0, and specifically, brings
down the portion of large mismatch before t ∼ 10M . This
figure demonstrates the important contribution of overtones
to the mass moment.

the fundamental tones of (2, 2) and (3, 2) QNMs after
t = 27.4M , we shall analyze the effect of overtones on
Ĩ22. Inspired by the use of overtones in the QNM fit of
waveforms and horizon moments in Refs. [19, 22, 54], we
consider the following model,

Ĩ22 = C320e
−iω320(t−t0) +

N∑
n=0

C22ne
−iω22n(t−t0), (63)

with the same fitting time range t0 ≤ t ≤ 120M . Fig-
ure 6 shows the mismatch of this model as a function of
t0 for multiple N (0 ≤ N ≤ 3). By construction, the
N = 0 curve is the same as the L = 3 curve in Fig. 5.
As more overtones are included, the mismatch curve be-
comes flatter and lower, and the initial damping part
shrinks and ends earlier. For N = 3, we no longer see
the initial damping part. This means that the overtones
ω22n (at least for 1 ≤ n ≤ 3) do contribute to Ĩ22, and the
fitting model Eq. (63) indeed captures them. Note that
compared to the N = 0 model, those N ≥ 1 models im-
prove the accuracy even after the overtones are supposed
to damp away. This might be caused by overfitting to
numerical noise. We also checked several N ≥ 4 models,
but they do not display much improvement (not shown)
compared to the N = 3 model.

2. Fit using fundamental tones

In this section, we will have a closer look at the late-
time QNM description of Ĩ22. We continue using the
model Eq. (60) with L = 3, which reads

Ĩ22 = C220e
−iω220(t−t0) + C320e

−iω320(t−t0). (64)

Instead of varying t0 as in the previous section, we now
fix the value of t0. In particular, we choose t0 = 50M , at

which all overtones have decayed sufficiently.25

The top left panel of Fig. 7 shows the fit using this
model with the fitting time range 50M ≤ t ≤ 120M . The
blue solid curve represents the actual mass moment Ĩ22,
while the orange dashed curve represents the fit. They
are both plotted in the magnitude of their real parts. We
see that the two curves overlap very well, so the model
Eq. (64) indeed provides a good description of Ĩ22. The

relative difference between Ĩ22 and its fit (including their
imaginary parts) is plotted in purple (solid) in the bot-
tom panel of the same figure. For reference, the cyan
dashed curve in this panel is the relative difference in
Ĩ22 between the two resolutions used in our simulation
(Sec. III A), which provides another estimate of the nu-

merical error of Ĩ22. Note that both curves in the bottom
panel have an increasing trend, as Ĩ22 gets closer to the
level of numerical uncertainty. After t ≥ 80M , the rel-
ative error of the QNM fit is larger than the numerical
error of Ĩ22 by about two orders of magnitude. This
means the model is good but not perfect, and there is
room for improvement in the future. Ideas for potential
improvement include replacing the current fitting scheme
(ordinary least square) by weighted least squares (putting
more weight on the late-time portion of the curve) and

rotating Ī`m into Ĩ`m by a time-varying frequency.
Once we accept that the model Eq. (64) can describe

the mass moment at late times, we may use it to estimate
the final mass and spin of the remnant. The QNM fre-
quencies ω220 and ω320 used to generate the left panels of
Fig. 7 are calculated based on Mf and χf that are mea-
sured by SpEC (Sec. III A). In the following discussion,
we regard the SpEC values of Mf and χf as their true
values. Now, we allow Mf and χf to deviate from the
true values, and repeat the QNM fit over the (Mf , χf )
parameter space (similar to the procedure in Ref. [19]).
For each (Mf , χf ) combination, we measure the error of
the fit by the mismatch, Eq. (61). The result is visualized
as a heat map of log10M in the left panel of Fig. 8: the
lighter the shading, the smaller the mismatch. We also
show the true values of Mf and χf in golden (solid) lines
for reference. We see from the plot that not only does
the mismatch have a deep minimum over the (Mf , χf )
parameter space, but also the minimum approximately
recovers the true values. In particular, the best estimates
of the mass and spin (i.e., their values at the minimum)
are M ′f = 0.95390M and χ′f = 0.68825. We can assess
the goodness of these estimates by the error,

εf =
√

(M ′f −Mf )2/M2 + (χ′f − χf )2, (65)

as proposed in Ref. [19]. The error of these estimates
is εf = 2.9 × 10−3, compared to a difference between

25 At t0 = 50M , the mismatch of this model (Fig. 5) has decreased
below 4× 10−6, which is the numerical error of Ĩ22 estimated by
the numerical floor in Fig. 2.
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FIG. 7. The comparison between Ĩ22 and its fit. The left two panels are based on the fit using ω220 and ω320 [Eq. (64)], in
the time range 50M ≤ t ≤ 120M . The right two panels are based on the fit using {ω220, ω221, ω222, ω223, ω320} [Eq. (63)

with N = 3], in the time range 0 ≤ t ≤ 120M . The top two panels show the absolute real parts of Ĩ22 (blue/solid) and its fit
(orange/dashed). In either top panel, the two curves overlap very well. The bottom two panels show the relative difference

between Ĩ22 and the fit in purple/solid, and the difference in Ĩ22 between two resolutions in cyan/dashed. The quantity Ĩ22,coarse
refers to the (2, 2) mass moment extracted from the low-resolution simulation.
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FIG. 8. Heat maps of the mismatch log10M over the (Mf , χf ) parameter space. The left panel is based on the model Eq. (64),
while the right one on the model Eq. (63) with N = 3: the lighter the shading, the smaller the mismatch. In each panel, we
use two golden lines to represent the true values of Mf and χf . The dashed curves are the contour lines of constant mismatch.
The deep minimum of the mismatch is located close to the golden cross, which means that the QNM model can be used to
recover the true values of the remnant parameters.

the two resolutions, 3 × 10−6. Note that the minimum
mismatch does not necessarily make (M ′f , χ′f ) a better
pair of candidates for the final mass and spin, because
as we will see, different QNM models produce different
(M ′f , χ

′
f ) combinations, and there is no consistent choice

among these models to determine mass and spin yet.

3. Fit using overtones

We extend the analysis in the previous section to
the early-time portion of Ĩ22, by including overtones
up to n = 3. In particular, we investigate the model
Eq. (63) with N = 3, and fix the fitting time range as
0 ≤ t ≤ 120M . The right panels of Fig. 7 shows the com-
parison between the actual Ĩ22 and its QNM fit using this
N = 3 model. We see from the top panel that the QNM
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FIG. 9. The spin moment L32 and its floor correction. The
original (3, 2) spin moment (cyan/solid) reaches a numerical
floor at the level 5×10−6 after t ∼ 150M . We define the floor-
corrected spin moment L̄32 (pink/dashed) by subtracting the
floor from L32. The damped oscillatory pattern of L̄32 extends
to t ∼ 280M . We also observe that the first several cycles are
stretched wider near the local maxima.

description of the (2, 2) mass moment is valid even near
the merger. The relative error of this fit is 10−3 – 10−2,
which is about two orders of magnitude greater than the
numerical error measured by the difference in Ĩ22 between
two resolutions, as shown in the bottom panel. Again,
this means the model could be improved in the future.

This model also provides an estimate of the final mass
and spin of the remnant. The right panel of Fig. 8 shows
the mismatch heat map over the (Mf , χf ) parameter
space, together with a golden cross representing the true
Mf and χf . Once more, we see a deep minimum near
the golden cross. The mass (M ′f = 0.95699M) and spin

(χ′f = 0.69066) at the minimum reproduce the true val-

ues, with error εf = 6.8×10−3. This result also rules out
overfitting partially, because almost any (Mf , χf ) combi-
nation yields a worse fit than the true values. We cannot
completely rule out overfitting since the five complex fre-
quencies represent 10 real degrees of freedom, and we
only vary two (final mass and spin).

B. (3,2) spin moment

The (3, 2) spin moment L32 is the dominant mode
among L`m with nonzero m. Figure 9 shows the value of
|Re(L32)|, i.e., the magnitude of the real part of L32, in
cyan (solid). Similar to the |Re(I22)| curve in Fig. 2,
this curve has a pattern of damped oscillation before
t = 150M , and then stays unchanged on a 5 × 10−6 nu-
merical error floor after t = 150M . We subtract this floor
from L32 and define the floor-corrected spin moment

L̄32 = L32 −mean[L32(t ≥ 400M)]. (66)

The pink dashed curve in Fig. 9 represents the value of
|Re(L̄32)|. After the error floor correction, the damped
oscillation extends to t = 280M . Nevertheless, we will
only focus on the portion t ≤ 150M of L̄32 henceforth.
In Fig. 9, we also observe that the early-time portion of
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FIG. 10. The mismatch between L̃32 and its fit using the
model Eq. (68). The intuitive choice Q = {3} (blue/solid)
actually produces the QNM fit with the largest mismatch.
The best single-` model uses ` = 2 (orange/dashed), produc-
ing a mismatch ∼10−2. The best two-` model uses ` = 2, 3
(purple/dash-dot), which decreases the mismatch by a fac-
tor of ∼1000 compared to the orange dashed curve after
t0 = 20M . The ` = 2, 3 curve exhibits a wavy pattern, which
can be reduced by using the ` = 2, 3, 4 model (cyan/dotted).

both curves does not follow a normal damped-oscillatory
pattern: the first 3 – 4 cycles are stretched wider at the
local maxima, especially near t ∼ 25M and t ∼ 50M .
This is caused by mode mixing, as we shall see in the
following subsection. This feature is not visible in Fig. 2,
where the mixing of modes is relatively small.

1. Mode mixing

Following the rotation procedure in Sec. III B, we de-
fine the rotated spin moments,

L̃`m(t) = L̄`m(t)e−imΩt, (67)

and investigate the mode mixing in L̃32. We perform a
QNM fit of L̃32 using the following model:

L̃32 =
∑
`∈Q

C`20e
−iω`20(t−t0). (68)

We choose the fitting time range to be t0 ≤ t ≤ 120M ,
with t0 varying, and assess the goodness of fit by mis-
match [Eq. (61)]. The set Q consists of integers to be
specified. Since we are investigating the (` = 3,m = 2)
spin moment, the most intuitive choice of Q is the single-
ton {3}, i.e., only considering the (3, 2) QNM. However,
this choice completely fails the QNM fit with mismatch
always above 0.1, as indicated by the blue solid curve in
Fig. 10. The best single-` model is actually of ` = 2 (the
orange dashed curve in the same graph), whose mismatch
is smaller than the ` = 3 curve (blue/dashed) by a fac-
tor of 10 after t0 = 10M . Thus, the (2, 2) QNM is the

actual dominant mode in L̃32. This is not unreasonable,
because the perturbation of D̃a(ε̃abωb) [see L`m’s defini-
tion, Eq. (32)] is not guaranteed to satisfy the Teukolsky
equation.
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From Fig. 10, we see that even the best single-` model
has poor performance with mismatch ∼10−2. Thus, we
move on to models using two different `’s. In particu-
lar, we consider all possible pairs of ` among {2, 3, 4, 5}.
The pair ` = 2, 3 yields the best QNM fit, as shown in
purple/dash-dot in Fig. 10, while all other pairs produce
much worse mismatch (not shown).26 The mismatch of
the ` = 2, 3 curve is much smaller than the ` = 2 curve
(orange/dashed), by a factor of ∼1000 after t = 20M .
This means that the (2, 2) and (3, 2) QNMs are the first

two dominant modes in L̃32. It also demonstrates that
a two-` model can outperform any single-` model when
mode mixing is significant.

The purple dash-dot curve in Fig. 10 has a wavy pat-
tern after t = 20M , similar to the L = 2 curve in Fig. 5,
which suggests a further mode mixing. This oscillatory
feature is indeed reduced by using the ` = 2, 3, 4 model,
as shown by the cyan dotted curve in Fig. 10. We con-
tinued expanding the model to include more `, but we
found the improvement negligible (not shown). Hence,
our (3, 2) spin moment is best described by a linear com-
bination of the (2, 2), (3, 2) and (4, 2) QNMs at late times
(t ≥ 20M).

For t ≤ 20M , the mismatch of the ` = 2, 3, 4 model
(cyan/dotted) decays sharply from 10−2 to 10−5. To
probe the effect of overtones on the early-time behavior
of L̃32, we consider the following fitting model,

L̃32 = C320e
−iω320(t−t0) + C420e

−iω420(t−t0)

+

N∑
n=0

C22ne
−iω22n(t−t0), (69)

with the fitting range t0 ≤ t ≤ 120M . We plot the mis-
match as a function of t0 in Fig. 11 for five different N .
By construction, the N = 0 curve (blue/solid) is identical
to the cyan dotted curve in Fig. 10. As more overtones
are included, the mismatch decreases, and the initial de-
cay pattern fades. However, it is yet unclear whether the
decay completely disappears, because a newly emerging
wavy pattern overshadows this decay. The wavy pattern
is manifest in all four N > 0 curves and persists for even
higher N (not shown). This suggests more potential mix-
ing from other QNMs, which we do not pursue further in
this paper.27

C. (2,0) mass moment

There are two major differences between multipole mo-
ments of m = 0 and those of m 6= 0. First, an m = 0

26 The pairs ` = 2, 4 and ` = 2, 5 have mismatch close to the orange
dashed curve in Fig. 10, while the remaining pairs close to the
blue dashed curve.

27 We have tried including an ω520 term in the fitting model
Eq. (69). This only improves the mismatch little and generates
a figure similar to Fig. 11.
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FIG. 11. The mismatch between L̃32 and its fit using the
model Eq. (69). By construction, the N = 0 curve is the
same as the cyan dotted curve in Fig. 10. Including higher
overtones brings down the mismatch, but also reveals a new
oscillatory pattern. Unless this pattern is resolved, the effect
of overtones on L̃32 remains unclear.

multipole moment is real-valued, while an m 6= 0 mode
is complex-valued. Second, as the remnant BH settles
down, a nontrivial m = 0 mode tends to a nonzero con-
stant, while a nontrivial m 6= 0 mode always tends to
0. Because of these distinctions, it is instructive to dis-
cuss m = 0 multipole moments separately. We apply the
techniques used in the previous two sections (Secs. IV A
and IV B) on I20, but with slight modification.

Mass and spin moments of a Kerr BH can be calculated
theoretically given its mass and spin [8]. Let I20,theory

be the theoretical value of the (2, 0) mass moment of a
Kerr BH. We find that the relative difference between
I20 and I20,theory always lies below 4 × 10−6 after t =
150M , so our I20 indeed approaches the expected value.
To investigate the possible QNM description of I20, we
subtract its asymptotic value and define

Ī20 = I20 −mean[I20(t ≥ 400M)]. (70)

This is similar to Eq. (55), except that the nonzero value
of I20 at a late time is related to the horizon geometry
instead of numerical errors. Note that for m = 0, there
is no need to rotate Ī20, and we can directly set Ĩ20 = Ī20

[see Eq. (59)].

We expect Ĩ20 to be described by the fundamental tone
of the (2, 0) QNM at late times. Because ω200 is a com-

plex number while Ĩ20 is real-valued, we use the following
fitting model for Ĩ20,28

Ĩ20 = e−λ1(t−t0)[A1 cosλ2(t− t0) +A2 sinλ2(t− t0)],
(71)

where λ1 and λ2 are the real and imaginary parts of
−ω200. The real parameters A1 and A2 are to be deter-
mined by a linear fit. The fitting range is t0 ≤ t ≤ 120M

28 This model can be regarded as a linear combination of the pro-
grade mode with the frequency ω+

200 and the retrograde mode

with ω−
200.
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FIG. 12. The mismatch between Ĩ20 and its fit using the ω200

QNM [Eq. (71)]. The mismatch decays to the 10−5 level very

slowly, unlike the Ĩ22 case. There are irregular bumps along
the curve, which is in stark contrast to the smooth curves in
Figs. 7 and 10. The origin of these bumps is unknown.

as usual. We first vary t0 and analyze the mismatch
Eq. (61) as a function of t0 in Fig. 12. This curve ul-
timately reaches the level of 10−5, but very gradually.
This is different from the mismatch curve of Ĩ22 fit by
the ω220 mode (the blue solid curve in Fig. 5), which
damps sharply to the 10−5 level before t0 = 20M . Such
a distinction is unexpected, because the decay rates of
ω200 and ω220 differ by only a few percent (see Table II).
This suggests that the model Eq. (71) may not be ap-

propriate for Ĩ20 before t0 = 70M (at which Ĩ20 drops to
near 10−5).

Next, we examine the performance of the model after
t = 70M , by fitting Ĩ20 with the ω200 mode in the time
range 70M ≤ t ≤ 120M . The top panel of Fig. 13 dis-
plays both Ĩ20 and its fit, which overlap to within about
1% relative error. The absolute difference between these
two curves is shown in purple (solid) in the bottom panel.
Here, we use the absolute difference instead of relative
difference to measure error, because Ĩ20 crosses zero pe-
riodically. The amplitude of the purple solid curve stays
near the level 10−7, which means the relative error is
at the level 10−2 – 10−1, after we take into account the
magnitude of Ĩ20. The bottom panel also shows the abso-
lute difference in Ĩ20 between two resolutions for reference
(cyan/dashed). The figure indicates that Ĩ20 can be rea-
sonably described by the ω200 mode at sufficiently late
times.

Knowing that the model Eq. (71) can describe the late-

time behavior of Ĩ20, we would like to estimate the final
mass and spin by minimizing the mismatch of the fit.
The outcome is not so satisfactory compared to the pre-
vious cases. Figure 14 shows the mismatch of the QNM
fit (with the fitting range 70M ≤ t ≤ 120M), as both the
final mass and spin vary. Again, the golden lines repre-
sent the true mass and spin, and a lighter-shaded region
has lower mismatch. The local minimum is achieved at
M ′f = 0.95374M and χ′f = 0.69868, which yields an error

εf = 1.2×10−2, about 4 times the error εf in Sec. IV A 2.
This means that, with regard to the performance of mass
or spin estimate, fitting Ĩ20 is inferior to fitting Ĩ22. To
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FIG. 13. The comparison between Ĩ20 and its fit based on the
model Eq. (71). The top panel shows the absolute values of

Ĩ20 (blue/solid) and the fit (orange/dashed), and these two
curves overlap well. The bottom panel shows the absolute
difference between Ĩ20 and the fit in purple/solid, and the

difference in Ĩ20 between two resolution in cyan/dashed.

understand why the ω200 model for Ĩ20 is less faithful,
we should realize that this model is not very sensitive to
the remnant parameters. This can be seen from Fig. 14,
where the local minimum of the mismatch is shallow.
Specifically, the minimum mismatch is 1.61×10−5, which
is very close to the mismatch at the true mass and spin,
1.87 × 10−5. There is actually a fundamental reason for
the weakness of this model: the variation in the values of
ω200 versus spin is much smaller than the one of ω220. In
particular, as the spin ranges from 0.5 to 0.9, Re(ω220)
increases by 45%, while Re(ω200) by only 7%. In sum-
mary, the ω200 model is a reasonable but spin-insensitive
model for Ĩ20 at late times.

D. Other multipole moments

Here, we briefly summarize the results for those mul-
tipole moments that have not been discussed previously.
We will focus on the nontrivial Ĩ`m and L̃`m up to ` = 6.
Note that these multipole moments are all floor-corrected
and rotated.

We start with the multipole moments with ` = m,
specifically, Ĩ44 and Ĩ66.29 Fitting Ĩ44 or Ĩ66 with a single-
` QNM model results in a beat pattern at late times, so
there is mode mixing in both cases. The best30 multi-
` model (with m fixed) for the late-time behavior of Ĩ44

29 The moment I00 has a constant value.
30 The best model includes all ` that can appreciably improve the

QNM fit, and excludes those ` that produce negligible improve-
ment.
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FIG. 14. Heat map of the mismatch log10M over the
(Mf , χf ) parameter space. This is generated based on the

fit of Ĩ20 using the model Eq. (71). The fitting time range
is 70M < t < 120M . The color representation is similar to
Fig. 8, and we again use two golden lines to represent the
true values. The dashed curves are the contour lines of con-
stant mismatch. Although the minimum mismatch is located
near the golden cross, the minimum is shallow, as discussed
in Sec. IV C.

consists of the ω440 and ω540 modes, while the best model
for Ĩ66 consists of ω660 and ω760. We have not found any
good model that describes the early-time behavior of Ĩ44

and Ĩ66. For example, simply including ω44n (or ω66n)
overtones in a QNM model does not eliminate the initial
decay of Ĩ44 (or Ĩ66).

Next, we consider the nontrivial multipole moments
with 0 < m < `: Ĩ42, Ĩ62, Ĩ64, L̃52, and L̃54. Their
behaviors are very similar to that of L̃32. Mode mix-
ing is significant for these multipole moments, and the
best multi-` models for them are comprised of three or
four fundamental tones of different `. For example, Ĩ42,
Ĩ62, and L̃52 are all best described by the {ω220, ω320,
ω420, ω520} model at late times. For early-time behavior,
adding overtones does greatly reduce the initial decay
pattern, but this comes with the emergence of additional
oscillatory patterns whose origin is unclear at this time.

Finally, we study the multipole moments with m = 0:
Ĩ40, Ĩ60, L̃30, and L̃50.31 They all approach their re-
spective theoretical values with error below 1.2 × 10−5.
The best multi-` model [by extending Eq. (71)] for L̃30

uses {ω200, ω300}, while the best model for Ĩ40, L̃50, and

Ĩ60 uses {ω200, ω300, ω400}. A common feature shared
by these models is their failure to describe the multipole
moments before t ∼ 60 – 80M . At sufficiently late times,

31 The moment L10 is proportional to the angular momentum of
the merged BH.

these models do produce a good description of the re-
spective multipole moments. However, we should keep
in mind that the m = 0 QNMs used in these models are
not as sensitive to the remnant spin as the m 6= 0 QNMs,
so the models might not be very precise.

V. CONCLUSION

In this paper, we numerically construct the multipole
moments on the common horizon of an equal-mass BBH
system on a sequence of time slices. The construction
process captures the connection among the common hori-
zons on different time slices, which ensures that this set of
multipole moments is spatially gauge independent. We
apply a geometrically motivated rotation to the multi-
pole moments, which turns out to simplify the analysis.
We compare the multipole moments of the horizons with
those of the gravitational waveform, and see a strong cor-
relation between the (` = 2,m = 2) mass multipole mo-
ment and the strain (2, 2)-mode. Specifically, they share
the same oscillation frequency and decay constant at late
times. This suggests the possible QNM description of
horizon multipole moments, which we pursue next.

We consider all nontrivial multipole moments up to
` = 6, and model each multipole moment as a linear
combination of spin-weight-2 QNMs. At sufficiently late
times, these multipole moments are well described by the
fundamental tones of QNMs: not only do the true values
overlap with the predicted values fit to the QNM models,
but also the mismatch between them is small. However,
the multipole moments do not match one-to-one with the
fundamental tones, and we actually see a manifest mode-
mixing phenomenon in all the multipole moments. For
example, our best QNM model for the late-time behavior
of the (2, 2) mass moment consists of the ω220 and ω320

QNMs, where the ω320 mode has a tiny but nonnegli-
gible contribution. A more counter-intuitive example is
the (3, 2) spin moment, in which the ω220 mode domi-
nates over the ω320 mode, instead of vice versa. We find
that in general, the (`,m) multipole moment at late times
is described by a QNM model consisting of the (`′,m)
fundamental tones for the first several possible `′. Note
that the mode mixing in horizon moments does not orig-
inate from spherical-spheroidal mode mixing (the latter
is studied in, e.g., Ref. [77]). The waveform perturbation
Ψ4 (to which h is closely related) satisfies the Teukolsky
equation [13] and has spheroidal harmonics as angular de-
pendence. In contrast, the perturbation of surface Ricci
scalar R̃ does not satisfy the Teukolsky equation and has
a potentially more complicated angular dependence. The
mode mixing in horizon moments comes from the mix-
ing between this complicated angular dependence and
spherical harmonics, so the mixing is potentially more
significant.

We also explore the possibility of QNM modeling for
the early-time behavior of multipole moments by includ-
ing overtones. We find that the inclusion of ω22n over-
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tones up to n = 3 is sufficient to provide an accurate
representation of the (2, 2) mass moment immediately
after the merger. This extends the power of BH pertur-
bation theory back to the time of coalescence. However,
this picture does not apply to other multipole moments:
a QNM model with overtones does reduce the mismatch
significantly, but at the same time, it also unveils further
mixing of modes. As a consequence, a more careful mod-
eling with overtones is needed in the future to describe
the early-time behavior of multipole moments other than
the (2, 2) mass moment.

Taking into account the effect of mode mixing, we find
that the QNM models using fundamental tones at late
times provide a fairly faithful estimate of the remnant
mass and spin, especially for those multipole moments of
nonzero m. Furthermore, in the case of the (2, 2) mass
moment, the QNM model with overtones also recovers
the true mass and spin at the minimum mismatch. We
also note that for the m = 0 multipole moments, the
performance of these estimates is not as good as in the
m 6= 0 cases. This is interpreted as resulting from the
weaker dependence of the m = 0 mode frequencies on
the spin.

In summary, this paper provides promising evidence
for the QNM description of horizon multipole moments
of a remnant BH in the ringdown phase of an equal-mass
non-spinning BBH system. These multipole moments
are spatially gauge independent, as we take into account
the relation among apparent horizons in the construction
step. Such gauge independence, along with the accuracy
of the SpEC code, allows these multipole moments to be
described with QNMs much more accurately than those
horizon multipole moments constructed in previous liter-
ature (e.g., [8, 9]).

As future work, one can consider more generic BBH
systems whose progenitors have different masses or
nonzero spins, and then construct horizon multipole mo-
ments as outlined in this paper. One may also define a
similar set of horizon multipole moments for the progen-
itor BHs, and investigate their possible imprint on the
common horizon multipole moments. Note that Ref. [9]
discusses the multipole moments of the progenitors, but
the construction there does not yet capture the connec-
tion among the apparent horizons. Regarding the QNM
models, one can continue improving them to mitigate the
effect of mode mixing. Such improvement should reveal a
clearer pattern in the early-time portion of horizon mul-
tipole moments. Regarding the similarities between hori-
zon behavior and waveforms at I , we have shown qual-
itatively the strong correlation between a horizon mode
I22 and a waveform mode h22. It would be interesting
to explore whether this correlation can be turned into
a quantitative relation between horizon moments and
waveform modes.
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FIG. 15. The energy flux rate dFg/dt. The rate consists of
two parts, and we show the σ-part (dFg,σ/dt) in blue/solid
and the ζ-part (dFg,ζ/dt) in orange/dashed. We only consider
the time range 0 ≤ t ≤ 30.8M . Except at the merger, the σ-
part is always greater than the ζ-part, but the difference is
not substantial: the σ-part is at most 2 – 3 times as much as
the ζ-part.
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Appendix A: Balance laws and error convergence

As mentioned in Sec. II B 5, the balance laws, Eqs. (44),
(47), and (48), provide internal consistency checks for BH
simulations. In this section, we use them to test the cor-
rectness of the BBH simulation in Sec. III A. We start by
showing the energy flux rate dFg/dt in Fig. 15, as it is rel-
evant to the area balance law. The graph displays the σ-
part (dFg,σ/dt) in blue (solid) and the ζ-part (dFg,ζ/dt)
in orange (dashed), as a function of simulation time t.
We only show the time range t ≤ 30.8M , since the calcu-
lation of the ζ-part is numerically unstable at late times
because of the divergence of the components of r̂a. Both
curves decay exponentially, with higher decay rates near
the merger. We see that the σ-part always dominates the
ζ-part, except at the merger. They differ by a factor of
2 – 3 after t = 5M , which is not significant.
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FIG. 16. The convergence of relative errors in the balance
laws. The horizontal axis represents the resolution labeled by
“Lev”, and the vertical axis represents the L2 norm of the
relative errors in these balance laws. The blue dotted line
stands for the area balance law. The solid lines are for the
mass moment balance law, while the dashed lines for the spin
moment balance law.

Next, we investigate the numerical violations of these
three balance laws as functions of simulation time (t ≤
30.8M). The violations are measured by the relative dif-
ference between the left- and right-hand sides of their re-
spective equations. We find that the area balance law
[Eq. (44)] always holds within 10−4, and for most of
the time within 10−5. The mass moment balance law
[Eq. (47)] always holds within 3× 10−6 for all nontrivial
mass moments with 1 ≤ ` ≤ 8,32 and the spin moment
balance law [Eq. (48)] always holds to within 10−5 for all
nontrivial spin moments up to ` = 8.

To demonstrate the convergence of relative errors in
the balance laws, we perform simulations of the same
BBH system as described in Sec. III A, but at four addi-
tional resolutions. Including the two resolutions used in
the main text, we have six resolutions in total. These res-
olutions are labeled “Lev-i”, where i = 1, 2, · · · , 6. For a
fixed i, the target truncation error of the adaptive mesh
refinement algorithm is ∼ 2×4−i×10−4. Note that Lev-
6 corresponds to the higher resolution in the main text,
while Lev-5 corresponds to the lower one.

Figure 16 shows the L2 norm33 of the relative errors
in the balance laws. The blue dotted line represents the
area balance law, while the solid lines stand for the mass

32 We did not check the balance law for I00, even though it is non-
trivial. This is because I00 is equal to the constant

√
π (which

we checked), and both sides of the differential balance law should
vanish.

33 Specifically, the relative error in a balance law is a time series in
0 ≤ t ≤ 30.8M . The L2 norm here refers to the Euclidean L2

norm of this time series, then divided by the square root of the
length of the series.

0 100 200 300 400 500
t/M

0.21950

0.21975

0.22000

0.22025

0.22050

0.22075

0.22100

0.22125 V on every S
V, t

0 100 200 300 400 500
10-8

10-7

10-6

10-5

10-4

10-3 max( V − V, t)

FIG. 17. The temporal behavior of the surface gravity κV
on the dynamical horizon. The average value of κV , denoted
by κV,t, is shown in blue/solid. The maximum deviation of
κV from κV,t on every common horizon S is shown in or-
ange/dashed in the inset. We see that κV becomes a constant
at t = 500M .

moment balance law, and the dashed lines for the spin
moment balance law. We only show three mass moments
and three spin moments here, but we checked that these
curves are representative of the behaviors of other non-
trivial horizon moments. We can see from the graph that
the errors converge as the resolution increases from Lev-2
to Lev-5, and they reach floors around Lev-5. Therefore,
we conclude that the balance laws for the area, mass mo-
ments, and spin moments are accurate and satisfied in
our simulation.

Appendix B: Surface gravity

In this section, we briefly investigate the surface grav-
ity on a dynamical horizon [12, 30, 79],

κV = −nbV a∇aV b. (B1)

Here, na is the ingoing null normal to the common hori-
zon (t = constant slice) on H, satisfying V ana = −1.
As the dynamical horizon approaches an isolated hori-
zon, V a becomes null and this surface gravity coincides
with the one on an isolated horizon. Because κV is a
function on a dynamical horizon, it is more convenient
to consider the average value of κV over each common
horizon S, which we denote as κV,t.

In Fig. 17, we show κV as a function of the simula-
tion time t, starting from t = 25M . The blue solid curve
represents κV,t, and the orange dashed curve represents
max(κV − κV,t), i.e., the maximum deviation of κV from
its average value on every S. We see from the blue curve
that κV,t is settling down, and we check that the absolute
difference between κV,t=400M and κV,t=500M is ∼ 10−5.
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The orange curve tells us that κV is a constant on ev-
ery common horizon after t = 200M , with error ∼ 10−8.
From this, we conclude that κV already reaches a con-
stant on the dynamical horizon at t = 500M , with error
∼ 10−5.

The final value of κV in our simulation is

κV,t=500M = 0.221177M−1, (B2)

which is very close to the Kerr surface gravity [40, 80],

κKerr =
1

4Mf
−MfΩ2

H = 0.221214M−1. (B3)

Note that this expression for κKerr is calculated using
the canonical null Killing vector of the Kerr solution on
the horizon. The relative difference between κV,t=500M

and κKerr is 1.7×10−4. This confirms the approximation
f ≈ 1 in Sec. III B, and is related to the slight deviation
of Ωt=500M from ΩH seen in Sec. IV A.
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G. Lovelace, N. W. Taylor, and S. A. Teukolsky, Dynami-
cal Excision Boundaries in Spectral Evolutions of Binary
Black Hole Spacetimes, Class. Quant. Grav. 30, 115001
(2013), arXiv:1211.6079 [gr-qc].

[62] M. A. Scheel, M. Giesler, D. A. Hemberger, G. Lovelace,
K. Kuper, M. Boyle, B. Szilágyi, and L. E. Kidder,
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