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Hořava-Lifshitz gravity is an alternative theory to general relativity which breaks Lorentz in-
variance in order to achieve an ultraviolet complete and power-counting renormalizable theory of
gravity. In the low energy limit, Hořava-Lifshitz gravity coincides with a vector-tensor theory
known as khronometric gravity. The deviation of khronometric gravity from general relativity can
be parametrized by three coupling constants: α, β, and λ. Solar system experiments and gravita-
tional wave observations impose stringent bounds on α and β, while λ is still relatively unconstrained
(λ . 0.01). In this paper, we study whether one can constrain this remaining parameter with neu-
tron star observations through the universal I-Love-Q relations between the moment of inertia (I),
the tidal Love number (Love), and the quadrupole moment (Q), which are insensitive to details in
the nuclear matter equation of state. To do so, we perturbatively construct slowly-rotating and
weakly tidally-deformed neutron stars in khronometric gravity. We find that the I-Love-Q relations
are independent of λ in the limit (α, β) → 0. Although some components of the field equations
depend on λ, we show through induction and a post-Minkowskian analysis that slowly-rotating
neutron stars do not depend on λ at all. Tidally deformed neutron stars, on the other hand, are
modified in khronometric gravity (though the usual Love number is not modified, as mentioned
earlier), and there are potentially new, non-GR Love numbers, though their observability is un-
clear. These findings indicate that it may be difficult to constrain λ with rotating/tidally-deformed
neutron stars.

I. INTRODUCTION

General relativity (GR) is the current benchmark for
gravitational theories, and it has continually passed all
tests to date [1–3]. However, it is still worthwhile to
develop new theories to test GR and develop a theory
of gravity beyond GR. Current interests include finding
a valid theory of quantum gravity as well as explaining
cosmological phenomena such as dark energy and dark
matter [4–7]. The problem with the former is that GR is
not power-counting renormalizable.

Hořava proposed a theory of gravity beyond GR that is
renormalizable and ultraviolet complete [8]. The theory
breaks Lorentz invariance in the ultraviolet regime by
introducing a Lifshitz-type anisotropic scaling between
space and time (and thus the theory is called Hořava-
Lifshitz gravity). In the low-energy limit, the theory co-
incides with khronometric gravity [9]. The latter contains
a khronon scalar field whose constant hypersurfaces pro-
vide a time foliation of spacetime. Thus, the gradient
of the khronon indicates a preferred direction in space-
time that violates Lorentz invariance, and khronometric
gravity is an example of a vector-tensor theory. Though
Lorentz violation is heavily constrained in the matter
sector [10–13], it is not as stringently constrained in the
gravity sector [14–16]. Khronometric gravity corresponds
to a broader vector-tensor theory called Einstein-Æther
theory [17, 18] whose vector field (æther field) is hyper-
surface orthogonal [19]. Other vector-tensor theories in-
clude many classes of general Proca [20–27] and beyond
general Proca theories [28, 29].

Khronometric gravity is characterized by three cou-
pling constants, (α, β, λ). Previous work on testing the

theory has stringently constrained two of these three
coupling parameters. From the comparison of gravita-
tional waves from GW170817 and its associated gamma-
ray burst GRB170817A [30], along with considerations
of parameterized post-Newtonian constraints from solar
system experiments [2, 31], one can find a stringent con-
straint on α and β [16, 32]. This, along with theoretical
considerations of stability [33], helium abundance from
Big Bang nucleosynthesis [16, 34, 35], and cosmolog-
ical constraints [36], imposes a constraint on the re-
maining parameter λ; the latter constraint, however, is
still relatively weak in comparison to the constraint on
the other two constants. There has been recent work
to test this remaining parameter [37, 38], but no new
bounds have been found beyond those mentioned above.
As such, the focus of this work is to study whether tests
of this remaining parameter can be carried out with the
I-Love-Q universal relations of neutron stars [39, 40].
Due to their compactness, neutron stars are excellent

testbeds to probe strong-field gravity, and I-Love-Q is an
excellent framework to do so [39–43]. The latter refers to
universal relations between the moment of inertia (I), the
tidal Love number (Love) and the quadrupole moment
(Q) that are insensitive to the nuclear matter equation
of state. The Love number has been constrained with
GW170817 [30, 44, 45] while the moment of inertia has
been constrained with NICER observations [46], and it
is also expected to be measured with the double pulsar
binary PSR J0737-3039 [47–49]. Since the relations de-
pend on the underlying gravitational theory and deviate
from the GR ones as one considers non-GR theories, they
allow us to study gravity beyond the limits of our current
understanding of nuclear physics [39]. As an example of
this, Silva et al. [46] recently combined the gravitational-
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wave constraints of the neutron star Love number using
LIGO/Virgo data [30, 44, 45] with the X-ray constraints
of the stellar compactness using NICER data [50, 51],
together with the universal relation between the moment
of inertia and compactness, to carry out the first multi-
messenger tests of gravity with the universal I-Love rela-
tions. A follow-up analysis has been recently carried out
using the universal relation between the tidal deforma-
bility and compactness [52].

In this paper, we study whether one can use such
a test to constrain khronometric gravity. Previous
works have shown that asymptotically-flat, physical met-
rics in khronometric gravity coincide with GR in vac-

uum [38, 53], but to apply the multi-messenger test,
we must study non-vacuum spacetimes, such as neu-
tron stars. This paper therefore studies the structure
of slowly-rotating and tidally perturbed neutron stars in
khronometric gravity, focusing in particular, on how the
moment of inertia, the Love number and the quadrupole
moment depend on λ. To achieve this, we follow the
same procedure as in GR to construct slowly-rotating or
weakly tidally-deformed neutron stars perturbatively in
rotation and tidal deformation. We then use these solu-
tions to extract the moment of inertia, the Love number
and the quadrupole moment from the asymptotic behav-
ior of the metric at a large distance from the star [40].
The analysis is similar to finding slowly-moving neutron
stars in khronometric gravity to extract the stellar sensi-
tivities [14, 15]. We also study other components of the
metric perturbations, which are not needed to extract
the I-Love-Q relations, but that do determine whether
neutron stars in khronometric gravity are the same as in
GR. We do so through a post-Minkowskian (PM) anal-
ysis in which we assume that the stellar compactness is
small and solve the field equations order by order in com-
pactness. A similar PM analysis has recently been used
to find neutron star sensitivities in Einstein-Æther the-
ory [54] and scalar-tensor theories [55].

Our main findings are as follows. First, we find that the
field equations relevant for extracting the I-Love-Q rela-
tions are completely independent of λ in the (α, β) → 0
limit. Thus, the relations are the same as in GR, which
implies they cannot be used to constrain λ with an I-
Love-Q test. Second, we find that some components of
the field equations do contain λ-dependence, although
they do not affect the moment of inertia, the Love num-
ber or the quadrupole moment. Third, through the
method of induction and a PM analysis, we show that
even the solutions to these components of the field equa-
tions in the case of slowly-rotating neutron stars do not
present khronometric gravity modifications, and thus,
such stars in this theory are identical to those in GR when
(α, β) → 0. On the other hand, tidally-deformed neutron
stars acquire khronometric corrections that depend on λ.
These corrections lead to new “species” of Love numbers
that are absent in GR: two types are from the vector
field of khronometric gravity (which we call “vector Love
numbers”), while the third type is from perturbations to

the shift in the metric tensor (which we call “shift Love
number.” The observability of these new Love numbers
is not yet clear.
The rest of the paper is organized as follows. In Sec. II,

we summarize the details of khronometric gravity and in-
troduce the vector field as well as the field equations. We
also discuss previously-found bounds on the theory. In
Sec. III, we summarize the ansatz for the spacetime met-
ric, the vector field, and the matter stress-energy ten-
sor used throughout the rest of the paper. In Sec. IV,
we present our results in analyzing the I-Love-Q trio in
khronometric gravity and show that the values coincide
with those of GR in the limit (α, β) → 0. In Sec. V, we
focus on the remaining components of the metric pertur-
bations that are irrelevant to extracting the I-Love-Q trio
and analyze them within a PM framework. In particu-
lar, we here derive new shift and vector1 Love numbers
for khronometric gravity. In Sec. VI, we conclude and
discuss future directions. In Appendix A, we discuss
how khronometric gravity can be regarded either
as a scalar-tensor or vector-tensor theory, and we
show that either viewpoint leads to the same con-
clusion in terms of perturbations. In Appendix B,
we present the full field equations for neutron stars, keep-
ing all the coupling constants.Throughout this work, we
use the metric signature (+,−,−,−), and we use geomet-
ric units c = 1 = GN , where GN is the local Newtonian
gravitational constant.

II. KHRONOMETRIC GRAVITY

In this section we present the action and equations
of motion for khronometric gravity. We also discuss
some previous bounds on the theory, which indicate
what values we consider for the coupling constants that
parametrize the theory.
First, we present the khronometric action, which is

given by [9, 37]

S =
−1

16πGbare

∫

d4x
√−g(R + L) + S(mat), (1)

with

L ≡ λ ϑ2 + β ∇µU
ν∇νU

µ + α U̇µU̇
µ. (2)

Here g is the metric determinant, R is the Ricci scalar,
S(mat) is the matter action, U̇µ ≡ Uν∇νUµ and ϑ ≡
∇µU

µ with ∇µ representing the covariant derivative.
The quantities α, β, and λ are coupling constants for
khronometric gravity, and we can recover GR by taking

1 We note that Ref. [56] finds a Love number which is
called a “vector Love number,” but they are referencing
the vector harmonic sectors of metric perturbations, as
opposed to the vector field perturbations considered in
this paper.
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the limit (α, β, λ) → 0. In the action, Gbare is the bare
gravitational constant, which satisfies

Gbare = GN

(

1− α

2

)

=
(

1− α

2

)

, (3)

where GN is the Newtonian gravitational constant, mea-
sured locally in the solar system [18, 35]. We shall set
GN = 1 throughout this work. The quantity Uµ is a fun-
damental vector of the theory (that would correspond to
the æther vector in Einstein-Æther theory). This is de-
fined in terms of a “khronon” scalar T whose constant
hypersurfaces define time foliations of spacetime, and is
found to be

Uµ =
∇µT√

∇νT∇νT
. (4)

Uµ is also subject to the normalization condition UµUµ =
1. Thus, we find Uµ is a unit timelike vector specifying a
preferred time direction that classifies khronometric grav-
ity as one that violates Lorentz symmetry. From the
above equation, we see that khronometric gravity
could be considered to be either a scalar-tensor
theory or a vector-tensor theory. This is a re-
sult of Forbenius’ theorem being bijective. On
the one hand, one can start with a scalar that fo-
liates spacetime with its constant hypersurfaces
and from this define a hypersurface orthogonal
vector field. One the other hand, one can instead
start with a vorticity-free vector field and then
find a scalar field that foliates spacetime with its
constant hypersurfaces [57]. We give a more de-
tailed analysis of this dual interpretation in Ap-
pendix A.
We next present the equations of motion for khrono-

metric gravity. The modified Einstein field equations in
this theory, found by varying the action with respect to
the metric, are given by [37]

Eµν ≡ Gµν − 8πGbareT
(mat)
µν − T (k)

µν = 0. (5)

Here, Gµν = Rµν − Rgµν/2 is the Einstein tensor with

Rµν representing the Ricci tensor and T
(mat)
µν is the mat-

ter stress-energy tensor while T
(k)
µν is the stress-energy

tensor for the vector field Uµ defined by

T (k)
µν = ∇ρ

[

J(µ
ρUν) − Jρ(µUν) − J(µν)U

ρ
]

+ α U̇µU̇ν

+
(

Uρ∇σJ
σρ − α U̇ρU̇

ρ
)

UµUν +
L
2
gµν + 2Æ(µUν),

(6)

with

Jµν ≡ λϑδµν + β ∇νU
µ + α U̇νU

µ, (7)

Æµ ≡ (gµν − UµUν)
(

∇ρJ
ρν − α U̇ρ∇νUρ

)

. (8)

The vector field satisfies an æther equation of motion,

∇µ

(

Æµ

√
∇νT∇νT

)

= 0, (9)

which can be obtained by varying the action with respect
to the khronon scalar T . One can equivalently derive
this equation by varying the Einstein-æther the-
ory action with respect to the vector field with
five Lagrange multipliers, one to enforce the unit
timelike constraint and four to enforce the zero-
vorticity condition [14].
Let us now review existing bounds on the theory [16].

The propagation speed of tensor modes is given by
1/(1 − β), whose deviation from the speed of light has
been constrained to be ∼ 10−15 from the gravitational-
wave observation of GW170817 and its electromagnetic
counterpart [30, 58]. This leads to the constraint |β| .
10−15. From other observations and theoretical require-
ments, such as the stability of the theory, solar system
experiments, Big Bang nucleosynthesis, and cosmolog-
ical constraints [16, 36], the remaining coupling con-
stants are constrained to be |α| . 10−7 and |λ| . 0.01.
Therefore, we can see that λ remains relatively uncon-
strained while the magnitude of α and β are more strin-
gently bounded. The main interest of this paper is to
study the I-Love-Q relations in khronometric gravity in
the (α, β) → 0 limit, while keeping λ free. This is in
fact the only parameter choice that makes black holes
non-pathological at the universal horizon for all propa-
gation modes [32]. Additionally, we note that the order
in which one takes α and β to zero does not alter the
results throughout this work.

III. METRIC, VECTOR, AND MATTER

PERTURBATIONS

In the following sections, we consider neutron star
perturbations due to slow rotation and tidal deforma-
tion. We first present the general metric and vector field
ansatz, which can be reduced to the slow rotation case
or the tidal deformation case by keeping the relevant free
functions and spherical harmonic modes for each case.
We next show the matter contribution.

A. Metric and Vector Ansatz

Using the generic, static and spherically symmet-
ric metric as a background with additional terms from
appropriate parity perturbations in the Regge-Wheeler
gauge [59, 60], we start with the following ansatz [39]
that includes l = 1 odd and l = 2 even perturbations:

ds2 = eν(r)[1 + ε2 κH0(r)Y2m(θ, φ)]dt̃2

− eµ(r)[1− ε2 κH2(r)Y2m(θ, φ)]dr2

− r2[1− ε2 κK(r)Y2m(θ, φ)]

× {dθ2 + sin2 θ[dφ− ε[Ω⋆ − ω(r)P ′
1(cos θ)]dt̃]

2}
+2ε2[κH̃1(r)Y2m(θ, φ)]dt̃dr +O(ε3). (10)

Here, ε is a book-keeping parameter denoting the order
of the perturbation, Y2m(θ, φ) is the l = 2 spherical har-
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monic function, P ′
1(cos θ) = dP1(cos θ)/d(cos θ), Ω⋆ is the

(constant) angular velocity, and κ = 2
√

π/5 (chosen so
that κ Y20(θ, φ) = P2(cos θ)). For vector perturbations,
we follow Eq. (13) in [61] to form our ansatz,

Uµdx̃
µ = eν/2

{

[

1 + ε2 κX(r)Y2m(θ, φ)
]

dt̃

+ ε2 κW (r)Y2m(θ, φ)dr + ε2 κV (r)∂θY2m(θ, φ)dθ

+
[

ε S(r) sin2 θ + ε2 κV (r)∂φY2m(θ, φ)
]

dφ

}

+ O(ε3). (11)

By normalizing the vector’s magnitude to be
unity, we find X = H0/2. We only consider perturba-
tive terms up to quadratic order in ε in this paper. The
above ansatz may also be used for tidal perturbations by
only considering even parity perturbations; there is no
tidal perturbation at O(ε) and the leading perturbation
enters at O(ε2).
We can further modify this general framework by using

the zero-vorticity condition of khronometric gravity to
find an appropriate coordinate transformation that sim-
plifies the ansatz [14]. In khronometric gravity, there
is a required hypersurface orthogonality condition which
can be expressed as requiring the vorticity vector, wµ, to
vanish [14]:

wµ ≡ εµνρσUν∂ρUσ = 0 , (12)

where εµνρσ is the Levi-Civita tensor. Using this condi-
tion, we can find a coordinate transformation such that
there is only one non-vanishing component in the vector
ansatz. For ansatz shown in Eqs. (10) and (11), we find
the nontrivial vorticity vector components to be

wr = ε
2e

ν−µ

2

r2
S cos θ +O(ε3), (13)

wθ = −ε e
ν−µ

2

r2 sin θ

[

sin2 θ∂rS

+ε m sin(mφ)Pm2 (cos θ)(W − ∂rV )]

+ O(ε3), (14)

wφ = ε2
e

ν−µ

2

r2 sin θ
cos(mφ)Pm2

′(cos θ)(W − ∂rV ) +O(ε3),

(15)

where Pm2 (cos θ) is the l = 2 associated Legendre poly-
nomial and Pm2

′(cos θ) = dPm2 (cos θ)/d(cos θ). We can
then conclude that S = 0 and W (r) = ∂rV (r) in order
to eliminate the non-vanishing vorticity terms.

This allows us to rewrite the vector field as

Uµdx̃
µ = eν/2

{[

1 + ε2 κ
H0

2
(r)Y2m(θ, φ)

]

dt̃

+ ε2 κ∂rV (r)Y2m(θ, φ)dr + ε2 κV (r)∂θY2m(θ, φ)dθ

+ ε2 κV (r)∂φY2m(θ, φ)dφ

}

+O(ε3). (16)

Now, we choose the coordinate transformation given by

t = t̃+ ε2 κV (r)Y2m(θ, φ), (17)

where, upon differentiating both sides, solving for dt̃,
and substituting the expression into Eq. (16), all but
the t component of the vector field is eliminated. We
note that this transformed time coordinate cor-
responds to the perturbed khronon scalar, which
is discussed in Appendix A.

We now present the metric and vector forms used
throughout this paper. After performing the coordinate
transformation above, the metric and æther vector ansatz
are given by

ds2 = eν(r)[1 + ε2 κH0(r)Y2m(θ, φ)]dt2 − eµ(r)[1− ε2 κH2(r)Y2m(θ, φ)]dr2

− r2[1− ε2 κK(r)Y2m(θ, φ)]{dθ2 + sin2 θ[dφ− ε[Ω⋆ − ω(r)P ′
1(cos θ)]dt]

2}
+ 2ε2 κ

{

H1(r)Y2m(θ, φ)dtdr − eν(r)V (r)[∂θY2m(θ, φ)dtdθ + ∂φY2m(θ, φ)dtdφ]
}

+O(ε3), (18)

Uµdx
µ = e

ν(r)
2

[

1 + ε2 κ
H0(r)

2
Y2m(θ, φ)

]

dt+O(ε3),

(19)
where we define

H1 ≡ H̃1 − eν∂rV (r). (20)

Notice that the vector field only has a t component while
there are additional (t, r) and (t, θ) components in the
metric.
We now summarize which field functions and spherical

harmonic modes are considered at each order of pertur-
bation in the slow rotation or tidal deformation case. We

can see that the only radial functions at O(ε0) are ν and
µ, while at O(ε) we have ω, and at O(ε2) we have H0,
H1, H2, K, and V . For metric perturbations due to slow
rotation, we only have (l,m) = (1, 0) modes at O(ε) and
both (l,m) = (2, 0) and (l,m) = (0, 0) modes at O(ε2).
Tidal deformability only enters at O(ε2) with l = 2 and
all m modes, so when solving the tidal field equations,
we neglect O(ε) terms in Eq. (18) [39]. Thus, the free
field functions are {ν, µ, ω, H0, H1, H2, K, V } in the
slow rotation case and {ν, µ, H0, H1, H2, K, V } in the
tidal deformation case.
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B. Matter Contribution

In this subsection, we develop the form of the matter
stress-energy tensor. First, we discuss the four-velocity
of the neutron star. We assume the neutron star is a
perfect fluid, with its four-velocity given by

uµ∂µ = ut̃(∂t̃ + ε Ω⋆∂φ), (21)

where Ω⋆ is the neutron star angular velocity. Using the
normalization condition uµuµ = 1, we find

ut̃ = e
ν

2 +
ε2

2
e−

3ν
2

[

(ωr sin θ)2 − κ eνH0Y2m
]

+O(ε3).

(22)
Before proceeding, let us make two observa-

tions. First, note that one does not need to
perturb the fluid four-velocity more generally be-
cause of the same arguments used in GR to con-
struct rotating stars [62]. We have here assumed
that the matter fields are barotropic, since neu-
tron stars are expected to be “cold” (i.e. the
star’s temperature is much lower than the Fermi
temperature). We can also use the fact that the
timelike killing vector ξα = (∂t)

α and the axisym-
metric killing vector ψα = (∂φ)

α are both also sym-
metries of the matter fields, given explicitly by
the conditions

£ξu
α = 0; £ξǫ = £ξp = 0, (23)

£ψu
α = 0; £ψǫ = £ψp = 0. (24)

Here, ǫ is the energy density, p is the pressure,
and £v denotes the Lie derivative along a vector
vα. Barotropic stars with these symmetries can
be modeled with a circular four-velocity, which is
precisely the form in Eq. (21) [62]. The inclusion
of a stationary and axisymmetric æther vector
field would not change any of the above, so we
maintain the same four-velocity as in GR.
Second, note that the coordinate transforma-

tion given in Eq. (17) does not change the form
of the fluid four-velocity, as can be shown by
the vector transformation law. Let tilde indices
denote the coordinates used before the trans-
formation given in Eq. (17), explicitly given by
xµ̃ = {t̃ = t− ε2κV (r)Ylm(θ, φ), r, θ, φ}. Thus, we find
that

uµ∂µ =
∂xµ

∂xµ̃
uµ̃∂µ =

(

∂xµ

∂t̃
ut̃ +

∂xµ

∂φ̃
uφ̃

)

∂µ

= ut̃
[

δµt + εΩ⋆

(

δµt
∂t

∂φ̃
+ δµφ

∂φ

∂φ̃

)]

∂µ

= ut̃ (∂t + εΩ⋆∂φ) +O(ε3), (25)

where we have here used the fact that ∂t/∂φ̃ =
O(ε2).
With this in mind, the stress-energy tensor up to O(ε2)

is given by

T (mat)
µν = [ǫ̃0 + p̃0 + ε2 κ(ǫ̃2 + p̃2)Y2m]uµuν

− (p̃0 + ε2 κ p̃2Y2m)gµν +O(ε3), (26)

where ǫ̃i and p̃i are the ith order energy densities and
pressures, respectively. We rescale these matter fields
via [14]

ǫi ≡
2− α

2
ǫ̃i, pi ≡

2− α

2
p̃i, (27)

which absorbs the overall factor introduced by Gbare =
1− α/2 in Eq. (1).

IV. I-LOVE-Q

In this section, we prove that the I-Love-Q trio in
khronometric gravity are not modified from their GR val-
ues when (α, β) → 0. To do so, we use the ansatz in the
previous section and consider slowly-rotating or weakly-
tidally-deformed neutron stars. The moment of inertia,
quadrupole moment and tidal Love number can be com-
puted from the first order in rotation, second order in
rotation and first order in tidal deformation solutions,
respectively [39]. The background, modified Tolman-
Oppenheimer-Volkoff (TOV) equations with no rotation
and tidal deformation are given in Eqs. (B1)–(B3), and
they only depend on α. Thus, the TOV equations are
identical to the GR ones in the α → 0 limit. We study
below slow rotation and small tidal deformation in turn
in the limit of (α, β) → 0. The full field equations with-
out this restriction can be found in Appendix B.

A. Moment of Inertia

We begin by studying how λ enters the field equations
at first order in spin. From the action in Eq. (1), we see
that λ always enters multiplied by ϑ ≡ ∇µU

µ. However,

ϑ =∇µU
µ =

∂µ(
√−gUµ)√−g

=
1√−g [∂t(

√−gU t) + ∂φ(
√−gUφ)] +O(ǫ2)

=O(ǫ2) . (28)

In the second equality, we used the fact that the only non-
vanishing components on Uµ (not to be confused with
Uµ) are t and φ at O(ε), while the third equality holds
from the vector field being stationary and axisymmetric.
Because the divergence of Uµ is the expansion (i.e. the
rate of change of the cross-sectional area of vector field
congruences Uµ) [19], physically, the λ dependence is ab-
sent because the expansion of Uµ is zero for a rotating
configuration, at least to first order in spin. Since the
field equations at O(ǫ) do not depend on λ, the moment
of inertia is the same as in GR in the (α, β) → 0 limit.
One can also check this finding by looking at the field
equations explicitly. The only non-vanishing component
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of the field equations is given in Eq. (B4) which only de-
pends on α and β. Therefore, it reduces to the GR one
when these constants are set to zero.

B. Quadrupole Moment

We next consider the field equations at second order in
spin to find the λ dependence on the quadrupole moment.
In this subsection, we use the metric exactly as shown in
Eq. (18). Note that since gtr and gtθ are non-vanishing,
the contravariant form of the vector Uµ acquires an r
and θ dependence in the U r and Uθ components, respec-
tively. This means that the divergence of the vector is
nonzero and thus λ enters into the vector field equations.
The modified field equations now depend on the following
set of functions: {H0, H1, H2, V,K, p2, ǫ2}, which depend
only on r.
Let us examine the modified field equations analyti-

cally in order to discuss the nontrivial appearances of λ.
When considering the (α, β) → 0 limit in Eq. (6), we
obtain

T (k)
µν = ∇ρ

[

J(µ
ρUν) − Jρ(µUν) − J(µν)U

ρ
]

+
L
2
gµν

+ Uρ∇σJ
σρUµUν + 2Æ(µUν), (29)

where

Jµν = λ ϑδµν , (30)

L = λ ϑ2, (31)

ϑ = ∇ρU
ρ = ∇rU

r +∇θU
θ. (32)

Since Jµν = Jν
µ, we can see clearly

J(µ
ρUν) − Jρ(µUν) = 0. (33)

Next, we note that Jµν = λ ϑ gµν , which gives Æµ =
(gµν − UµUν)∇ρJ

ρν . Using these equations, we find

T (k)
µν = λ

[

(UµUν − gµν)£Uϑ+
ϑ2

2
gµν

]

+ 2Æ(µUν),

(34)

Æµ = λ (∇µϑ− Uµ£Uϑ ). (35)

Here, £U denotes a Lie derivative with respect to the
vector field.
Let us now analyze each term of T

(k)
µν to reveal the λ

dependence. Taking a closer look at the Lie derivative
term, we find

£Uϑ = Uµ∇µϑ = U r∇rϑ+ Uθ∇θϑ = O(ε4), (36)

where we used the fact that ϑ is independent of t and φ
and that U r, Uθ, and ϑ are all O(ε2). Therefore, we can
neglect all terms containing the Lie derivative of ϑ with
respect to the vector field. Similarly, we see the last term
in the brackets of Eq. (34) is proportional to ϑ2 = O(ε4).
Thus, at this order of perturbation, we are left with

T (k)
µν = 2λ∇(µϑUν) . (37)

Again using the static and axisymmetric property of ϑ,
the only non-vanishing components of∇µϑ are µ = (r, θ).
Keeping in mind that Uµ only has a non-vanishing t com-
ponent, we only find λ terms in the (t, r) and (t, θ) terms

of T
(k)
µν . This means that only Etr = 0 and Etθ = 0

contain λ in the modified field equations.

Let us now discuss how the quadrupole moment de-
pends on λ. Such a moment can be derived by looking at
the asymptotic behavior of gtt at large r, which is deter-
mined through H0 and K. As we discuss in more detail
in Appendix B 3, it turns out that the diagonal compo-
nents of Eµν = 0 and Erθ = 0 give coupled equations
for H0, K and H2. Based on the discussion earlier in
this subsection, these components do not depend on λ.
Hence, the quadrupole moment reduces to that of GR in
the (α, β) → 0 limit. We have confirmed this result by
directly deriving equations for H0, K and H2, which are
given in Eqs. (B5)–(B7). These equations only depend
on α and β, and thus reduce to the GR field equations
when we set these coupling constants to zero.

C. Tidal Love Number

Finally, we study tidal perturbations and how the tidal
Love number depends on λ. We focus on the lead-
ing, even-parity perturbations. This amounts to neglect-
ing terms that are O(ε) and keeping those at O(ε2) in
Eq. (18). In practice, one can achieve this by taking the
field equations at second order in spin and setting ω = 0
Doing so, we find that the discussion in Sec. IVB still
holds for tidal perturbations and, in particular, λ does
not enter the diagonal components of Eµν or Erθ.

The tidal Love number is defined as the ratio between
the tidally-induced quadrupole moment and the external
tidal field. Similar to extracting the (rotation-induced)
quadrupole moment described in Sec. IVB, both of these
quantities can be read off by looking at the asymptotic
behavior of gtt at large r. The only difference is that one
does not impose asymptotic flatness to extract the tidal
field strength, since the expansion is formally done in an
intermediate buffer zone (i.e. in a spatial region that is
not too close to the neutron star surface but also not
too close to the object causing the tidal deformation).
Given that H0 and K are independent of λ, the tidal
Love number is the same as the GR one in the limit
(α, β) → 0. Once again, we checked this result explicitly
by looking at the field equations for H0 directly. For
tidal perturbations, we find that H0 = H2 ≡ H due to
the absence of the O(ε) perturbation; the equation for H
is given in Eq. (B8), which only depends on α (unlike the
field equations at second order in spin which also depend
on β). This equation, therefore, reduces to the GR one
in the limit α→ 0.
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V. ELECTRIC-TYPE PERTURBATION TO THE

SHIFT

Are slowly-rotating neutron stars or tidally-perturbed
neutron stars in khronometric gravity the same as those
in GR when (α, β) → 0? The answer to this question is
not trivial as there are some components in the modified
Einstein equations (not relevant for extracting I-Love-Q)
that have λ dependence and that do not explicitly vanish
in the (α, β) → 0 limit. Below, we study slowly-rotating
stars and tidally-deformed ones in turn.

A. Slow rotation

We begin by focusing on slowly-rotating neutron stars
to second order in spin and focus on solving the λ-

dependent part of the equations analytically within the
PM approximation.

1. Field Equations

We first derive the equations for metric perturbations
that depend on λ. As we showed in Sec. IVB, it is the
(t, r) and (t, θ) components of the modified Einstein equa-
tions that contain the λ dependence. These two equa-
tions give a coupled system for H1 and V . When taking
the (α, β) → 0 limit (see Eqs. (B8) and (B14) for the full
equations), we find

d2H1

dr2
=

2

r(r − 2M)
(2πr3p0 + 6πr3ǫ0 +M − r)

dH1

dr
− 3eν(2λ+ 1)

λr(r − 2M)

dV

dr
− 6eν(4πr3p0 + 5M − 2r)

r2(r − 2M)2
V +

{

4πr2

r − 2M

dǫ0
dr

+
9λM2 + 2r(6πλr2p0 + 18πλr2ǫ0 + 4λ− 3)M + r2[8πλr2(2πǫ0r

2 − 1)p0 − 16πr2λǫ0 − 2λ+ 3]

λr2(r − 2M)2

}

H1, (38)

d2V

dr2
=

4πr3(ǫ0 − 3p0)− 4M

r(r − 2M)

dV

dr
− 12λ

r(r − 2M)
V + 2e−ν

(3λ− 1)M + 2πr3[(2λ+ 1)ǫ0 − p0]− 2λr

r(r − 2M)
H1 − (2λ+ 1)

dH1

dr
.

(39)

Here, M(r) is defined as

M(r) ≡ r

2

[

1− e−µ(r)
]

. (40)

Before solving the above equations, let us discuss tak-
ing the GR limit. When taking the limit λ→ 0, Eq. (38)
has an apparent divergence. However, by multiplying
both sides by λ, we find the condition

H1 = −eν dV
dr

+O(λ), (41)

when λ≪ 1. This condition identically satisfies Eq. (39)
in the limit λ → 0, making it vanish at O(λ0). This in-
dicates that the system loses a degree of freedom in the
GR limit, since the pair of coupled differential equations
collapses into one condition that leaves H1 and V unde-
termined. However, in GR there is no vector field to give
a condition on V , which originated as a vector pertur-
bation in Eq. (11). Therefore, the GR limit is actually

H̃1 = 0 in Eq. (10), which describes the metric before
the time coordinate transformation in Eq. (17). Thus, V
in the metric ansatz in Eq. (18) is simply an artefact of
the coordinate transformation we performed in Eq. (17).

By comparing Eqs. (20) and (41), we see that H̃1 = 0,
and transforming back to the original time coordinate re-
moves all terms dependent on V . Thus, we recover the
correct GR limit, and we find that V becomes purely a
gauge artefact from the transformation given by Eq. (17).

2. PM Expansion

We wish to solve Eqs. (38) and (39) both in the interior
and exterior of neutron stars under the boundary condi-
tions of regularity at the center and asymptotic flatness
at infinity. Since the system is composed of two second-
order differential equations, there are four integration
constants for each region. Two of them are associated
with terms that grow in r, while the other two corre-
spond to solutions that decay in r. Imposing asymptotic
flatness at infinity eliminates the first two modes in the
exterior, while the regularity at the center removes the
other two in the interior. Given that Eqs. (38) and (39)
are homogeneous, there is no other contribution to the
solution, and upon matching the solutions at the surface,
we find H1 = V = 0.

To show the above argument explicitly, we consider
solving Eqs. (38) and (39) analytically within the PM
approximation [54, 55]. We expand the TOV equations
along with Eqs. (38) and (39) in orders of compactness
C = M⋆/R⋆, where M⋆ and R⋆ are the stellar mass and
radius, respectively. The leading contribution of each
background function is as follows: M = O(C′), ν = O(C′)
and p0 = O(C′2) [54, 55]. Here C′ is a book-keeping pa-
rameter which denotes the order of a term in compact-
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ness. For H1 and V , we use the following ansatz:

H1(r) =
∑

j=0

ηj(r) C′j , V (r) =
∑

j=0

vj(r) C′j . (42)

We substitute the above ansatz in Eqs. (38) and (39)
and expand in powers of C′. We solve the equations for
ηj and vj order by order, both in the interior and ex-
terior regions. We impose regularity at the center and
infinity, together with the following boundary conditions
at the surface for the continuity and smoothness of the
solutions:

η
(int)
j (R⋆) = η

(ext)
j (R⋆), (43)

η′j
(int)(R⋆) = η′j

(ext)(R⋆), (44)

v
(int)
j (R⋆) = v

(ext)
j (R⋆), (45)

v′j
(int)(R⋆) = v′j

(ext)(R⋆), (46)

where the primes indicate a derivative with respect to r.
We now show that H1 and V vanish through the

method of induction. We take the following steps: (i)
show that H1 = V = 0 when j = 0; (ii) assume that
H1 = V = 0 for j ≤ n − 1 and show that H1 = V = 0
holds for j = n.
Let us start by looking at the first step. When j = 0,

the equation for η0 and v0 are given by

η′′0 =
12λv0 − r [(3 − 2λ)η0 + (3 + 6λ)v′0 + 2λrη′0]

λr3
,

(47)

v′′0 = −12λv0 + 4rλη0 + r2(1 + 2λ)η′0
r2

, (48)

where we assume λ 6= 0.
For the interior, by requiring regularity at the center

we find

η
(int)
0 = −2A0r +B0r

3, (49)

v
(int)
0 = A0r

2 − (3 + 10λ)B0

12(1 + λ)
r3, (50)

while for the exterior, by requiring regular solutions in
the limit r → ∞, we obtain

η
(ext)
0 =

C0

r2
+

3D0

r4
, (51)

v
(ext)
0 =

C0

r(1 + 6λ)
+
D0

r3
. (52)

Here A0, B0, C0 and D0 are integration constants. Im-
posing continuity and differentiability of η0 and v0 at the
surface yields A0 = B0 = C0 = D0 = 0, showing that
H1 = V = 0 at O(C′0).
Next, we study the second step. We assume H1 =

V = 0 for j ≤ n − 1 and consider the equations for ηn
and vn at O(C′n). Given that ηn and vn are already of
O(C′n), we only need coefficients at O(C′0). This means
that the equations for ηn and vn are the same as Eqs. (47)
and (48). Then, we can repeat the process explained in

the first step and this leads to H1 = V = 0 at O(C′n).
This concludes our proof that H1 = V = 0 to all orders
in the PM expansion. Notice that this proof does not
depend on the choice of the equation of state.

B. Tidal Deformation

In this subsection, we study tidally-deformed neutron
stars in khronometric gravity in more detail. In particu-
lar, we focus on the non-GR fields V and H1 that depend
on λ but do not affect the usual tidal Love number, com-
puted from the gtt perturbations discussed above. Unlike
the analysis for slowly-rotating stars in Sec. VA2, we do
not impose asymptotic flatness on the metric and vector
fields (because the presence of the perturber prevents us
from doing so), and this allows us to extract tidal terms
that grow with r. We will find it more insightful to work
with (V, H̃1) rather than (V,H1), where V originated as

a vector perturbation, while H̃1 is a metric perturbation
before the coordinate transformation in Eq. (20). We
consider the following two cases and introduce three new
Love numbers: (i) two of them are obtained by impos-
ing that the vector field strength be zero (a shift and a
vector Love number), and (ii) one of them is found by
letting the metric field strength be zero (another vector
Love number). Case (i) is similar to previous work on I-
Love-Q relations in scalar-tensor theories [63], where the
authors did not impose asymptotic flatness on the met-
ric but required the scalar field to be regular as r → ∞
(see [52, 64] for similar analyses in different theories of
gravity). We then discuss the physical interpretation of
these Love numbers briefly.

1. Khronometric Love number

We now detail the PM expansion for tidally-deformed
neutron stars in khronometric theory. The procedure is
similar to the PM analysis in Sec. VA2, but we now re-
tain growing modes in the exterior to study tidal effects.
We note that since Eqs. (38) and (39) are independent of
ω, they apply to the tidal deformation case as well. At
zeroth order in compactness, this will yield an interior
solution still given by

η
(int)
0 = −2A0r +B0r

3, (53)

v
(int)
0 = A0r

2 − (3 + 10λ)B0

12(1 + λ)
r4, (54)

but the exterior solution will now take the form

η
(ext)
0 =

C0

r2
+ 3

D0

r4
− 2F0r +G0r

3, (55)

v
(ext)
0 =

C0

r(1 + 6λ)
+
D0

r3
+ F0r

2 − (3 + 10λ)G0r
4

12(1 + λ)
,

(56)
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where F0 and G0 are additional integration constants
characterizing the growing mode. When matching the
solutions at the surface of the star, we will no longer be
able to show that these fields vanish.
To acquire a better physical meaning of each term in

the above solutions, we go back to the original coordinate
system in Eq. (10) before applying the time transforma-
tion in Eq. (17). This can be accomplished by simply

solving Eq. (20) for H̃1, which is the (t, r) component
radial perturbation in the original coordinates. In the
exterior, because ν(r) is nonzero only at O(C′), this cor-
responds to

η̃
(ext)
0 = η

(ext)
0 +∂rv

(ext)
0 +O(C′) =

6λC0

(1 + 6λ)r2
− 7λG0r

3

3(1 + λ)
,

(57)

η̃
(int)
0 = η

(int)
0 + ∂rv

(int)
0 +O(C′) = − 7λB0r

3

3(1 + λ)
, (58)

As before, C′ is a book-keeping parameter which denotes
the order of compactness. These expressions clearly show
that this field vanishes in the GR limit (λ → 0), as ex-
pected. We see that this metric function only has two
terms in the exterior, and we can interpret C0 and G0

as originating from the metric, while the remaining con-
tributions in Eq. (55) originate from the coupling of the
metric and vector field.
We shall now provide a procedure to eliminate some of

the constants of integration, such that we may define a
new shift Love number, similar to the scalar Love number
defined in scalar-tensor theories [63]. As is, the system
has 6 constants of integration (2 in the interior (A0, B0),
4 in the exterior (C0, D0, F0, G0)) and 4 boundary condi-
tions (continuity of the field functions and their deriva-
tives). Reference [63] had the same number of constants
and boundary conditions in scalar-tensor theories, and
so the authors defined a scalar Love number by imposing
(by hand) that the scalar field be regular in the exterior
region (namely no tidal term in the scalar field), which
eliminates one of the integration constants. If we were to
set all of the growing modes of V to zero in the exterior
in khronometric gravity, one would need to eliminate two
integration constants (F0 and G0), and both V and H̃1

would vanish since the system would match the slowly
rotating case. Instead, it proves worthwhile to consider
the cases in which F0 = 0 and G0 = 0 separately. The
former corresponds to setting the vector field strength to
zero while the latter would set the metric field strength
to zero. This will confirm that C0 corresponds to the
tidal response from the metric field strength G0 (which is
already apparent by Eq. (57)) while D0 is the quadrupo-
lar response due to both field strengths. In either case,
we will be left with one undetermined constant, which
will cancel upon taking ratios to define new khronomet-
ric Love numbers. This allows us to define a shift Love
number from H̃1 and two vector Love numbers from V .
We next discuss the tidal strength that is necessary

to compute the Love numbers. At zeroth order, match-
ing the solutions at the boundary yields only one non-
vanishing term, which is interpreted as a tidal field
strength. Consider first the case F0 = 0, whereby we
consider only the metric field strength. We label this
field E , and impose that the tidal field strength term of
H̃1 is fully captured by the O(C0) contribution without
loss of generality. Specifically, we impose

E =
∑

j

EjC′j = E0. (59)

Thus, the solution at zeroth order for the fields given
in Eqs. (53)–(57) is G0 = B0 = −3(1 + λ)E/7 with all
other constants vanishing. This choice of parametriza-
tion keeps the λ dependence of H̃1 explicit and clearly
shows that the field will vanish in the GR limit (as ex-
pected). The G0 = 0 case is analogous, where we may
define

V =
∑

j

VjC′j = V0, (60)

and the only nonzero constant is F0 = A0 = V in
Eqs. (53)–(57). Note that in this case we can show that

the metric field H̃1 vanishes altogether.
At higher orders of compactness, we must now consider

matter fields that couple to lower-order metric and vector
fields. To keep our analysis analytically tractable, we will
use the Tolman VII model [65], whose energy density
profile is given by

ǫ(r) = ǫc

(

1− r2

R2
⋆

)

=
15M⋆

8πR3
⋆

(

1− r2

R2
⋆

)

, (61)

with ǫc representing the central energy density. This pro-
file allows one to solve the TOV equation analytically,
and the solution can accurately model realistic neutron
solutions in GR [66, 67], scalar-tensor theories [55], and
Einstein-Æther theory [54].
Let us now discuss the three different quadrupole mo-

ments induced on the metric and vector fields. At higher
orders of compactness, the system of differential equa-
tions acquires a source term from lower-order fields. Due
to this, we find non-vanishing decaying modes, which in-
clude the quadrupole moments of the system. We find
that the constant of integration Cj at all orders corre-
sponds to the quadrupole response of the metric field
due to the metric field strength E . This is clear from the
zeroth-order expression of Eq. (57), but it can be made
explicit by matching all of the boundary conditions at
all orders, yielding Cj ∝ E . We thus label this constant

Cj = (1 + 6λ)Q(E,H̃1)
j /6, where the first superscript in-

dicates the tidal field strength that induces the moment,
while the other indicates to which field the multipole be-
longs. However, Dj contains responses from both the
metric and vector field strengths, which can be seen from
the leading-order expression given in Eq. (56). When im-
posing all of the boundary conditions, this decaying mode
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depends on both V and E . The former corresponds to
multipole responses of the vector field due to the vector
field strength, labelled as Q(V,V ), while the latter is the
multipole response of the vector field due to the metric

field, labeledQ(E,V ). We thus takeDj = Q(E,V )
j +Q(V,V )

j .
We then construct the full multipole moment by taking

Q(E,H̃1) =
∑

j

Q(E,H̃1)
j C′j, (62)

Q(E,V ) =
∑

j

Q(E,V )
j C′j , (63)

Q(V,V ) =
∑

j

Q(V,V )
j C′j . (64)

Let us now present the quantities H̃1 and V , from
which we find three khronometric Love numbers. The
three Love numbers come from the three quadrupole mo-
ments which are induced on the shift metric and vector
fields discussed above. Finding solutions order by order,
we find that the fields up to fourth order in compactness
are given by the expressions

H̃1 = λEr3
[

1 +O
(

M⋆

r

)]

+ λ
Q(E,H̃1)

r2

[

1 +O
(

M⋆

r

)]

+O
(

M5
⋆

R5
⋆

)

, (65)

V =
(10λ+ 3)E

28
r4

[

1 +O
(

M⋆

r

)]

+ Vr2
[

1 +O
(

M⋆

r

)]

+
Q(E,H̃1)

6r

[

1 +O
(

M⋆

r

)]

+
Q(E,V ) +Q(V,V )

r3

[

1 +O
(

M⋆

r

)]

+O
(

M5
⋆

R5
⋆

)

, (66)

where

Q(E,H̃1) =
M⋆R

4
⋆EF

28
, Q(V,V ) = −M⋆R

4
⋆VF

42
, F = 1− 652

143

M⋆

R⋆
+

1805957

255255

M2
⋆

R2
⋆

− 1545158

373065

M3
⋆

R3
⋆

(67)

Q(E,V ) = −M⋆R
6
⋆λE

99

[

1− 6(837λ− 4063)

15925λ

M⋆

R⋆

−552882330λ3 + 4382218319λ2 + 2914707384λ+ 18706545− 232792560λ(11λ+ 6) logR⋆
246901200λ2

M2
⋆

R2
⋆

+
223219861326λ3+ 513253785137λ2+ 346830640200λ+ 7552551699− 93987310032λ(11λ+ 6) logR⋆

21863101260λ2
M3
⋆

R3
⋆

]

.

(68)

Above, the O
(

M⋆

r

)

terms come from source terms cou-
pling to lower order metric and vector fields. Notice that
these terms can contaminate the multipolar structure of
lower order modes if they are not separated out like we
do above. Thus, we shall consider only the leading order
terms because these give the pure multipolar response
without source coupling terms. To make this separation,
one should impose only boundary conditions given by
Eqs. (43) and (46) to solve for the constants in the inte-

rior, while keeping the Q(.,.)
j terms undetermined. Then,

one can impose the two remaining boundary conditions
order by order to find the above values. The above result

confirms that the quantity E is the metric field strength
while the V term corresponds to a vector field strength at
higher orders in compactness as well; in fact, if one were
to take E → 0, the metric field vanishes altogether. Thus,
its appearance in V comes from the coupling between the
vector and metric field.
We now define three new Love numbers. Consider first

the case of V = 0.We propose defining a shift Love num-
ber by selecting the mode we identified above as the mo-
ment induced by the metric tidal field. Namely, we can
define a shift Love number for H̃1 by taking the ratio
of the leading-order growing mode coefficient E and the

coefficient of the decaying mode Q(E,H̃1):

Λshift ≡
Q(E,H̃1)

E =
M⋆R

4
⋆F

28
=
M⋆R

4
⋆

28

(

1− 652

143

M⋆

R⋆
+

1805957

255255

M2
⋆

R2
⋆

− 1545158

373065

M3
⋆

R3
⋆

)

+O
(

M5
⋆

R5
⋆

)

. (69)

This quantity also has consistent units when compared to the usual quadrupolar electric-type Love number from gtt.
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Doing the same with the quadrupole moment induced on V, we define a vector Love number

Λ(E,V ) ≡
28Q(E,V )

(10λ+ 3)E = − 28M⋆R
6
⋆λ

99(10λ+ 3)

[

1− 6(837λ− 4063)

15925λ

M⋆

R⋆

−552882330λ3 + 4382218319λ2 + 2914707384λ+ 18706545− 232792560λ(11λ+ 6) logR⋆
246901200λ2

M2
⋆

R2
⋆

+
223219861326λ3+ 513253785137λ2+ 346830640200λ+ 7552551699− 93987310032λ(11λ+ 6) logR⋆

21863101260λ2
M3
⋆

R3
⋆

]

+O
(

M5
⋆

R5
⋆

)

, (70)

though this Love number will differ in units from the usual electric-type Love number. In the case where E = 0, the
metric vanishes (and therefore we do not define the Love number on H1 induced by the vector tidal field), and we
may define another vector Love number, given by

Λ(V,V ) ≡
Q(V,V )

V = −M⋆R
4
⋆F

42
= −M⋆R

4
⋆

42

(

1− 652

143

M⋆

R⋆
+

1805957

255255

M2
⋆

R2
⋆

− 1545158

373065

M3
⋆

R3
⋆

)

+O
(

M5
⋆

R5
⋆

)

. (71)

Note Λ(V,V ) will have consistent units with the usual Love
number as well. To summarize, we have defined three ad-
ditional Love numbers, one of which characterizes the re-
sponse of the metric field due to the metric field strength
and two of which characterize the response of the vector
field due to both the metric and vector field strengths.
We conclude this analysis by discussing the GR limit

of the fields and khronometric Love numbers. We find
that the solutions have two branches, one corresponding
to the GR limit (λ = 0), and another that corresponds
to constrained khronometric gravity (λ 6= 0). This hap-
pens because, as discussed at the end of Sec. VA1, the
system defined by Eqs. (38)–(39) loses a degree of free-
dom in the GR limit. This is expected since there is no
condition in GR to determine V, which originated from a
vector perturbation. Thus, we see that the khronometric
branch (λ 6= 0) predicts non-zero shift and vector Love
numbers, as well as a V field, while these quantities are
not present in the GR (λ = 0) branch. Note that the
above expression for V in Eq. (66) diverges in the GR
limit, but this is not an issue because the khronometric
branch assumes the condition λ 6= 0. Furthermore, no-
tice that the shift and one of the vector Love numbers in
Eqs. (69) and (71) are independent of λ. Although H̃1

in Eq. (65) still depends on λ and vanishes in the limit
λ → 0, such λ dependence cancels out when computing
the shift Love number. This is interesting because if these
quantities were to be measured, we can conclude the ex-
istence of a non-GR effect. An exact method to measure
these khronometric Love numbers remains unclear and is
left to future work.

2. Physical Interpretation

We end this section by discussing the physical interpre-
tation and potential observability of the new Love num-
bers. First, we note that these perturbations do not seem

to be a gauge artefact. As we already mentioned, H̃1 = 0
in GR. This is not the case in khronometric gravity as H̃1

is coupled to the vector perturbation V , and these fields
cannot be removed through a coordinate transformation.
Namely, if we tried to eliminate V from the vector field
through a coordinate transformation, this degree of free-
dom would now appear in the metric, and vice versa.

If there are indeed non-vanishing tidal perturbations
in H̃1 and V , how would khronometric Love numbers
enter observable quantities? One possibility is through
gravitational waves from binary neutron star mergers.
The LIGO/Virgo Collaboration has measured the lead-
ing tidal Love number with GW170817 [30, 44]. There
are other subleading tidal Love numbers that are encoded
in the waveform and may be extracted with future ob-
servations. In GR, tidal perturbations in the (t, A) com-
ponent of the metric (with A = (θ, φ)) are governed
by magnetic-parity perturbations. Such perturbations
give rise to magnetic tidal Love numbers. The leading
quadrupolar magnetic Love number enters at 6th post-
Newtonian order in the waveform (the leading electric-
parity Love number enters at the 5th order) [68]. The

khronometric Love numbers originating from H̃1 may
enter at the same order in the waveform, though a more
detailed analysis needs to be done to determine whether
they actually impact observables or not, and this is be-
yond the scope of this paper. Since V originates from
the vector field, it is unlikely that the Love num-
bers derived from V will enter in the waveform as
described above.

VI. CONCLUSION AND DISCUSSION

We investigated the I-Love-Q universal relations for
khronometric gravity in the limit (α, β) → 0, keeping
only λ free. We find that λ is absent from the equa-
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tions of motion for the background and at first order
in slow rotation. When investigating second order solu-
tions in slow rotation, we found that λ is absent from the
field variables that determine the quadrupole moment as
well. Similarly, when we considered a weakly tidally-
deformed perturbation, λ does not enter the field equa-
tion components for the tidal Love number. Thus, we
found that the moment of inertia, the tidal Love number,
and the quadrupole moment of neutron stars in khrono-
metric gravity match those of GR in the limit (α, β) → 0
for all equations of state. This means that the I-Love-Q
relations cannot be used to test the coupling constant λ
in khronometric gravity, as they will be identical to those
in GR.

At second order in slow rotation and first order in
tidal deformation, however, we did find seemingly non-
vanishing λ dependence that couples to two field func-
tions, V and H1, which do not contribute to the calcu-
lation of I-Love-Q. We showed that when imposing regu-
larity at the center and asymptotic flatness at spatial in-
finity, V and H1 must vanish for slowly-rotating neutron
stars. We showed this by analyzing the field equations
with non-vanishing λ dependence in a PM framework.
The field variables were expanded in powers of compact-
ness, and the resulting solutions for V and H1 were found
in both the exterior and interior of the star, where we im-
posed the appropriate boundary condition. We were able
to inductively prove that the physical solution to this sys-
tem is one where V and H1 vanish identically, indicating
that there are no non-vanishing fields with λ dependence.
These results hold regardless of the equation of state and
shows that slowly-rotating neutron stars in khronomet-
ric gravity are identical to those in GR in the (α, β) → 0
limit. On the other hand, the λ dependence in H1 and
V does not vanish for the tidally-deformed case, and one
could introduce new shift and vector Love numbers as
in Sec. VB, though further studies are necessary to re-
move the ambiguity in its definition and to investigate
its observability.

This work can be extended in a few other ways. The
reason why λ only enters in the (t, r) and (t, θ) compo-
nents of the field equations at second order in rotation
is because the metric and the vector field are functions
of (r, θ) only. One possible future research direction is
to consider time-dependent perturbations to extract os-
cillation frequencies of neutron stars. Then, λ may enter
in other components of the field equations and e.g. the
fundamental-mode frequencies may depend on λ (though
black hole quasi-normal modes were shown to be the
same as in GR when (α, β) → 0 [38]).

There are many new avenues to explore the additional
Love numbers found above. For example, it would be
interesting to compute similar Love numbers for black
holes and use those as references to compute neutron star
Love numbers as done in GR [69, 70] to eliminate some
of the ambiguities in their definition. It would also be
worthwhile to extend recent work that uses wave scatter-
ing to compute Love numbers as another way to define

Love numbers free of ambiguities [70]. Another poten-
tial avenue for future work is to study if a similar shift
Love number appears in GR when electromagnetic fields
are present. Tidal perturbations of Reisnner-Nordström
black holes have been studied in [71]. The authors found
that H1 = 0, and thus, there are no shift Love numbers
for charged, non-rotating black holes. A similar analysis
has been carried out for magnetized neutron stars in [72],
though the authors have focused on perturbations to the
diagonal components of the metric. It would be interest-
ing to extend their analysis to include perturbations to
the off-diagonal components of the metric and the elec-
tromagnetic field.
One can easily apply the formulation presented in this

paper to other Lorentz-violating theories of gravity, such
as Einstein-Æther theory [18]. The most up-to-date
bounds (including those from binary pulsar and gravi-
tational wave observations) on coupling constants in this
theory have recently been derived in [54]. The authors
showed that there remains one constant associated to the
vorticity of the vector field congruence [19] that is uncon-
strained. It would be interesting to study how the I-Love-
Q relations depend on this constant and whether one can
use neutron star observations to probe Einstein-Æther
theory through the I-Love-Q relations. Work along this
direction is currently in progress [73].
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Appendix A: Khronometric Gravity as a

Vector-Tensor or Scalar-Tensor Theory

In this section, we take a closer look at how and
why khronometric gravity can be regarded as ei-
ther a vector-tensor or a scalar-tensor theory. We
mentioned in the main text that the æther equa-
tion of motion may be derived by varying the
action given in Eq. (1) with respect to khronon
scalar T. This may lead one to conclude that the
theory should be considered to be a scalar-tensor
theory. However, one could equivalently derive
the appropriate equations of motion by varying
the Einstein-æther action with respect to vector
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field Uµ while imposing five Lagrange multipli-
ers [14], four of the form lαw

α and one of the
form l5(U

µUµ−1), where wµ is the vorticity vector
defined in Eq. (12). Note the subtlety that one
must vary the action with respect to the covari-
ant æther vector Uµ before imposing the zero vor-
ticity condition wµ = 0 to get correct results [74].
This equivalence is a consequence of the hypersur-
face orthogonality condition satisfied by the vec-
tor field in khronometric theory. This condition
is the result of Frobenius’ theorem, which is bijec-
tive [57]. Hence, whether one starts with a scalar
or a vector is on equivalent footing. However,
the relationship between Einstein-æther theory
and khronometric gravity is more straightforward
if one regards khronometric gravity as a vector-
tensor theory, as we do in this work.
To further illustrate this point, we shall show

that one would reach the same conclusions as we
do in the main body of this paper if one were to
perturb the khronon scalar instead of the vector
field. Additionally, from the zero-vorticity con-
dition, we can explicitly prove why axial sector
perturbations to the vector field must vanish, as
we found above. To start, note that the khronon
scalar T̃ is given by the initial time coordinate

that we consider, taken to be the coordinate de-
fined by the static Killing vector of the space-
time. When considering the perturbative effect
of slow-rotation and tidal deformation, one must
then perturb the khronon scalar. Let us denote
this perturbed quantity as T = T̃+ζ δT (r, θ, φ), and
let us form an ansatz for a separable solution us-
ing spherical harmonics, yielding

δT (r, θ, φ) = τ(r)Ylm(θ, φ). (A1)

Here, ζ is a book-keeping parameter for the order
of the perturbation and τ is an arbitrary function
of r. Let us also establish the following notation:

Uµ = 0Uµ + ζ δUµ, (A2)

gµν = 0gµν + ζ δgµν , (A3)

where the superscript zero denotes the static
background quantities and the delta terms de-
note perturbations. The goal here is to find δUµ
in terms of the other defined quantities.

Let us now derive the vector pertrubations
from the khronon scalar perturbation. By lin-
earizing Eq. (4), we find

Uµ =
∂µT√
∂νT∂νT

=
∂µ(T̃ + ζ δT )

√

∂ν(T̃ + ζ δT )∂ν(T̃ + ζ δT )
=

∂µ(T̃ + ζ δT )
√

∂ν T̃ ∂νT̃ + 2ζ ∂ν T̃ ∂ν(δT )
+O(ζ2)

=
∂µ(T̃ + ζ δT )

√

∂ν T̃ ∂ρT̃ (0gνρ + ζ δgνρ) + 2ζ ∂ν T̃ ∂ρ(δT ) 0gνρ
+O(ζ2)

=
∂µ(T̃ + ζ δT )
√

∂ν T̃ ∂ρT̃ 0gνρ

{

1− ζ

2

[

∂ν T̃ ∂ρT̃ δg
νρ + 2∂ν T̃ ∂ρ(δT )

0gνρ
]

}

+O(ζ2)

=
∂µT̃

√

∂ν T̃ ∂ρT̃ 0gνρ
+ ζ







∂µ(δT )
√

∂ν T̃ ∂ρT̃ 0gνρ
−
∂µT̃

[

∂ν T̃ ∂ρT̃ δg
νρ + 2∂ν T̃ ∂ρ(δT )

0gνρ
]

2
√

∂ν T̃ ∂ρT̃ 0gνρ







+O(ζ2)

= 0Uµ + ζ δUµ +O(ζ2), (A4)

where we have successfully split the above into background and perturbed vector field quantities. We
can simplify the above by noting that our spacetime and vector field are stationary, our background
metric is diagonal, and our coordinates are adapted to T̃ = t̃. We then find

δUµ =
δiµ∂i(δT )

√

∂t̃T̃ ∂t̃T̃
0gt̃t̃

−
δt̃µ∂t̃T̃

[

∂t̃T̃ ∂t̃T̃ δg
t̃t̃ + 2∂t̃T̃ ∂i(δT )

0gt̃i
]

2
√

∂t̃T̃ ∂t̃T̃
0gt̃t̃

=
1

√

0gt̃t̃

[

δiµ∂i(δT )−
δt̃µδg

t̃t̃

2

]

. (A5)

We can thus see that by plugging in the met-
ric and khronon perturbation ansatz above while
taking ζ = ε2 and τ(r) = κV (r), we recover Eq. (16).
We note that the coordinate transformation taken

in Eq. (17) is essentially taking the perturbed
khronon scalar to be our new time coordinate.

The above indicates that odd-parity perturba-
tions are eliminated by the vorticity free condi-
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tion, which we will explicitly prove here. Con-
sider an odd-parity perturbation, which has the
form

δUµ = τ(r)δµ
AεA

B∂B[Ylm(θ, φ)], (A6)

where capital Latin letters indicate coordinates

on the 2-sphere and εAB is the corresponding 2-D
Levi-Civita tensor. Now, keeping in mind that
the vector field is stationary and that its back-
ground value is static and solely a function of r, we
find that the vorticity-free condition at first order
in perturbation gives the following constraints:

δwµ = 0 = εµνρσ [δUν∂ρUσ + Uν∂ρ(δUσ)] + δεµνρσUν∂ρUσ = εµνρσ [δUν∂ρUσ − Uσ∂ρ(δUν)] + δεµt̃it̃Ut̃∂iUt̃

= εµAit̃ [δUA∂iUt̃ − Ut̃∂i(δUA)] = δµBε
BArt̃δUA∂rUt̃ − εµAit̃Ut̃∂i(δUA)

= δµBε
BArt̃(δUA∂rUt̃ − Ut̃∂rδUA)− δµr ε

rABt̃Ut̃∂BδUA. (A7)

Now consider the µ = r component of this equation. Let the metric on the 2-sphere be hAB and the
Levi-Civita symbol be ε̄AB = 1√

h
εAB = 1

sin θ εAB and ε̄AB =
√
h εAB = sin θ εAB, where h is the 2-sphere

metric determinant. We then find that

δwr ∝ εAB∂BδUA = τ(r)εAB∂B[h
DCεAD∂CYlm(θ, φ)] =

τ(r)√
h
εABεAD∂B[

√
h∂DYlm(θ, φ)] =

=
τ(r)

sin θ
δBD∂B[sin θ ∂

DYlm(θ, φ)] =
τ(r)

sin θ
∂D[sin θ ∂

DYlm(θ, φ)] = −τ(r)l(l + 1)Ylm(θ, φ) = 0, (A8)

where we have used the Laplace equation and the fact that l is nonzero in the last line.

From this, we can conclude that τ(r) = 0, and thus
δUµ = 0 for odd-parity vector perturbations. We
see this more general analysis supports the results
we found from Eq. (13).

Appendix B: Field Equations for Neutron Stars

Here, we present the field equations for neutron stars
in khronometric gravity. We first present equations for
background neutron stars with no rotation and tidal de-
formation. We then present equations for slowly-rotating

neutron stars at first and second orders in spin, followed
by weakly tidally-deformed neutron stars at first order in
tidal perturbation.

1. Background

We first calculate and present the field equations at
O(ε0), which serve as background equations. After in-
serting the metric and vector ansatz, given by taking
ε → 0 in Eqs. (18) and (19), into Eq. (5), we can use
Ett = 0 and Err = 0 along with the matter equation of

motion ∇µT
(mat)
µr = 0 to find

dM

dr
=

(4− α)M + 2
[

√

(r − 2M) (r − 2M + αM + 4παp0r3)− r
]

αr
+

8πr2[(2α− 1) p0 + ǫ0]

(2− α)
,

(B1)

dν

dr
= 4

√

(r − 2M) (r − 2M + αM + 4παp0r3) + 2M − r

αr(r − 2M)
, (B2)

dp

dr
= −2

(p0 + ǫ0)
[

√

(r − 2M) (r − 2M + αM + 4παp0r3) + 2M − r
]

αr(r − 2M)
. (B3)

One may think that the above equations diverge in the
GR limit (α → 0), but if we expand them about α = 0,
the equations become Eqs. (142)–(144) of [14] (with c14
replaced by α) and they correctly reduce to the GR TOV

equations in the α → 0 limit.
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2. First Order in Rotation

Next, we derive an equation for slowly-rotating neu-
tron stars at first order in spin. Keeping up to O(ε)
terms in Eqs. (18) and (19), we find that the only non-
trivial first-order field equation is obtained from Etφ = 0,
which reduces to

d2ω

dr2
=

{

8πr2[(2α− 1)p0 + ǫ0]

(2 − α)(r − 2M)
+ 4

√

(r − 2M) [(α − 2)M + 4παp0r3 + r] − (α+ 1)r + 2(3α/4 + 1)M

αr(r − 2M)

}

dω

dr

+
16πr(p0 + ǫ0)

(1− β)(r − 2M)
ω. (B4)

Since this expression is independent of λ, the equation
coincides with that in GR to linear order in ε after taking
the (α, β) → 0 limit.

3. Second Order in Rotation

We now move on to deriving modified field equations at
second order in rotation. Let us first derive the coupled

equations for H0, K and H2. From the r and θ com-
ponents of the matter equation of motion, we solve for
ǫ2 and p2, respectively. However, we note that ǫ2 does
not enter in the calculation of the quadrupole moment
since it appears in Ett = 0, which is not used to derive
the following coupled differential equations. We then use
Eθθ − Eφφ = 0 to find

H2 = H0 +
r3e−ν

3

[

(β − 1)(r − 2M)

(

dω

dr

)2

− 16πr(p0 + ǫ0)ω
2

]

, (B5)

Next, using Erθ = 0 and Err = 0, we find

dK

dr
=
dH0

dr
+

[

(α− 2)

αr
− 2

(α− 1)
√

4απp0r3 + αM + r − 2M

αr
√
r − 2M

]

H0 +

[

(α− 2)

αr
+

2
√

4απp0r3 + αM + r − 2M

αr
√
r − 2M

]

H2,

(B6)

dH0

dr
=

1

α
√

(r − 2M)(4απp0r3 + αM + r − 2M)

{

[

(α − 2)(r − 2M) +
√

(r − 2M)(4απp0r3 + αM + r − 2M)
] dK

dr

− 2αK − α
[

4πr2
(

p0 + ǫ0)− 3]H0 + (8πr2p0 + 1)H2 −
αe−νr3

6

[

(β − 1)(r − 2M)

(

dω

dr

)2

+ 16πrω2(p0 + ǫ0)

]}

.

(B7)

Next, we derive the coupled equations for H1 and V . From Etr = 0 and Etθ = 0, we find

d2H1

dr2
=

1

b0

(

b1
dH1

dr
+ b2H1 + b3

dV

dr
+ b4V

)

, (B8)

with

b0 = α2(α− 2)(β − λ)r2(r − 2M)
√

(4παr3p0 + αM − 2M + r)(r − 2M), (B9)

b1 = −α(β + λ)r{2(α − 2)(α− 8)M + 24παr3[(2α− 1)p0 + ǫ0] + 2(α+ 4)(α− 2)r}
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×
√

(4παr3p0 + αM − 2M + r)(r − 2M) + 8(4παr3p0 + αM − 2M + r)[α(α − 2)(β + λ)r(r − 2M)], (B10)

b2 = −
{

8πα2(β + λ)r4
dǫ0
dr

+ 2[(β + 3λ+ 2)α2 + 2(7β − 4 + 3λ)α − 24(β + λ)](α − 2)M

+ 8παr3[(2β + 6λ+ 5)α2 + 2(10β + 9λ− 2)α− 18(β + λ)]p0 + 8παr3[α2 + 2α(3β + 4λ) + 2(β + λ)]ǫ0

− (α− 2)[(5β + 2λ− 3)α2 + 4(β − λ− 2)α− 24(β + λ)]r
}
√

(4παr3p0 + αM − 2M + r)(r − 2M)

+ (4παr3p0 + αM − 2M + r)
{

16[(β − 2)α− 3(β + λ)](α − 2)M + 48παr3(β + λ)(2α − 1)p0

+ 16παr3(β + λ)(2α− 1)ǫ0 − [(β − λ− 2)α− 6(β + λ)](α − 2)r
}

, (B11)

b3 = −3α2(α− 2)(β + 2λ+ 1)r eν
√

(4παr3p0 + αM − 2M + r)(r − 2M), (B12)

b4 = eν(α− 2)(β + λ)[12(α+ 1)
√

(4παr3p0 + αM − 2M + r)(r − 2M)− 12α(4παr3p0 + αM − 2M + r)],(B13)

and

d2V

dr2
= − 1

c0

(

c1
dV

dr
+ c2V + c3

dH1

dr
+ c4H1

)

, (B14)

with

c0 = α(α − 2)(β − 1)r(r − 2M)
√

(4παr3p0 + αM − 2M + r)(r − 2M), (B15)

c1 = (β − 1)(α− 2)(r − 2M)(4παr3p0 + αM − 2M + r) + 2(β − 1)
√

(4παr3p0 + αM − 2M + r)(r − 2M)

× {(α2 + 2α− 8)M + 4παr3[(2α− 1)p0 + ǫ0]− 2αr + 4r}, (B16)

c2 = −4α{4πr2[({2β − 3}α+ β)p0 + (2β − α)ǫ0] + 3(α− 2)(β + λ)}
√

(4παr3p0 + αM − 2M + r)(r − 2M), (B17)

c3 = −α(α− 2)(β + 2λ+ 1)r(r − 2M)
√

(4παr3p0 + αM − 2M + r)(r − 2M), (B18)

c4 = e−ν(β + λ)(α − 2)(r − 2M)(4παr3p0 + αM − 2M + r) + e−ν
√

(4παr3p0 + αM − 2M + r)(r − 2M)

× {2(α− 2)[(3β + 2λ− 1)α+ 4β + 4λ]M − 8παr3(β + 2λ+ 1)[(2α− 1)p0 + ǫ0]− 4r(α + 1)(α− 2)(β + λ)}.
(B19)

These equations reduce to Eqs. (38) and (39) after taking
the limit (α, β) → 0.

4. First Order in Tidal Deformation

Let us now present the field equations for even-
parity tidal perturbation at first order. As explained in
Sec. IVC, we can use the results at second order in spin

by setting the contribution at O(ǫ) to 0. Setting ω = 0
and dω/dr = 0 in Eqs. (B5)–(B7), we find H0 = H2 ≡ H
and a system of coupled equations for H and K. One
can further eliminate K from this equation to find

d2H

dr2
=

1

a0

(

a1
dH

dr
+ a2H

)

, (B20)

with

a0 = α2(r − 2M)(α− 2)r2
{

r + απr3p0 + (α− 2)M −
√

(r − 2M) [4πα r3 p0 +M(α− 2) + r]
}

, (B21)

a1 = 2α2r
√

(r − 2M) [4πα r3 p0 +M(α− 2) + r]
(

r
[

4πr2 {ǫ0 + (2α− 1)p0}+ α− 2
]

−M(α− 2)
)

− 2α2r
[

r + (α− 2)M + 4παr3 p0
] (

r
{

4(2α− 1)πr2p0 + α− 2 + 4πr2ǫ0
}

− (α− 2)M
)

, (B22)

a2 = 4
√

(r − 2M) [4πα r3 p0 +M(α− 2) + r]

×
(

2(α− 2)2 (3α− 8)M + r

{

6α
(

4α2 − 19α+ 16
)

πr2p0 − 10α2πr2ǫ0 −
3α3

2
+ 11α2 − 32α+ 32

}

− α3πr4
dǫ0
dr

)

− 2
(

r
{

64− 64α+ 4απr2
[

(4α2 − 25α+ 16)p0 − 5αǫ0
]

− 3α3 + 22α2
}

+ 4(α− 8)(α− 2)2M
)

×
[

r + (α− 2)M + 4παr3 p0
]

. (B23)

Notice that the above equation only depends on α, and reduces to the GR case when taking α → 0 as stated
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before.
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