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We study the non-equilibrium dynamics of a pseudoscalar axion-like particle (ALP) weakly

coupled to degrees of freedom in thermal equilibrium by obtaining its reduced density ma-

trix. Its time evolution is determined by the in-in effective action which we obtain to leading

order in the (ALP) coupling but to all orders in the couplings of the bath to other fields

within or beyond the standard model. The effective equation of motion for the (ALP) is

a Langevin equation with noise and friction kernels obeying the fluctuation dissipation re-

lation. A “misaligned” initial condition yields damped coherent oscillations, however, the

(ALP) population increases towards thermalization with the bath. As a result, the energy

density features a mixture of a cold component from misalignment and a hot component

from thermalization with proportions that vary in time (cold) e−Γt + (hot) (1 − e−Γt), pro-

viding a scenario wherein the “warmth” of the dark matter evolves in time from colder to

hotter. As a specific example we consider the (ALP)-photon coupling ga ~E · ~B to lowest

order, valid from recombination onwards. For T ≫ ma the long-wavelength relaxation rate

is substantially enhanced ΓT =
g
2
m

2

a
T

16π
. The ultraviolet divergences of the (ALP) self-energy

require higher order derivative terms in the effective action. We find that at high temper-

ature, the finite temperature effective mass of the (ALP) is m2
a(T ) = m2

a(0)
[
1 − (T/Tc)

4

]
,

with Tc ∝
√
ma(0)/g, suggesting the possibility of an inverted phase transition, which when

combined with higher derivatives may possibly indicate exotic new phases. We discuss pos-

sible cosmological consequences on structure formation, the effective number of relativistic

species and birefringence of the cosmic microwave background.

I. INTRODUCTION

The axion, introduced in Quantum Chromodynamics (QCD) as a solution of the strong CP

problem[1–3] may be produced non-thermally in the Early Universe, for example by a misalignment

mechanism and is recognized as a potentially viable cold dark matter candidate[4–6]. Extensions

beyond the standard model can accommodate pseudoscalar particles with properties similar to the
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QCD axion, namely axion-like-particles (ALP) which can also be suitable dark matter candidates[7–

11], in particular as candidates for ultra light dark matter[12, 13]. Constraints on the mass and

couplings of ultra light (ALP)[9–11, 14] are being established by various experiments[15–17]. There

are two important features that characterize (ALP), i) a misalignment mechanism results in coher-

ent oscillations of the expectation value of the (ALP) field which gives rise to the contribution to

the energy density as a cold dark matter component[4–6, 9–11, 18], ii) its pseudoscalar nature leads

to an interaction between the (ALP) and photons or gluons via pseudoscalar composite operators

of gauge fields, such as ~E · ~B in the case of the (ALP)-photon interaction and Gµν;bG̃µν;b in the

case of gluons, which allows an (ALP) to decay into two photons or gluons. The effect of this decay

process in the evolution of (ALP) condensates has been studied in refs.[19–21] including stimulated

decay in a photon background.

Motivation and objectives: In this article we study the non-equilibrium dynamics of coherent

oscillations of (ALP) coupled to generic environmental fields in thermal equilibrium by obtaining

the non-equilibrium in-in effective action from which we derive the effective equations of motion of

(ALP) condensates.

A simple example highlights our main motivation and objectives: consider the textbook situa-

tion of a particle in an harmonic potential immersed in a heat bath in equilibrium. The interaction

of the particle with the bath degrees of freedom induce two main modifications to the equations

of motion of the particle: i) a friction term arising from energy transfer with the bath degrees of

freedom, ii) a stochastic noise term arising from the random “kicks” that the environment gives

the particle. This is the basis of Brownian motion and the effective equation of motion of the

Brownian particle is a Langevin equation:

ẍ(t) + γẋ(t) + ω2x(t) = ξ(t) , (I.1)

with ξ a stochastic noise with a (generally) Gaussian probability distribution function yielding the

(classical) averages and correlations

〈〈ξ(t)〉〉 = 0 ; 〈〈ξ(t)ξ(t′)〉〉 = 2γkB Tδ(t− t′) . (I.2)

The relation between the noise correlation function and the friction coefficient in (I.2) is the

(classical) fluctuation dissipation relation, a direct consequence of the bath degrees of free-

dom being in thermal equilibrium. As a result, whereas the (stochastic) average 〈〈x(t)〉〉 ∝
e−γt/2 cos[

√
ω2 − γ2

4 t], the mean square fluctuation 〈〈x2(t)〉〉 −−−−→
t≫1/γ

kBT/ω
2, this is simply clas-
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sical equipartition, namely the Brownian particle reaches thermal equilibration with the bath on

a relaxation time scale ∝ 1/γ.

This simple illustrative example motivates our study in this article, namely to understand the

effective dynamics of (ALP) when they are coupled to a bath of other degrees of freedom in (local)

thermal equilibrium. The familiar example of a Brownian particle in a heat bath suggests that the

effective equations of motion of a coherent (ALP) condensate should be akin to a Langevin equation

with a friction and noise term related by a fluctuation dissipation relation as a consequence of the

bath degrees of freedom with which the (ALP) interacts being in thermal equilibrium. Our objective

is precisely to derive, and solve such equation and explore its consequences by implementing the

methods of non-equilibrium field theory. For this purpose, we adapt the seminal formulation of

quantum Brownian motion[22–25] to the realm of non-equilibrium quantum field theory[26–30].

This is achieved in the in-in or Schwinger-Keldysh[26, 31–33] formulation of time evolution in

quantum field theory. Unlike the in-out formulation, the in-in formulation yields causal, retarded

equations of motion[30, 34–36].

The objectives of this study are twofold: i:) to obtain the time evolution of a reduced density

matrix, non-equilibrium effective action, equations of motion and correlation functions for (ALP)

particles weakly coupled to degrees of freedom in thermal equilibrium. We first consider a generic

model with coupling of the form ∝ gaO with g a weak coupling, a the (ALP) field andO a composite

pseudoscalar operator associated with the bath degrees of freedom. We obtain the effective action

to leading order in the coupling (O(g2)), and to all orders of the couplings of the environmental

fields to other degrees of freedom within or beyond the standard model. ii:) to apply the general

results to the relevant case of (ALP)-photon interaction with O = ~E · ~B where the radiation field

in thermal equilibrium is identified with the cosmic microwave background (CMB).

In this article we address these objectives in Minkowski space-time, obtaining the (non-

equilibrium) effective action and effective equations of motion for (ALP) to order g2 in the (weak)

coupling g and arbitrary (ALP) mass ma as a prelude to extending the methods to an expanding

cosmology and exploring phenomenological consequences and constraints in future work. Further-

more, in this study we do not adopt a particular set of parameters for (ALP) couplings and mass,

nor on possible bounds on these. Our main focus is to study the general aspects of the effective

dynamics resulting from these interactions under the sole assumption of weak coupling between the

(ALP) and degrees of freedom of the standard model and that the latter are in thermal equilibrium.

Summary of results: We study the time evolution of an initially prepared density matrix
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describing a misaligned initial state for the (ALP) and an equilibrium thermal bath of generic fields

coupled to the (ALP). Tracing over the bath fields yields a reduced density matrix for the (ALP)

field whose time evolution is determined by the non-equilibrium effective action which is obtained

up to O(g2) but to all orders in the couplings of the bath degrees of freedom to other degrees of

freedom within or beyond the standard model.

The (ALP) equations of motion obtained from the non-equilibrium effective action are stochastic

of the Langevin type (I.1) with a friction kernel determined by the retarded (ALP) self energy (a

manifestation of radiation reaction) and a Gaussian noise whose two point correlation function is

related to the self-energy via a generalized fluctuation dissipation relation. This is a consequence of

the bath degrees of freedom being in thermal equilibrium. Hence, the notion of Brownian ALP’s.

In ref.[37] a local friction coefficient for the equation of motion of the expectation value of the

axion field was obtained as a consequence of sphaleronlike transitions in high temperature QCD.

Thermal friction from the (ALP) coupling to high temperature plasmas has also been discussed in

refs.[38, 39], and thermalization has been studied in refs.[40, 41]. Our approach is very different in

that we obtain the in-in non-equilibrium effective action which allows us to obtain the full equation

of motion including the noise term and directly show that the self-energy contribution which yields

the “friction” term and the noise correlation functions are related by fluctuation dissipation. The

noise term is of paramount importance in obtaining correlations of the (ALP) field, and as a

consequence of the noise term we find that the processes that lead to “friction” and damping of the

misaligned expectation value are the same as those leading to thermalization with the environment

on similar time scales, thereby providing a direct bridge between damping of a coherent condensate

and thermalization. To the best of our knowledge, this approach, which explains both aspects of

(ALP’s) non-equilibrium dynamics, has not yet been implemented for (ALP). A corollary of this

important result, relevant for dark matter, is that the energy density features a mixture of a “cold”

and “hot” components whose relative weight vary in time: E = (cold) e−Γt+(hot) (1− e−Γt) where

the “cold” component corresponds to the damped coherent oscillations arising from a misaligned

initial condition and the hot component to the approach to thermalization and is a consequence

of the stochastic noise. The relaxation rate Γ is determined by the imaginary part of the (ALP)

self-energy and is a result of (stimulated) emission and absorption processes with the bath.

After obtaining the general results, we focus on the interaction of (ALP) with photons via the

coupling g a ~E · ~B. The coupling g has dimensions of 1/(energy) resulting in a non-renormalizable

interaction. Ultraviolet divergences necessitate the introduction of higher derivative terms of the

(ALP) fields. Emission and absorption processes such as a ↔ 2γ yield a relaxation rate that is
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enhanced at high temperatures T ≫ ma by a factor ∝ T/ma. Furthermore, we find that the finite

temperature contribution to the self-energy yields a temperature dependent effective (ALP) mass

m2
a(T ) = m2

a(0)
[
1 − (T/Tc)

4
]
with Tc ∝

√
ma(0)/g, this behavior of the effective mass suggests

an inverted phase transition and combined with the necessity for higher derivative terms in the

effective Lagrangian points to the possibility of novel phases and Lifshitz phase transitions[42].

In section (II) we obtain the effective action out of equilibrium for (ALP) fields implementing

the in-in Schwinger-Keldysh formulation of non-equiilibrium field theory for a generic interaction

of the form ga(x)O(x), with an initial density matrix for the (ALP) field that implements a

misaligned initial condition and a thermal density matrix for the environmental fields. In this

section we obtain general results: the Langevin equation of motion for the (ALP) field, and the

time dependent energy density with a cold component from misalignment and a hot component

from thermalization. In section (III) we focus on the interaction with photons, obtain the one loop

self energy and noise correlation function at finite temperature, discuss renormalization issues and

study their high and low temperature limits.

In section (IV) we discuss the main aspects of the results and point out some caveats. In this

section we argue that the results obtained in the case of photon interactions are valid after recom-

bination in the Early Universe and discuss possible cosmological consequences. Our conclusions

are summarized in section (V). Several appendices include technical details.

II. THE EFFECTIVE ACTION OUT OF EQUILIBRIUM

We study the non equilibrium effective action of an axion-like field a(x) coupled to generic

fields χ(x) to which we refer as “environmental” fields via an operator Oχ(x), with the Lagrangian

density

L[a, χ] = 1

2
∂µa(x)∂

µa(x)− 1

2
m2
a a

2(x)− ga(x)Oχ(x) + Lχ (II.1)

where Lχ is the Lagrangian density describing the “environmental” fields χ, these fields could be the

electromagnetic field, fermion or gluon fields. We will first treat these fields generically to leading

order in the coupling to exhibit the general form and properties of the effective action for (ALP)

and then we will focus specifically on the case of the pseudoscalar coupling to the electromagnetic

field, a hallmark of (ALP).

The Lagrangian density (II.1) describes several relevant couplings of (ALP), such as

LI = −g a(x) ~E(x) · ~B(x) ; LI = −gs a(x)G
µν,b(x)G̃µν,b(x) ; LI = −gψ a(x)Ψ(x)γ5Ψ(x) · · · (II.2)
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where ~E, ~B are the electromagnetic fields, Gµν,b; G̃µν,b are the gluon field strength tensor and its

dual respectively, and Ψ(x) a fermionic field. Therefore the interaction in (II.1) describes a wide

range of possible interactions of the (ALP) with other degrees of freedom which in this study are

assumed to be in thermal equilibrium initially.

Whereas the photon and gluon interactions are not renormalizable because the respective cou-

plings g, gs feature dimensions 1/(energy), the coupling gψ is dimensionless so the interaction with

the fermionic pseudoscalar is renormalizable. This aspect will have important consequences as

discussed below in section (III).

Upon evolving the total initial density matrix in time, the degrees of freedom χ with the generic

operator Oχ will be traced over to obtain a reduced density matrix for a(x). We achieve this to

leading order in the coupling g, but to all orders in the couplings of the χ fields with themselves

or with other degrees of freedom within or beyond the standard model, but for the (ALP).

Although we are ultimately interested in obtaining an effective quantum field theory by tracing

out these degrees of freedom in an expanding cosmology, in this study we focus on Minkowski space

time as a first step towards extending these methods to cosmology. We consider the generic fields

χ as a bath in thermal equilibrium.

The main strategy is to begin with an initial density matrix ρ̂(0) describing the (ALP) field and

the environment, evolve it in time ρ̂(t) = U(t) ρ̂(0)U−1(t) with U(t) the unitary time evolution

operator for the (ALP)-environment, and trace over the environmental degrees of freedom yielding a

reduced density matrix for the (ALP) fields, namely ρra(t) = Trχρ̂(t). This is the in-in or Schwinger-

Keldysh[26, 31–33] formulation of non-equilibrium quantum field theory, the time evolution of the

reduced density matrix is determined by a non-equilibrium effective action that includes the effects

of the environment via a non-local term known as the influence functional[22] in the theory of

quantum brownian motion. This effective action yields causal equations of motion[34, 35], which

turn out to be stochastic, akin to a Langevin equation with noise and dissipation terms that are

related by a general fluctuation dissipation relation, a consequence of the environmental bath being

in thermal equilibrium.

The reduced density matrix can be represented by a path integral in terms of the non-equilibrium

effective action that includes the influence functional. This method has been used previously

to study quantum brownian motion[22–28, 30] and for studies of quantum kinetics beyond the

Boltzmann equation[26, 43, 44].
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Let us consider the initial density matrix at a time t = 0 to be of the form

ρ̂(0) = ρ̂a(0)⊗ ρ̂χ(0) . (II.3)

The initial density matrix ρ̂a(0) is normalized so that Traρ̂a(0) = 1 and that of the χ fields

will be taken to describe a statistical ensemble in thermal equilibrium at a temperature T = 1/β,

namely

ρ̂χ(0) =
e−β Hχ

Trχe−βHχ
, (II.4)

where Hχ is the total Hamiltonian for the fields χ, and may include other fields to which χ is

coupled other than the (ALP), this possibility will be discussed further below.

The factorization of the initial density matrix is an assumption often explicitly or implicitly

made in the literature, it can be relaxed by including initial correlations at the expense of daunting

technical complications. We will not consider here this important case, relegating it to future study.

In the field basis the matrix elements of ρ̂a(0) and ρ̂χ(0) are given by

〈a|ρ̂a(0)|a′〉 = ρa,0(a, a
′) ; 〈χ|ρ̂χ(0)|χ′〉 = ρχ,0(χ;χ

′) , (II.5)

we emphasize that this is a functional density matrix as the field has spatial arguments. The

density matrix for the (ALP) field a represents either a pure state or more generally an initial

statistical ensemble, whereas ρ̂χ(0) is given by eqn. (II.4).

The physical situation described by (II.4) is that of a field (or fields) in thermal equilibrium at

a temperature T = 1/β, namely a heat bath, which is put in contact with another system, here

represented by the field a. Once the system and bath are put in contact their mutual interaction

will evolve the initial state out of equilibrium because the initial density matrix does not commute

with the total Hamiltonian with interactions.

To obtain the effective action out of equilibrium for the (ALP) field a we evolve the initial

density matrix in time and trace over the “bath” degrees of freedom, leading to a reduced density

matrix for the field a, from which we can compute its expectation values or correlation functions

as a function of time.

The time evolution of the initial density matrix is given by

ρ̂(t) = U(t)ρ̂(0)U−1(t) , (II.6)



8

where

U(t) = e−iHt . (II.7)

The total Hamiltonian H is given by

H = H0a +Hχ + g

∫
d3x a(x) Oχ(x) , (II.8)

and H0a,Hχ are the Hamiltonians for the respective fields.

The reduced density matrix for the (ALP) field is obtained by tracing over the χ degrees of

freedom as

ρra(t) = TrχU(t)ρ̂(0)U−1(t) . (II.9)

To extract the non-equilibrium effective action for the (ALP) it is more convenient to obtain the

density matrix elements in field space, namely

ρ(af , χf ; a
′
f , χ

′
f ; t) = 〈af ;χf |U(t)ρ̂(0)U−1(t)|a′f ;χ′

f 〉 , (II.10)

from which the reduced density matrix elements are

ρr(af ; a
′
f , ; t) =

∫
Dχf 〈af ;χf |U(t)ρ̂(0)U−1(t)|a′f ;χf 〉 . (II.11)

With the functional integral representation

〈af ;χf |U(t)ρ̂(0)U−1(t)|a′f ;χ′
f 〉 =

∫
DaiDχiDa′iDχ′

i 〈af ;χf |U(t)|ai;χi〉 ρa,0(ai; a′i) ⊗

ρχ,0(χi;χ
′
i) 〈a′i;χ′

i|U−1(t)|a′f ;χ′
f 〉 , (II.12)

it follows that the reduced density matrix elements are

ρr(af ; a
′
f , ; t) =

∫
Dχf

∫
DaiDχiDa′iDχ′

i 〈af ;χf |U(t)|ai;χi〉 ρa,0(ai; a′i) ⊗

ρχ,0(χi;χ
′
i) 〈a′i;χ′

i|U−1(t)|a′f ;χf 〉 . (II.13)

The
∫
Da etc, are functional integrals where the spatial argument has been suppressed. The

matrix elements of the time evolution forward and backward can be written as path integrals,

namely

〈af ;χf |U(t)|ai;χi〉 =

∫
Da+Dχ+ ei

∫
d4xL[a+,χ+] (II.14)

〈a′i;χ′
i|U−1(t)|a′f ;χ′

f 〉 =

∫
Da−Dχ− e−i

∫
d3xL[a−,χ−] (II.15)
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where we use the shorthand notation

∫
d4x ≡

∫ t

0
dt

∫
d3x , (II.16)

L[a, χ] is given by (II.1) and the boundary conditions on the path integrals are

a+(~x, t = 0) = ai(~x) ; a+(~x, t) = af (~x) , (II.17)

χ+(~x, t = 0) = χi(~x) ; χ+(~x, t) = χf (~x) , (II.18)

a−(~x, t = 0) = a′i(~x) ; a−(~x, t) = a′f (~x) , (II.19)

χ−(~x, t = 0) = χ′
i(~x) ; χ−(~x, t) = χ′

f (~x) . (II.20)

The field variables a±, χ± along the forward (+) and backward (−) evolution branches are rec-

ognized as those necessary for the in-in or Schwinger-Keldysh[26, 31–33] closed time path approach

to the time evolution of a density matrix.

The reduced density matrix for the light field a (II.13), can be written as

ρr(af , a
′
f ; t) =

∫
DaiDa′i T [af , a

′
f ; ai, a

′
i; t] ρa(ai, a

′
i; 0) , (II.21)

where the time evolution kernel is given by

T [af , ai; a
′
f , a

′
i; t] =

∫
Da+

∫
Da− ei

∫
d4x[L0[a+]−L0[a−]] eiI[a

+;a−] , (II.22)

from which the in-in effective action out of equilibrium is identified as

Seff [a
+, a−] =

∫ t

0
dt

∫
d3x
{
L0[a

+]−L0[a
−] + I[a+, a−]

}
, (II.23)

where I[a+; a−] is the influence action[22] obtained by tracing over the χ degrees of freedom,

eiI[a
+;a−] =

∫
DχiDχ′

iDχf

∫
Dχ+

∫
Dχ− ei

∫
d4x[L[χ+]−ga+ O+

χ ] e−i
∫
d4x[L[χ−]−ga− O−

χ ] ρχ(χi, χ
′
i; 0)

(II.24)

The path integral representations for both T [af , ai; a
′
f , a

′
i; t] and I[a+; a−] feature the boundary

conditions in (II.17-II.20) except that we now set χ±(~x, t) = χf (~x) to trace over χ field.

In the above path integral defining the influence action eqn. (II.24), the (ALP) fields a±(x)

act as external sources (c-number) coupled to the operator Oχ. Therefore, it is straightforward to

conclude that the right hand side of eqn. (II.24) is the path integral representation of the trace

over the environmental fields coupled to external sources a±, namely

eiI[a
+;a−] = Trχ

[
U(t; a+) ρχ(0)U−1(t; a−)

]
, (II.25)
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where U(t; a±) is the time evolution operator in the χ sector in presence of external sources a±,

i.e.

U(t; a+) = T
(
e−i

∫ t
0
Hχ[a+(t′)]dt′

)
; U−1(t; a−) = T̃

(
ei

∫ t
0
Hχ[a−(t′)]dt′

)
, (II.26)

with

Hχ[a
±(t)] = Hχ + g

∫
d3x a±(~x, t)Oχ(~x) (II.27)

and T̃ is the anti-time evolution operator describing evolution backward in time, it is defined by

T̃ (A(t1)B(t2)) = A(t1)B(t2)Θ(t2 − t1) +B(t2)A(t1)Θ(t1 − t2).

The calculation of the influence action is facilitated by passing to the interaction picture for the

Hamiltonian Hχ[a
±(t)], defining

U(t; a±) = e−iHχ t Uip(t; a±) (II.28)

and the e±iHχ t cancel out in the trace in (II.25), since U(t; a±) is the time evolution operator in

presence of external sources a±(~x, t) for the χ sector, it follows that

Uip(t; a+) = 1− i g

∫
d4x′a+(~x, t′)Oχ(~x, t

′)

− g2

2

∫
d4x1

∫
d4x2T

(
a+(~x1, t1)Oχ(~x1, t1)a

+(~x2, t2)Oχ(~x2, t2)
)
+ · · · (II.29)

U−1
ip (t; a−) = 1 + i g

∫
d4x′a−(~x′, t′)Oχ(~x

′, t′)

− g2

2

∫
d4x1

∫
d4x2T̃

(
a−(~x1, t1)Oχ(~x1, t1)a

−(~x2, t2)Oχ(~x2, t2)
)
+ · · · , (II.30)

where Oχ(~x, t) is in the Heisenberg picture of Hχ.

Now the trace (II.25) can be obtained systematically in perturbation theory in g from which

we obtain the influence functional. Up to O(g2) we find

I[a+, a−] = −g

∫
d4x
(
a+(x)− a−(x)

)
〈Oχ(x)〉χ +

ig2

2

∫
d4x1

∫
d4x2

{
a+(x1) a

+(x2)G
++
c (x1 − x2) + a−(x1) a

−(x2)G
−−
c (x1 − x2)

− a+(x1) a
−(x2)G

+−
c (x1 − x2)− a−(x1) a

+(x2)G
−+
c (x1 − x2)

}
, (II.31)

which is confirmed by expanding the left hand side of (II.25) and comparing to the right hand side.

In this expression the connected correlation functions in the initial density matrix of the χ fields,
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namely ρχ(0) are given by

G−+
c (x1 − x2) = 〈Oχ(x1)Oχ(x2)〉χ − 〈Oχ(x1)〉χ〈Oχ(x2)〉χ = G>

c (x1 − x2) , (II.32)

G+−
c (x1 − x2) = 〈Oχ(x2)Oχ(x1)〉χ − 〈Oχ(x2)〉χ〈Oχ(x1)〉χ = G<

c (x1 − x2) , (II.33)

G++
c (x1 − x2) = G>

c (x1 − x2)Θ(t1 − t2) +G<
c (x1 − x2)Θ(t2 − t1) , (II.34)

G−−
c (x1 − x2) = G>

c (x1 − x2)Θ(t2 − t1) +G<
c (x1 − x2)Θ(t1 − t2) , (II.35)

in terms of fields in the Heisenberg picture of Hχ, where

〈(· · · )〉 = Trχ(· · · )ρχ(0) . (II.36)

Furthermore, for the case of hermitian operators Oχ as considered here it follows that

G>
c (x1 − x2) = G<

c (x2 − x1) . (II.37)

We highlight that the correlation functions G>, G< are exact, namely to all orders in the

couplings of the environmental fields χ that enter in O to all other fields to which it couples but

the (ALP).

In the cases under consideration, we assume that the initial density matrix for the bath, ρχ(0) =

e−βHχ is CP invariant, for example in Quantum Electrodynamics where ρχ(0) describes blackbody

radiation, for which 〈 ~E · ~B〉 = 0. Therefore 〈O(x1,2)〉 ≡ 0 in the connected correlation functions

(II.32-II.35), hence in what follows we suppress the subscript “c” in the correlation functions.

The influence action (II.31) becomes simpler by writing it solely in terms of the two correlation

functions G≶, this is achieved by implementing the following steps:

• In the term with a+(x1)a
+(x2): in the contribution G<(x1 −x2)Θ(t2 − t1) (see eqn. (II.34))

relabel x1 ↔ x2 and use the property (II.37).

• In the term with a−(x1)a
−(x2): in the contribution G>(x1 −x2)Θ(t2 − t1) (see eqn. (II.35))

relabel x1 ↔ x2 and use the property (II.37).

• In the term with a+(x1)a
−(x2): multiply G<(x1 − x2) by Θ(t1 − t2) +Θ(t2 − t1) = 1 and in

the term with Θ(t2 − t1) relabel x1 ↔ x2 and use the property (A.11).

• In the term with a−(x1)a
+(x2): multiply G>(x1 − x2) by Θ(t1 − t2) +Θ(t2 − t1) = 1 and in

the term with Θ(t2 − t1) relabel x1 ↔ x2 and use the property (II.37).
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We find

I[a+, a−] = i g2
∫

d4x1d
4x2

{
a+(~x1, t1)a

+(~x2, t2)G
>(x1 − x2) + a−(~x1, t1)a

−(~x2, t2)G
<(x1 − x2)

− a+(~x1, t1)a
−(~x2, t2)G

<(x1 − x2)− a−(~x1, t1)a
+(~x2, t2)G

>(x1 − x2)

}
Θ(t1 − t2) (II.38)

where G≶ are given by eqns. (II.32,II.33). This is the general form of the influence function

up to second order in the (ALP)-environment coupling but to all orders in the couplings of

the environmental fields that enter the composite operator O to any other field. Notice that

I[a+, a−]
∣∣∣
a+=a−

= 0 consistently with its definition given by eqn. (II.25). A graphical depiction of

the influence action I[a+, a−] is displayed in fig.(1).

a
±

a
±

Figure 1: A graphical depiction of I[a+, a−]. The black circle denotes the correlation functions G≶ to all

orders in the couplings to degrees of freedom other than the (ALP).

For example, for the (ALP)-photon interaction in eqn. (II.2), some of the correlations included in

the influence action are displayed in fig. (2): the one-loop diagram features free photon propagators,

the two-loop diagram features a polarization correction to one of the propagators with electron-

positron pairs in the thermal bath, this two- loops diagram features an extra power of α the fine

structure constant. Similar diagrams with quarks and gluon loops are included for the (ALP)-gluon

interaction in (II.2). The black “bubble” symbolizes the 〈OO〉 correlation functions of the bath

degrees of freedom in thermal equilibrium to all orders in their interactions, α,αs etc.

= +

+ · · ·

Figure 2: I[a+, a−] for the (ALP)-photon interaction in (II.2). The one loop diagram features free photon

propagators, the two loop diagram includes the polarization from e+e− pairs in the thermal plasma, etc.

We can obtain expectation values and correlation functions of the (ALP) fields by including
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sources J±(x) with L0(a
±) → L0(a

±) + J±(x)a±(x) and defining the generating functional

Z[J+, J−] = Tr ρr(J+, J−; t) =

∫
DafDaiDa′i

∫
Da+

∫
Da− eiSeff [a

+,J+;a−,J−;t] ρa(ai, a
′
i; 0)

(II.39)

with the boundary conditions

a+(~x, t = 0) = ai(~x) ; a+(~x, t) = af (~x)

a−(~x, t = 0) = a′i(~x) ; a−(~x, t) = af (~x) . (II.40)

Expectation values or correlation functions of a± in the reduced density matrix are obtained as

usual with variational derivatives with respect to the sources J±.

A. Effective equations of motion: Langevin equation

The effective action (II.23) may be written in a manner more suitable to exhibit the equations

of motion by introducing the Keldysh[32] variables

A(~x, t) =
1

2

(
a+(~x, t) + a−(~x, t)

)
; R(~x, t) =

(
a+(~x, t)− a−(~x, t)

)
. (II.41)

The boundary conditions on the a± path integrals given by (II.40) translate into the following

boundary conditions on the center of mass and relative variables

A(~x, t = 0) = Ai ; R(~x, t = 0) = Ri , (II.42)

A(~x, t = tf ) = af (~x) ; R(~x, t = tf ) = 0 . (II.43)

In terms of the center of mass and relative field variables, the effective action (II.23) with the

influence functional (II.31) becomes with ω2
k = m2

a + k2

iSeff [A,R] =− i

∫
d3xRi(x)Ȧ(x, t = 0)

+ i

∫ t

0
dt
∑

~k

{
−R

−~k

(
Ä~k

(t) + ω2
kA~k

(t)
)
+A~k

J
−~k

}

−
∫ t

0
dt1

∫ t

0
dt2

{
1

2
R

−~k
(t1)N~k

(t1 − t2)R~k
(t2) +R

−~k
iΣR~k (t1 − t2)A~k

(t2)

}
(II.44)

where we have integrated by parts and defined J (x) = (J+(x)− J−(x)), keeping solely the source

conjugate to A because we are interested in expectation values and correlation functions of this

variable only as discussed in detail below.
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The kernels in the above effective Lagrangian are given by (see eqns. (II.32-II.35))

Nk(t− t′) =
g2

2

[
G>(k; t− t′) +G<(k; t− t′)

]
(II.45)

iΣRk (t− t′) = g2
[
G>(k; t− t′)−G<(k; t− t′)

]
Θ(t− t′) ≡ iΣk(t− t′)Θ(t− t′) (II.46)

where G<,>(k; t− t′) are the spatial Fourier transforms of the correlation functions in (II.32-II.35).

In the exponential of the effective action eiSeff , the quadratic term in the relative variable R can

be written as a functional integral over a noise variable ξ as follows,

exp

{
−1

2

∫
dt1

∫
dt2 R−~k

(t1)N~k
(t1 − t2)R~k

(t2)

}

= C̃

∫
Dξ exp

{
−1

2

∫
dt1

∫
dt2 ξ−~k(t1)N

−1
~k

(t1 − t2)ξ~k(t2) + i

∫
dtξ

−~k
(t)R~k

(t)

}

(II.47)

where C̃ is a normalization factor.

For the initial density matrix ρa(ai, a
′
i; 0) in (II.39) it proves convenient to write it in terms of

the initial center of mass and relative variables Ai,Ri as

ρa(ai, a
′
i; 0) ≡ ρa(Ai +

Ri

2
,Ai −

Ri

2
; 0) (II.48)

and introduce the functional Wigner transform[45]

W [Ai, πi] =

∫
DRi e

−i
∫
d3xπi(~x)Ri(~x) ρa(Ai +

Ri

2
,Ai −

Ri

2
; 0) , (II.49)

which allows us to write (up to a normalization factor)

ρa(Ai +
Ri

2
,Ai −

Ri

2
; 0) =

∫
Dπi e

i
∫
d3xπi(~x)Ri(~x)W [Ai, πi] . (II.50)

As it will become clear below, the Wigner transform naturally leads to an initial value problem

wherein the evolution of the field is determined from initial conditions on its value and first time

derivative.

Gathering these results together, we now write the generating functional (II.39) in terms of

the Keldysh variables (II.41), with the effective action in these variables given by eqn. (II.44),
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implementing the Wigner transform (II.50) and using the representation (II.47)

Z[J ] =

∫
DAf

∫
DRiDAiDπi

∫
DADRDξ W [Ai, πi]× P [ξ]× exp



i

∫
dt
∑

~k

A~k
(t)J

−~k
(t)





× exp



−i

∫
dt
∑

~k

[
R

−~k
(t)

(
Ä~k

(t) + ω2
~k
A~k

(t) +

∫ t

0
Σ~k(t− t′)A~k

(t′)d′t− ξ~k(t)

)]


× exp



i
∑

~k

Ri(−~k)
(
π(~k)− Ȧi(~k)

)


 (II.51)

where the noise probability distribution function

P [ξ] = Ñ
∏

~k

exp

{
−1

2

∫
dt1

∫
dt2 ξ−~k(t1)N

−1
k (t1 − t2) ξ~k(t2)

}
. (II.52)

The generating functional Z[J ] is the final form of the time evolved reduced density matrix after

tracing over the bath degrees of freedom. Variational derivatives with respect to the source J yield

the correlation functions of the Keldysh center of mass variable A.

Carrying out the functional integrals over Ri(~k) and R~k
(t) yields a more clear form, namely

Z[J ] ∝
∫

DAf

∫
DAiDπi

∫
DADξ W [Ai, πi]× P [ξ]× exp



i

∫
dt
∑

~k

A~k
(t)J

−~k
(t)





×
∏

~k

δ

[
Ä~k

(t) + ω2
~k
A~k

(t) +

∫ t

0
Σ~k(t− t′)A~k

(t′)d′t− ξ~k(t)

]
×
∏

~k

δ
[
π(~k)− Ȧi(~k)

]
.

(II.53)

The functional delta functions clearly determine the field configurations that contribute to the

generating functional Z[J ]:

• The equation of motion of A~k
(t) is a stochastic Langevin equation, namely

Ä~k
(t) + ω2

~k
A~k

(t) +

∫ t

0
Σ~k(t− t′)A~k

(t′)d′t = ξ~k(t) . (II.54)

Note that this equation of motion involves the retarded self-energy, thereby defining a causal

initial value problem, this is a distinct consequence of the in-in formulation of time evolution.

• The initial conditions of A~k satisfy

A~k(t = 0) = Ai,~k ; Ȧ~k(t = 0) = πi,~k , (II.55)

where A
i,~k
, π
i,~k

are drawn from the distribution function W [Ai, πi] (i.e., the initial density

matrix). This is one of the manifestations of stochasticity, and we use (· · · ) to denote

averaging over the initial conditions (II.55) with the distribution function W [Ai, πi].
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• The expectation value and correlations of the stochastic noise ξ~k(t) are determined by a

Gaussian probability distribution P [ξ], yielding

〈〈ξ(~x, t)〉〉 = 0 ; 〈〈ξ~k(t)ξ~k′(t
′)〉〉 = Nk(t− t′) δ~k,−~k′ , (II.56)

where 〈〈· · · 〉〉 means averaging weighted by P [ξ]. Since P [ξ] is Gaussian, higher order corre-

lation functions are obtained by implementing Wick’s theorem. This averaging is the second

manifestation of stochasticity.

Therefore, averaging over both the initial conditions with the Wigner distribution function, and

the noise with P [ξ], is now denoted by 〈〈
(
· · ·
)
〉〉 and

(
· · ·
)
is any functional of the initial conditions

(II.55) and ξ. These stochastic averages yield the expectation values and correlation functions of

functionals of A obtained from variational derivatives with respect to J .

It remains to relate observables to correlation functions of the Keldysh center of mass variable

A. The path integral representations for the forward and backward time evolution operators (II.12,

II.14,II.15) show that a+ is associated with U(t) and a− with U−1(t), hence it follows that inside

the path integral operators in the forward, backward and mixed forward-backward branches,

A+B+ → TrABρ ; A−B− → TrρAB ; A+B− → TrAρB , (II.57)

etc. Therefore from the cyclic property of the trace the expectation value of the (ALP) field in the

total density matrix is

〈a(~x, t)〉 = Tra+(~x, t) ρ̂(0) = Trρ̂(0) a−(~x, t) = TrA(~x, t) ρ̂(0) = 〈〈A(~x, t)〉〉 , (II.58)

whereas

TrR(~x, t) ρ̂(0) = 0 . (II.59)

We now introduce

C>k (t, t′) = Tra−~k
(t)a+

−~k
(t′)ρ̂(0) ; C<k (t, t′) = Tra−~k

(t′)a+
−~k

(t)ρ̂(0) , (II.60)

and the energy per mode of wavevector ~k

Ek =
1

4

(
∂

∂t

∂

∂t′
+Ω2

k

)[
C>k (t, t′) + C<k (t, t′)

]

t=t′

, (II.61)
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where we anticipate a renormalization of the frequency ωk → Ωk, which will be addressed in detail

below. Using the definition (II.41) and the relations (II.57) it is straightforward to show that this

symmetrized product yields

Ek =
1

2
Tr

(
Ȧ~k

(t)Ȧ
−~k

(t) + Ω2
kA~k

(t)A
−~k

(t)

)
ρ̂(0)

=
1

2

{
〈〈Ȧ~k

(t)Ȧ
−~k

(t)〉〉+Ω2
k 〈〈A~k

(t)A
−~k

(t)〉〉
}
. (II.62)

which is the average energy per mode, a component of the energy momentum tensor. This analysis

confirms that at least for the time evolution of the expectation values of the (ALP) field and its

energy (momentum tensor) only the center of mass Keldysh variable A is needed.

B. General properties of environmental correlation functions:

The dynamics and dissipative processes depend on the correlation functions of the environment

and crucially on their spectral density, these correlation functions determine the self-energy Σ and

the noise correlation function N .

Because the bath is in thermal equilibrium, its initial density matrix is ρχ(0) = e−βHχ/Tr e−βHχ

which is space-time translationally invariant, and the Heisenberg picture operators associated with

the bath are given by Oχ(~x, t) = eiHχtOχ(~x, 0) e
−iHχt we can write

G>(~x− ~x′; t− t′) = 〈Oχ(~x, t)Oχ(~x
′, t′)〉χ =

∫
d4k

(2π)4
ρ>(~k, k0)e

−ik0(t−t′) ei
~k·(~x−~x′) (II.63)

G<(~x− ~x′; t− t′) = 〈Oχ(~x
′, t′)Oχ(~x, t)〉χ =

∫
d4k

(2π)4
ρ<(~k, k0)e

−ik0(t−t′) ei
~k·(~x−~x′) . (II.64)

These representations are obtained by writing Oχ(~x, t) = eiHχt e−i
~P ·~xOχ(~0, 0) e

−iHχt ei
~P ·~x and in-

troducing a complete set of simultaneous eigenstates of Hχ and the total momentum operator ~P ,

(Hχ, ~P )|n〉 = (En, ~Pn)|n〉, from which we obtain the following Lehmann representations,

ρ>(k0, ~k) =
(2π)4

Trρχ(0)

∑

m,n

e−βEn |〈n|Oχ(~0, 0)|m〉|2 δ(k0 − (Em − En)) δ(~k − (Pm − Pn))(II.65)

ρ<(k0, ~k) =
(2π)4

Trρχ(0)

∑

m,n

e−βEn |〈m|Oχ(~0, 0)|n〉|2 δ(k0 − (En − Em)) δ(~k − (Pn − Pm)) .(II.66)

Upon relabelling m ↔ n in the sum in the definition (II.66) and recalling that O is an hermitian

operator, we find the Kubo-Martin-Schwinger relation[46–50]

ρ<(k0, k) = ρ>(−k0, k) = e−βk0ρ>(k0, k) . (II.67)
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The spectral density is defined as

ρ(k0, k) = ρ>(k0, k)− ρ<(k0, k) = ρ>(k0, k)
[
1− e−βk0

]
(II.68)

therefore

ρ>(k0, k) = ρ(k0, k)
[
1 + n(k0)

]
; ρ<(k0, k) = ρ(k0, k) n(k0) , (II.69)

where

n(k0) =
1

eβk0 − 1
. (II.70)

Furthermore, from the first equality in (II.67) it follows that

ρ(−k0, k) = −ρ(k0, k) , (II.71)

ρ(k0, k) > 0 for k0 > 0 . (II.72)

In terms of the spectral densities we find

[
G>(~x− ~x′; t− t′)−G<(~x− ~x′; t− t′)

]
=

∫
d4k

(2π)4
ρ(k0, k)e

−ik0(t−t′) ei
~k·(~x−~x′) (II.73)

which determines the self-energy Σ(t− t′) eqn. (II.46), and

[
G>(~x− ~x′; t− t′) +G<(~x− ~x′; t− t′)

]
≡
∫

d4k

(2π)4
K̃(k0, k)e

−ik0(t−t′) ei
~k·(~x−~x′) (II.74)

which determines the noise correlation function N (t− t′), eqn. (II.45), where

K̃(k0, k) = ρ(k0, k) coth
[βk0

2

]
, (II.75)

Equation (II.75) is the general form of the fluctuation dissipation relation. Note that ρ(k0, k) is

odd whereas K̃(k0, k) is even in k0. We emphasize that these are exact relations, the “environmen-

tal” fields χ may be coupled to other fields, for example, in the case of the (ALP) interaction with

the electromagnetic fields as in eqn. (II.2) the gauge field also interacts with electrons, charged

leptons and quarks, and similarly with the possible interaction with fermionic fields in eqn. (II.2),

these interact with other gauge fields. The relations (II.67-II.75) are general, non-perturbative

statements relying on thermal equilibrium and space-time translational invariance and do not de-

pend on these couplings.

The general expressions (II.73,II.74) allow us to write the self-energy Σk(t− t′) (II.46) and the

noise correlation function Nk(t− t′) (II.45) as

Σk(t− t′) = −ig2
∫

dk0
(2π)

ρ(k0, k)e
−ik0(t−t′) (II.76)

Nk(t− t′) =
g2

2

∫
dk0
(2π)

ρ(k0, k) coth
[βk0

2

]
e−ik0(t−t

′) , (II.77)
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this is the general relation between the self-energy and the noise correlation function commonly

determined by the spectral density ρ(k0, k), a direct consequence of the fluctuation-dissipation

relation as a result of the bath being in thermal equilibrium.

C. Misaligned initial conditions:

The initial density matrix for the (ALP) field is determined by initial conditions. We consider

an initial density matrix describing a pure state compatible with a “misalignment” mechanism

whereby the expectation value of the (ALP) field is non-vanishing initially and also allow a non-

vanishing expectation value of its canonical momentum. This is achieved by considering a coherent

state of the form

|∆〉 = Π~ke
∆~k

b†
~k
−∆∗

~k
b~k |0〉 , (II.78)

where |0〉 is the free field (ALP) vacuum state, b†~k
, b~k are (ALP) free field creation and annihilation

operators, and ∆~k
are complex c-number coefficients that determine the initial values for Ak, πk. In

the Schroedinger representation the state (II.78) is represented by the coherent state wavefunctional

Ψ[a] = ei
∫
d3xπi(~x)a(x) Ψ0[a−Ai] , (II.79)

where Ψ0 is the ground state wavefunctional of a free (ALP) field theory. Such wavefunctional is

Gaussian and yields an average momentum πi and expectation value of the field given by Ai whose

Fourier expansion is determined by the complex coefficients ∆~k
in eqn. (II.78). The pure state

density matrix describing this coherent state as representative of the “misaligned” initial condition

is

ρa[a, a
′; 0] = Ψ∗[a′]Ψ[a] , (II.80)

and its Wigner transform is given by

W [Ai, πi] = N Π~k e
−

Ωk
2
(A

i,~k
−A

i,~k
)(A

i,−~k
−A

i,−~k
) e

− 1

2Ωk
(π

i,~k
−π

i,~k
)(π

i,−~k
−π

i,−~k
)
, (II.81)

with N a normalization factor and Ωk the covariance which will be related to the renormalized

effective frequency (see below). Translational invariance imposes that the expectation value of the

(pseudo) scalar (ALP) field be independent of the momentum, therefore we write in a finite but

large quantization volume V

Ai,~k = Ai

√
V δ~k,0 ; πi,~k = πi

√
V δ~k,0 , (II.82)
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where Ai;πi are the space-time constant expectation values of the field and canonical momentum

in the translational invariant initial state. With this Wigner probability distribution function we

find the averages over the initial conditions

(A
i,~k
) = Ai

√
V δ~k,0 ; (A

i,~k
−A

i,~k
)(A

i,−~k
−A

i,−~k
) =

1√
2Ωk

(π
i,~k
) = πi

√
V δ~k,0 ; (π

i,~k
− π

i,~k
)(π

i,−~k
− π

i,−~k
) =

√
Ωk
2

, (II.83)

with higher order correlations obtained via Wick’s theorem.

This is a simple realization of the “misalignment” mechanism whereby the initial state is a coher-

ent state that features a non-vanishing expectation value of the field and its canonical momentum,

these define the initial value problem.

D. The solution of the Langevin equation

The solution of the Langevin (stochastic) equation (II.54) is obtained by Laplace transform,

define the Laplace transforms

Ã~k
(s) =

∫ ∞

0
e−stA~k

(t) dt , (II.84)

ξ̃~k(s) =

∫ ∞

0
e−st ξ~k(t) dt , (II.85)

Σ̃~k(s) =

∫ ∞

0
e−stΣ~k(t) dt = − g2

2π

∫ ∞

−∞

ρ(k0, k)

k0 − is
dk0 , (II.86)

where in (II.86) we used the dispersive representation (II.76).

With the initial conditions (II.55) the solution of the Laplace transform of the Langevin equation

is

Ã~k(s) =
π
i,~k

+ sA
i,~k

+ ξ̃~k(s)

s2 + ω2
k + Σ̃~k(s)

. (II.87)

The solution in real time is obtained by inverse Laplace transform, it is given by

A~k
(t) = A~k;h

(t) +A~k;ξ
(t) , (II.88)

where A~k;h
;A~k;ξ

(t) are the homogeneous and inhomogeneous solutions respectively, namely

A~k;h(t) = Ai,~k Ġk(t) + πi,~k Gk(t)

A~k;ξ
(t) =

∫ t

0
Gk(t− t′)ξ~k(t

′) dt′ , (II.89)
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and the Green’s function is given by

Gk(t) =
1

2πi

∫

C

est

s2 + ω2
k + Σ̃~k(s)

ds , (II.90)

C denotes the Bromwich contour parallel to the imaginary axis and to the right of all the sin-

gularities of (s2 + ω2
k + Σ̃~k(s))

−1 in the complex s-plane and closing along a large semicircle at

infinity with Re(s) < 0. These singularities correspond to poles and multiparticle branch cuts with

Re(s) < 0, thus the contour runs parallel to the imaginary axis s = i(ν − iǫ), with −∞ ≤ ν ≤ ∞
and ǫ → 0+. Therefore,

Gk(t) = −
∫ ∞

−∞
G̃k(ν) eiν t

dν

2π
, (II.91)

where

G̃k(ν) =
1

(ν − iǫ)2 − ω2
k − Σ(ν, k)

. (II.92)

The self energy in frequency space is given by the dispersive form

Σ(ν, k) =
g2

2π

∫ ∞

−∞

ρ(k0, k)

ν − k0 − iǫ
dk0 ≡ ΣR(ν, k) + iΣI(ν, k) , (II.93)

with the real and imaginary parts given by

ΣR(ν, k) =
g2

2π
P
∫ ∞

−∞

[
ρ(k0, k)

ν − k0

]
dk0 , (II.94)

ΣI(ν, k) =
g2

2
ρ(ν, k) , (II.95)

yielding the Kramers-Kronig relation

ΣR(ν, k) =
1

π
P
∫ ∞

−∞

[
ΣI(k0, k)

ν − k0

]
dk0 . (II.96)

To obtain the above representations we have used the relation ρ(−k0, k) = −ρ(k0, k) (see eqn.

(II.72)), as a consequence of which it follows that ΣR(ν, k) = ΣR(−ν, k) ; ΣI(ν, k) = −ΣI(−ν, k).

G̃k(ν) given by eqn. (II.92) features complex poles corresponding to the solution of the equation

ω2
P (k) = ω2

k +Σ(ωP (k), k) , (II.97)

to leading order in g2 we find

ωP (k) = ±Ωk + i
Γk
2

, (II.98)
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where

Ωk = ωk +
ΣR(ωk, k)

2ωk
; Γk =

ΣI(ωk, k)

ωk
=

g2

2ωk
ρ(ωk, k) . (II.99)

Writing in the denominator of the integrand in (II.91) Σ(ν, k) = Σ(ωp(k), k)+(Σ(ν, k)−Σ(ωp(k), k))

we find that near each pole, G̃k(ν) can be written in a Breit-Wigner form as

G̃k(ν) =
Z

2ωP (k)(ν ∓ Ωk − iΓk

2 )
, (II.100)

with the wave function renormalization constant

Z−1 = 1− Σ′(ωP , k)

2ωP
= 1 +O(g2) , Σ′(ωP , k) ≡

[ d

dν
Σ′(ν, k)

]
ν=ωP

. (II.101)

To leading order in g2 we find

Gk(t) = e−
Γk
2
t sin(Ωkt)

Ωk
+O(g2) , (II.102)

where we have assumed a narrow width Γk/Ωk ∝ g2 ≪ 1 and neglected terms of this order. Using

this result in eqn. (II.89) we find

〈〈A~k
(t)〉〉 = e−

Γk
2
t

{
A
i,~k

[
cos(Ωkt)−

Γk
2Ωk

sin(Ωkt)
]
+ π

i,~k

sin(Ωkt)

Ωk

}
+O(g2) , (II.103)

〈〈Ȧ~k
(t)〉〉 = e−

Γk
2
tΩk

{
A
i,~k

[
− sin(Ωkt)−

Γk
2Ωk

cos(Ωkt)
]
+ π

i,~k

cos(Ωkt)

Ωk

}

−Γk
2
〈〈A~k(t)〉〉 +O(g2) (II.104)

where we used (II.56), and Ai, πi are the average of the initial conditions with the Wigner distri-

bution function (II.83). We have explicitly displayed the terms ∝ Γk/Ωk to exhibit that they arise

from the derivative of the exponential damping term, however, these terms are of O(g2) and must

be neglected for consistency as we are also neglecting terms of the same order from wave function

renormalization.

Similarly, we find

〈〈A~k(t)A−~k(t)〉〉 = A~k;h(t)A−~k;h(t)+
g2

4π

∫ ∞

−∞
ρ(k0, k) coth

[βk0
2

] ∣∣∣
∫ t

0
Gk(τ) eik0τ dτ

∣∣∣
2
dk0 . (II.105)

Using the leading order result (II.102) for Gk(τ) the integral in (II.105) is straightforward. Inserting

the result into (II.105) yields four terms, the resulting integrals are performed by contour integration

in the complex k0-plane: in the narrow width approximation the two direct terms feature residues

∝ 1/Γk, whereas the interference terms feature residues ∝ 1/(2Ωk+iΓk), these latter terms and the

poles at k0 = 2π im/β,m = 0,±1,±2 · · · , namely the Matsubara frequencies1, yield contributions

1 The residue for m = 0 vanishes because the spectral density vanishes at k0 = 0.



23

of O(g2) and will be neglected, whereas the terms with residues ∝ 1/Γk ∝ 1/g2 yield the leading

contributions. Using the definition of Γk (II.99) and keeping solely the leading order terms in

(II.103) we obtain

〈〈A~k
(t)A

−~k
(t)〉〉 = e−Γkt H~k

(t)H
−~k

(t) +
1

2Ωk

[
1 + 2n(Ωk)

] (
1− e−Γkt

)
+O(g2) , (II.106)

where

H~k
(t) = A

i,~k
cos(Ωkt) + π

i,~k

sin(Ωkt)

Ωk
, (II.107)

and n(Ωk) is the Bose-Einstein distribution function.

This is a noteworthy result: for Γkt ≫ 1 the surviving term is precisely the free field expecta-

tion value (〈b†~kb~k + b~kb
†
~k
〉)/2Ωk of (ALP) operators, where the average is in a thermal equilibrium

statistical ensemble, namely at long time t ≫ 1/Γk the (ALP) particles thermalize with the bath.

A similar calculation, implementing the same approximations yields for the average energy per

mode (II.62)

Ek =
e−Γkt

2

[
Ḣ~k

(t) Ḣ
−~k

(t) + Ω2
kH~k

(t)H
−~k

(t)
]
+

Ωk
2

[
1 + 2n(Ωk)

] (
1− e−Γkt

)
+O(g2) . (II.108)

This result confirms thermalization at long time, the second term, which survives for t ≫ 1/Γk is

identified as the expectation value of the free field Hamiltonian in a thermal density matrix, namely

the internal energy. These results are a manifestation of thermalization in the same manner as

a Brownian oscillator as mentioned in the introduction: whereas the average of the coordinate

relaxes to the minimum of the potential, the mean square root fluctuations reveal thermalization

with the bath. This is ultimately a consequence of the fluctuation-dissipation relation manifest

in the relation (II.75) between the noise and the self-energy (friction) kernels, a corollary of the

Kubo-Martin-Schwinger condition (II.67) as a consequence of the equilibrium bath correlations.

Therefore, for the Wigner distribution function (II.81) describing a misaligned initial condition

with the averages given by eqns. (II.83) and neglecting a zero point contribution, we find the

energy density

E

V
=

1

V

∑

~k

Ek =
e−Γ0t

2

[
π2
i +m2

aA
2
i

]
+

∫
d3k

(2π)3
Ωk n(Ωk)

(
1− e−Γkt

)
+O(g2) . (II.109)

The first term is identified with a cold dark matter contribution and originates in the damped

coherent oscillations arising from a “misaligned” initial condition as in the usual case of an (ALP),

whereas the second term yields a hot dark matter contribution from the approach to thermalization,
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each weighted by the damping exponentials. Whereas the first term depends on the initial condi-

tions of the (ALP), the second term is completely determined by the noise, namely the thermal

bath. This is one of the important results of this study.

Therefore, if the (ALP) relaxes on cosmological time scales at a given time t its contribution to

dark matter is a mixture of cold and hot components, with a fraction determined by the relaxation

rate Γk and the time scale t. This result suggests a scenario where the “warmth” of the dark matter

evolves in time from colder to hotter.

The result (II.109) is general, it is valid to order g2 for any (ALP) interaction of the form

ga(x)O(x) and to all orders in the interactions of the bath fields with other fields besides the (ALP).

This is an important corollary of the results in this section: the processes that yield the friction

in the equation of motion of the misaligned expectation value are the same processes that lead

to thermalization. Therefore, whereas several studies focused on the friction term in the equation

of motion of the coherent condensate[37–39] and other studies focused on thermalization[40, 41]

our results show that both processes are related by the fluctuation dissipation relation, occur on

similar time scales and both contribute to the evolution of the energy density of the (ALP) field.

Therefore, the time evolution of the energy density given by eqn. (II.109) is one of the important

results of our study, it applies to all dissipative processes resulting from interactions of the ALP

with other degrees of freedom and is a direct consequence of the fluctuation dissipation relation.

III. ALP INTERACTING WITH PHOTONS:

The results obtained in the previous section are general, although the focus is on (ALP) fields,

the results also apply to any field with an interaction of the form (II.1) and initial conditions that

allow for the evolution of a coherent condensate[18]. These results have a clear physical significance

in terms of the non-equilibrium manifestation of Brownian fluctuations: a bath in equilibrium

induces both a self-energy (friction) and a noise term in the effective equations of motion, the

spectral properties of both are related by the generalized fluctuation dissipation relation, a hallmark

of a bath in thermal equilibrium. Although the results are general, the details, namely relaxation

times, frequency renormalization etc. depend on the spectral properties of the bath correlations.

In this section we focus on (ALP) interaction with photons via the coupling

LI = −ga(x) ~E(x) · ~B(x) , (III.1)
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as in eqn. (II.2). The main assumption invoked in our study is that we consider free massless

photons neglecting interactions with charged leptons and quarks. The one loop contribution to the

(ALP) self-energy is displayed in fig. (3).

Σa a

Figure 3: One loop (ALP) self-energy from the coupling LI = −ga(x) ~E(x) · ~B(x).

The regime of validity of this assumption is discussed in detail in section (IV) below. An

important aspect of the coupling (III.1) is that this interaction is non-renormalizable because

the coupling g has dimensions of 1/energy. As a result the loop corrections associated with the

self-energy feature ultraviolet divergences which cannot be absorbed into the parameters of the

Lagrangian and the theory must be interpreted as a low energy effective field theory.

In appendix (A) we obtain the spectral density from the thermal correlation functions of the

composite operator ~E(x) · ~B(x), it is given by (see eqn. (A.15)),

ρ(q0, ~q) =
(Q2)2

32π

{(
1 +

2

βq
ln

[
1− e−βω

I
+

1− e−βω
I
−

])
Θ(Q2) +

2

βq
ln

[
1− e−βω

II
+

1− e−βω
II
−

]
Θ(−Q2)

}
sign(q0) ,

Q2 = q20 − q2 ; ω
(I)
± =

|q0| ± q

2
; ω

(II)
± =

q ± |q0|
2

. (III.2)

The terms with Θ(Q2) arise from the processes a ↔ 2γ, namely emission and absorption of photons

with the reverse or recombination process 2γ → a a consequence of the heat bath, these processes

feature support on the (ALP) mass shell for massive (ALP) particles. The contribution proportional

to Θ(−Q2) only features support below the light cone and describes off-shell processes γa ↔ γ.

This interpretation stems from the delta functions in the expressions for the spectral density eqn.

(see the second line in eqn. (A.13)).

From the definition of the relaxation rate (II.99) and with the result (III.2) we find

ΓT = Γ

(
1 +

2

βq
ln

[
1− e−βω

I
+

1− e−βω
I
−

])

k0=Ωk

; Γ =
g2 m4

a

64πΩk
, (III.3)

the first contribution is the zero temperature (ALP) decay rate, and the second is the finite tem-

perature contribution which is a consequence of stimulated emission and absorption in the heat

bath. The ratio ΓT /Γ is displayed in fig. (4) as a function of the dimensionless ratios T/ma, k/ma.
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Figure 4: Ratio ΓT /Γ vs T/ma, k/ma.

The finite temperature contribution yields a large enhancement over the zero temperature case

for T ≫ ma, k. For example in the long-wavelength limit k ≪ ma we find

ΓT =
g2 m3

a

64π

(
1 + 2n

(ma

2

))
, (III.4)

which in the high temperature limit T ≫ ma yields

ΓT =
g2 m3

a

16π

(
T

ma

)
. (III.5)

For example, if T corresponds to the temperature of the cosmic microwave background today

T ≃ 10−4 eV the finite temperature correction yields a large enhancement for ma ≪ µeV , and

an enormous one if the (ALP) is an ultra-light candidate with ma . 10−22 eV with potentially

relevant cosmological consequences discussed below in section (IV).

Real part of the self-energy: i :)T = 0: The real part of the self energy is given by eqn.

(II.94), with the zero temperature contribution to the spectral density (III.2) we find

Σ
(0)
R (ν, k) =

g2

64π2
P
{∫ ∞

0

(k20 − k2)2

ν − k0
Θ(k20 − k2)dk0 −

∫ 0

−∞

(k20 − k2)2

ν − k0
Θ(k20 − k2)dk0

}
, (III.6)

relabelling k0 → −k0 in the second integral, the total integral is ultraviolet divergent, introducing

an upper frequency cutoff Λ delimiting the range of validity of the effective (ALP) field theory, and

changing integration variables to α = k20 − k2 − (ν2 − k2), we find

Σ
(0)
R (ν, k) = − g2

64π2

∫ Λ2

−K2

P
{
α+ 2K2 +

(K2)2

α

}
dα ; K2 = ν2 − k2 , (III.7)

with the result

Σ
(0)
R (ν, k) = − g2

64π2

[1
2
Λ4 + 2K2Λ2 +

3

2
(K2)2 + (K2)2 ln

[ Λ2

|K2|
]]

. (III.8)
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This result clearly exhibits the non-renormalizability of the effective field theory of (ALP): the

Λ4 term is absorbed into a mass renormalization, the (ν2 − k2)Λ2 term yields an ultraviolet

divergent wave function renormalization as per eqn. (II.101), however the logarithmic divergence

(ν2 − k2)2 ln[Λ] cannot be absorbed into the renormalization of parameters and field redefinitions

of the original Lagrangian, which then must be appended with a new higher derivative term

C(∂µ∂
µ a)2 where C is a new coefficient that will be renormalized by the term with the logarithmic

divergence. Therefore, the effective action necessitates the addition of a higher derivative term

to absorb the ultraviolet divergences. While such extension of the effective field theory is both

necessary and interesting on its own, here we focus on the minimal (ALP) effective field theory to

establish contact with the more familiar (ALP) Lagrangians, thereby we set the new renormalized

coupling C = 0. In section (IV) we comment on possible effects associated with the higher derivative

terms.

ii:) T 6= 0: The finite temperature contribution to the self-energy is ultraviolet finite and

is studied in detail in appendix (B), the results of this appendix allow to obtain its high and low

temperature behavior. For T ≫ Ωk we find to leading orders in the high temperature expansion

ΣTR(Ωk, k) = g2T 4

[
− π2

15
− m2

a

24T 2
+

m4
a

32T 4

(
1− γ + ln

[
4πT

ma

]
− Ω~k

k
ln

[
Ω~k + k

ma

])
+ · · ·

]
. (III.9)

and for T ≪ ma we find

ΣTR(Ωk, k) = g2T 4

[
4π2

45

k2

m2
a

+
32π4 ma

63

(
1 + 4

k2

m2
a

+
16

5

k4

m4
a

) T 2

m2
a

+ · · ·
]
. (III.10)

Defining the effective finite temperature mass as the k → 0 limit of the dispersion relation

(II.97), the high temperature limit T ≫ ma (III.9) yields an effective, temperature dependent

mass

m2
a(T ) = m2

aR

[
1− π2 g2 T 4

15m2
aR

]
, (III.11)

where maR is the renormalized mass absorbing the zero temperature renormalization. Equation

(III.11) can be written in a more illuminating form as

m2
a(T ) = m2

a(0)
[
1−

( T

Tc

)4]
; Tc = 1.11

√
ma(0)

g
. (III.12)

This result suggests the possibility of an inverted phase transition at a temperature T = Tc:

for T > Tc the effective squared mass is negative signalling an instability, whereas it is positive for

T < Tc. This situation is the opposite of the usual phase transition where m2(T ) > 0 for T > Tc
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indicating an ordered phase and symmetry restoration, and m2(T ) < 0 for T < Tc indicating

symmetry breaking. This intriguing result is a consequence of the high temperature behavior of

the real part of the self-energy, which to the best of our knowledge has not been studied before.

For T < Tc, we define the finite temperature correction to the dispersion relation (II.99) as

ωT − ωa ≡
ΣT (Ωk, k)

2Ωk
, (III.13)

in fig. (5) we display the finite temperature correction to the dispersion relation (ωT − ωa)/g
2 in

units of m3
a vs. T/ma, k/ma.

Figure 5: Finite temperature correction to the dispersion relation (ωT−ωa)/g
2 in units ofm3

a vs T/ma, k/ma.

For k = 0 the figure clearly shows the fast drop in the effective mass as T increases in agreement

with the analysis yielding eqn. (III.11).

The possible high temperature instability as a consequence of m2
a(T ) < 0 for T > Tc indicates

that the results obtained in the previous section for the energy density (II.109) are valid only

for T < Tc since the solution of the Green’s function (II.102) implied real frequencies Ωk and a

perturbative correction to the position of the poles. The instability for T > Tc yields an imaginary

frequency Ωk in the solution which translates into a growing exponential.

IV. DISCUSSION AND CAVEATS:

• On the Gaussianity of noise correlations: The noise variable ξ is described by a Gaus-

sian probability distribution function (PDF) given by eqn. (II.52). The Gaussianity is a

consequence of the non-equilibrium effective action of the (ALP) field being quadratic[26].
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However, this Gaussian (PDF) does not entail that either the (ALP) or the environmental

fields are free. As per the discussion in section (II B) the Lehmann representation of the

environmental correlation functions is to all orders in the couplings of the environmental

fields to other fields within or beyond the standard model other than the (ALP) field. The

fluctuation dissipation relation (II.75) is a consequence of the Lehmann representation, the

self energy (II.76,II.86)), which enters in the full propagator (II.92) is the sum (to all orders)

of one particle irreducible diagrams such as those displayed in fig. (2). Therefore the spectral

density ρ(k0, k) that determines the noise correlation functions are also to all orders in such

couplings. Hence, even when the noise (PDF) is Gaussian, this does not entail that either

the (ALP) or the environmental fields are free.

• (ALP) coupled to photons: region of validity. In the case of (ALP) interaction with

photons, we have assumed that photons constitute a thermal bath of blackbody radiation,

having in mind the cosmic microwave background (CMB). At high temperature for relativis-

tic electrons namely T ≫ me with me the electron mass, photons acquire a gauge invariant

plasma mass ≃ eT/3 via hard thermal loop corrections to the photon self-energy[47, 48, 51].

For a light or ultralight (ALP) this plasma mass would shut off the lowest order emis-

sion/absorption channel a ↔ 2γ. When electrons become non-relativistic, but there is a free

electron density n, the plasma frequency becomes
(
4πne2

me

)1/2
which would also shut off this

channel for light or ultralight (ALP). However, after recombination, the free electron density

vanishes precipitously as electrons combine with protons into neutral hydrogen. Photons are

effectively massless as evidenced by the nearly perfect blackbody spectrum of the (CMB).

Since we have assumed massless photons in the calculation of the spectral density, our as-

sumptions are valid after recombination for T . 0.3 eV. For a light (ALP) with ma . µeV

even the temperature of the (CMB) today Tcmb ≃ 10−4 eV is such that T/ma ≫ 1 and

there is a large finite temperature enhancements to the relaxation rate, which becomes quite

substantial for an ultralight (ALP) with ma . 10−20eV .

• Thermalization: Thermalization of (ALP) in the early Universe has been studied

previously[40, 41, 52]. However, our method and results go much further. The non-

equilibrium effective action yields the effective equation of motion for (ALP) fields which

which is a Langevin equation with “friction” and noise contributions that satisfy the fluc-

tuation dissipation relation. The solution of this Langevin equation allows us to study the

evolution of (ALP) condensates from misaligned initial conditions along with thermaliza-
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tion which is shown to be a consequence of the noise term and the fluctuation-dissipation

relation. The effective action also allows us to study renormalization aspects and the finite

temperature corrections to the (ALP) mass arising from the real part of the self-energy (the

thermalization rate is related to the imaginary part of the self-energy on the mass shell). The

effective action has been obtained up to second order in (ALP) coupling, but to all orders

in the couplings of the “environmental” fields to any other fields to which they couple other

than the (ALP).

For example the study of thermalization in refs.[40, 41, 52] in which the (ALP) is coupled

to quarks or other Standard Model degrees of freedom correspond to obtaining the two

loop contributions to G>, G< in eqns. (II.45,II.46), hence they are included in the general

considerations of section (II). To see this, let us consider the (ALP)-gluon interaction vertex

gsa(x)G
µνb(x)G̃µνb(x). The process a+ gluon ↔ qq is contained in the correlation function

〈GG̃GG̃〉 at two loops, with one gluon propagator featuring a qq self-energy loop, this is the

QCD equivalent of the second diagram in fig.(2) featuring a fermion loop correction to the

propagator of the gauge boson. Using Cutkosky’s cutting rules it is a simple exercise to see

that the rate for the scattering process a + gluon ↔ qq is given by the imaginary part of

the two loop diagram where the cut goes through the qq loop. Similarly for the processes

a+ gluon ↔ 2gluons which corresponds to a gluon loop for a gluon self-energy. This is the

thermalization rate that enters in the Boltzmann equation in ref.[41] or the cross section in

ref.[52].

• Mixed cold and hot components: An important corollary of the Langevin-like equation

of motion (II.54) are the general results (II.108,II.109) which entail that the energy density of

(ALP) feature a mixture of cold and hot components, the cold component is determined by

oscillatory coherent condensate resulting from misaligned initial conditions and the hot cor-

responds to the thermalized part, which is determined by the “noise” term in the Langevin

equation, with proportions varying in time as ≃ (cold)e−Γt + (hot)(1 − e−Γt). The damping

of the cold component is a consequence of the “friction” term in the equations of motion de-

termined by the imaginary part of the self energy, and the growth rate of the hot component,

namely the thermalization rate, is related to the damping rate of the cold component by the

fluctuation dissipation relation. The cold component originates in the coherent oscillations

resulting from a “misaligned” initial condition, whereas the hot component results from the

approach to thermal equilibration with the bath.
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• Novel exotic phases:? For (ALP)-photon coupling, the real part of the self-energy reveals

two important features: because the coupling g has dimensions 1/(energy) the interaction

Lagrangian density is non-renormalizable. As a result we find that the effective action must

necessarily include higher derivative terms of the form C (∂µ∂
µa(x))2 with C a constant that

absorbs the logarithmic ultraviolet divergence (III.8). We have (arbitrarily) set C = 0 to

establish contact with the usual Lagrangian proposed for (ALP), but this clearly implies

a fine-tuning. Furthermore, the finite temperature part of the self-energy features the high

temperature limit (III.9) which yields an effective temperature dependent mass squared given

by eqn. (III.12). The power of temperature ∝ T 4 is a consequence of the non-renormalizable

coupling with mass dimension −2. The negative sign yields the opposite behavior compared

to scalar theories with (second order) phase transitions, the physical origin of the negative

sign eludes these authors. We conjecture that the sign is a result of the coupling to a

pseudoscalar composite operator with vector fields, but such conjecture awaits confirmation

by comparing to other pseudoscalar couplings such as those shown in eqn. (II.2), which is

beyond the original scope of this study. This effective mass squared suggests the possibility

of an inverted phase transition with m2(T ) < 0 for T > Tc signalling an instability towards a

phase of lower free energy. Such instability entails that non-linearities in the (ALP) effective

Lagrangian are relevant, these may be associated with a potential for the (ALP) field, or from

higher orders in the effective action, for example a term of the form ≃ g4a4 (with the various

branch labels ±), which because of the non-renormalizable nature of the coupling will feature

the largest scale in the loop to the fourth power and may conspire with the quadratic term to

stabilize the theory. The emergence of these non-linearities in higher orders of the effective

action merit further study. The main result of the energy density (II.109) is valid only for

T < Tc because the analysis relies on the perturbative renormalization of the frequencies, so

that Ωk in (II.109) is real.

Taken together, this instability in combination with higher derivative terms may lead to

novel exotic inhomogeneous phases for T > Tc of the Lifshitz type[42]. The possibility of

high temperature instabilities and novel phases are worthy of a more detailed and deeper

study including other types of pseudoscalar interactions, which is beyond the scope of this

article.

• QED vs. QCD: Although this discussion has focused on (ALP)-photon coupling, a similar

conclusion can be drawn for (ALP)-gluon coupling gsa(x)G
µνb(x)G̃µνb(x), since gs also has
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dimensions of (energy)−1. To lowest order in the strong coupling αs the correlation function

〈GG̃GG̃〉 is a gluon loop and yields a similar high temperature dependence of the effective

mass squared ∝ g2sT
4 on dimensional grounds, and a zero temperature logarithmic ultraviolet

divergence which requires a higher derivative counterterm. Although similar to the QED

case, the actual contributions from gluon loops must be studied in detail because the non-

abelian nature may lead to cancellations which these simple arguments may not capture.

The study of the QCD contribution from gluons must necessarily focus on temperatures

scales above the deconfinement temperature ≃ 150MeV, which requires hard-thermal loop

resummations[48, 51] since the light quarks are ultrarelativistic in this temperature range

whereas for T < 150MeV (ALP) interact with neutral pions. The study of these processes

is well beyond the scope of this article but clearly merit further study.

• Possible cosmological consequences: While the results obtained above are valid in

Minkowski space time, we can conjecture on their possible implications in cosmology. The

effective squared mass at high temperature (III.12) suggests a high temperature inverted

phase transition with m2(T ) < 0 for T > Tc becoming positive for T < Tc, the opposite of

the usual behavior in (second order) phase transitions. This in turn implies that the non-

linearities in the ALP (effective) potential are important in the evolution of the coherent

condensate, furthermore, the necessity of introducing higher order derivatives to absorb

logarithmic ultraviolet divergences when combined with the high temperature instability may

lead to novel inhomogeneous phases, such as Lifshitz phases[42] with the possible generation

of inhomogeneities associated with the dark matter component that are not a consequence

of inflationary fluctuations.

The time evolution of the energy density yielding a mixture of a cold and a hot component

(II.109) gives rise to the interesting possibility that the “warmth” of this dark matter candi-

date evolves in time from a colder to a hotter component, the weight of each component is

determined by the relaxation rate and the time scale. Hence it is possible that for a specific

set of parameters (coupling and mass) the dark matter component is cold at the time of

recombination but warms up as time evolves towards a warmer component, thereby yielding

(ALP)’s as a warm dark matter candidate in the most recent Universe. This possibility has

potentially important consequences for galaxy formation since an (ALP) which is a warm

dark matter candidate may help to solve the core vs. cusp problem in dwarf galaxies.

Furthermore, if the (ALP) is an ultralight dark matter candidate, it can become an ultrarel-
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ativistic component even for a temperature ≃ Tcmb ≃ 0.1eV at the time of recombination,

which then contributes to Neff the effective number of relativistic species. As the inter-

action with the cosmic microwave background continues after recombination until today,

the decay of the coherent condensate component and thermalization may affect the signal

on birefringence if it is a consequence of the interaction of the CMB with a pseudoscalar

field[54].

• Caveats: In this article we have studied the effective action and its consequence in

Minkowski space-time as a prelude towards a more comprehensive study including cosmo-

logical expansion which will be addressed in future work. Cosmological expansion intro-

duces several important modifications: in the evolution of the condensates (coherent states)

from misaligned initial conditions, dilution of the population and time dependent relaxation

rates[53] among the most obvious ones. In the regime when the cosmological expansion

rate H(t) is much smaller than the relaxation rate, we expect an adiabatic treatment (see

ref.[53]) to be reliable. However, in this case we would expect that (ALP) would completely

thermalize with the (CMB) after recombination and would feature the (CMB) temperature

today. In obtaining the effective action we have traced over the (CMB) degrees of freedom

therefore we cannot assess at this stage whether the back reaction a → 2γ would induce

distortions in the (CMB) power spectrum. Such distortion would impose severe constraints

on the coupling and mass of the (ALP) fields since these determine the relaxation rate. If,

on the other hand the relaxation rate is much smaller than H(t) we would expect that the

thermal (hot) (ALP) population today would be rather small. In our treatment we have as-

sumed the initial (ALP) density matrix to describe a misaligned vacuum state, described by

a coherent state of a free field vacuum. This initial state neglects any population that could

have been produced earlier, such as a produced thermally from QCD processes[40, 41, 52] or

even processes beyond the standard model or during inflation. A thermal initial condition

can be accounted for, including misalignement, simply by proposing a coherent state built

from a thermal density matrix. Such modification will result in new contributions to the

correlation functions and energy density from the initial averages with the Wigner function

or alternatively with the initial density matrix. In particular this scenario would yield an-

other thermal contribution to the energy density originating in the initial density matrix of

the (ALP) field, therefore the results obtained in this study provide a lower bound on the

(ALP) energy density.
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V. CONCLUSIONS:

We studied the non-equilibrium dynamics of a pseudoscalar (ALP) particle weakly coupled to

“environmental” degrees of freedom in thermal equilibrium in Minkowski space-time as a prelude

towards extending the methods to cosmology. We considered a generic coupling ga(x)O(x) with O
a pseudoscalar composite operator of the bath degrees of freedom without adopting a particular set

of parameters, couplings and (ALP) mass or bounds on them but only assuming a weak coupling

between the (ALP) and the standard model degrees of freedom. Our focus in this article is to

obtain the (ALP) effective action and equations of motion and to explore their consequences for

general couplings and mass.

By considering the time evolution of an initial density matrix for the (ALP) and environmental

fields in the in-in or Schwinger-Keldysh formulation, we obtained the reduced density matrix for

the (ALP) by tracing over the environmental fields. The time evolution of the (ALP) reduced

density matrix is determined by the non-equilibrium effective action, which we obtain up to O(g2)

in the weak coupling g but to all orders in the couplings of the environmental fields to any other

field (different from the (ALP)) within or beyond the standard model. The effective equations of

motion for the (ALP) field obtained from the in-in effective action are causal Langevin equations

with a (non-local) self-energy and a Gaussian stochastic noise term whose power spectra fulfill

the fluctuation-dissipation relation. The initial density matrix for the (ALP) field implements a

“misaligned” initial condition. The effective Langevin equations of motion show that the processes

that lead to the damping of the coherent condensate are the same that lead to thermalization

with the environment as a direct result of the fluctuation dissipation relation. Whereas previous

studies either focused on the “friction” term in the equations of motion of the coherent condensate,

or on thermalization via Boltzmann equations, the non-equilibrium effective action and Langevin

equation obtained in this study establishes a bridge between both aspects linking them via the

fluctuation dissipation relation, a hitherto unrecognized but important aspect of coupling to an

environment and shows that both occur on similar time scales. Damping of the coherent misaligned

expectation value and thermalization with the environment emerge naturally from the effective

Langevin equations of motion, and for generic environments we find that the total energy density

features a mixture of a cold and hot components: E(t) = (cold)e−Γt + (hot)(1 − e−Γt) the cold

component is a consequence of the coherent oscillations from misalignment and the hot component

from thermalization with the bath. The relaxation rate Γ is determined by the imaginary part

of the self-energy. The damping of the cold and the growth of the hot components are a direct
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consequence of the fluctuation-dissipation relation.

This time dependent energy density may provide a compelling dark matter scenario wherein the

“warmth” of the dark matter evolves in time from colder to hotter. This is one of the important

results of our study.

As a specific example we study (ALP)-photon coupling with O = ~E · ~B where the radiation

field represents the (CMB) after recombination when photons can be treated as free and massless

(vanishing plasma frequency). This is a non-renormalizable interaction, the one loop contribution

to the (ALP) self-energy features ultraviolet divergences that necessitate higher derivative terms in

the effective action, of the form C(∂µ∂
µa(x))2. The long wavelength relaxation rate Γ = g2m3

a

64π

[
1+

2n(ma/2)
]
features a large enhancement for T ≫ ma which is substantial even for the (CMB)

temperature ≃ 10−4eV if the (ALP) is a light dark matter candidate with ma . µeV and even more

so if it is an ultralight candidate with ma ≃ 10−20eV . We find that the high temperature limit of

the self-energy yields a temperature dependent effective mass squared m2
a(T ) = m2

a(0)
[
1−(T/Tc)

4
]

with Tc ≃
√

ma(0)/g suggesting a possible inverted phase transition with a negative mass squared

for T > Tc which when combined with higher derivative terms in the effective action may lead to

the possibility of novel exotic phases.

This study has revealed aspects that have not been previously discussed, such as the necessity of

higher derivative operators, the high temperature correction to the mass which suggests a possible

inverted phase transition, and that a misaligned initial condition naturally leads to an energy

density that features a mixture of cold and hot components with fractions that depend on time

through the relaxation rate, with the cold component diminishing and the hot component increasing

in time. If (ALP) are suitable dark matter candidates this mixed cold-hot component may lead to

interesting cosmological consequences: for structure formation the “warmth” of the dark matter,

a consequence of the cold and hot components, may help in solving the core vs cusp problem,

furthermore, the hot component may provide a contribution to the effective number of relativistic

degrees of freedom at recombination, and the continued interaction between the (ALP) and the

(CMB) post recombination until today may affect a birefringence signature if it is a consequence

of a coupling of the (CMB) to a pseudoscalar field. These results may also point to possibly

alternative bounds on the couplings and mass of (ALP)s.

The next step is to extend the methods implemented here to the realm of an expanding cos-

mology as well as other possible interactions which will be the focus of future work.
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Appendix A: Spectral density for ~E · ~B coupling.

We begin with the quantization of the gauge field within a volume V eventually taken to infinity,

~A(x) =
1√
V

∑

~k,λ=1,2

ǫ̂~k,λ√
2k

[
d~k,λ e

−ik·x + d†~k,λ
eik·x

]
, (A.1)

where ǫ̂~k,λ are the transverse polarizaton vectors chosen to be real. From eqns (II.63,II.64) we need

the correlation functions

G>(x− y) = 〈 ~E(x) · ~B(x) ~E(y) · ~B(y)〉 , (A.2)

G<(x− y) = 〈 ~E(y) · ~B(y) ~E(x) · ~B(x)〉 = G>(y − x) , (A.3)

where we now refer to 〈(· · · )〉 as averages in the thermal density matrix of free field photons.

In the thermal ensemble the expectation value 〈 ~E(x) · ~B(x)〉 = 0 by parity invariance. Using

Wick’s theorem the correlation function

〈 ~E(x)· ~B(x) ~E(y)· ~B(y)〉 =
∑

i,j

{
〈Ei(x)Ej(y)〉〈Bi(x)Bj(y)〉+〈Ei(x)Bj(y)〉〈Bi(x)Ej(y)〉

}
. (A.4)

A straightforward calculation yields

〈Ei(x)Ej(y)〉 = 〈Bi(x)Bj(y)〉 = 1

2V

∑

~k

k
(
δij − ~̂ki~̂kj

) [
(1 + n(k)) e−ik·(x−y) + n(k) eik·(x−y)

]
,

(A.5)

similarly

〈Ei(x)Bj(y)〉 = −〈Bi(x)Ej(y)〉 = − 1

2V

∑

~k

k
(
ǫ̂i~k,1 ǫ̂

j
~k,2

−ǫ̂i~k,2 ǫ̂
j
~k,1

) [
(1+n(k)) e−ik·(x−y)+n(k) eik·(x−y)

]
,

(A.6)

where n(k) = 1/(eβk − 1). Combining the two terms in (A.4) we find

G>(x− y) =
1

4V 2

∑

~k

∑

~p

kp(1− ~̂k · ~̂p)2
{[

(1 + n(k)) e−ik·(x−y) + n(k) eik·(x−y)
]

×
[
(1 + n(p)) e−ip·(x−y) + n(p) eip·(x−y)

]}
. (A.7)
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Expanding the product, we perform the following change of variables in the various terms: 1) in

the term n(k)n(p): ~k → −~k, ~p → −~p, 2) in the term with (1 + n(k))n(p): ~p → −~p, 3) in the term

with n(k)(1 + n(p)): ~k → −~k, yielding in the infinite volume limit

G>(x− y) =

∫
dq0
2π

∫
d3q

(2π)3
ρ>(q0, q) e

−iq0(t−t′) ei~q·(~x−~y) , (A.8)

where

ρ>(q0, q) =
π

2

∫
d3k

(2π)3
k|~q − ~k|

{(
1−

~k

k
· ~q − ~k

|~q − ~k|

)2 [
(1 + n(k))(1 + n(|~q − ~k|))δ(q0 − k − |~q − ~k|)

+ n(k)n(|~q − ~k|) δ(q0 + k + |~q − ~k|)
]

+
(
1 +

~k

k
· ~q − ~k

|~q − ~k|

)2 [
(1 + n(k))n(|~q − ~k|)δ(q0 − k + |~q − ~k|)

+ n(k)(1 + n(|~q − ~k|))δ(q0 + k − |~q − ~k|)
]}

. (A.9)

Writing

G<(x− y) =

∫
dq0
2π

∫
d3q

(2π)3
ρ<(q0, q) e

−iq0(t−t′) ei~q·(~x−~y) , (A.10)

and using the relation (A.3) we find that ρ<(q0, ~q) = ρ>(−q0,−~q), however the sign change in ~q

can be compensated by ~k → −~k inside the k-integral with the final result

ρ<(q0, ~q) = ρ>(−q0, ~q) , (A.11)

furthermore, using the identity (1 + n(w)) = eβwn(w) and using the various delta functions in the

definition of ρ> we find

ρ<(q0, ~q) = e−βq0 ρ>(q0, ~q) , (A.12)

which is the Kubo-Martin-Schwinger relation, thereby confirming the general results (II.67). The

spectral density is given by (see eqn. (II.68)) ρ(q0, q) = ρ>(q0, q)− ρ<(q0, q) with

ρ(q0, q) =
π

2

∫
d3k

(2π)3
1

kw

{
(
kw + k2 − ~k · ~q

)2
[1 + n(k) + n(w)]

(
δ(q0 − k − w)− δ(q0 + k + w)

)

+
(
kw − k2 + ~k · ~q

)2
(n(w)− n(k))

(
δ(q0 − k + w)− δ(q0 + k − w)

)
}

; w = |~q − ~k| . (A.13)

The spectral density is calculated by implementing the following steps:

∫
d3k

8π3
=

∫ ∞

0
k2

dk

4π2
d(cos(θ)) ; w = |~q − ~k| =

√
q2 + k2 − 2kq cos(θ) ;

d(cos(θ))

w
= −dw

kq
.

(A.14)
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Carrying out the integrations, which are facilitated by the delta function constraints we find

ρ(q0, ~q) =
(Q2)2

32π

{(
1 +

2

βq
ln

[
1− e−βω

I
+

1− e−βω
I
−

])
Θ(Q2) +

2

βq
ln

[
1− e−βω

II
+

1− e−βω
II
−

]
Θ(−Q2)

}
sign(q0) ,

(A.15)

where

Q2 = q20 − q2 ; ω
(I)
± =

|q0| ± q

2
; ω

(II)
± =

q ± |q0|
2

. (A.16)

Appendix B: Finite temperature contribution to ΣR

Σ
(T )
R (ν, k) =

g2 T

32π2 k
P
∫ ∞

−∞

(k20 − k2)2

ν − k0
ln
[1− e−βω+

1− e−βω−

]
dk0 ≡ g2 T

32π2 k
I(ν, k) ; ω± =

∣∣∣
k ± k0

2

∣∣∣ .

(B.1)

Since the argument of the logarithm is odd under k0 → −k0, it follows that I can be written as

I(ν, k) = P
∫ ∞

0

2k0(k
2
0 − k2)2)

k20 − ν2
ln

[
1− e−

β
2
|k0−k|

1− e−
β
2
(k0+k)

]
dk0 = I1 + (ν2 − k2)2 I2 , (B.2)

where

I1 = P
∫ ∞

0

2k0(k
2
0 − ν2 + 2(ν2 − k2))

k20 − ν2
ln

[
1− e−

β
2
|k0−k|

1− e−
β
2
(k0+k)

]
dk0

I2 = P
∫ ∞

0

2k0
k20 − ν2

ln

[
1− e−

β
2
|k0−k|

1− e−
β
2
(k0+k)

]
dk0 . (B.3)

Using the results

∫ ∞

0
xn ln

[
1− e−(x+y)

]
dx = −Γ(n+ 1)Li2+n(e

−y) (B.4)

∫ ∞

0
xn ln

[
1− e−|x−y|

]
dx = (−1)nΓ(n+ 1)Lin+2(e

−y)− 2

[n
2
]∑

i=0

(
n

2i

)
Γ(1 + 2i)ζ(2 + 2i) yn−2i ,

(B.5)

where Li is the polylogarithm, we find

I1 = −4π2k

3β

(
(ν2 − k2) +

8π2

5β2

)
. (B.6)

For I2, we first write it as

I2 = P
∫ ∞

0
dk0

( 1

k0 − ν
+

1

k0 + ν

)
ln

[
1− exp

(
− β |k0−k|

2

)

1− exp
(
− β k+k02

)
]
. (B.7)



39

Note that

ln(1− x) =

∞∑

n=1

(
− 1

n
xn
)
, (B.8)

and

P
∫ ∞

0

dx

x+ z

(
− 1

n
e−n(x+y)

)
=

1

n
e−n(y−z)Ei(−nz) (B.9)

P
∫ k

0

dx

x+ z

(
− 1

n
e−n(k−y)

)
= − 1

n
e−n(y+z)

[
− Ei(nz) + Ei(n(y + z))

]
(B.10)

P
∫ ∞

k

dx

x+ z

(
− 1

n
e−n(x−y)

)
=

1

n
en(k+z)Ei(−n(y + z)) . (B.11)

The exponential integral function features a useful representation,

Ei(x) = γ + ln(|x|) +
∞∑

n=1

xn

nn!
, (B.12)

where γ is Euler’s constant. This expansion allows us to extract the low and high temperature

limits, yielding the high temperature behavior for T ≫ Ωk

ΣTR(Ωk, k) = g2T 4

[
− π2

15
− m2

a

24T 2
+

m4
a

32T 4

(
1− γ + ln

[
4πT

ma

]
− Ω~k

k
ln

[
Ω~k + k

ma

])
+ · · ·

]
. (B.13)

In the low temperature limit T ≪ ma, k we find

ΣTR(Ωk, k) = g2T 4

[
4π2

45

k2

m2
a

+
32π4 ma

63

(
1 + 4

k2

m2
a

+
16

5

k4

m4
a

) T 2

m2
a

+ · · ·
]
. (B.14)
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