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We present a reduced-order surrogate model of gravitational waveforms from non-spinning binary
black hole systems with comparable to large mass-ratio configurations. This surrogate model,
BHPTNRSur1dq1e4, is trained on waveform data generated by point-particle black hole perturbation
theory (ppBHPT) with mass ratios varying from 2.5 to 10,000. BHPTNRSur1dq1e4 extends an earlier
waveform model, EMRISur1dq1e4, by using an updated transition-to-plunge model, covering longer
durations up to 30,500 m1 (where m1 is the mass of the primary black hole), includes several more
spherical harmonic modes up to ` = 10, and calibrates subdominant modes to numerical relativity
(NR) data. In the comparable mass-ratio regime, including mass ratios as low as 2.5, the gravitational
waveforms generated through ppBHPT agree surprisingly well with those from NR after this simple
calibration step. We also compare our model to recent SXS and RIT NR simulations at mass ratios
ranging from 15 to 32, and find the dominant quadrupolar modes agree to better than ≈ 10−3. We
expect our model to be useful to study intermediate-mass-ratio binary systems in current and future
gravitational-wave detectors.

I. INTRODUCTION

Detection of gravitational waves (GWs) [1, 2] from the
coalescence of binary compact objects offer a new window
to study black holes and fundamental physics. Most of
the GW signals detected so far by the LIGO/Virgo col-
laboration are consistent with binary black holes (BBHs),
with mass ratio q = m1/m2 ≤ 10 1. Another interest-
ing source of GWs are intermediate mass ratio inspirals
(IMRIs) comprised of an intermediate-mass black hole
(IMBH, mass∼ 102−104M�) [3–5] and a solar-mass black
hole (mass∼ 3− 20M�). The resulting binaries will have
a mass ratio in the range 10 ≤ q ≤ 104. The existence
of IMBHs on the low-end of this mass range has been
confirmed by the detection of GW190521 [6], and elec-
tromagnetic evidence continues to mount indicating the
likely existence of these objects across their possible mass
range [5]. IMRIs are expected to form in dense globular
clusters and galactic nuclei [7, 8]. While these binaries
are a prime source for future-generation detectors such as
LISA [9], Cosmic Explorer (CE) or the Einstein Telescope
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1 We use the convention q = m1/m2, where m1 and m2 are the
masses of the component black holes, with m1 ≥ m2.

(ET) [10, 11], current detectors may also be able to detect
IMRIs as their sensitivity improves. In particular, IMRIs
with total mass < 2000M� may be detected by the cur-
rent generation of detectors [12] while future space-based
missions, [13, 14] such as LISA will observe heavier bina-
ries. LISA is also expected to detect GW signals from
extreme mass ratio inspirals (EMRIs) (having a mass
ratio q & 105) that consists of a stellar-mass black hole
paired with a supermassive black hole [10, 11].
Detection of GWs from IMRIs would shed light on

many issues in both astrophysics and fundamental physics
[10, 11, 14]. IMRIs may form in dense globular clusters
or galactic nuclei through multiple possible formation
channels. Detection and parameter inference with IM-
RIs [15–18] will help us probe formation channels and the
evolutionary pathway to supermassive black holes [19].
As these systems form in dense environments, GW sig-
nals from IMRIs may carry an imprint of its surrounding
environment and are ideal sources to investigate possible
environmental effects [10, 20–26]. IMRI signals could also
be used to test the nature of gravity in an unexplored
strong-field regime [27–33], complementing tests of gen-
eral relativity (GR) performed with GW events detected
so far [34].

Carrying out accurate parameter inference and perform-
ing fundamental physics analysis with IMRI GW signals
will require multi-modal waveform models that are fast
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and reliable [35]. While numerical relativity (NR) pro-
vides the most accurate waveforms from BBH mergers,
it takes weeks to months to generate a single waveform,
making them unfit to be directly used in multi-query
studies. The availability of a large number of NR sim-
ulations in the comparable mass regime, however, has
paved the way to build either NR-based reduced-order
surrogate models [36–41] or calibrated phenomenological
or effective-one-body (EOB) models [42–50] to NR. Only
a few of these models [51], however, are tested or cali-
brated in the intermediate mass ratio regime, where only
a few NR simulations are available [52–55]. In lieu of
NR-based calibration, some EOB models [56] have been
tuned to results from point particle black hole pertur-
bation theory (ppBHPT), which provides an accurate
waveform model as q →∞. Due to computational cost,
ppBHPT waveform models also cannot be directly used in
multi-query data analysis. This has been partly overcome
by developing “kludge” models [57–60] that are fast and
capture the qualitative features of an EMRI waveform in
the inspiral regime using approximations for the ampli-
tudes and phases. Recently Refs. [61, 62] have introduced
gravitational self-force-based waveform models that are as
fast to compute as kludge models by using a combination
of reduced order methods, deep-learning techniques and
hardware acceleration. Also relevant is Ref. [63], which
presents a fully relativistic second-order self-force model
that can generate first-principles inspiral waveforms in
milliseconds, at least for the case of quasi-circular inspiral
of non-spinning black holes.

To begin addressing these issues, Ref. [64] built a proof-
of-principle ppBHPT surrogate model EMRISur1dq1e4
for non-spinning binaries that extends from mass ratio
q = 3 to q = 10, 000 and covers ∼ 13, 500m1 in duration.
The model’s dominant mode has been tuned to NR in
the comparable mass ratio regime (q ≤ 10), and it was
shown that after this simple calibration step the ppBHPT
and NR waveforms agreed to better than ≈ 1% at mass
ratios q & 8. These initial encouraging results suggest
that suitably calibrated ppBHPT waveform data could
provide for an accurate model of gravitational waves from
IMRI systems. The agreement between NR and ppBHPT
(with radiative corrections to the orbit) after a simple
rescaling [64] is a surprising observation on its own.
In this paper, we describe more fully the methods we

have used to build EMRISur1dq1e4 as well as making nu-
merous important improvements to the underlying model.
The updated version of our surrogate model – which we
call BHPTNRSur1dq1e4 – is ∼ 30, 500m1 in duration and
covers all phases of the system’s evolution from inspiral
through plunge and ringdown – making it suitable to be
used in a wider range of data analysis studies. It features
a total of 50 important higher order modes up to ` = 10
thereby permitting studies to quantify the effect of higher
order modes in GW signals. Furthermore, by applying a
simple calibration, we find the NR-calibrated ppBHPT
waveforms agree remarkably well with NR for all of the
higher order modes up to ` = 5 in the comparable mass

ratio regime.
The rest of the paper is organized as follows. Sec. II

describes our method for computing ppBHPT waveforms
by solving the Teukolsky equation. We describe the
surrogate-modelling framework, calibration to NR, and
assess model accuracy in Sec. III. Sec. IV provides a more
detailed comparison between ppBHPT waveforms and
NR data in the comparable and intermediate mass ra-
tio regime with a focus on subdominant modes and new
SXS and RIT simulations at mass ratios greater than 10.
Finally, we outline future directions in Sec. V.

II. WAVEFORM DATA USING
PERTURBATION THEORY

We generate the surrogate-model training data using
point-particle black hole perturbation theory (ppBHPT).
First, we compute the trajectory taken by the point-
particle and then we use that trajectory to compute the
gravitational wave emission. The next three subsections
summarize the equations and algorithms for accomplish-
ing this.

A. Numerically solving the Teukolsky equation

In the ppBHPT framework, the smaller black hole is
modeled as a point-particle with no internal structure and
a mass of m2, moving in the spacetime of the larger Kerr
black hole with mass m1 and spin angular momentum per
unit mass a. Here, we provide an executive summary of
this framework and refer to Refs. [65–68] for additional
details.

Gravitational radiation is computed by first numerically
solving the Teukolsky equation
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sourced by the moving particle, where ∆ = r2−2m1r+a2

and s is the “spin weight” of the field. The s = −2 case
for Ψ describes the radiative degrees of freedom of the
gravitational field, the Weyl scalar ψ4, in the radiation
zone, and is directly related to the Weyl curvature scalar
as Ψ = (r− ia cos θ)4ψ4. The source term T in Eq. (1) for
the smaller compact object m2 is related to the energy-
momentum tensor Tαβ of a point particle. The Weyl
scalar ψ4 can then be integrated twice at future null
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infinity I + to find the two polarization states h+ and
h× of the transverse-traceless metric perturbations,

ψ4 = 1
2

(
∂2h+

∂t2
− i ∂

2h×
∂t2

)
. (2)

The complex gravitational wave strain

h+(t, θ, φ; q)− ih×(t, θ, φ; q)

=
∞∑
`=2

∑̀
m=−`

h`m(t; q)−2Y`m(θ, φ) , (3)

can be formed from the two polarization states, which is
subsequently decomposed into a basis of spin-weighted
spherical harmonics −2Y`m. We build models for the
harmonic modes h`m(t; q).

Once the trajectory of the perturbing compact body is
fully specified (cf. Sec. II B), we solve the inhomogeneous
Teukolsky equation in the time-domain while feeding the
trajectory information into the particle source-term of
the equation [65–69]. This involves a four step procedure:
(i) rewriting the Teukolsky equation using compactified
hyperboloidal coordinates (Eq. 1 is shown using standard
Boyer-Lindquist coordinates) that allow us to extract
the gravitational waveform directly at null infinity while
also solving the issue of unphysical reflections from the
artificial boundary of the finite computational domain;
(ii) obtaining a set of (2+1) dimensional PDEs by using
the axisymmetry of the background Kerr space-time, and
separating the dependence on azimuthal coordinate; (iii)
recasting these equations into a first-order, hyperbolic
PDE system; and finally (iv) implementing a high-order
WENO (3,5) finite-difference scheme with Shu-Osher (3,3)
time-stepping [69]. The point-particle source term on the
right-hand-side of the Teukolsky equation requires some
specialized techniques for a finite-difference numerical
implementation [65, 66]. We set the spin of the central
black hole to a value slightly away from zero, a/m1 = 10−8

for technical reasons2. Our numerical evolution scheme
is implemented using OpenCL/CUDA-based GPGPU-
computing which allows for very long duration and high-
accuracy computations within a reasonable time-frame.
Numerical errors in the phase and amplitude are typically
on the scale of a small fraction of a percent [64, 70].

B. Trajectory model

The particle’s motion is characterized by three distinct
regimes – an initial adiabatic inspiral, a late-stage geodesic
plunge into the horizon, and a transition regime between
those two.

2 For example, to avoid a change in the definition of the coordinates
from Kerr to Schwarzschild.

During the initial adiabatic inspiral, the particle follows
a sequence of geodesic orbits driven by radiative energy
and angular momentum losses. The flux radiated to null
infinity and through the event horizon are computed by
solving the frequency-domain Teukolsky equation [71–74]
using the open-source code GremlinEq [75, 76] from the
Black Hole Perturbation Toolkit [77]. The inspiral trajec-
tory is then extended to include a plunge geodesic and
a smooth transition region following a procedure similar
to one proposed by Ori-Thorne [78]. We compute the
transition between initial inspiral and the plunge using
a generalized Ori-Thorne algorithm [79, 80] (hereafter,
the “GOT” algorithm). The GOT algorithm uses a pa-
rameterization of strong-field Kerr orbits based on Mino
time, which separates the radial and polar motions of
Kerr black hole orbits. It also introduces a correction
that smooths a rather sharp discontinuity in the evolution
of an inspiral’s integrals of motion as presented in the
original Ori-Thorne model. Detailed discussion of this
point is given in Sec. IV A 2 of Ref. [80]. The use of Mino
time is not so critical for our analysis since the separation
of radial and polar motions is not an issue for equatorial
orbits, but smoothing of the integrals of the motion is of
great importance. Note that we use “Model 2” from Ref.
[80] for this smoothing.

Our trajectory model does not include the effects of the
conservative or second-order self-force [81], although once
these post-adiabatic corrections are known they could
be easily incorporated to improve the accuracy of the
inspiral’s phase.

C. Waveform smoothing

At low mass ratios, the GOT transition trajectory pro-
duces small non-physical oscillations in high-order modes
of the waveforms. Because the GOT algorithm is de-
signed for the regime q � 1, it is not surprising that some
pathologies enter at low mass ratios. These non-physical
oscillations are results of a small jump in the acceleration
of the point-particle as it exits the adiabatic inspiral and
also when it begins the plunge. It is interesting, however,
that these oscillations are more apparent in our data for
modes with ` 6= m. It is also worth noting that the oscil-
lations are larger in amplitude when we use Model 1 from
Ref. [80] for smoothing the evolution of the integrals of
motion.

In Fig. 1 (upper panel), we show the unphysical oscilla-
tions in the scaled amplitudes in one of the representative
modes (`,m) = (5, 4) for increasing values of the mass
ratios. It is clear that while q ≤ 10 shows unphysical
oscillations in the transition regime, these features vanish
for high mass ratio simulations. At lower mass ratios we
remove these unwanted oscillations by using a “smoothen-
ing” procedure [64]. To smooth the data, we (i) first
remove the unphysical oscillatory portion of the waveform
that we mention above, (ii) then use the rest of the wave-
form data to construct a polynomial fit of degree 7, and
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Figure 1. At mass ratios q . 10 the generalized Ori-Thorne
transition trajectory causes small, nonphysical oscillations
in some of the ` 6= m modes. The raw ppBHPT waveform
amplitudes are shown for one of the representative modes
(`,m) = (5, 4) for increasing value of the mass ratio q (up-
per panel) and one example waveform after performing the
smoothing procedure (lower panel) described in Sec. II C.

finally (iii) evaluate the polynomial to obtain smoother
data in the problematic regions. The lower panel of Fig.
1 shows the rescaled (`,m) = (5, 4) amplitude for q = 2.5
before and after the ‘smoothing’. A similar smoothing pro-
cedure is applied to the phase data. Our surrogate model
is trained on — and for validation purposes, compared to
— these smoothed waveform data.

To quantify the amount by which our smoothing pro-
cedure has modified the waveform, we compute a relative
L2-norm difference between the smoothed and original
data. Normalized L2-norm between two functions h1(t)
and h2(t) is defined as a time-domain overlap integral
with white-noise:

E [h1, h2] = 1
2

∑
(`,m)

∫ t2
t1
|h1(t)− h2(t)|2dt∑

(`,m)
∫ t2
t1
|h1(t)|2dt

, (4)

Here, t1 and t2 denote the start and end of the waveform
data respectively whereas h1 and h2 denote the smoothed
and original data respectively. We find that the differences
between the smoothed and original data for each mode

is on average 8 × 10−5 with a maximum 5 × 10−4. To
compute errors for individual modes, we restrict the sum
in Eq.(4) to only the mode of interest.

III. SURROGATE MODELLING

In this section, we briefly describe the framework used
to build the surrogate model. Our framework is con-
structed using a combination of methodologies proposed
in earlier works [36, 82, 83].

A. Building the surrogate

100 101 102 103 104

Mass ratio q

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Training data

NR calibration data

Intermediate mass-ratio RIT-NR test data

Intermediate mass-ratio SXS-NR test data

Figure 2. ppBHPT Waveform data points used in training
BHPTNRSur1dq1e4 (green circles). We also show points used
in calibrating the ppBHPT waveforms to NR (blue squares)
and data points used in validating NR calibration against high
mass ratio NR simulation (red and cyan triangles).

a. Training data : To train the model, we collect
a total of 41 ppBHPT waveforms by numerically solving
the inhomogeneous Teukolsky equation at different values
of the mass ratio q. These values of q have been chosen
in such a way that it populates the mass ratio axis from
q = 2.5 to q = 10, 000 in a logarithmic scale (green circles
in Fig. 2). For each value of q, we then extract the
harmonic modes, h`,m(t; q). Note that we only model
m > 0 modes as the negative m modes are computed
from the positive m modes using the symmetry of the
nonprecessing system under reflections about the orbital
plane: h`,−m = (−1)`h`,m∗.

b. Data alignment : We first determine the peak
of each waveform τpeak to be the time when the quadrature
sum,

Atot(τ) =
√∑

`,m

|h`,m(τ)|2 , (5)
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Model Plunge Model Available positive modes (`,m) Waveform length NR-calibration
EMRISur1dq1e4 Ori-Thorne [78] (2, {1, 2}), (3, {1, 2, 3}) 13500m1 (2, 2)

(4, {2, 3, 4}), (5, {3, 4, 5})
BHPTNRSur1dq1e4 Generalized (2, {1, 2}), (3, {1, 2, 3}) 30500m1 (2, {1, 2})

Ori-Thorne [79, 80] (4, {2, 3, 4}), (5, {3, 4, 5}) (3, {1, 2, 3})
(6, {4, 5, 6}), (7, {5, 6, 7}) (4, {2, 3, 4})
(8, {6, 7, 8}), (9, {7, 8, 9}) (5, 5)

(10, {8, 9})

Table I. Overview of the EMRISur1dq1e4 and BHPTNRSur1dq1e4 models. Both models used the smoothing procedure described
in Sec. II C.

reaches its maximum. Here the summation is taken over
all the modes being modeled. In order to construct smooth
parametric fits for the surrogate model, we align all the
waveforms such that their peaks occur at the same time.
This is done by choosing a new time coordinate,

t = τ − τpeak , (6)

such that Atot(t) for each waveform peaks at t = 0. Next,
we use cubic splines to interpolate the real and imaginary
parts of the waveform modes onto a common time grid
of [−30500m1, 115m1] with a uniform time spacing of
dt = 0.1m1. Once all the waveforms are interpolated onto
a common time grid, we perform a rotation about the
z-axis such that at the start of the waveform φ22 = 0
and φ21 ∈ [−π, 0], where φ22 and φ21 are the phases of
the complex (2, 2) and (2, 2) modes, respectively. These
pre-processing steps are necessary to ensure a smooth
dependence of the training-set waveforms on mass ratio.

c. Data decomposition : After time and phase
alignments, we decompose the inertial frame waveform
modes into waveform data pieces that are slowly varying
functions of time and are therefore simpler to model. We
employ different decomposition strategy for the quadrupo-
lar mode and the higher-order modes. The complex (2, 2)
waveform mode,

h22 = A22 e
−iφ22 , (7)

is decomposed into an amplitude, A22, and phase, φ22. For
the higher order modes, we first apply a time-dependent
rotation given by the instantaneous orbital phase φorb to
transform the waveform into a co-orbital frame:

hC`m = h`m eimφorb , (8)

where hClm represents the complex modes in the co-orbital
frame and the orbital phase is taken to be

φorb ≡ φ22

2 . (9)

We then use the real and imaginary parts of hC`m as our
waveform data pieces for the non-quadrupole modes. To
summarize, the full set of waveform data pieces we model
is as follows: A22, φ22 for the (2, 2) mode, and real and
imaginary parts of hC`m for the 24 higher order modes
with m > 0.

d. Empirical interpolants : The next step is
to construct an empirical interpolant (EI) in time using
a greedy algorithm that picks the most representative
time nodes [82, 84–86]. The number of the time (or
EI) nodes for each data piece is equal to the number of
basis functions used. The empirical interpolant gives a
compact representation for each data piece (and hence
the full waveform) in the training set by permitting the
full time-series to be reconstructed through a significantly
sparser sampling defined by the EI nodes. We choose 7
basis functions for A22 and φ22. For higher order modes,
we use 13 basis functions for the real and imaginary parts
if ` ≤ 5. Otherwise, 16 basis functions are used. We
inspect the basis functions visually to ensure they are free
from noise. Furthermore, unlike recently built surrogate
models [39], we put no restriction on the location of EI
nodes as we did not find this to improve our model.

e. Parameteric fits : The final surrogate-building
step is to construct parametric fits for each data piece
at each of the EI nodes over the one-dimensional pa-
rameter space defined by q. Following Ref. [64], we fit
the data-pieces using second degree interpolating splines
(with smoothing factor s = 0.0005) after performing a
logarithmic transformation of q [39, 87].

B. Evaluating the surrogate

To generate the BHPTNRSur1dq1e4 surrogate model
waveforms, we provide mass ratio q as input. We then
evaluate the parametric fits for each waveform data pieces
at each EI node at the requested value of q. Next, the
empirical interpolant is used to reconstruct the surro-
gate prediction of the waveform data pieces as a dense
time-series. We evaluate the surrogate models for the
amplitude and phase of the (2,2) mode and combine them
to get the complex strain as hS22 = AS22 e

−iφS
22 . For the

non-quadrupole modes, we first evaluate the surrogate
models for the real and imaginary parts of the co-orbital
frame waveform data pieces hC,S`m ≈ hC`m and treat it as
hC`m. Finally, we use Eqs. (7), (8), and (9) to obtain the
surrogate prediction for the inertial frame strain hS`,m for
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Figure 3. Validation errors, computed as E [h`m, h`mS ], for the
individual modes in our surrogate model as a function of mass
ratio q.

these modes. The full surrogate, hS, is then written

hS(t, θ, φ; q) =
∑
`,m

hS
`,m(t; q)−2Y`m(θ, φ) , (10)

where hS
`,m is the surrogate model prediction for each

harmonic mode.

C. Surrogate errors

In this section we assess the accuracy of
BHPTNRSur1dq1e4 by performing some of the tests
described in Ref. [38] using the relative L2-type norm
defined in Eq. (4). In our case, ppBHPT waveforms used
in training are already aligned in time and phase, and
the surrogate is expected to reproduce this alignment.
Therefore, we compute the time-domain error E without
any further time/phase shifts.

To assess the surrogate model’s error, we compute three
different types of errors. First, we build the surrogate
using all 41 ppBHPT training waveforms and calculate
the training error between the training waveform and
surrogate prediction. This checks whether the surrogate
model can accurately reproduce the training waveforms.

Next we perform a leave-one-out cross-validation study.
In this study, we hold out one ppBHPT waveform from
the training set and build a trial surrogate from the re-
maining 40 ppBHPT waveforms. We then evaluate the
trial surrogate at the mass ratio corresponding to the held
out data, and compare its prediction with the held-out
ppBHPT waveform. We refer to these errors as valida-
tion errors. Validation errors represent conservative error
estimates for the surrogate model’s generalization error
against ppBHPT. Since we have 41 ppBHPT waveforms,
we build 41 trial surrogates for each error study and assess
the model’s ability to predict new waveforms it was not
trained on. For boundary cases (i.e. for q = 2.5 and
q = 10, 000), the test surrogate predictions are effectively
extrapolation and therefore yield uninformative errors.
We exclude these points from Fig. 3.

We compare both of these errors to the numerical trun-
cation error of the Teukolsky solver used to produce
the ppBHPT training data. We refer to these errors
as ppBHPT numerical errors.
In Fig. 3, we report the individual-mode validation

errors for BHPTNRSur1dq1e4 as a function of mass ratio q.
We find that the errors are mostly ≤ 10−3 for modes up
to ` = 3, ≤ 10−2 for modes with 4 ≤ ` ≤ 6 and ≤ 10−1

for modes with 7 ≤ ` ≤ 10. We further note in Fig. 3 that
the highest errors in each mode corresponds to the same
value of q. We also find that the zigzag structure of errors
in Fig. 3 is a result of the chosen q values in the parameter
space (blue circles in Fig. 2). We model the data pieces
as a logarithmic function of q. However, the mass ratio
values are not spaced uniformly in logarithmic scale. This
results in repetitive patches of dense and sparsely spaced
data points. Modelling errors are smaller (larger) around
the dense patches (sparsely spaced patches).
Despite the problematic parameter-sampling strategy,

the final model should be sufficiently accurate for many
data analysis studies in the large-mass ratio regime (cf.
Figs. 10 and 13 for more details). In Fig. 4 we provide a
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Figure 4. Time-domain errors E , defined in Eq.4, for individual modes considered in BHPTNRSur1dq1e4. For comparison, we
show both training (black solid lines) and validation (orange-red dashed lines) errors.
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mode-by-mode comparison of the training and validation
errors. For many of the modes considered in our model,
both error measurements are consistent. For some of the
modes, and especially for modes with ` ≥ 8, the larger
validation errors indicate overfitting. Note that the high-
error tails seen in Fig. 4 comes from the smallest and
highest mass ratio boundaries.

Finally, in Fig. 5, we compare validation error and the
ppBHPT Teukolsky solver’s numerical error for a select
number of modes for two representative cases: q = 4 (blue
data) and q = 4000 (red data). We compute ppBHPT
numerical errors by comparing ppBHPT waveforms of
different resolution. We find that validation errors are
around one order of magnitude larger than ppBHPT
numerical errors across all modes.
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Figure 5. Validation errors (solid lines) and ppBHPT numeri-
cal errors (dashed lines) of select modes for two representative
cases: q = 4 (blue circles) and q = 4000 (red squares).

D. Calibating ppBHPT to numerical relativity in
the comparable mass regime

In the previous subsections, we have built a surrogate
model for gravitational waveforms computed within the
ppBHPT framework. These waveforms faithfully approxi-
mate the physically-correct ones only in the limit q →∞.
In order to construct an accurate model at moderate to
large mass ratios, we introduce model calibration param-
eters and set their values by comparing to NR. These
parameters modify each mode’s amplitude and phase in
a simple way and have the correct behavior in the limit
of q →∞.

Before discussing the particulars of our calibration pro-
cedure, its important to consider how one should compare
NR and ppBHPT waveforms. For example, both ppBHPT
and NR frameworks express dimensioned quantities in
terms of a freely-specifiable mass scale, which is not the
same in the two frameworks. For ppBHPT this scale is
selected to be the background black hole spacetime’s mass
parameter, while in NR it is the sum of the Christodoulou
masses of each black hole [88, 89]. Our Teukolsky solver
sets the background black hole’s mass to m1 = 1 (the
ppBHPT’s mass scale), while the corresponding NR sim-
ulation for nonspinning black holes sets the total mass to
m1 +m2 = 1 (the NR simulation’s mass scale). So before
comparing, we should adjust the ppBHPT’s mass-scale
to use the NR convention of total mass, which in the
ppBHPT’s simulation would be m1 +m2 = 1 + 1/q. This
line of reasoning suggests that the ppBHPT modes should
be adjusted according to the formula h`m(t)→ βh`m(tβ)
before comparing to NR, where β = 1/(1 + 1/q). This
straightforward identification works well when comparing
post-Newtonian and NR waveforms [88] in the compara-
ble mass ratio regime. In Ref. [64], it was found that (i)
the naive value of β accounts for much of the discrepancy
between NR and ppBHPT waveforms and (ii) additional
model improvements can be obtained by solving an opti-
mization problem for its value.

1. Previous calibration of EMRISur1dq1e4

Motivated by the mass scaling argument given above,
Ref. [64] proposed modifying the ppBHPT waveforms
according to the formula

h`,mβ (t; q) = βh`,m (tβ; q) , (11)

where β was set by minimizing the difference

min
β

∫ ∣∣∣h22
β (t; q)− h22

NR(t; q)
∣∣∣2 dt∫

|h22
NR(t; q)|2 dt

, (12)

between ppBHPT waveforms and nonspinning NR surro-
gate model [36] trained on SXS simultation data [89–91]
for the (2, 2) harmonic mode and mass ratios 3 ≤ q ≤ 10.
The integral appearing in Eq. (12) was evaluated from
-2,750M to 100M (where M is the total mass of the bi-
nary), the duration of the NR surrogate model [36]. The
data β(ν) was then fit to a degree 4 polynomial in the
symmetric mass ν = q/(1 + q)2. The resulting function is
shown as a dashed cyan line in Fig. 6.

While the calibration choices and techniques of Ref. [64]
yielded surprisingly good agreement with NR, a number
of deficiencies have been identified. These include (i) the
NR surrogate model [36] was built before center-of-mass
(CoM) corrected waveform data was available and so the
model inherited undesirable features due to CoM drifts,
(ii) the NR surrogate model [36] only included about 15
orbits before merger, and it was later found that the
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calibration parameter deduced on this short interval does
not work adequately well on longer time intervals, and
(iii) it should be expected that, due to the point-particle
approximation, the higher mode amplitudes computed
within the ppBHPT framework will be overestimated as
compared to NR.

3 4 5 6 7 8 9 100.0
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0.4

0.6

0.8

α
l

` = 2

` = 3

` = 4

` = 5
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1

1+1/q

3 4 5 6 7 8 9 10

Mass ratio q

0.70
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0.85
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β

Calibrated to (2, 2)

EMRISur1dq1e4

1
1+1/q

Figure 6. Scaling parameters α`(q) and β(q) as a function of
mass ratio q. These parameters are obtained by minimizing
the errors between ppBHPT and hybridized NR waveforms.
In both panels, the dashed maroon line refers to a naive value
of α = β = 1/(1+1/q) set by including the mass the of smaller
black hole as part of the background spacetime. We also show
the scaling used in the previous model EMRISur1dq1e4 as a
dashed cyan line in both panels.

2. Calibration of BHPTNRSur1dq1e4

To overcome the limitations of the previous calibration
method discussed in Sec. IIID 1, we present an updated
set of choices that provide improvements over the original
method. Instead of calibrating BHPTNRSur1dq1e4 data
directly to NR data, we use the NRHybSur3dq8 model [39]
– a surrogate model for hybridized non-precessing NR
waveforms with the early inspiral waveform obtained using
both PN and EOB waveforms. This model was trained
on center-of-mass (CoM) corrected waveform data and
is much longer in duration, thereby removing two of the
three key limitations mentioned in Sec. IIID 1.

To calibrate ppBHPT waveforms, we propose modifying

the BHPTNRSur1dq1e4 model according to the formula

h`,mS,α`,β
(t; q) = α`h

`,m
S (tβ; q) , (13)

where α` and β are obtained by minimizing the difference
between NRHybSur3dq8 and rescaled ppBHPT waveforms

min
α`,β

∫ ∣∣∣h`,mS,α`,β
(t; q)− h`,mNRHyb(t; q)

∣∣∣2 dt∫ ∣∣∣h`,mNRHyb(t; q)
∣∣∣2 dt , (14)

between our model BHPTNRSur1dq1e4 and hybridized NR
surrogate waveform NRHybSur3dq8 in its non-spinning
limit for individual modes over the time window. The
integral appearing in Eq. (14) is evaluated from -5000M to
115M, which corresponds to the portion of the surrogate
model described by NR simulations (i.e., after hybridiza-
tion). The motivation for the new parameters α` can be
seen as a correction to the point-particle approximation
in the comparable mass regime i.e. it accounts for the
larger relative size of the smaller black hole. We allow
for `-dependent values of α while keeping β fixed for all
modes. By numerical computation we have checked that
there is essentially no m-dependence α`m ≈ α` on these
amplitude corrections, which can also be motivated by
noting that under rotations the harmonic modes mix in
m but not `.

3 4 5 6 7 8 9 10
Mass ratio q

10−4
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10−2

10−1

E
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NRHybSur
Modes

22

33

44

55

Figure 7. Time-domain error between the calibrated ppBHPT
waveforms and the NR hybrid surrogate model as a function
of mass ratio q. We show the errors computed over the full
inspiral-merger-ringdown regimes (solid lines) and inspiral-only
errors (dashed lines) restricting the waveform to t ≤ −50M .
We show errors for select modes ((2, 2),(3, 3),(4, 4), and (5, 5))
as well as for the case including all available NRHybSur3dq8
modes including ` 6= m (referred as ‘All NRHybSur Modes’).

To obtain values for β we minimize the cost func-
tion (14) using the (2, 2) mode, while to find best-fit
αl values we use ` = m modes (i.e. (2, 2), (3, 3), (4, 4)
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` A`α B`α C`α D`
α

2 -1.330±0.007 2.720±0.116 -5.904±0.556 5.548±0.833
3 -3.067±0.017 6.244±0.265 -9.944±1.261 6.437±1.894
4 -3.909±0.032 9.431±0.498 -14.734±2.367 9.744±3.556
5 -4.509±0.102 4.751±1.554 21.959±7.381 -52.350±11.085

Table II. Fitting coefficients for α` parameters as defined in Eq.(15).

Aβ Bβ Cβ Dβ

-1.238±0.003 1.596±0.049 -1.776±0.237 1.0577±0.356

Table III. Fitting coefficients for β parameters as defined in Eq.(16).
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Figure 8. Waveform difference between NRHybSur3dq8 (referred as ‘NRHybSur’) and ppBHPT waveforms before and after
calibration. We show the five different representative modes for q = 4 to demonstrate the efficacy of the calibration used. Errors
for the full inspiral-merger-ringdown waveform and only inspiral part are denoted by EIMR and EI respectively. The mass scale is
denoted by Ms, which is either m1 (ppBHPT) or m1 + m2 (NR) on the left column or either m1β (calibrated ppBHPT) or
m1 +m2 (NR) on the right column.

and (5, 5) modes). To discover each calibration parame-
ters’ q-dependence we sample from q = 3.0 to q = 10.0
with an increment of 0.2, giving a total of 36 data points.
These data are then used to fit α` and β to polynomials

in 1/q:

α`(q) = 1 + A`α
q

+ B`α
q2 + C`α

q3 + D`
α

q4 . (15)
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Figure 9. Effectiveness of the calibration obtained from a
restricted time window [−5000, 115]M over the entire length
of the waveform. Shown are the early inspiral (upper panel),
late inspiral (middle panel), and merger-ringdown (lower panel)
parts of the (2, 2) mode for q = 8. The hybridized NR surrogate
model NRHybSur3dq8 (referred as ‘NRHybSur’) and calibrated
ppBHPT waveforms are shown in black dashed and solid red,
respectively. EIMR is the L2 norm error computed over the
entire waveform.

β(q) = 1 +
A`β
q

+
B`β
q2 +

C`β
q3 +

D`
β

q4 . (16)

The order of the polynomial is chosen in the following way:
We first build fits for α` and β using degrees of polynomial
order in q−1 from one to four. Next, we select the fit order
that minimizes the leave-one-out cross-validation error. A
similar strategy has helped us identify that polynomials in
q−1 lead to more stable fits to the data than polynomials
in symmetric mass ratio ν. Values of the coefficients for
the final fits are given in Table II and Table III for α`
and β, respectively.
Figure 6 shows the scaling parameters α` and β as a

function of mass ratio. We find that the ` = 2 calibra-
tion parameters α2 and β closely match the analogous
parameter used to calibrate the EMRISur1dq1e4 model.
For higher order modes, α` becomes smaller, which we
interpret as a correction in the point-particle framework
to account for the extended size of the smaller black hole.

40 80 120 160 200
Total Mass M [M�]

10−3

10−2

M
is

m
at

ch

q=4

q=5

q=8

q=9

Figure 10. Frequency-domain mismatches between the
rescaled-ppBHPT surrogate waveforms and NRHybSur3dq8
model for different mass ratios. The mismatches are shown as
a function of the binary total mass M at inclination ι = 0.0
and orbital phase ϕ = 0, and are computed using the ad-
vanced LIGO design sensitivity noise curve. We set the mini-
mum (maximum) frequency appearing in Eq. (17) to be 20Hz
(990Hz). The dashed horizontal line demarcates a mismatch
of 0.01, a commonly used threshold for sufficiently good model
quality.

Overall, α` shows a monotonically increasing behavior
with q implying naive 1

1+q behavior will be recovered in
the larger q limit. While we are using a simple β pa-
rameter for all modes, we have experimented having β`
for different modes. However, this did not appreciably
change the final match between ppBHPT and NR hybrid
waveforms. Furthermore, individual β` take almost the
same values for different modes bolstering the claim that
β, used to scale the time-axis, is related to the mass scal-
ing and provides support for using one single β for all
modes.

IV. COMPARISON BETWEEN THE
CALIBRATED PPBHPT MODEL AND NR

A. Time domain error in the comparable mass
regime

Figure 7 shows the time-domain error between the cali-
brated BHPTNRSur1dq1e4 and NRHybSur3dq8 models. We
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show the error using all available NRHybSur3dq8 modes 3

as well as individual mode errors. Our comparison in-
cludes both the entire waveform over all inspiral-merger-
ringdown (IMR) regimes (solid lines) and inspiral-only er-
rors (dashed lines), restricting the waveform to t ≤ −50M .
In all cases, the differences before calibration are

of order unity, while the agreement between the cali-
brated BHPTNRSur1dq1e4 and NR waveforms improves
to E ∼ 10−3 for (`,m) = (2, 2) and E ∼ 10−2 for
(`,m) = {(3, 3), (4, 4), (5, 5)}. Many of the ` 6= m modes
have errors as high as E ∼ 10−1 even after calibration
(not shown).

We expect that in the merger and ringdown regimes, the
calibrated ppBHPT waveforms that match so well in the
inspiral will no longer serve as a faithful physical ansatz.
Instead, we expect the ringdown signal to be described
by perturbations of the remnant black hole whose mass
and spin only agree with the initial background solution
in the limit q → ∞. This expectation is confirmed in
Fig. 7 as we see nearly an order-of-magnitude increase
in the IMR error as compared to the inspiral-only error
for mass ratios less than q ≈ 5. By q ≈ 10, however, the
NR-calibrated BHPTNRSur1dq1e4 does a reasonably good
job even in the ringdown regime, which is also apparent
in the bottom panel of Fig. 9. This suggests that high-
accuracy models based on calibrated ppBHPT waveforms
may require special treatment in the merger-ringdown
regime – which is commonly employed in other waveform
modeling efforts – although at mass ratios beyond q ≈ 10
the current approach already does a reasonably good job.
These results are shown in more detail for q = 4,

where Fig. 8 shows four of the most important harmonic
modes before and after calibration. Before calibration
the BHPTNRSur1dq1e4 and NRHybSur3dq8 waveforms dif-
fer visibly in both amplitude and phase evolution. The
calibrated ppBHPT and NRHybSur3dq8 waveforms, how-
ever, show surprisingly good agreement although some
differences remain in the merger-ringdown part.
We note that these calibration parameters have been

obtained by comparing the raw ppBHPT waveform to NR
over a time window [−5000, 115]M that characterizes the
late insprial through ringdown. To test whether the scal-
ing works at earlier times too, we compare NRHybSur3dq8
to the calibrated ppBHPT waveforms over the longest
possible duration, which is 30, 500m1 using the ppBHPT’s
mass scale. We show an example case in Fig.9. We plot
the dominant (2, 2) mode for both NRHybSur3dq8 (dashed
black line) and rescaled ppBHPT (solid red line) wave-
forms at q = 8 in early inspiral as well as in the late
inspiral and merger-ringdown parts. The waveforms are
nearly indistinguishable for the entire duration, and we
compute the error to be EIMR = 0.00086.

3 The NRHybSur3dq8 model includes the fol-
lowing harmonic modes: {`, m} =
{(2, 1), (2, 2), (3, 1), (3, 2), (3, 3), (4, 2), (4, 3), (4, 4), (5, 5)}.

B. Frequency domain mismatch between
rescaled-ppBHPT surrogate and NR

In Fig 10, we show the frequency-domain mismatch
between the calibrated ppBHPT surrogate waveforms
and NRHybSur3dq8 waveforms as a function of total mass
for different mass ratios. Frequency domain mismatch
between two waveforms h1 and h2 is defined as:

〈h1, h2〉 = 4Re
∫ fmax

fmin

h̃1(f)h̃∗2 (f)
Sn(f) df, (17)

where h̃(f) indicates the Fourier transform of the complex
strain h(t), ∗ indicates complex conjugation, Re indicates
the real part, and Sn(f) is the one-sided power spectral
density of the Advanced LIGO detector at its design sen-
sitivity. We set fmin to be 20Hz while fmax is set to
be 990Hz. We note that BHPTNRSur1dq1e4 waveforms
are long enough for all of the mass ratio and total mass
configurations considered in Fig. 10, even the initial in-
stantaneous frequency of the (5, 5) mode is below 20Hz.
Before transforming the time domain waveform to the
frequency domain, we first taper the time domain wave-
form using a Planck window [92], and then zero-pad to
the nearest power of two. The tapering at the start of
the waveform is done over 1.5 cycles of the (2, 2) mode.
The tapering at the end is done over the last 20M . The
mismatches are always optimized over shifts in time, po-
larization angle, and initial orbital phase. We find that as
the mass ratio increases, agreement between the calibrated
ppBHPT surrogate waveform and NRHybSur3dq8 model
improves. For q ≥ 5, mismatches are below 0.01 (Fig. 10)
indicating at least an order of magnitude improvement
over our precursor EMRISur1dq1e4 model.

C. Extrapolating the model to q → 1

Even though BHPTNRSur1dq1e4 is trained for q ≥ 2.5,
we find that the model can be extrapolated to mass ratio
q = 1.2, although we advise caution with any extrapo-
lation. This is particularly exciting as our time-domain
Teukolsky solver struggles to generate waveforms below
q ≈ 2.5. The model can therefore be used to simu-
late ppBHPT waveforms for binaries with mass ratios
1.2 ≤ q ≤ 2.5. Although, as can be anticipated from
Fig. 7, the calibrated BHPTNRSur1dq1e4 is not a faithful
approximation to GR as q → 1. Fig. 11 shows the domi-
nant (2, 2) mode of these two models evaluated at q = 1.2.
At this mass ratio, we find the (2, 2) mode error of our
model to be ∼ 0.026 for the full inspiral-merger-ringdown
waveform and ∼ 0.012 for inspiral-only part.

D. Numerical relativity in the intermediate mass
ratio regime

Due to a scarcity of NR data for intermediate-mass
ratio ranges, say from q = 10 to q = 104, it is difficult
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Figure 11. Comparison between the calibrated ppBHPT wave-
form and the hybridized NR surrogate model NRHybSur3dq8
(referred as ‘NRHybSur’) at q = 1.2. We show the domi-
nant (`,m) = (2, 2) mode. Errors for the full inspiral-merger-
ringdown waveform and inspiral-only part are denoted by EIMR
and EI, respectively.

to perform a detailed comparison between ppBHPT and
NR data. Some recent breakthroughs, however, have
made it possible to perform NR simulations for high
mass ratio binaries. As we are interested in non-spinning
systems, we will consider both SXS NR simulation data
for q = {15, 30} [54, 55] and RIT NR simulations for
q = {15, 32} [52].

1. Comparison against SXS NR data at q = 15 and q = 30

We begin with a comparison between the calibrated
ppBHPT waveforms, coming from BHPTNRSur1dq1e4
model, and SXS NR data at mass ratio q = 15. In
Fig. 12, we plot three representative modes. NR data is
shown in red solid lines whereas NR-calibrated ppBHPT
waveforms are plotted as black dashed lines. Note that we
do not perform any on-the-fly re-scaling for the ppBHPT
waveform but instead use results from Sec. IIID 2. For
comparison, we also include the SEOBNRv4HM model. We
find both SEOBNRv4HM and BHPTNRSur1dq1e4 match NR
very well at q = 15. For BHPTNRSur1dq1e4, full [inspiral-
only] waveform errors for (2, 2), (3, 3), and (4, 4) modes
are 0.00076 [0.00068], 0.0021 [0.0020], and 0.0054 [0.0047],
respectively. The SEOBNRv4HM shows a noticeable offset
from NR around merger and ringdown for the higher
modes, although both models deliver good accuracy over-
all, especially pre-merger.

When interpreting these errors it is important to note
that, from Fig. 5, it is clear that our model cannot achieve
an error E . 0.001 due to numerical error in the un-
calibrated BHPTNRSur1dq1e4. As this value is consistent
with what we see in our comparisons with SXS data, it
is not clear if even better agreement with NR could be
achieved with higher-accuracy ppBHPT waveform train-
ing data. As an additional check, we also perform an
{α`, β} optimization between the raw ppBHPT and SXS

NR data at q = 15. We find that the α` and β values
obtained this way match closely to values obtained from
Eq.(15) and Eq.(16), and negligible improvement in errors
observed. This implies that the calibration carried out in
the range 3.0 ≤ q ≤ 10.0 continues to work well at mass
ratio 15.
Next, we compare calibrated-ppBHPT waveforms

against the highest mass ratio SXS NR data at q = 30.
Fig. 13 shows three representative modes for q = 30
for both NR (red solid lines) and calibrated-ppBHPT
waveforms (black dashed lines). We note that at q = 30,
β ≈ 0.961 while 1/(1 + 1/q) ≈ 0.967, suggesting even
an un-calibrated ppBHPT waveform would work reason-
ably well. We find for the 22 mode, the errors between
calibrated-ppBHPT and NR data are around ∼ 10−3

implying a good match. For higher order modes, errors
are still around ∼ 0.01. Furthermore, when we compare
SEOBNRv4HM to NR data, we find the full waveform errors
to be similar to the BHPTNRSur1dq1e4 for higher order
modes whereas around one order of magnitude better
than the BHPTNRSur1dq1e4 model for (2, 2) mode.
Just as in the q = 15 analysis, as an additional check

of our calibration parameters we perform a fresh {α`, β}
optimization between the raw ppBHPT and SXS NR
data at q = 30. We find that while the α` and β values
computed this way are quite close to values obtained
from Eq.(15) and Eq.(16), they provide a better match
with NR data - with improving the (2, 2) mode error by
at-least one order of magnitude making it comparable to
the (2, 2) mode error of SEOBNRv4HM. This suggests that
relatively larger error for calibrated-ppBHPT at q = 30
when compared to NR data than at q = 15 is due to
the error in extrapolating α and β scaling much beyond
the mass ratio range (3 ≤ q ≤ 10) it is trained on. We
expect this scaling to become more robust in the future
as more NR simulations become available beyond q = 10.
We further note that the NR data at q = 30 is shorter in
length (only ∼ 1800M long). Careful comparison between
ppBHPT and NR data in this regime needs longer NR
data. We leave that study for the future when smoother
and longer NR data will be available. Nonetheless, that a
reasonable match between these two types of waveforms
is obtained in this regime is a promising sign.

2. Comparison against RIT NR data at q = 15 and q = 32

We now compare calibrated BHPTNRSur1dq1e4 against
the publicly available RIT NR data at mass ratio q = 32.
Fig. 14 shows three representative modes for both NR (red
solid lines), calibrated BHPTNRSur1dq1e4 (black dashed
lines), and SEOBNRv4HM (solid blue) at q = 32. We find
that, for (2, 2) mode, scaled ppBHPT and SEOBNRv4HM
yields an error of ∼ 0.01, and for subdominant modes the
calibrated BHPTNRSur1dq1e4 matches the NR data a bit
more closely than the SEOBNRv4HM model around merger
and ringdown. It is interesting to note that at q = 30,
both the calibrated BHPTNRSur1dq1e4 and SEOBNRv4HM



14

−0.1

0.0

0.1
rh

2
2

M

EIMR, EI = {0.00076, 0.00068} EIMR,EOB, EI,EOB = {0.00010, 0.00003}

SEOBNRv4HM SXS-NR Calibrated ppBHPT

−0.02

0.00

0.02

−0.02

0.00

0.02

rh
33

M

EIMR, EI = {0.0021, 0.0020} EIMR,EOB, EI,EOB = {0.0061, 0.00004}

SEOBNRv4HM SXS-NR Calibrated ppBHPT

−0.1

0.0

0.1

−1500 −1000 −500
t (M)

−0.01

0.00

0.01

rh
44

M

EIMR, EI = {0.0054, 0.0047} EIMR,EOB, EI,EOB = {0.0229, 0.0001}

SEOBNRv4HM SXS-NR Calibrated ppBHPT

−50 0 50
t (M)

−0.01

0.00

0.01

Figure 12. Waveform difference between the calibrated ppBHPT waveform (dashed black) and NR data (solid red) from the
SXS collaboration (simulation ID SXS:BBH:2304) for q = 15. We show three different representative modes to demonstrate the
efficacy of our model. Errors for the full inspiral-merger-ringdown waveform and only inspiral part is denoted by EIMR and EI
respectively. For comparison, we also show SEOBNRv4HM waveform modes (solid blue).
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Figure 13. Waveform difference between the calibrated ppBHPT waveform (dashed black) and NR data (solid red) from the SXS
collaboration for q = 30 [55]. We show three different representative modes to demonstrate the efficacy of our model. Errors for
the full inspiral-merger-ringdown waveform and only inspiral part is denoted by EIMR and EI respectively. For comparison, we
also show SEOBNRv4HM waveform modes (solid blue).

models provide at least one order of magnitude better match when tested against the SXS NR data. This may



15

−0.1

0.0

0.1
rh

2
2

M

EIMR, EI = {0.028, 0.024} EIMR,EOB, EI,EOB = {0.046, 0.043}

SEOBNRv4HM RIT-NR Calibrated ppBHPT

−0.02

0.00

0.02

−0.02

0.00

0.02

rh
33

M

EIMR, EI = {0.079, 0.054} EIMR,EOB, EI,EOB = {0.154, 0.094}

SEOBNRv4HM RIT-NR Calibrated ppBHPT

−0.1

0.0

0.1

−1500 −1000 −500
t (M)

−0.01

0.00

0.01

rh
44

M

EIMR, EI = {0.171, 0.097} EIMR,EOB, EI,EOB = {0.303, 0.167}

SEOBNRv4HM RIT-NR Calibrated ppBHPT

−50 0 50
t (M)

−0.01

0.00

0.01

Figure 14. Waveform difference between the calibrated ppBHPT waveform (black dashed) and NR data (solid red) from the RIT
group (simulation ID RIT:BBH:0792) for q = 32. We show three different representative modes to demonstrate the efficacy of
our model. Errors for the full inspiral-merger-ringdown waveform and only inspiral part is denoted by EIMR and EI respectively.
For comparison, we also show SEOBNRv4HM waveform modes (solid blue).
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Figure 15. Waveform difference between the calibrated ppBHPT waveform (black dashed) and NR data (solid red) from the RIT
group (simulation ID RIT:BBH:0373) for q = 15. We show three different representative modes to demonstrate the efficacy of
our model. Errors for the full inspiral-merger-ringdown waveform and only inspiral part is denoted by EIMR and EI respectively.
For comparison, we also show SEOBNRv4HM waveform modes (solid blue).

imply some systematic difference between SXS and RIT NR simulations at high mass ratios. RIT simulations also
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show evidence of residual eccentricity that introduces ad-
ditional small modulations in the waveform – potentially
increasing the disagreements. We have also compared the
calibrated BHPTNRSur1dq1e4 ppBHPT and SEOBNRv4HM
models with the RIT NR data at q = 15 (Fig. 15), but
we encountered issues similar to the q = 32 case.

V. DISCUSSION & CONCLUSION

In this paper, we have described more fully the methods
used to build EMRISur1dq1e4 (which was introduced in a
short letter [64]), a time-domain surrogate model of wave-
forms obtained through numerically solving the Teukolsky
equation sourced by a test-particle with adiabatic-driven
inspiral. We apply point-particle black hole perturbation
theory (ppBHPT) framework to non-spinning systems
with mass ratios from q = 2.5 to q = 10, 000. While inter-
mediate mass ratio systems (q > 10) are targets for our
model, we use ppBHPT waveforms in the regime q < 10
to (i) carry out comparisons between numerical relativity
and ppBHPT and (ii) calibrate the surrogate model to
NR thereby vastly improving the model’s accuracy.

We have also taken this opportunity to make numerous
important improvements to the underlying model. The up-
dated model, BHPTNRSur1dq1e4, is 30, 500m1 in duration,
making it suitable to be used in building template banks
for LIGO/Virgo data analysis at larger mass-ratios, and
also serve as a useful tool for mock data analyses for future
observatories. We also employ an improved transition
trajectory algorithm between early inspiral and plunge
[93] – thereby reducing nonphysical jumps/oscillations
in the waveforms (cf. Sec. II C). The BHPTNRSur1dq1e4
model includes a total of 50 modes up to ` = 10, which
is particularly important as subdominant modes are ex-
pected to play an important role in intermediate mass
ratio systems [35, 94–96]. Please see Table I for a complete
summary of the BHPTNRSur1dq1e4. This model is pub-
licly available as part of both the Black Hole Perturbation
Toolkit [97] and GWSurrogate [98].

We also perform a detailed comparison between

ppBHPT and NR waveforms in the comparable mass
ratio regime for all modes up to ` ≤ 5. We find that
after a simple calibration step the ppBHPT waveforms
yield remarkable agreement with NR. The calibrated
waveforms are also compared against available SXS
NR data at q = {15, 30} and against RIT NR data at
q = {15, 32}, and are found to give good agreement
for many of the subdominant modes even up through
merger and ringdown. Furthermore, by construction,
the calibration parameters “turn off" as q → ∞, so
that the correct test-particle behavior is recovered.
Our results suggest that suitably calibrated ppBHPT
models may be used to generate accurate late inspiral,
merger, and ringdown waveforms in the q > 10 regime
that is especially challenging for NR. Future models
should include obvious extensions such as spin, effects of
eccentricity, and spin-orbit precession.
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