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Gravitational waves from the coalescences of black hole and neutron stars afford us the unique
opportunity to determine the sources’ properties, such as their masses and spins, with unprecedented
accuracy. To do so, however, theoretical models of the emitted signal that are i) extremely accurate
and ii) computationally highly efficient are necessary. The inclusion of more detailed physics such
as higher-order multipoles and relativistic spin-induced orbital precession increases the complexity
and hence also computational cost of waveform models, which presents a severe bottleneck to the
parameter inference problem. A popular method to generate waveforms more efficiently is to build
a fast surrogate model of a slower one. In this paper, we show that traditional surrogate modelling
methods combined with artificial neural networks can be used to build a computationally highly
efficient while still accurate emulation of multipolar time-domain waveform models of precessing
binary black holes. We apply this method to the state-of-the-art waveform model SEOBNRv4PHM
and find significant computational improvements: On a traditional CPU, the typical generation of
a single waveform using our neural network surrogate SEOBNN_v4PHM_4dq2 takes 18ms for a binary
black hole with a total mass of 44Mg when generated from 20Hz. In comparison to SEOBNRv4PHM
itself, this amounts to an improvement in computational efficiency by two orders of magnitude.
Utilising additional GPU acceleration, we find that this speed-up can be increased further with the
generation of batches of waveforms simultaneously. Even without additional GPU acceleration, this
dramatic decrease in waveform generation cost can reduce the inference timescale from weeks to

hours.

I. INTRODUCTION

Since the first observing run of the currently operating
ground-based gravitational-wave (GW) detector network
consisting of Advanced LIGO [1] and Advanced Virgo [2],
and soon also KAGRA [3], detections of GWs from more
than 90 compact binary inspirals and mergers consist-
ing of black holes and neutron stars [4-7] have been an-
nounced. These observations have a transformative im-
pact on our understanding of the properties of black holes
and neutron stars, allowing us to determine their mass
and spin distributions [8] and to put them into their as-
trophysical context.

The inference of the source properties is predicated
on the availability of accurate theoretical models of the
emitted GW signal through inspiral, merger and ring-
down (IMR). Recent years have seen much progress in the
improvement of such waveform models through the in-
clusion of higher-order multipoles and spin-induced pre-
cession of the orbital plane. These improvements come,
however, at the expense of computational efficiency. Fast
model evaluation speeds are a necessary requirement for
key analysis such as Bayesian inference where on average
10 — 10® such model evaluations are needed to obtain
well-sampled posterior probability distributions. Differ-
ent strategies are employed to make waveform models
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computationally more efficient, some prominent ones in-
clude: Phenomenological ansatzes [9]; reduced-order sur-
rogate modelling [10-16]; dimensional reduction [17, 18];
and most recently the incorporation of machine learning
into reduced-order models [19]. Alternatively, routes to
either accelerate the likelihood evaluation directly [20-
27] or to perform likelihood-free inference [28, 29] have
also been developed.

In this work we combine reduced-order modelling with
the power of artificial neural networks (ANNs) to build
a computationally vastly more efficient surrogate model
of the state-of-the-art inspiral-merger-ringdown (IMR)
waveform model SEOBNRv4APHM [30] that includes both
spin-induced orbital precession [31] and higher-order
modes beyond the quadrupole emission. While the effi-
cacy of this approach has previously been demonstrated
for the quadrupole ((2,2)-) mode of aligned-spin binary
black holes (BBHs) [19, 32], here we demonstrate its fea-
sibility for the multimodal, precessing case. To achieve
this, we decompose the SEOBNRv4PHM waveform model
into eight components that describe the modes in a non-
inertial, co-prcessing coordinate frame and three com-
ponents that encode the precession dynamics. Using a
combination of traditional surrogate modelling steps and
neural networks to produce parameter fits, we build a fast
surrogate model for each component. Using extensive
optimisation we determine an optimal network for each
component, which allows us to speed up the model eval-
uation by a factor of a few hundred on average on a CPU
and even further on a GPU, demonstrating the efficacy
of this approach for state-of-art multimodal waveforms
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with precession.

The paper is organised as follows: First in Sec. II
we introduce the methodology behind this work, includ-
ing a brief overview of surrogate waveform modelling in
Sec. IT A, details of precessing waveform decomposition in
Sec. 11 B, and details of the mismatch metrics we use to
assess the accuracy of our model in Sec. II C. We then
detail the construction of the model in Sec. III, first
describing the training data upon which the model is
built in Sec. IIT A, the reduced basis and empirical in-
terpolant construction in Sec. III B, and the neural net-
works for each of the model components in Sec. I11C,
both coprecessing modes and Euler angles, putting these
together to describe the full surrogate model construc-
tion in Sec. 1T D. We then discuss the completed model
in Sec. IV, both the accuracy of the waveforms generated
in Sec. IV A and the timing of the model evaluation in
Sec. I'V B. Finally, we summarise the model construction
and results in Sec. V, also discussing caveats and further
work.

Throughout this paper we use geometric units, G =
c = 1, unless stated otherwise.

II. METHODOLOGY
A. Surrogate Modelling

Surrogate models are fast, accurate approximations to
an underlying (slower) model, over a chosen parameter
space region. Therefore, their range of validity in pa-
rameter space is limited to the region over which they
are constructed, the training space, plus an extrapola-
tion region over which the model has been tested and
shown to be accurate to within some tolerance. Recent
examples of surrogate models for waveforms from co-
alescing compact binaries include Numerical Relativity
(NR) and NR-hybrid surrogate models [13, 14, 16, 33—
35], surrogates for the aligned-spin effective-one-body
(EOB) model SEOBNRv4 [36] using artificial neural net-
works [19, 32] and a machine learning emulation of a
different EOB model, TEOBResumS [37, 38].

In the following, we will provide a brief outline of the
main steps for building a surrogate model. For a more
complete explanation we refer the reader to e.g. [11].

The process of building a surrogate model may begin
with building a reduced basis, which enables us to repre-
sent any arbitrary function, e.g. a time-domain waveform
h(t,X) with intrinsic parameters X, within the discrete
training space Ty = {N}4, € T = {X\}22, as a lin-
ear combination of an n-dimensional orthonormal basis
{é:(t)}_, and projection coefficients {c,(A)};,

n
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with n < M. The reduced basis is constructed recur-
sively using a greedy algorithm [10, 11] until all wave-

forms in the training space Tjps are represented by the
basis to within a certain tolerance o, which is related to
the representation error ¢ by

maxe = maXHh(t; N — zn:ci(X)éi(t)Hg <o, (2)

=1

where || * || denotes the L?-norm, which we compute
via the Chebyshev-Gauss quadrature rule. To achieve
this, at each step the waveform with the largest repre-
sentation error using the current basis is chosen, orthog-
onalised with respect to all current basis elements, and
normalised, before being added to the basis as the next
basis element. The greedy algorithm stops once Eq (2) is
fulfilled or if the waveform with the largest representation
error is already a basis element. The latter is an indica-
tion that the training space 7, is sampled too coarsely to
achieve the desired accuracy o. If the discrete training
space is sampled sufficiently densely, then the reduced
basis representation allows us to approximate any wave-
form in the entire parameter space T .

After the basis has been constructed, we proceed to
build an empirical interpolant (EI) using the empirical
interpolation method [39, 40], which allows us to recon-
struct each waveform h(t; X) for X € T to within a high
accuracy, only using information at certain (sparse) time
nodes {T;} ;. These carefully selected empirical times
or nodes are determined exclusively by the reduced basis
waveforms, and the number of time nodes will be equal
to the number of waveforms within the reduced basis:

EI[h](t;X) = Y B;(t)h(T}; X), (3)
= Zzéi(t)(V_l)ijh(Tﬁ N, ()

where (V);; = (é;(7})) is the interpolation matrix.

The final step for building a surrogate model is to per-
form a parameter space fit which allows us to predict
waveforms at the empirical times {7;}"_; for arbitrary
parameters A € 7 based on the greedy points {Xz}le
selected to construct the reduced basis. This requires us
to fit h(t; X) across the parameter space at each empirical
node such that

-

h(Ty; X) ~ Ay(X)ei¢ ), (5)

where A; and ¢; are the amplitude and phase at the
i-th empirical node. The 2n-functions that determine
the parameter space fits can be determined by different
means, for example via traditional fitting functions such
as splines or polynomials [10, 13, 16] or by using machine
learning algorithms such artificial neural networks [19,
32] or Gaussian processes [33, 34, 41, 42]. In this work,
we will follow Ref. [19] and use ANNs to determine the
fitting coefficients A;(X) and ¢;(X). The final surrogate



model for a waveform h(t; X) is then given by

ZZ Jlej
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A(N)e N (6)

We note that this prescription applies to generic func-
tions up to the parameter space fits Eq. (5), whose RHS
decomposition depends on the function that is being
modelled. In subsequent sections, we will follow this ap-
proach for individual waveform modes decomposed into
amplitude and phase as well as angle functions.

To construct the reduced bases and empirical inter-
polants we use the publicly available Python package
RomPy [11, 43].

B. Waveform Decomposition

Binary black holes on quasi-spherical orbits span a
seven-dimensional (intrinsic) parameter space charac-
terised by the mass ratio ¢ = my/ms > 1 and the (dimen-
sionless) spin angular momenta y; and Ys. If the spin
angular momenta are misaligned with the direction of
the instantaneous orbital angular momentum L(t), then
spin-induced precession occurs [31, 44]. This causes the
orbital plane to change its spatial orientation as the bi-
nary inspirals due to GW emission. This more complex
two-body dynamics leads to amplitude and phase mod-
ulations of the emitted GW signal h(t; X) and is also a
source of the excitation of higher-order multipoles, hgy,,
in the radiation field, which must be included to accu-
rately describe the GW signal:

h(t; )\ 0, ) Z Z hem (t; >\ *Yim(0,9), (7)
£=2 m=—¢
where (6, ¢) denote the angles on the unit sphere. Due to

the increased complexity, modelling the signal from pre-
cessing BBHs is a challenging task but is accomplished as
follows [31, 45-47]): The GW modes from precessing bi-
naries, hfm(t; X), can be conveniently decomposed into a
simpler carrier signal corresponding to a non-inertial co-
precessing observer, hy,, P*(t; X), and a time-dependent
rotation operator R Wthh encodes the orbital precession
dynamics, i.e.

14
= > Runm (VRGP (5X),  (8)
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where X denotes the binary’s intrinsic parameters.

As a first approximation, the coprecessing waveform
modes can be approximated by aligned-spin modes [46,
17]. This simplifying approximation is made in many of
the state-of-the-art waveform models [30, 48, 49] and is
a known source of modelling errors [50]. Importantly,
this approximation assumes a conjugate symmetry be-
tween the +m and —m modes, which no longer holds in

FIG. 1. Definition of the inertial J-frame and the Euler
angles. The three Euler angles «, 8 and ~ define the ro-
tation from the L-frame where the z-component is parallel
to the orbital angular momentum of the binary 2 = I:(to),
to the J-frame where it is parallel to the total angular mo-
mentum z' = J(ty) at the start time of the waveform to.
The angle « is defined by the minimal rotation condition,
4 = —dcos B [15, 53].

the case of precessing binaries [47, 51]. The waveform
model we emulate here, SEOBNRv4APHM [30, 52|, contains
the (2,+2), (2, £1), (3,£3), (4, +4) and (5, =5) coprecess-
ing modes defined in a time-dependent coordinate frame
that tracks L(t) (L-frame), and assumes conjugate mode
symmetry, i.e.,

hco preC(t )\) (7

—m

1) RSP (4 X). (9)

Therefore, we only model the positive m—modes in the
coprecessing frame and obtain the —m-modes via Eq.
(9). The coprecessing waveform modes are then further
decomposed into amplitude and phase,

REOTPI (1 X) = Agyn (15 X)ei90m (B0), (10)

For the rotation operator we will use its SO(3) repre-
sentation and model the three Euler angles a(t; X), 8(t; X)
and y(t; X) in an inertial Cartesian coordinate frame that
is aligned with the total angular momentum at the the
initial time g, i.e. J(tg9) = 2, as shown in Fig. 1, hence-
forth referred to as the J-frame.

Utilising this decomposition, we build (i) ANN sur-
rogates for the amplitude and phase of each coprecess-
ing positive m—mode contained in SEONBNRv4PHM (see
Sec. ITIC 1) and (ii) ANN surrogates for the three Euler
angles (see Sec. 111 C 2).

C. Mismatch

To determine the agreement between the input wave-
form model SEOBNRv4PHM and its ANN emulation, we will



use the mismatch as the metric to assess the accuracy of
the various elements in the surrogate modelling process.

To quantify the agreement between two coprecess-
ing modes/Euler angles/polarisations, we will employ
the (frequency-domain, noise-weighted) inner product or
match M optimised over a time and phase shift, given
as

Mf(hl,hg) — max <h1’h2>

tesdo /(hy, hy) (ha, ha)

where the inner product is defined as

(11)

T Ry (f)R3(f)
fuin Sn([f])

with S, (f) the one-sided power spectral density (PSD)
of the detector noise, h indicates the Fourier transform
of h, and h* the complex conjugate. The mismatch can
now be defined as

(h1,he) = 4R df, (12)

Mf(hhhg)El—Mf(hhhz). (13)

We will also find it convenient to introduce a normalized
waveform h = h/+/{(h,h).

When using a white-noise PSD, i.e. independent of fre-
quency, it is convenient to define a time-domain overlap

(h1, ha)y = éR/ R dt, (14)

tmin

with an inherited norm ||h||? = (h,h);. We can then
define an analogous time domain match as

<h1,h2>t
My (hy, hy) = —L 020t 15
ol h) = 4 el (15)

and the associated mismatch as M; = 1 — M,.

III. MODEL

In this section we describe the construction of our sur-
rogate model. As described in Sec. II B, we model the
coprecessing modes and Euler angles separately. We de-
tail the training dataset upon which the model is built in
Sec. 11T A, as well as the validation and test datasets. In
Sec. IIIB we describe the construction of the reduced
bases and empirical interpolants for each component,
and in Secs. [IIC 1 and II1C2 we describe the neutral
network architecture and training for the coprecessing
modes and Euler angles respectively, assessing the ac-
curacy of each component. We will then consider the
accuracy and speed of the complete model to produce a
fully precessing signal in Sec. V.

A. Training, Validation and Testing Data
1. Waveforms

Our waveform training dataset consists of 2x 10° multi-
polar SEOBNRv4PHM waveforms with mass ratios ¢ € [1, 2]
and arbitrarily oriented spin on the primary black hole
with magnitude |x;| < 0.8'; the secondary black hole
is nonspinning. Both the coprecessing waveform modes
and the time-dependent Euler angles are obtained di-
rectly from the SEOBNRv4PHM implementation in the pub-
lic LIGO Algorithm Library LAL [54], mitigating the need
to perform any additional post-processing.

We first randomly sample 199, 226 binaries from the re-
duced parameter space, drawing the parameters from dis-
tributions uniform in mass ratio ¢, uniform in spin mag-
nitude |x1| and isotropic in spin orientation (01, ¢1). We
supplement these binaries with an additional 774 system-
atically chosen points to accurately sample the bound-
aries. The parameters of these systematically chosen bi-
naries are listed in Tab. IIC and a visualisation of the
training set can be found in Fig. 11 in Appendix V.

We initially generate waveforms such that the (2,2)-
mode of a binary with a total mass of 60 Mg starts from
an initial frequency of 4Hz. In geometrised units this
corresponds to an approximate length of ~ 2 x 10°M be-
fore merger, though the duration varies due to mass ratio
and inspiral spin [55, 56]. The modes are then aligned
such that the peak of the quadrature of all modes oc-
curs at ¢ = OM. Each waveform is first generated on a
uniform time grid with a time spacing At = 0.1M, and
then reinterpolated onto a non-uniform grid which is 20
times coarser in the early inspiral, but retains the 0.1M
spacing in the later-inspiral, merger and ringdown. The
waveforms are of varying length pre- and post-merger,
and so have different time grids of the same resolution,
but are required to be of equal length and evaluated upon
the same times in order to build the reduced bases. As a
data preprocessing step we choose the waveform with the
shortest length pre-merger, and reinterpolate all wave-
forms onto this common time grid. We then choose the
waveform with the shortest post-merger signal and trun-
cate all waveforms such that the final time matches that
of the shortest. We note that this truncation is less than
10M for all waveforms, and contains a negligible amount
of the ringdown signal in all cases. For computational
reasons, we truncate all waveforms to be of length 104 M
pre-merger. Therefore all waveforms start at 10*M be-
fore the peak, and include 110M of post-merger signal.
We note that due to this truncation, the spin parameters
are specified at the initial time ¢t ~ —2x 10°M and not at

1 We note that the spin orientation is defined relative to the orbital
angular momentum L(tp) at the initial time. Decomposed in
Cartesian coordinates the spin vector is given by {x1z, X1y, X1z},
where x1. = X1 - L(to).



Training data subset|Number of binaries q Ix1] 01 [rad] ¢1 [rad]

> | Nonspinning 6 [1,1.2,1.4,1.6,1.8,2] 0] - -

=

S

= 2| Spin-aligned 48 [1,1.2,1.4,1.6,1.8,2]|[0.2,0.4,0.6, 0.8] [0, 7] -

2 g

>

@ Precessing 720 [1,1.2,1.4,1.6,1.8,2]/[0.2,0.4,0.6,0.8] [7/6,m/3,7/2, [0, 7/3,2m /3,
2w /3,5 /6] |m, 4n/3,57/3]

Randomly sampled 199, 226 UlL,2] U [0,0.8] U [0, 7] U [0, 27]

TABLE I. Parameters of the 200,000 binaries which span our training dataset. The training space is split into two sectors:
(i) a systematically sampled subset which is included to ensure coverage of the parameter space boundaries; (ii) a random but
uniformly sampled subset. All spin parameters are quoted at a reference frequency of 4Hz for the (2, 2)-mode for a binary with

a total mass of 60M¢g

the start of the waveforms. Since the spins in precessing
binaries evolve with time, it is necessary to define the
reference time or frequency at which they are defined.
Being able to do this for some arbitrary time/frequency
requires either code (see e.g. [57]) or additional NNs that
track the spin evolution. We leave building neural net-
works for the spin evolution for future work. The trun-
cated waveforms are then re-interpolated onto a uniform
grid with spacing At = 1M in order to build the reduced
bases and empirical interpolants, as we found that the
finer 0.1M spacing was not required.

We note that when constructing the models for the co-
precessing odd-m mode amplitudes and phases, not all
of the 2 x 10° training waveforms are used. We first re-
move training points where there is very little spin or
mass asymmetry in the system, as we expect the odd-
m amplitudes to be small and therefore noisy in the
true SEOBNRv4PHM data. We impose a cut of ¢ > 1.01,
X1- > 1072, which removes 109 points from the training
set. Next, we remove any training data which show signs
of (unphysical) discontinuities in the phase, possibly due
to next-to-quasi-circular corrections in the SEOBNRv4APHM
data. For the coprecessing (2,1)-mode, this amounts to
11,091 points, and 198 for the (3,3)-mode. Therefore,
for the (2,1)-mode amplitude and phase, the total train-
ing dataset is 188,800 waveforms, whereas for the (3, 3)-
mode it is 199, 693.

To validate our neural networks as they train, we also
produce a validation dataset of 10* waveforms which cov-
ers the same parameter space as the training set. We
sample this validation set uniformly is mass ratio, pri-
mary spin magnitude, spin tilt and azimuthal angles. All
preprocessing steps for the validation data are the same
as for the training data: we interpolate these waveforms
onto the same common time grid with an equivalent spac-
ing. For the coprecessing odd-m modes, we remove 4
points with little asymmetry, 553 which show signs of
phase discontinuity in the (2,1)-mode phase, and 9 in
the (3,3)-mode. This equates to a validation set size of
9,443 for the coprecessing (2, 1)-mode, and 9,987 for the

(3,3)-mode.

Lastly, we also produce a separate test dataset of 10*
waveforms in exactly the same way as the validation set,
which is completely independent and unseen by the neu-
ral networks. Of this dataset, 3 points are removed for
the coprecessing odd-m modes due to little symmetry,
672 due to discontinuities in the (2, 1)-phase, and 13 due
to the (3,3)-phase. Therefore for the (2,1)-mode ampli-
tude and phase, the test set is of size 9325, and for the
(3,3)-mode it is 9,984.

2. Euler Angles

For the Euler angles, we use the same dataset of 2 x 10°
waveforms as described above. However, as the Euler
angles become ill defined in the non-precessing limit, we
restrict our training data to only those binaries with an

initial in-plane spin magnitude [x1,1| = \/x7, +x3, >

10~3. In contrast to above, we decompose this initial
dataset into a training dataset of 1.8 x 10° binaries and
a validation dataset of 18,634 binaries. As no hyperpa-
rameter optimization was performed on the Euler angle
networks, the validation dataset is never used to train the
network or to inform the network hyperparameters. We
therefore treat the validation dataset as being effectively
independent. The data conditioning is identical to the
procedure described above for the waveform modes, with
the Euler angles being evaluated on a uniform grid with
spacing At = 1M and a length of 10*M.

B. Reduced Basis and Empirical Interpolant

We construct our reduced bases and empirical inter-
polants following the algorithm described in Sec.IT A. We
separate each coprecessing mode into its constituent am-
plitude and phase, and construct a reduced basis, em-
pirical interpolant and neural network for each compo-



nent. We also construct a reduced basis and empiri-
cal interpolant for each Euler angle separately, leading
to a total of 11 different components to make up the
full precessing signal®’. When discussing the construc-
tion and evaluation of these models, we use the following
terminology: X describes the input parameters of the
model, i.e. the four intrinsic parameters of the binary
X=\= {¢, X1z X1y> X12}; Y is an n-dimensional vec-
tor that denotes the fitting coefficients, for example the
mode amplitudes in Eq. (6).

We choose to condition the data before building our
reduced bases as we found this to be beneficial for the
neural network performance: For the coprecessing modes
we use a scikit-learn [58] Standard scaler on the X
data and a MinMax scaler on the Y data for the phases
as we found that without scaling the greedy algorithm
for the coprecessing (2,1)- and (3, 3)-mode phases was
unable to converge and produce a reduced basis to within
the greedy tolerance accuracy. We also remove the initial
phase at time ¢t = —10,000M, such that all phase data
begin at zero. We note that we do not explicitly model
these initial phases, and leave this to future work.

In contrast, we find no major benefit to scaling the
X data for the Euler angles and the amplitude Y data
for the coprecessing modes. For « and -, we apply a
MinMax scaler to themY data but we do not apply any
preprocessing to the Y data for 8. A summary of the
data conditioning can be found in Tab. II1C.

To build the reduced bases, we use an absolute greedy
error tolerance of ¢ = 107 for all components of the
coprecessing modes, except for the phases of the (2,1)
and (3,3)-modes. For the (2,1)-mode, we decreased the
greedy tolerance to 10~% as we found a significant tail of
poor mismatches against the reduced basis representation
with a tolerance of 107. Conversely, for the (3, 3)-mode,
we reduced the tolerance to 10~2 in order to achieve a
reduced basis of manageable size. The tolerances and
the sizes of the resulting reduced bases (and therefore
the number of empirical interpolation nodes) are given
in the fourth and fifth column of Tab. 111 B.

To assess the accuracy of the coprecessing (¢, m)-
modes reconstructed from their reduced basis represen-
tations in amplitude and phase, we compute frequency-
domain white noise mode-by-mode mismatches My, de-
fined by Eq. (11) against the original SEOBNRv4PHM data.
Columns 6-9 of Tab. 111 B show the maximum and me-
dian mismatch across the full training and validation
datasets for each coprecessing mode, noting that the vali-
dation data is not used in the construction of the reduced
bases. Generally, we find that the odd-m modes are less
accurately represented than the even-m modes and that
that their bases sizes are larger. This is perhaps not
too surprising as the odd-m modes are (i) subdominant

2 The odd-m modes are obtained via conjugation and hence do
not need to be modelled separately but are included in the full
precessing signal.

and (ii) contain more structure, therefore requiring more
basis elements to achieve the same representation accu-
racy [59].

Similarly, we compute time-domain mismatches My,
defined by Eq. (15) between the original SEOBNRv4PHM
data Euler angles, and those reconstructed from the re-
duced basis projections. We do this across both the train-
ing and validation datasets, and state the median and
maximum values for each dataset in columns 5-8 in the
bottom half of Tab. II1 B. We see that for both the co-
precessing modes and the Euler angles, the median mis-
match across both datasets is comparable to the greedy
tolerance used to create the reduced basis (for the mode
mismatches, it is limited by whichever greedy tolerance
is larger, amplitude or phase).

Lastly, the similar mismatches for the coprecessing
modes across both the training dataset, which was
used to construct the bases, and the validation dataset,
which was previously unseen, suggests that the reduced
bases are large enough to accurately represent waveforms
across our chosen parameter space. We note that for the
Euler angles, the mismatches (both median and maxi-
mum) over the validation dataset can be up to an order
of magnitude smaller than over the training dataset. This
suggests that the validation dataset is not large enough
to accurately represent the full distribution over the en-
tire parameter space, especially for the § angle which is
typically much flatter than either a or ~.

C. Parameter space fits with ANNs

We now describe the architecture, training and opti-
mization of our neural networks for the fitting coeffi-
cients of the coprecessing modes each decomposed into
amplitude and phase and Euler angles, and discuss the
achieved accuracy for each of component separately. We
build the neural network for each model component us-
ing Tensorflow [60] and Keras [61]. Specifically, we use
the Sequential model with fully-connected Dense lay-
ers. A summary of the final neural network architectures
for each coprecessing mode and the Euler angles is given
in Tab. ITII C. As an example, a graphical representation
of the neural network architecture for the coprecessing
(2,2)-mode phase is shown in Fig. 2. The neural net-
work is shown by the red and teal rectangles, where the
red ones represent the four fully-connected hidden layers,
each with 320 neurons for this component and a Softplus
activation function, and the teal ones show the input and
output layers: 4 neurons for the intrinsic parameters X
, and 29 for the output layer as this is the number of
empirical time nodes T; for this component. The output
can then be reinterpolated onto the full uniform time
grid, and inverse scaled to produce the full coprecessing
(2,2)-mode phase ¢ao. For this particular component we
have applied scaling to the X and Y data, as shown by
the blue rectangles. For all ANNs we use 4 input neu-
rons, but the detailed architecture is adapted for each



(,67 m) Component Tralnlng Greedy BaSIS M}nax,train Mrfncdian,train M[fnax,val M[fncdian,val
Set Size |Tolerance| Size
. —6
(2,2) | Amplitude 200,000 10 . 2 1%107%| 5.0%x 1077 |14 x 10| 6.0 x 107
(2,2) Phase 10~ 29
s —6
(2,1) | Amplitude || og g1 10 26 13951073 1.8x10°° |34 x 1074| 1.7 x 10~°
(2,1)| Phase 1078 40
. -6
(8:3) | Amplitude | g9 go5| 10701 26 1y g 1072] 3.0x 107 |27 x 1072 3.1 x 107
(3,3) Phase 10~ 46
B —6
(4, 4) | Amplitude | 500 g | 10771 411 6% 1071| 401077 1.9 x 1074 4.1 x 105
(4,4) Phase 10~ 29
Euler Angle v ;nax,train "~ ;ncdian,train M;nax,val M;ncdian,val
a 180,000 | 7 x 107% | 18 [3.0x107%| 1.4x107% (2.6 x 107%| 1.4 x 107°
B 180,000 | 6 x 1077 | 19 [4.1x107°%| 1.3x107% [4.4x107°%| 1.3 x 1077
5 180,000 | 7 x 107°| 18 [4.2x107°| 1.5x107° [1.0x 107 1.5 x 107°

TABLE II. Greedy tolerances, reduced basis sizes and the maximum and median training space mismatches for the amplitude
and phase of each mode. For phases, MinMax scaling was used on the Y data. For both amplitudes and phases, standard
scaling was used on the X data. For the Euler angles, only MinMax scaling was used on the Y-data for a and v and we use

the time-domain mismatch M; as our metric.

(¢, m)- Euler

X (Standard scaled)
Amplitude & Phase Angles l
X-data conditioning Standard None [ 4 neurons ]

Y-data conditioning None (Amplitude) MinMax (a,7)

MinMax (Phase) None (8)
Number of input neurons 4 4
Number of layers 4 9
Neurons per layer 320 128
Optimiser Adam AdaMax
Activation function Softplus Softplus
Mini-batch size 64 512
Number of training epochs 10,000 5000

TABLE III. Details of the final neural network architecture
for each component.

component.

The size of neural network differs between the copre-
cessing modes and Euler angles, as shown in Tab. 11 C.
Additionally, the coprecessing amplitudes will not un-
dergo inverse MinMax scaling as we did not scale the am-
plitude training data in our model construction, and for
the Euler angles the X data is not scaled. Lastly, we note
that the size of the neural network output layer will vary,
as it is equal to the number of empirical time nodes for
each model component.

( 320 neurons - Softplus )

( 320 neurons - Softplus )

( 320 neurons - Softplus )

( 320 neurons - Softplus )

(29 neurons - linear |

Y (MinMax scaled)

FIG. 2. Graphical representation of the ANN architecture for
the coprecessing (2,2)-mode phase ¢22(t; X), as an example.
This neural network takes in the Standard scaled intrinsic bi-
nary parameters X as input, and outputs the MinMax scaled
Y , a prediction of the coprecessing (2,2)-mode phase at the
empirical time nodes. This output vector may then be rein-
terpolated onto the full uniform time grid using the empirical
interpolant, and inverse MinMax scaled to produce the full co-
precessing mode phase ¢a2.

1. Coprecessing Modes

When training our coprecessing mode neural networks,
we use a mean squared error (MSE) loss function. This
quantity can be computed over either the training dataset
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FIG. 3. Training and validation losses for the (2,2)- (left) and (2,1)-mode (right), for both amplitude and phase. The loss
shown is the mean squared error (MSE) as a function of training epochs. Also shown in both panels is the learning rate (red),

which changes as a function of epoch as defined by Eq. (17).

to monitor training progress, or the validation dataset as
a control to check for over- or under-fitting. It is defined
as

N
1 2
MSE = > |7, =5, (16)
i=1
where 7,77 is the output from the neural network, 7, ¢

is the true SEOBNRv4PHM data, scaled accordingly if re-
quired and at the appropriate empirical time nodes, and
N is the number of points in either the training or vali-
dation set.

The final neural network architecture for the coprecess-
ing modes is determined through optimisation via the hy-
perparameter sampling package Hyperopt [62]. We parse
choices for neural network hyperparameters, as well as a
maximum number of neural network evaluations. The
package then creates and trains neural networks with
hyperparameters drawn from these choices, and returns
the best performing hyperparameters based on a metric,
which we specify to be the validation loss upon comple-
tion of training. The choices for optimisable hyperparam-
eters are as follows: activation function (Relu [63, 64],
Elu [65], Tanh, Softmax, Softplus, Softsign [66]); opti-
miser (Adam [67], Nadam [68], Adamax [67], Adadelta
[69]), number of training epochs (1000, 2000, 10000);
and mini-batch size (32, 64, 128). We refer the reader
to [70] for a systematic overview of activation functions
and [71] for an overview of gradient descent optimization
algorithms. We also compare three sizes of neural net-
work: 4 layers with 320 neurons per layer; 9 layers with
128 neurons per layer; and 4 layers where the number of
neurons per layer is the next largest power of two from
the reduced basis size. We find slightly improved perfor-
mance with shallower, wider architectures, and so use the
4 layer, 320 neurons per layer architecture for the final
networks. We also do not use dropout in our final con-
figurations as we find this can create a lack of stability in

training leading to higher mismatches. Our final optimal
neural network architecture is detailed in Tab. 111 C.

Additionally, we use an adaptive learning rate as in
Ref. [19] in order to achieve faster convergence and pre-
vent overshooting of the optimal trained weights. Our
learning rate takes the form

T = (Tinit - Tﬁnal)/(l + R\_Z/A”) + Tfinal, (17)

where 7; is the learning rate at epoch ¢, the initial learn-
ing rate Ti,;, = 1073, the final learning rate i, = 1072,
the decay rate R = 10, and our training epoch interval
Ai = 2000. Thus our learning rate exhibits step-wise
changes, decreasing every 2,000 epochs. We use a mean
squared error (MSE) as the loss metric, losses on both
the training and validation datasets for the (2,2) and
(2,1)-mode amplitudes and phases are shown in Fig. 3,
as well as the variable learning rate. We see that for the
(2,2)-mode (left panel), both the amplitude and phase
loss plateau around 1076 after ~ 100 epochs of training,
and for the (2,1)-mode (right panel) the phase reaches a
similar loss plateau as the (2,2)-mode, however, the am-
plitude continues to improve to a loss value of ~ 1078.
We also note that for all components, the training and
validation losses are very comparable — a sign that we
are neither over- nor under-fitting in our training proce-
dure. The training and validation losses for the (3,3)-
and (4, 4)-modes are shown in Fig. 12 in Appendix V.

2.  Euler Angles

In contrast to the architecture used for the coprecess-
ing modes, for the Euler angles we use a network that
is narrower and deeper consisting of 9 layers with 128
neurons per layer. We found that the Softplus activation
function coupled with the Adamax optimizer produced
robust results at the desired level of accuracy, though



we did not perform the more exhaustive hyperparame-
ter optimization used in the construction of the networks
for the coprecessing modes. The networks are trained
for 5000 epochs using a mean squared error loss func-
tion, as defined in Eq. (16). For the learning rate, we
use an initial value of 1072 and use an adaptive scheme
that reduces the learning rate when the loss has stopped
improving, as implemented by the ReduceLROnPlateau
callback in Keras . We found no significant improvement
when exploring the use of dropout regularization or LP
regularizers®, so do not include them in the final model.

In addition to the default network above, we also
constructed a neural network for the residuals between
the input empirical interpolation coefficients and the de-

fault neural network predictions (see also [32]), §r =

yprue — y}zred. This allows us to reconstruct the empirical

interpolation coefficients using a two step procedure: we
first evaluate the default neural network then we correct
for any residual errors using the second network. How-
ever, we found this gave no noticeable improvement in
accuracy. Due to the additional computational cost as-
sociated to the network evaluation, we opt not to use the
residuals approach in the final model.

D. Complete Surrogate Model

Once the reduced bases and empirical interpolants
are built and the neural networks have been trained,
we have a total of 11 surrogate models for the differ-
ent components that constitute the complete precess-
ing model, SEOBNN_v4PHM_4dq2: The four coprecessing
modes split into amplitudes and phases, and the three
Euler angles. In Fig. 4 we show an example for a fidu-
cial binary with parameters X = {¢, X1z X19: X12} =
{1.86,0.045, —0.283,0.274}, i.e. a moderately precessing
binary with a moderate unequal mass ratio. We note that
this particular binary was not in our training or valida-
tion datasets. The top left panel shows the mode ampli-
tudes as predicted by the surrogate for each coprecessing
mode, the top right panel the corresponding phases. The
SEOBNRv4PHM data are shown by the dashed curves in all
panels. The middle panel shows the final surrogate mod-
els for the Euler angles. We note the excellent agreement
between the true data and predictions, including around
merger at t = OM. In the bottom panel we show the
time-domain strain (Eq. (7)) obtained by combining the
surrogate models (plus the conjugate modes) following
the description in Eq. (8). We note, however, that we do
not explicitly model the relative phase offsets between
the coprecessing modes, which were incorporated manu-
ally from the true SEOBNRv4PHM data in the construction

3 The LP norm is defined by ||L||, = Zn (|Jzn|P)'/? and we applied
the regularization penalty to both the kernel and bias using the
L1L2 Class in Keras .

of the precessing strain. We leave the modelling of these
relative phase offsets to future work.

Having seen the excellent agreement between predic-
tion and true SEOBNRv4PHM data for a single fiducial bi-
nary, we now quantify the accuracy the surrogate models
for each component across the parameter space.

For each coprecessing mode we compute white noise
frequency-domain mismatches My between the true
SEOBNRv4PHM coprecessing waveform modes and the sur-
rogate predictions for the test dataset, which consists of
10* waveforms that were not part of our training space
Tar (see Sec. IITA). We limit our mismatch integration
to start at fimin = 20 Hz and fix the total mass to 44Mg),
which completely covers also the longest waveforms in our
test set. The mismatch result for each of the four copre-
cessing modes is shown in in Fig. 5. For each of the four
coprecessing modes we find that the bulk of mismatches
is less than 1072 or 1%, with 4.6% greater than this value
for the (2,1)-mode, 0.8% for the (3,3)-mode, and 2.6%
for the (4,4)-mode. For the (2,2)-mode we find that it
is less than 10~3 with only 3.3% of mismatches greater
than this, with a median mismatch of ~ 3 x 10™%. We
find comparable performance for each of the three higher
modes considered, with a median mismatch of ~ 1073,
however we do note that there are tails of higher mis-
matches in the odd m-modes. Histograms of the mis-
matches for the coprecessing (2,2) and (2,1)-modes at
different total masses can be found in Fig. 14 in App. V.
We find almost identical results for the (2,2)-mode, and
find small improvement for the (2,1)-mode as the total
mass is increased. Therefore, the results in Fig. 5 repre-
sents the worst case scenario.

To see where in parameter space the worst mismatches
lie, particularly the high mismatch tails in the odd m-
modes, we take the worst 5% for each coprecessing mode
and plot them in the space of mass ratio ¢ against x1.,
with the (2,2)- and (2,1)-modes shown in Fig. 6, and
the (3,3)- and (4,4)-modes in Fig. 13 in App. V. We
see that for the (2,2)- and (4,4)-modes, the highest mis-
matches lie broadly evenly across the parameter space,
although with fewer high mismatches at low in-plane spin
values. For the odd m-modes, however, the worst mis-
matches lie close to equal mass and at low in-plane spin
values. In this region of parameter space, we expect the
odd m-modes to be heavily suppressed, and so training
data may be considerably more noisy, therefore leading
to worse mismatches. It also means that when combining
the modes into a full precessing strain, the contribution
of these modes to the full signal is diminished and so
will not have as much impact on the accuracy of the full
waveform.

For the Euler angles, we use time-domain mismatches,
see Eq. (15), as the main metric to quantify the accuracy
of the surrogate prediction. We show the mismatches
between the SEOBNRv4PHM data and the surrogate models
for the Euler angles in Fig. 7. We also demonstrate that
the accuracy of the residual surrogate model outlined in
Sec. 111 C offers no noticeable benefit with mismatches in
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FIG. 4. Top panel: Comparison of the coprecessing mode amplitudes (left) and phases (right) predicted by the surrogates
(solid coloured lines) against the SEOBNRv4PHM data (dashed grey)for a fiducial binary with parameters {q, X1z, X1y, X1z} =
{1.86,0.045,—0.283,0.274}, where the Cartesian spin parameters are specified at a (2,2)-mode reference frequency of 4 Hz.
The merger at t = 0M is indicated by the grey vertical line. Middle panel: Comparison of the Euler angles predicted by the
neural network (blue) against the SEOBNRv4PHM data (red) for the fiducial binary. Bottom panel: The time-domain strain in
the J-frame for our fiducial binary at an inclination of 8 = w/3. We include all modes up to £ < 4.

broad agreement with our default model. tally, the quaternions still describe the time-dependent
rotation of the frame but are endowed with a number of

Finally, whilst we find it convenient to work with the beneficial mathematical properties, such as the singulari-
SO(3) representation of the Euler angles, an appeal- ties that can occur in the Euler angle formalism. For the

ing alternative approach is to parameterize the rotation reduced parameter space considered here, we found no
group by a set of unit quaternions [53, 72]. Fundamen-
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FIG. 5. White noise mismatches between the SEOBNRv4PHM-
generated coprecessing frame mode data and and the neu-
ral network-predicted coprecessing mode, for each of the four
modes across the 10,000 binary test set. Mismatch calcula-
tions start from an fmin = 20Hz for a total mass of 44Mg.
Also shown for each coprecessing mode are the median mis-
match (black) and 90% intervals (black dashed).

noticeable benefit to adopting the quaternion framework
and opted to work with Euler angles out of simplicity.
We leave a more detailed investigation of the wider pa-
rameter space to future work.

IV. MODEL EVALUATION
A. Waveform Accuracy

The observed GW signal from single-spin precessing
binary black holes depends on 12 parameters: the com-
ponent masses m;, the dimensionless spin ¥ (t), the di-
rection from the source frame to the observer (¢, ¢¢), the
polarization v, time of arrival ¢, the luminosity distance
dr, and the sky location (6, ¢). Here we neglect the sky
location and write the real-valued detector response h,.(t)
as

I (t) = hy (t) cos(29)) + hy (t) sin(29). (18)

where h(t) = h4(t) — ihx(t). We are now inter-
ested in validating the accuracy of our surrogate model,
SEOBNN_v4PHM_4dq2, against the slow waveform model
SEOBNRv4PHM. To do so, we calculate strain mismatches
optimized over {9, ¢, t}, as these quantities are not astro-
physically relevant. We follow the approaches detailed in
[17, 30, 49, 56] and numerically optimize over the phase ¢
and analytically maximize over the template polarization
1 and relative time shift ¢,

Moo(85,08) = max (b, 5:(05,08)) s, (19)

h h h
tg, %60

where h, denotes the template waveform, generated by
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FIG. 6. Worst 5% of test dataset mismatches for the copre-
cessing (2,2)- (top), (2,1)-modes (bottom), shown in param-
eter space of mass ratio ¢ against in-plane spin magnitude
|x11]. We note that the highest mismatches for the (2,2)-
mode are scattered across much of this space, although with
the worst mismatches at larger mass ratio and spin magni-
tude. In contrast, the worst mismatches for the (2,1)-mode
lie in the region close to equal-mass where there is less asym-
metry in the system and so this particular mode is heavily
suppressed.

our SEOBNN_v4PHM 4dq2 surrogate, and s, is the signal
waveform, taken to be SEOBNRv4APHM. We use the index k
to distinguish the match optimised over the polarisation
angle from Eq. (11). Finally, we average the match by
weighting each waveform (indexed by i) by its optimal
signal-to-noise ratio p to account for the likelihood that
the signal would have been detected. This allows us to
define an orientation-averaged match as [56]

1/3
M= (z—p | 2

and the concomitant orientation-averaged mismatch
M, =1—M,. For the match calculation, we assume
a lower cutoff frequency of 20Hz and use the projected
PSD for Advanced LIGO in the upcoming fourth observ-
ing run (O4) [73], consisting of the Advanced LIGO and
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FIG. 7. Time-domain mismatches for the surrogate model for
the Euler angles against the training data. For «, we show
mismatches for the surrogate when using empirical coefficients
predicted by the default network and when predicted by a
two stage network that includes a fit to the residuals from the
default network. We find no notable improvement in fitting
the residuals.

Virgo detectors as well as KAGRA. We take the masses
to be uniformly distributed between 500 and 200Mg
and the orientation angles to be isotropic on the unit
sphere. The mass ratio, spin magnitude and spin orien-
tation are as described in Table. IT C. We reiterate that to
construct the full precessing strain from our ANN wave-
form model, here we use the true SEOBNRv4PHM relative
phase offsets between the coprecessing modes. The re-
sulting mismatches are shown in Fig. 8 using all £ < 4
modes in the inertial J-frame as per Eq. (8). We show
mismatches against the training dataset, used to con-
struct our ANN waveform model, and the independent
testing dataset to which the model has never been ex-
posed. For both datasets we find excellent agreement
and find a median mismatch of 1.9 x 10~%. The 5th and
95th percentiles for the mismatches against the train-
ing dataset are 5.8 x 107 and 6.5 x 10~ respectively.
The mismatch errors here are approximately an order of
magnitude below the anticipated error of SEOBNRv4PHM
against precessing numerical relativity simulations [30].
We find that the error of our model against the input
data is competitive with the accuracy provided by other
surrogate models, e.g. [13, 16].

B. Timing

In order to test the efficiency of our surrogate model,
we developed two interfaces. The first interface is built
exclusively within the NumPy framework. The second in-
terface uses the Tensorflow framework to provide GPU
acceleration. When run on a single CPU, we find broad
parity between the computational efficiency of the two
implementations. However, when run on a GPU, the im-
plementation in Tensorflow allows for significant com-
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FIG. 8. Orientation averaged mismatches for SEOBNRvAPHM
against SEOBNN_v4PHM_4dq2 for all < 4 modes in the J-frame.
We show 9 x 10* binaries randomly drawn from the training
(blue) dataset and 1 x 10 binaries randomly drawn from the
independent testing (green) dataset, which the neural net-
work has never been exposed to. We find excellent agreement
irrespective of the dataset.

putational speedup, as discussed below.

The typical evaluation time for a single Euler angle
surrogate model is on the order of 250us. As a reminder,
this includes the computational cost of producing a sin-
gle prediction for the empirical interpolation coefficients
from the neural network as well as the multiplication by
the empirical interpolation matrix. The amplitude and
phase surrogate models are marginally slower such that
each waveform mode hy,, = Agme”'?m takes ~ 925us to
generate.

In required model components are constructed from
11 individual surrogate models: 3 Euler angles and 4
waveform modes plus their conjugates. To evaluate all 3
Euler angles takes ~ 750us and to evaluate the 4 wave-
form mode surrogates takes ~ 3.7ms. Array conjugation
is a significantly cheaper operation requiring only ~ 10us
per array. Evaluation of the waveform modes is the single
most expensive operation in our model.

Next we need to evaluate the Wigner-D matrices,
D! (a,B,7), in order to perform the time-dependent
rotations. This is the second most expensive operation
in SEOBNN_v4PHM 4dq2. In order to mitigate against the
computational cost, we can perform a series of optimiza-
tions, such as pre-caching of numerical coefficients. This
allows us to significantly reduce the cost of evaluating
the Wigner-D matrices to ~ 5.5ms. Further optimization
could be achieved through the use of interpolating non-
uniform grids or pre-compilation in C. We leave such op-
timizations to the future. Performing the time-dependent
rotations of the waveform modes from the L-frame to the
J-frame is relatively efficient, requiring only ~ 2ms.

Altogether, we find that the typical waveform gener-
ation cost for a signal covering the surrogate length of
10,0000 is on the order of 18ms on a single CPU with
SEOBNN_v4PHM 4dq2. This is on average O(10?) times
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FIG. 9. Computational cost for each step in the waveform
construction. A notable bottleneck is the computation of the
Wigner-D matrices DY, /(, 8,7) over the full 10°M time
grid.

faster than the underlying SEOBNRv4PHM model, which
takes ~ 3000ms. In addition, it is also almost three times
as fast as the surrogate model presented in [74], though
the surrogate model presented here is twice as long in
duration spanning 10*M compared to 5 x 103M in [74].
A notable caveat is that the surrogate model presented in
[74] covers a significantly larger domain of the parameter
space making any direct comparison difficult. Neverthe-
less, the preliminary model presented here suggests that
reduced order models for precessing multipolar waveform
models powered by neural networks are highly competi-
tive relative to alternative strategies, even on a CPU. We
show the typical timings for each element and for the en-
tire waveform in Fig. 9. All CPU timings were generated
using an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
using the NumPy interface.

However, a significant benefit of reduced order mod-
els powered by the Tensorflow architecture is that they
provide a convenient platform for GPU acceleration. In
particular, GPU acceleration is most beneficial when gen-
erating batches of surrogate models, mitigating any over-
head in the transfer of data between the CPU and the
GPU. Evaluating the surrogate model for the 22-mode
over a varying number of binaries, we find that GPU ac-
celeration leads to a factor ~ O(30) speedup in surrogate
generation cost relative to CPUs. For 8192 binary con-
figurations, we find that on a CPU each surrogate model
takes ~ 30ms compared to ~ 0.7ms on a GPU. For the
CPU-GPU benchmarking, CPU timings were performed
using an Intel(R) Xeon(R) CPU @ 2.30GHz and GPU
timings were performed using an NVIDIA Tesla P100-
PCIE-16GB. We show the comparative CPU and GPU
timings in Fig. 10 along with the relative speedup pro-
vided by GPU acceleration.

V. DISCUSSION

As the number of observations of GW signals from
BBH mergers is only set to increase with improving
detector sensitivity, the availability of accurate, highly
computationally efficient theoretical models is critical for
future GW data analysis. Faster surrogate models of
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FIG. 10. Computational cost per binary for evaluating the 22-
mode surrogate model over batches of Ny binaries. We show
both CPU and GPU timings as well as the overall speedup
enabled by GPU acceleration.

very accurate but slower underlying waveform models
will prove beneficial, motivating a need for exploration
of novel surrogate-building methods. In this paper, we
have constructed a proof-of-concept time-domain surro-
gate model of SEOBNRv4APHM, which makes use of neural
networks to perform parameter space fits. We follow the
techniques used in Refs. [19, 28], extending them to pre-
cessing multipolar waveforms for the full inspiral-merger-
ringdown signal. We decompose our surrogate model into
two sections: coprecessing waveform modes defined in
the non-inertial coprecessing L-frame which tracks the
precessing motion of the binary, and the three Euler an-
gles which represent the rotation between this frame and
the J-frame. We consider four coprecessing modes: the
dominant quadrupolar (2, 2)-mode, and three higher mul-
tipoles (2,1), (3,3) and (4,4), and each of these modes
is then decomposed further into amplitude and phase.
Therefore we model a total of 11 components. For each
component, we construct a reduced basis and empirical
interpolant, before performing parameter space fits using
artificial neural networks.

We demonstrate that the performance of our surro-
gate SEOBNN_v4PHM 4dq2 is highly competitive in com-
parison to alternative surrogate modelling strategies, pro-
ducing waveforms with precessing strain mismatches ~
O (1073 — 10~*) against the true SEOBNRv4PHM data. We
also show that this model is computationally efficient,
producing waveforms on a CPU two orders of magnitude
faster than the underlying SEOBNRv4PHM model, and al-
most three times as fast as the recently developed sur-
rogate model [74] in the restricted intrinsic parameter
space covered by our ANN model. We also note that our
output waveforms are around two times longer than this
surrogate, and that unlike the underlying SEOBNRv4PHM
model, the evaluation time is independent upon the bi-
nary parameters. Additionally, we have shown that our
surrogate model allows for an even more significant speed
up in evaluation time when evaluating batches of wave-
forms simultaneously on GPUs.

As a proof of concept for neural network surrogates
of precessing multipolar waveforms, our model is built



on a restricted parameter range of mass ratios ¢ € [1,2]
and single precessing spins |x1| < 0.8, |x2| = 0. This
multidimensional portion of the precessing BBH param-
eter space is a starting point for surrogates which utilise
neural networks, though we do not envisage any immi-
nent roadblocks to incorporating additional information
in order to extend towards the full 7D intrinsic parame-
ter space of double precessing spins, with more unequal
mass ratios. We note, however, that the size of train-
ing dataset would need to be significantly larger to accu-
rately represents the full range of waveforms in this larger
parameter space. Additionally, any higher dimensional
training dataset would need to be thoroughly checked
for data quality across the parameter space, as we noted
that even in our restricted parameter we faced issues of
pathologies in the underlying waveform model, where the
coprecessing mode phases became discontinuous in the
inspiral, possibly due to inaccurate next-to-quasicircular
corrections in SEOBNRv4PHM.

To explore how accurately our model can extrapolate
outside the training range, we tested each coprecess-
ing mode surrogate on 1,500 single-spin binaries with
mass ratio in ¢ € (2,4] or with primary spin magnitudes
0.8 < |x1] < 0.99 and computed mismatches against the
true SEOBNRv4PHM data. We found that the extrapola-
tion in spin magnitude is relatively smooth as long as
the mass ratio is constrained to values that were in the
original training space (i.e. ¢ < 2), resulting in mis-
matches for each coprecessing mode approximately one
order of magnitude worse than shown in Fig. 5. However,
for binaries with ¢ > 2, irrespective of the in-plane spin
magnitude, each mode surrogate performs poorly. The
same trends were observed for the Euler angles.

Additionally, we investigated whether our model is able
to capture the behaviour of binaries with two spinning
black holes by using the previously developed dimen-
sional reduction mapping of [18]. To do so, we con-
structed 1,000 double-spin binaries with parameters in-
side the training space, ensuring that the mapped spin
magnitude was < 0.8. We found that the coprecessing
(2,2)-mode is replicated with a mismatch accuracy of
O(10% — 10?), but that higher modes are less well repro-
duced.

When building our surrogate model, we explored sev-
eral options to improve the accuracy of the coprecessing
modes neural network fit. Before training the artificial
neural networks for the coprecessing modes, we tried us-
ing principal component analysis on the reduced basis co-
efficient phase training data, to identify trend directions
in the data which may be easier for the neural network to
fit. Whilst this provided a small improvement in resulting
mismatches for the (2, 2)-mode, it led to marginally worse
results for the (2,1)-mode and no noticeable difference
in the (3,3) and (4,4)-modes. We also attempted to im-
prove the mismatches of our coprecessing modes by train-
ing the neural networks for longer than 10,000 epochs.
However, between 10,000 and 100, 000 epochs, almost no
improvements were seen in the loss values for both am-
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plitudes and phases for all modes. Furthermore we tried
training on the residual coprecessing phase, where the ge-
ometric mean has been subtracted to de-trend the phase
data. We find this had no impact on either the reduced
basis sizes or the accuracy with which we were able to
train our artificial neural networks. For the Euler angles,
we explored the possibility of training an additional neu-
ral network to model the residual error on the predicted
«, but found no noticeable improvement.

In addition, we also explored the effect of different sizes
of training data sets upon the accuracy of the coprecess-
ing mode fits. We found that the reduced basis size and
projection errors were insensitive to smaller training set
sizes for sets above 100 waveforms, and similarly that the
coprecessing mode mismatches for the (2, 1)-mode shown
in Fig. 5 were virtually identical when the (2,1)-phase
was reconstructed on a random training subset of 10, 000.
This suggests that our choice of training set size may have
been conservative, and future models over this parameter
space could attain similar accuracies with smaller train-
ing set sizes.

We have demonstrated the feasibility and efficacy of
using neural networks as part of precessing multipolar
IMR waveform surrogate models, and leave the extension
to the full 7D precessing parameter space as well as the
modelling of the spin evolution to further work. We sug-
gest that with even further consideration given to neural
network optimisation and data de-trending over the full
7D parameter space of generically precessing BBHs, this
could prove a promising pathway towards accurate, effi-
cient gravitational waveform surrogate model building.
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APPENDIX

Here we first show in Fig. 11 the distribution of the
2 x 10° waveform training dataset, plotted in the space
of primary spin components and coloured by number den-
sity. This dataset is made up of a systematically sampled
subset of 774 points (whose parameters are specified in
Tab. I1C) in order to effectively sample the boundaries,
as well as 199,226 randomly sampled binaries, uniform
in mass ratio, spin magnitude, azimuthal and tilt angles.

Next we show in Fig. 12 the training and validation
losses as defined by Eq. (16), for both the amplitude and
phase of the coprecessing (3,3)- (left) and (4,4) (right)
-modes, over the course of the neural network train-
ing. We also plot the adaptive learning rate, defined
by Eq. (17). We note that similarly to the (2,1)-mode
amplitude as seen in Fig. 3, the amplitude losses for the
(3,3)- and (4,4)-modes evolve to a minimum of around
10~% at the end of training, and the phases to around
10-%. Additionally, we see that the training and val-
idation losses remain similar in magnitude throughout
the training process, suggesting we are neither over- nor
under-fitting.

We show in Fig. 13 the worst 5% of mismatches M
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0.5
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over the test dataset between the surrogate-predicted co-
precessing waveform modes and the true SEOBNRv4PHM
data, for the (3,3)- (left) and (4,4)- (right) modes, plot-
ted over mass ratio ¢ and in-plane spin magnitude |y |
and coloured by mismatch. We see that for the (3,3)-
mode, similarly to the (2,1)-mode in Fig. 6, the worst
mismatches appear around equal mass and less in-plane
spin where there is less asymmetry in the system and so
these modes are heavily suppressed in the full precessing
strain. In contrast, and similarly to the (2,2)-mode in
Fig. 6, the (4,4)-mode exhibits lower mismatches over-
all, and more evenly spread across the parameter space,
although the worst mismatches tend to be at more un-
equal mass ratios and larger in-plane spins.

Finally, we show in Fig. 14 the effect of changing the
total mass of the binary upon the coprecessing mode mis-
matches shown in Fig. 5. We choose a representative
sample of four total masses Moy € {44,605, 85,125} Mg
and recompute mismatches in the same way as shown in
Fig. 5, from a low frequency cutoff of 20 Hz each time,
over the 10,000 binary test set, for each of the (2, 2)- (left)
and (2, 1)-modes. We find that the change in total mass
makes little difference in both cases, and that in fact a
higher total mass than 44 Mg slightly improves the (2, 1)-
mode mismatches, as may be expected since the higher
total mass is effectively a decrease in waveform length.
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FIG. 11. Visualisation of the spin parameters of the entire training dataset coloured by number density.
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