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Recent measurements of gravitational-wave ringdown following the merger of binary black holes
raise the prospect of precision black hole spectroscopy in the near future. To perform the most
sensitive tests of the nature of black holes using ringdown measurements, it is critical to compute
the deviations to the spectrum of black holes in particular extensions of relativity. These spectral
shifts are also needed to interpret any violations of the predictions of relativity that may be de-
tected during ringdown. Here we present a first step towards computing the shifts to the spectrum
of Kerr black holes with arbitrary spins, by deriving a modified Teukolsky equation governing the
perturbations of black holes in theories beyond GR. Our approach applies to a class of theories
which includes dynamical Chern-Simons gravity and shift-symmetric scalar Gauss-Bonnet gravity,
in the case where the deviations from relativity are small. This allows for a perturbative approach
to solving the equations of motion. Further, we show how to use the modified equation to com-
pute the leading-order spectral shifts of Kerr black holes, using eigenvalue perturbation methods.
Our formalism provides a practical approach to predicting ringdown for black holes in a range of
promising extensions to relativity, enabling future precision searches for their signatures in black
hole ringdown.

I. INTRODUCTION

The direct detection of gravitational waves [1–14] by
the Advanced LIGO [15] and Virgo [16] interferometers
has opened a new window into strong-field and dynamical
gravity. These detections have enabled stringent tests of
relativity, e.g. [17–23], primarily in the form of null tests.
With the number of detections rapidly increasing, the
strongest constraints on and the most sensitive searches
for new physics require combining tests across many grav-
itational wave events. For many tests, such as searches
for parametrized deviations from inspiral, merger, and
ringdown models, this requires either a hierarchical anal-
ysis [22–25] or a specific model from which to derive con-
straints on a common model parameter.

The ringdown following the merger of binary black
holes is of especial interest from this perspective. This fi-
nal, exponentially decaying emission is the superposition
of quasinormal modes (QNMs), which in the perturba-
tive regime are determined by the mass and spin of the
merged black hole [26]. The measurement of two or more
ringdown modes allows for black hole spectroscopy [27–
29], probing both the properties of the black hole and
allowing for tests of relativity targeting the merged rem-
nant. While deviations from the expected structure of
Kerr black holes (violations of the no-hair theorem) also
alter the gravitational waves produced during inspiral
and merger, one attraction of ringdown tests is that are
conceptually straightforward. In addition, measurements
of black hole mergers with total mass & 65M�, together
with recent advances in modeling [30–33], indicate that
the measurement of multiple ringdown modes may al-
ready be within reach, e.g. [34–36] (see also [37, 38]).

Perhaps more importantly, predicting deviations from
ringdown in specific extensions to GR is tractable. With
a theory selected, the QNM spectrum can be computed
by perturbing the metric and any additional fields around

the equilibrium black hole solutions. Shifts to the QNM
spectrum have been computed in many cases for pertur-
bations around Schwarzschild backgrounds, for example
in quadratic gravity extensions [39–44] such as dynam-
ical Chern-Simons (dCS) gravity [45–49], scalar Gauss-
Bonnet (sGB) gravity [47, 50, 51], and also in theories
with even higher powers of curvature [47, 52, 53]. With
spectral predictions from these theories in hand, direct
searches for their signatures during ringdown are possi-
ble, and combining constraints across events is straight-
forward. In addition, recent advances have allowed for
numerical simulations of binary black holes in some of
these beyond-GR theories [54–64], and computation of
the QNM spectra in these theories can contribute to fu-
ture models covering inspiral, merger, and ringdown in
these theories.

Most progress to date has been limited to the regime
of slowly-spinning black holes, perturbing around a
Schwarzschild background. Meanwhile, astrophysical
merger remnants are expected to have dimensionless spin
χ ∼ 0.7, e.g. [65, 66]. Although expansions exist to very
high orders in small spin [53, 67], an approach to comput-
ing deviations to the QNM spectra on Kerr backgrounds
without any assumptions on the spin would be valuable.
This is true both for practical data analysis, where for
Bayesian inference, predictions are needed across param-
eter space including for high spins χ . 0.99, and for
understanding how the unique features of the spectra of
rapidly rotating black holes (e.g. [68–74]) carry over to
other theories.

In this study we outline an approach to computing
the deviations to QNMs in a broad class of beyond-GR
theories. Our method is especially suited for dCS and
sGB gravity when the coupling parameter that controls
deviations from relativity is small and so the theories
are in the decoupling limit. This allows us to follow the
same order-reduction scheme used in some recent simu-
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lations of binary black holes in these theories [54–56, 58].
Our approach builds on previous work for computing the
spectra of black hole backgrounds which are a small de-
formation away from Kerr [75]. That method, based on
standard eigenvalue perturbation (EVP) theory in quan-
tum mechanics, has been used to make the first predic-
tions of the QNMs of rapidly rotating, weakly-charged
black holes [76], to understand parametric instabilities
near the horizons of rapidly rotating black holes [77], to
compute part of the QNM shifts in dCS for slowly rotat-
ing black holes [49], and has been discussed in the context
of coupled-oscillator models of interacting QNMs [78].

In order to apply this method, we first derive a mod-
ified Teukolsky equation [79], accounting for the devia-
tions to the background of the Kerr black hole, the pres-
ence of additional non-minimally coupled background
fields, and the changes to the dynamics of perturbations
due to beyond-GR effects. The result is a set of coupled
equations for the metric perturbations and the additional
fields. We then show how these equations can be partially
decoupled, allowing for an iterative approach to comput-
ing the dynamics of the fields, and then the QNM shifts
of the gravitational perturbations. This approach pre-
serves the separability of the equations up to the final
integrals required to compute the shifts.

Our derivation primarily takes place at the level of the
field equations, and we only project onto the Newman-
Penrose (NP) formalism [80] at the last stages in order
to take advantage of the separability of the Teukolsky
equation. Our approach, while compact and transparent,
obscures any potential simplifications that may arise if
the equilibrium black hole solution remains algebraically
special even when accounting for the deviations from
Kerr. As such, we also provide a derivation of a modified
Teukolsky equation entirely in the NP language, which
may prove to be convenient in specific cases.

Following the initial stages of deriving our formalism,
we became aware of an independent but equivalent ef-
fort for deriving a modified Teukolsky equation for dCS
and similar theories in an NP language [81]. That work
outlines additional choices of tetrad and gauge freedoms
that further simplify the NP approach. These two inde-
pendent approaches serve as valuable cross-checks, and
in the future can provide validation of technically chal-
lenging steps in the eventual computation of QNMs be-
yond Kerr. For example, both require metric reconstruc-
tion [82–85] (in the form of tetrad reconstruction in the
latter case) in order to compute QNM shifts, and both
require an approach to solving for the dynamics of non-
minimally coupled scalar fields (in our case this reduces
to solving separable, sourced wave equations).

The remainder of this paper is as follows. In Sec. II
we present the field equations for a broad class of models
which are parametrically deformed away from relativity.
These include quadratic gravity models such as dCS and
sGB gravity. We then show how to partially decouple
the field equations governing black hole ringdown. Some
further details on the operators arising in these equations

are given in Appendix A. A few example applications are
given in Sec. III, including further discussion of dCS and
sGB gravity, as well as how the QNMs of weakly charged
black holes fit into this formalism. Additional details on
the comparison of our approach to previous results on the
QNMs of weakly charged black holes is in Appendix B.
We describe our modified Teukolsky equation and outline
a practical approach to compute the leading shifts to the
Kerr QNM spectra in these theories in Sec. IV. Section V
provides an alternative derivation of a modified Teukol-
sky equation, governing gravitational perturbations on a
deformed background that is not Type D, with further
details given in Appendix C. This provides a convenient
approach for cases where the deformed black hole remains
algebraically special. We discuss future directions and
conclude in Sec. VI.
Conventions: In this paper, we set c = 1. We use Latin

indices from the beginning of the alphabet for spacetime
quantities, while Latin indices from the middle of the
alphabet generally index over sums. We use capital sub-
scripts A,B as abstract indices over field quantities. In
our sections including NP quantities [80], we use A to
identify non-dynamical “background fields” and B to de-
note dynamical degrees of freedom, as an extension of
the notation of [79]. In the same sections, i, j index over
miscellaneous collections of NP quantities as specified in
the text.

II. FIELD EQUATIONS FOR QNMS BEYOND
KERR

A. Field equations

Our goal is to create a formalism appropriate for
quadratic gravity theories such as dCS and sGB grav-
ity, in the decoupling limit where the modifications to
relativity can be treated perturbatively, e.g. [86]. In such
theories a scalar field ϑ is coupled to terms quadratic in
the curvature, for example the Pontryagin density ∗RR,
such that a nontrivial geometry (specifically a black hole
background) serves as a source term for the scalar field.
To tackle these theories, we consider actions of the more
general form

S = SEH +

∫
d4x
√
−g[Lϑ + εLint + Lmatter] . (1)

Here Lϑ is the Lagrange density for a collection of fields
we denote ϑA, while Lmatter represents normal matter
which is minimally coupled to gravity. The new fields
can be of any type, for example collections of scalar fields
or vector fields, and A is an abstract index running over
all the field components. We assume that Lϑ is at least
quadratic in the new field degrees of freedom. The term
Lint meanwhile provides a nontrivial coupling between
the fields ϑA and the spacetime curvature, and we assume
that it enters first at linear order in the fields ϑA. The
parameter ε can be viewed as a small coupling term which
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governs the deviations to relativity. Formally we treat it
as a bookkeeping parameter, and match terms order by
order in ε. Finally, the Einstein Hilbert action is

SEH =
1

2κ0

∫
d4x
√
−gR , (2)

with κ0 = 8πG.
Varying the action and neglecting boundary terms as

usual, the equations of motion for the field take the form1

WA(ϑ, g) = ερA(ϑ, g) , (3)

WA(ϑ, g) :=
∂Lϑ
∂ϑA

−∇a
∂Lϑ

∂∇aϑA
, (4)

ρA(ϑ, g) := −∂Lint

∂ϑA
+∇a

∂Lint

∂∇aϑA
. (5)

Here WA is a collection of generalized wave equations
for the fields, sourced by ρA. For brevity, here and else-
where we leave off the abstract indices of all fields when
they arise in the arguments of operators. Meanwhile, the
gravitational field equations are

Gab(g) = κ0
[
Tϑab(ϑ, g) + Tmatter

ab + εV int
ab (ϑ, g)

]
, (6)

with each stress-energy tensor defined as usual from vari-
ations with respect to the (inverse) metric. For example
in a variational language we can write

Tϑab := − 2√
−g

δ(
√
−gLϑ)

δgab
. (7)

Meanwhile, V int
ab can similarly be derived by varying√

−gLint with respect to the (inverse) metric; since this
term involves curvature quantities, variation by parts re-
sults in mixed derivatives on functions of ϑA and the
metric, see Sec. III A for an example. From here we re-
strict to the case Tmatter

ab = 0. Further, for convenience,
we take the nonstandard convention of setting κ0 = 1.
These factors can be restored in the equations we derive
below by multiplying each instance of a stress energy ten-
sor Tϑab or interaction term V int

ab by κ0.

B. Notation for expanding operators

It is useful at this point to define a notation for ex-
panding operators when evaluated on perturbative series
expansions of the fields and the metric. We define a two-
index notation for perturbations around the background

values ϑA = ϑ
(0)
A = 0 and gab = g

(0)
ab , and use single par-

enthetical superscripts (j) to indicate orders in ε. For a
given, generally nonlinear, operator F(ϑ, g) we define

F (j,k)[ϕ1, . . . , ϕj , h1, . . . hk] :=

1 This assumes the equations of motion are second order in the field
derivatives; these expressions can be extended to other cases.

1

j!k!

∂j∂kF(ϑ(0) +
∑j
i=1 εiϕi, g

(0)
ab +

∑k
i=1 κihi)

∂ε1 . . . ∂εj∂κ1 . . . ∂κk

∣∣∣∣∣ε1,···→0
κ1,···→0

,

(8)

The operators F (j,k) are multilinear in their arguments,
with j slots for perturbations to the fields and k slots
for perturbations to the metric. They are separately to-
tally symmetric in each slot type. To formally define our
operator expansions, we have used εj and κk as a set of
independent parameters, with the limit of all such param-
eters taken to zero at the end, and a set of independent
fields and metric perturbations ϕi and hi, indexed by i.
We have also assumed that the operators we use admit
series expansions around the background values of the
fields and metric. In some cases, we expand quantities
that depend only on the metric, for example when ex-
panding the Einstein tensor. In those cases, we use only

a single index in the superscript, for example G
(1)
µν [h] for

the leading expansion of the Einstein tensor around a
perturbed background.

The notation is a bit ungainly, but we only need the
expansions to low orders in j, k, so it is useful to look at
specific examples. Consider F(ϑ) = ϑ2, using a single
scalar field for the ϑA. Then

F (2,0)[ϕ1, ϕ2] = ϕ1ϕ2 . (9)

Meanwhile, if F(ϑ) = ϑ∂aϑ, we have

F (2,0)[ϕ1, ϕ2] =
1

2
(ϕ1∂aϕ2 + ϕ2∂aϕ1) . (10)

Some care needs to be taken with the prefactors when
we expand operators using this notation. Consider again
the example F(ϑ) = ϑ∂aϑ, then

F(ε1ϕ1 + ε2ϕ2) =ε21F (2,0)[ϕ1, ϕ1] + 2ε1ε2F (2,0)[ϕ1, ϕ2]

+ ε22F (2,0)[ϕ2, ϕ2] . (11)

Note the factor of two on the mixed term from the com-
binatorics of the expansion, arising from summing over
both orderings and recalling the total symmetry of F (j,k).

In terms of this notation, the assumption that Lϑ is at

least quadratic in the fields and ϑ
(0)
A = 0 means that

W(0,k)
A = 0 , (12)

T
ϑ(0,k)
ab = T

ϑ(1,k)
ab = 0 . (13)

Our assumption that Lint is at least linear in the fields
means that

V
int(0,k)
ab = 0 , (14)

but, for example, ρ
(0,0)
A need not be zero. In fact, we are

interested in the case where ρ
(0,0)
A is nonzero, requiring

terms linear in the fields in Lint. In the case of quadratic
gravity theories, we have a single scalar field ϑ and the
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interaction term separates as Lint = f(ϑ)R[g] for some
curvature operator R. Then ρ = f ′(ϑ)R, and sources the
fields at O(ε) when f ′(0) 6= 0. The power counting pro-
vided below only holds if f ′(0) 6= 0, in which case any f
is essentially equivalent at leading order; only the Taylor
expansion of f around ϑ = 0 matters in the perturbative
expansion [57].

Pursuing this example further, for the quadratic grav-
ity models of interest we have

W(ϑ) = �gϑ , (15)

which is the scalar wave equation for the metric gab. It
is linear in the field, so W(j,k)[ϑ, g] = 0 for j ≥ 2. Ex-

panding around ϑ = 0 + εϕ and gab = g
(0)
ab + εhab, we

have

W(1,0)[ϕ] =�g(0)ϕ , (16)

W(1,1)[ϕ, h] =− 1√
− det g

(0)
cd

∂a

(√
− det g

(0)
cd h

ab∂bϕ

)

+
1

2
gab0 (∂ah

c
c)∂bϕ , (17)

with indices raised and lowered using the background
metric. Meanwhile,

ρ(0,0) = f ′(0)R , (18)

ρ(j,0)[ϕ,ϕ, . . . ] =
1

j!

djf

dϑj

∣∣∣∣
ϑ=0

ϕjR . (19)

These models, and many others of interest, have stan-
dard scalar field stress-energy tensors,

Tϑab = ∂aϑ∂bϑ−
1

2
gabg

cd∂cϑ∂dϑ . (20)

In this case we have

T
ϑ(2,0)
ab [ϕ1, ϕ2] = ∂(aϕ1∂b)ϕ2 −

1

2
g
(0)
ab g

cd
(0)∂cϕ1∂dϕ2 ,

(21)

and

T
ϑ(2,1)
ab [ϕ1, ϕ2, h] =∂(aϕ1∂b)ϕ2

+
1

2
(g

(0)
ab h

cd − habgcd(0))∂cϕ1∂dϕ2 .

(22)

The interactions terms V int
ab can be similarly expanded,

but conventionally they are somewhat complicated in
structure. We discuss particular cases in Sec. III below.

C. Equilibrium solutions

With the notation settled, our goal is to expand
Eqs. (3) and (6) around a Kerr background, order by

order in ε, while also incorporating perturbations rep-
resenting propagating degrees of freedom in the metric
(gravitational perturbations hab), and in the scalar fields.
Before adding in these waves, we consider the how the
field equations are solved in equilibrium.

We are interested in cases where as ε → 0, we re-
cover the Kerr solution, which means that we require
that ϑA = 0 should solve WA[ϑ] = 0 on a black hole
background. This means there should be no potentials
V which support nonzero configurations of scalar fields
in the limit ε → 0. With this in mind, we expand our
fields in powers of ε,

gab = g
(0)
ab + εg

(1)
ab + ε2g

(2)
ab +O(ε3) , (23)

ϑA = 0 + εϑ
(1)
A +O(ε2) , (24)

where we know that ϑA enters first at O(ε), consistent
with our requirement that ϑA = 0 in the limit ε→ 0. At
leading order we find that for the metric

Gab(g
(0)
cd ) = 0 , (25)

which is solved for by the vacuum Kerr solution.
Now looking at the Euler Lagrange equation of the

fields, at the next order we find

W(1,0)
A [ϑ(1)] = ρ

(0,0)
A , (26)

which are sourced wave equations that we must solve for

ϑ
(1)
A . Similarly at O(ε) we have

G
(1)
ab [g(1)] = Eab[g(1)] = 0 , (27)

where we have noted that our G(1) is just the standard
linearized Einstein operator on the background,

Eab[h] :=
1

2

[
2∇c∇(ahb)c −∇c∇chab −∇a∇bhcc

+ g
(0)
ab (∇c∇chdd −∇c∇dhcd)

]
. (28)

Here all covariant derivatives are with respect to g
(0)
ab .

There are no source terms for g
(1)
ab at this order, recall-

ing our requirements from Eqs. (13) and (14). As we
are interested in equilibrium solutions about a black hole

background, we see that g
(1)
ab = 0 and the metric is only

deformed away from Kerr at O(ε2).
At O(ε2) we have

Eab[g(2)] = T
ϑ(2,0)
ab [ϑ(1), ϑ(1)] + V

int(1,0)
ab [ϑ(1)] . (29)

The equilibrium solution to this sourced wave equation

gives the deformation g
(2)
ab to the Kerr metric.

D. Coupled field equations with propagating
degrees of freedom

Now we consider the case where in addition to the equi-
librium deviations to the spacetime, we allow for gravi-
tational wave perturbations hab. To do this, we further
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perturb g
(0)
ab by hab, and we introduce a second small

parameter η to track these perturbations. We consider
our solutions only up to the leading corrections in ε, in
order to derive the leading corrections to the ringdown
spectrum.

One complication to the usual treatment of gravita-
tional perturbations to Kerr is now the perturbations
couple to the additional fields ϑA, requiring in general
a simultaneous treatment of further, O(η) perturbations
to both. Physically, this is because perturbations to the
spacetime can “shake” the background fields and effec-
tively generate propagating degrees of freedom in them,
and vice versa. Practically it means that the corrections
to the ringdown spectrum arise both due to the defor-

mation of the metric g
(2)
ab and due to the coupling of the

equilibrium fields ϑ
(1)
A to these waves.

With this in mind we write our field expansions as

gab = g
(0)
ab + ε2g

(2)
ab + ηhab + . . . , (30)

ϑA = εϑ
(1)
A + ε2ϑ

(2)
A + ηϕA + . . . . (31)

Here ϕA represent wave degrees of freedom in the fields.
Inserting these expressions into our field equations and
expanding, we recover the same O(η0) expressions used

to derive ϑ
(1)
A and g

(2)
ab as before, Eqs. (26) and (29). At

O(η), we find up to O(ε2)

Eab[h] + 2ε2G(2)[h, g(2)] =

ε
[
2T

ϑ(2,0)
ab [ϑ(1), ϕ] + V

int(1,0)
ab [ϕ]

]
+ ε2

[
2T

ϑ(2,0)
ab [ϑ(2), ϕ] + T

ϑ(2,1)
ab [ϑ(1), ϑ(1), h]

+3T
ϑ(3,0)
ab [ϑ(1), ϑ(1), ϕ] + V

int(1,1)
ab [ϑ(1), h]

+2V int(2,0)[ϑ(1), ϕ]
]
. (32)

For the field degrees of freedom, we find to O(ε)

W(1,0)
A [ϕ]+2εW(2,0)

A [ϑ(1), ϕ] + εW(1,1)
A [ϑ(1), h] =

ερ
(1,0)
A [ϕ] + ερ

(0,1)
A [h] . (33)

Since our focus is on ringdown, in Eq. (32) we have
assumed that there are no O(η) matter sources for the
gravitational waves, and similarly no O(η) sources for the
fields in Eq. (33), but these can be added as appropriate.
We see that Eqs. (32) and (33) are coupled, due to the

nonzero background fields ϑ
(1)
A and the presence of the

interaction term in the Lagrangian Lint which is respon-
sible for V int

ab and ρA. To proceed, we ideally decouple
this linear system of equations for hab and ϕA.

E. Decoupling and partial decoupling of the field
equations

We know that in the limit ε→ 0, Eqs. (32) and (33) de-
couple, meaning that we can find solutions where ϕA = 0

and hab obeys the linearized Einstein equations, or where
hab = 0 and ϕA satisfies the generalized wave equation
on the background. We seek consistent solutions per-
turbing around each of these cases. In other situations
such an ansatz results in a complete decoupling of the
field equations, such as occurs for the electromagnetic
(EM) and gravitational QNMs of weakly charged Kerr-
Newman black holes [76]. In the class of field equations
treated here the problem is more complicated.

We start with the simpler case, where we seek a solu-
tion perturbing around the scalar QNMs,

ϕA = ϕ
(0)
A + εϕ

(1)
A +O(ε2) , (34)

hab = 0 + εh
(1)
ab +O(ε2). (35)

In this case, we find

W(1,0)
A [ϕ(0)] + 2εW(2,0)

A [ϑ(1), ϕ(0)] + εW(1,0)
A [ϕ(1)] =

ερ
(1,0)
A [ϕ(0)] , (36)

neglecting terms of O(ε2). Meanwhile, assuming ϕ ∼
O(1) and neglecting terms of O(ε2), we see that Eq. (32)

admits solutions hab = εh
(1)
ab , consistent with our ansatz.

This means that the equations for the fields ϕA have de-
coupled from hab at leading order. We discuss how to
solve Eq. (36) for O(ε) shifts to the QNM frequencies
associated with the fields ϕA in Sec. IV A below. Physi-
cally, this is the case where the beyond-GR effects modify
the free QNM ringing of the fields ϑA at O(ε), while at
the same time the ringdown of ϑA sources gravitational
modes at O(ε).

The gravitational case is of greater interest but unfor-
tunately is technically more involved. Here only a partial
decoupling can be achieved, which still provides a practi-
cal route for computing the QNM shifts. We take as our
ansatz

hab = h
(0)
ab + ε2h

(2)
ab +O(ε2) , (37)

ϕ = 0 + εϕ
(1)
A +O(ε2) . (38)

First we apply this ansatz to Eq. (33), giving

W(1,0)
A [ϕ(1)] +W(1,1)

A [ϑ(1), h(0)]− ρ(0,1)A [h(0)] = 0 (39)

when neglecting terms of O(ε2). We see that in this case,
we consistently source a solution ϕA ∼ O(ε) from a grav-
itational ringdown starting at O(1) in ε-counting. Mean-
while, Eq. (32) becomes

Eab[h(0)] + ε2
[
2G

(2)
ab [h(0), g(2)]− Tϑ(2,1)ab [ϑ(1), ϑ(1), h(0)]

−V int(1,1)
ab [ϑ(1), h(0)]− 2T

ϑ(2,0)
ab [ϑ(1), ϕ(1)]− V int(1,0)

ab [ϕ(1)]
]

+ ε2Eab[h(2)] = 0 , (40)

neglecting O(ε3) terms. We can see that had we included

a term εh
(1)
ab in our ansatz, we would have had an equa-

tion Eab[h(1)] = 0 which is no different than the equation
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obeyed by h
(0)
ab , so this correction can be absorbed into

the definition of h
(0)
ab . The beyond-GR effects only source

modifications to the QNMs at O(ε2). Together, Eqs. (39)
and (40) are a coupled set of equations, but that can
be solved order by order: First, a particular QNM solu-

tion h
(0)
ab is selected, and input into the source term in

Eq. (39), which is then solved for ϕ
(1)
A . With this, the

O(ε2) part of Eq. (40) can be solved.
In Sec. IV we describe a practical approach to compute

the shifts to the QNM frequencies from our decoupled
and partially decoupled equations. Before this, we give
some explicit examples of the various operators described
for particular theories of interest.

III. EXAMPLE APPLICATIONS

In Sec. II we provide general expressions for how the
QNM wave equations are modified in a class of beyond-
GR theories. Here we discuss particular cases in greater
detail, focusing on dCS and sGB gravity. We also dis-
cuss how the known approach to computing the QNMs
of weakly charged black holes [76] fits into our formalism.
This final case is an important example, both for how to
treat black hole deformations which are due to nontrivial
boundary conditions, and as an example of how a differ-
ent ε-scaling of the fields can be treated in our formalism.

A. Scalar fields coupled to curvature

Consider the case of a single scalar field ϑ coupled to
curvature quantities, and with a standard kinetic term in
the Lagrangian,

Lϑ = −1

2
gab(∂aϑ)(∂bϑ) . (41)

The form of the scalar wave equations for this situation
has been discussed using our notation below Eq. (15).
We can consider two cases of particular interest: dCS
and shift-symmetric sGB gravity.

In the first case, the dCS scalar couples to the
Pontryagin-Chern density ∗RR [43],

Lint = ϑRdCS , (42)

RdCS = −1

8
∗RR := −1

8
∗RabcdRabcd , (43)

∗Rabcd :=
1

2
εabefRef

cd . (44)

The static field ϑ(1) solves to leading order

�g(0)ϑ
(1) =

1

8
(∗RR)(0,0) . (45)

and (∗RR)(0,0) is the Pontryagin-Chern density evaluated
on the background Kerr metric. The static deformation

to the metric g
(2)
ab solves Eq. (29) with the interaction

term given in terms of the C-tensor,

V
int(1,0)
ab [ϑ(1)] = −C(0)

ab [ϑ(1)] , (46)

Cab[ϑ
(1)] := (ε(a

cde∇|d|Rb)c)∇eϑ(1) + ∗R(a
c
b)
d∇c∇dϑ(1) .

(47)

In the expression for the C-tensor, the Riemann tensor,
Ricci tensor, and covariant derivative are with respect

to the full metric, but for C
(0)
ab all these are evaluated

on the Kerr background. The solutions to these equa-
tions have been found to high order in a slow spin expan-
sion [67, 87] and numerically explored in the rapidly ro-
tating case [86]. For the dynamical perturbations to dCS,
the above equations together with Eqs. (21) and (22)
can be adapted in a straightforward manner to give the
terms in Eq. (40). The only element explicitly missing the
is the lengthy expansion of Cab around the background

to give V
int(1,1)
ab [ϑ(1), h(0)] = −C(1)

ab [ϑ(1), h(0)], which we
omit here for brevity.

The second case of interest is sGB gravity. We choose
our conventions to conform to those of [57], where ϑ
is made dimensionless by drawing an overall factor of
1/(2κ0) out of Lϑ and Lint, so that the action is

SGB =
1

2κ0

∫
d4x
√
−g [R+ Lϑ + εLint] . (48)

Here the curvature coupling is to the Gauss-Bonnet in-
variant

Lint = 2f(ϑ)RGB , (49)

RGB = RabcdRabcd − 4RabRab +R2 . (50)

In addition, we must select a potential f(ϑ). As men-
tioned previously, all choices where f ′ 6= 0 are equivalent
to leading order, up to rescaling of ε, and so we select the
simple shift-symmetric case f = ϑ. Then the operators
appearing in the scalar wave equations mirror those in
the dCS case, with ρ(0,0) simply twice the Gauss-Bonnet
scalar evaluated on the background. With these con-
ventions, ε is dimensionful, but can be rendered dimen-
sionless by drawing out factors of the total mass of the
system, see e.g. [58].

For sGB, the interaction terms in the equations for the

metric deformation g
(2)
ab are [57]

V
int(1,0)
ab [ϑ(1)] = −G(0)ab [ϑ(1)] , (51)

Gab[ϑ(1)] := 2gc(agb)dε
edfg∇h(∗Rchfg∇eϑ(1)) . (52)

The metric, curvature quantities, and covariant deriva-
tives in the expression for Gab are with respect to the
full metric, but are evaluated on the Kerr background

for G(0)ab . The solutions to these equations have been
found in a slow-spin expansion [67, 88, 89]. As with
dCS, the dynamical field equations (40) directly follow
from V int

ab at this order and Eqs. (21) and (22), together
with the expansion of Gab around the background to give

V
int(1,1)
ab [ϑ(1), h(0)]. Again, we omit this lengthy expres-

sion.
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B. Weakly charged black holes

Consider next the perturbations of weakly charged
black holes, where now ε = Q/M is the small dimension-
less charge of the black hole. In this case, the deformation
to the spacetime is simply the linearization of the exact
Kerr-Newman solution in ε2. These deformations to the
metric arise because of the EM stress-energy provided by
the electric and magnetic fields of the charged black hole.
In this situation, the additional fields ϑA can be taken to
be the components of the Maxwell stress tensor Fab, or
equivalently the Maxwell scalars φ0, φ1, and φ2 which
are the projections of Fab onto a null tetrad in the NP
formalism [80, 90].

In our language, there is no interaction Lagrangian
Lint, and hence both the source terms ρA in the wave
equations for the fields and the interaction potential V int

ab
vanish. Instead, the fields ϑA are nonzero because of the
boundary conditions at the horizon. Thus the solutions
of the leading field equations,

W(1,0)[ϑ(1)] = 0 , (53)

are nonzero, entering in at order ε due to the ε-small

charge, ϑA ≈ εϑ(1)A . These fields source stationary metric

deformations g
(2)
ab through T

ϑ(2,0)
ab [ϑ(1), ϑ(1)].

Turning to perturbations of the stationary solution, we
note that the linearity of Maxwell’s equations means that

W(j,k)
A = 0 for j ≥ 2, and so the field equations at O(η)

expand to O(ε2) as

W(1,0)[ϕ] + εW(1,1)
A [ϑ(1), h] + ε2W(1,1)

A [ϑ(2), h]

+ ε2W(1,1)
A [ϕ, g(2)] = 0 . (54)

Here we need to go to a higher order than before, because

it turns out the terms W(1,1)
A [ϑ(1), h] and W(1,1)

A [ϑ(2), h]
are pure gauge.

To see this, we write out the source-free Maxwell’s

equations for Fab using gab = g
(0)
ab + hab,

∇aF ab + SaacF
cb + SbacF

ac = 0 , (55)

Sabc :=
1

2
gad(0) (∇chdb +∇bhdc −∇dhbc) . (56)

Here ∇a is taken to be a covariant derivative with respect
to the background Kerr metric, and we have expanded
to leading order in the perturbation hab. We see that
the last term in Eq. (55) vanishes by the antisymmetry
of F ac, and by using the definition of Sabc and the fact

that g
(0)
ab commutes with ∇a we can simplify,

∇aF ab +
1

2
F ac∇chaa = 0 . (57)

However, the trace of the gravitational perturbations can
be set to zero by a choice of gauge, and hence we can set

terms like W(1,1)
A [ϑ, h] to zero for Maxwell’s equations.

With this, the coupled field equations for the dynami-
cal perturbations are simply

W(1,0)[ϕ] + ε2W(1,1)
A [ϕ, g(2)] = 0 . (58)

Eab[h] + 2ε2G(2)[h, g(2)] = 2εT
ϑ(2,0)
ab [ϑ(1), ϕ]

+ ε2
(

2T
ϑ(2,0)
ab [ϑ(2), ϕ] + T

ϑ(2,1)
ab [ϑ(1), ϑ(1), h]

)
. (59)

Note that T
ϑ(3,0)
ab [ϑ(1), ϑ(1), ϕ] = 0 since the stress-energy

is purely quadratic in the electromagnetic fields.
At this point, we run into an issue. When treating

the problem of coupled gravito-electromagnetic pertur-
bations of Kerr Newman black holes using the NP for-
malism [91, 92], charge enters the equations as Q2. Here
though it appears that the gravitational equations are

coupled at O(Q), through the term 2εT
ϑ(2,0)
ab [ϑ(1), ϕ]. We

can cure this issue by realizing that the consistent scal-
ing for the dynamical EM fields must be ϕ = εϕ(1) + . . . ,
when computing either the EM or gravitational shifts.

The fact that this scaling is appropriate can be justified
from a few perspectives. One approach is to recognize
that one of the gauge-invariant combinations of EM and
gravitational perturbations is [92, 93]

ΦEM = 2φA1 ΨB
1 − 3ΨA

2 φ
B
0 , (60)

where φA1 is the Maxwell scalar associated with the back-

ground fields ϑ
(1)
A , φA1 ∼ O(ε), ΨB

1 is a Weyl curva-
ture scalar associated with the gravitational perturba-
tions hab, ΨA

2 is the non-vanishing background Weyl cur-
vature scalar, and φB0 is the Maxwell scalar associated
with the EM perturbations. Taking both contributions
to ΦEM on equal footing indicates that φB0 ∼ O(ε), hence,
in the language of our formalism, ϕA ∼ O(ε).

Another argument is essentially physical. The reason
for the coupling between EM and gravitational pertur-
bations of Kerr Newman is that a perturbation to the
spacetime naturally “shakes” the background electric and
magnetic field lines, generating propagating degrees of
freedom. Meanwhile, dynamical perturbations to the
field lines naturally alter the curvature sourced by these
matter fields. By insisting that the dynamical perturba-
tions to the EM fields is of the same order as the station-
ary EM fields, we assert that the QNM ringing is due
to the ringing of these field lines, even in the case where
we expand around the background EM QNMs by taking

hab = ε2h
(2)
ab , which is used to decouple the equations.

Setting this scaling, we arrive at equations with cou-
plings at the expected orders,

W(1,0)[ϕ(1)] + ε2W(1,1)
A [ϕ(1), g(2)] = 0 . (61)

Eab[h] + 2ε2G(2)[h, g(2)] = 2ε2T
ϑ(2,0)
ab [ϑ(1), ϕ(1)]

+ ε2T
ϑ(2,1)
ab [ϑ(1), ϑ(1), h] . (62)

The fact that the corrections to both leading order equa-
tions is ε2 allows for a complete decoupling when com-
puting the QNM shifts using the EVP method [76]. To
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confirm that the chosen scalings are appropriate, we can

project the coupling term T
ϑ(2,0)
ab [ϑ(1), ϕ(1)] into the NP

language and compare to the known NP result. We show
that these expressions agree in Appendix B.

To make use of these equations, we would next project
both the gravitational and EM expressions into the NP
formalism, the former using the method described below
in Sec. IV B, and the latter using the projection operator
SaE defined in [83].

IV. SPECTRAL SHIFTS AND A MODIFIED
TEUKOLSKY EQUATION

With our decoupled and partially decoupled field equa-
tions from Sec. II E, we can derive the shifts to the QNM
frequencies of Kerr due to the deformations of the black
hole, and the additional coupling of the gravitational
waves to the dynamics of the extra fields ϑA. Our pri-
mary tool is the EVP approach given in [76]. To in-
troduce this approach and provide a simple example of
the formalism, we first derive an expression for the QNM
shifts for the ringdown of the propagating degrees of free-
dom of the fields, ϕA.

A. Shifts for the field QNMs

We take as our starting point the decoupled Eq. (36).
Our QNM solutions can be expanded as

ϕ
(0)
A = e−iωteimφϕ̃(0)

A,mω(r, θ) (63)

in terms of Boyer-Lindquist coordinates xµ = (t, r, θ, φ).
The symmetries of the background guarantee separation
of frequencies and angular modes, so the leading equation
is

W(1,0)
A [ϕ(0)]→ W̃(1,0)

A,mω[ϕ̃(0)
mω(r, θ)] = 0 , (64)

where W̃(1,0)
A depends on ω,m, r and θ since azimuthal

and time derivatives in the linear operator bring down
factors of −iω and im. This is solved for the QNM

wavefunctions ϕ
(0)
A,mω(r, θ) and discrete frequencies ω(0)

by setting outgoing boundary conditions at asymptotic
infinity and ingoing boundary conditions at the horizon.
We leave implicit the indexing of these modes and the
indexing of their frequencies. For the separable case of
scalar fields, the QNMs are indexed azimuthal quantum
number ` and an overtone number n in addition to the
magnetic quantum number m.

The O(ε) corrections to the ϕA QNMs come in two
flavors. There are those corrections that leave the wave-
functions intact but shift the QNM frequencies,

ω = ω(0) + εω(1) , (65)

and those that shift the wavefunctions. Specifically, we
expand Eq. (63) as

ϕA = e−i[ω
(0)+εω(1)]teimφ(ϕ̃

(0)
A,mω + εϕ̃

(1)
A,mω) (66)

so that, viewing W̃A as a frequency-dependent linear op-
erator,

WA(ϕ) ≈
[
W̃(1,0)
A,mω[ϕ̃(0)

mω] + εω(1)(∂ωW̃(1,0)
A )mω[ϕ̃(0)

mω]

+εW̃(1,0)
A,mω[ϕ̃(1)

mω]
]
e−iω

(0)te−imφ . (67)

The parts ω(1) and ϕ̃
(1)
A,mω are in direct analogy to the

shifts of the quantum mechanical eigenvalues and wave-
functions in time-independent perturbation theory. The
leading order term vanishes by definition of the unper-
turbed modes.

At the next order then we find

ω(1)(∂ωW̃(1,0)
A )mω[ϕ̃(0)

mω] + ŨA,mω[ϕ̃(0)
mω]

+ W̃(1,0)
A,mω[ϕ̃(1)

mω] = 0 , (68)

where we have defined the operator ŨA,mω via

ŨA,mω[ϕ̃(0)
mω] = 2W̃(2,0)

A,mω[ϑ(1), ϕ̃(0)
mω]− ρ̃(1,0)A,mω[ϕ̃(0)

mω] (69)

and all quantities are evaluated at the unperturbed QNM
frequency ω(0). By the symmetry of the background met-

ric, ϑ
(1)
A must be independent of t and φ and so do not

mix frequencies or azimuthal modes.
In order to isolate the frequency shifts ω(1) we apply

the same technique used in quantum mechanics: we de-
fine a product on QNM wavefunctions with respect to
which the leading-order wave operator is self-adjoint,

〈ψ̃A|W̃(1,0)
A,mω[ξ̃]〉 = 〈W̃(1,0)

A,mω[ψ̃]|ξ̃A〉 . (70)

This product must also be finite. The first requirement is
accomplished by integrating the wavefunctions in r and
θ with respect to a weight w(r, θ) that can be chosen to

enforce that W̃(1,0)
A,mω is self-adjoint. Ensuring the product

is finite is not completely straightforward, since the QNM
wavefunctions blow up at the horizon and spatial infinity
on slices of constant Boyer-Lindquist time t. However, a
trick introduced by Leaver works [94]: we promote r to a
complex variable and deform the radial integration con-
tour into the complex plane, wrapping around the outer
horizon, where the QNM wavefunctions have a branch
point. By placing both ends of the contour in the upper
half plane where the QNM wavefunctions decay expo-
nentially, the integral can be regulated. The contour is
illustrated in Fig. 1.

We take the product of Eq. (68) with the leading solu-

tion ϕ̃
(0)
m and use the self-adjoint property of the product

to eliminate the term that depends on ϕ̃
(1)
A,mω. The re-

sulting shift is

ω(1) = − 〈ϕ̃(0)A
mω |ŨA,mω[ϕ̃

(0)
mω]〉

〈ϕ̃(0)A
mω |(∂ωW̃(1,0)

A,mω)[ϕ̃
(0)
mω]〉

. (71)
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r+r−

Im(r)

Re(r)

FIG. 1. Depiction of the radial integration contour in the
complex plane. The QNM wavefunctions have a branch point
at the outer horizon r+, which the contour wraps.

Given the equilibrium field ϑ
(1)
A , the operator ŨA,mω,

and the susceptibility of the leading wave equations

∂ωW̃(1,0)
A,mω, the leading order QNMs can thus be used to

compute the frequency shifts.
It should be noted that if Eq. (64) does not separate,

solving for the mode wavefunctions may be computation-
ally challenging, requiring a two-dimensional elliptical
solve for each frequency and angular mode, while seek-
ing the particular frequencies that satisfy the boundary
conditions. Methods to solve for QNMs in similar cir-
cumstances have been implemented in many studies, see
e.g. [92] and the references therein. If numerical, rather
than series solutions are employed, an alternative regu-
larization technique is likely needed for the radial inte-
grals. Finally, we note that we have been fairly careless in
specifying how the abstract indices A should be treated
in the inner products, as this depends on the particular
problem at hand. For a single scalar field, as with dCS
and sGB gravity, the situation is trivial, while for vector
fields the Maxwell equations can be projected into the
NP language, and once again the problem reduces to the
treatment of scalar fields with common modes. We turn
next to the treatment of gravitational perturbations.

B. Modified Teukolsky equation

With the method outlined, the next step is to re-
cast the partially coupled gravitational equations (39)
and (40) into a form amenable to the EVP method.
The challenge is that there is no known gauge where
the metric perturbations of Kerr separate, allowing for
convenient computation. Instead, the Teukolsky for-
malism provides a separable master equation for spin-

weighted scalars ψs, which are directly proportional to
the Weyl curvature scalars Ψ0 and Ψ4 [79]. The mas-
ter equation is derived using the NP formulation of the
field equations and Bianchi identities [80, 90]. Separation
of the scalars allows for easy computation of the QNM
frequencies ω`mn and wavefunctions, e.g. using Leaver’s
method [95]. In turn, the technique of metric reconstruc-
tion allows for the recovery of metric perturbations hab
corresponding to a given curvature perturbation ψs in a
radiation gauge [82–85]. The simplest approach works
provided there are no sources where the metric is recon-

structed, which is the case of interest for us, since h
(0)
ab

are the usual QNMs in vacuum (the impact of the ex-
tended fields ϑA enters at higher orders in ε). A method
for metric reconstruction in the Lorenz gauge has also
been recently derived [96].

These conveniences motivate us to recast Eq. (40) in
terms of the Teukolsky scalars ψs. For this we make use
of the operator formalism introduced by Wald [83]. Let
T be the linear differential operator that takes a metric
perturbation of Kerr hab into the spin-weighted scalar ψs.
Then ψs obeys the Teukolsky master equation

OT [hcd] = O[ψs] = SabEab[hcd] , (72)

where Sab is linear differential operator that can be read
off the right hand side of Teukolsky’s equation. The
derivation of the Teukolsky equation can be seen as an
operator identity which applies for any rank two tensor
field hab. Just as O depends on which spin-weighted
scalar is considered (ψ2 corresponding to the Weyl scalar
Ψ0 and ψ−2 corresponding to Ψ4), the projection op-
erator Sab depends on which spin-weight is considered.
Either choice s = ±2 can be used since, up to gauge
and shifts in the mass and spin of the Kerr black hole,
all information about the perturbations are present in ei-
ther quantity [97]. The expression for Sab is succinctly
provided by using the Geroch-Held-Penrose (GHP) for-
malism [98] in Eq. (B5.a) of [99]. When using that ex-
pression, note that the usual factor of κ0 = 8π appearing
in front of the stress-energy tensor in the Einstein field
equations has been absorbed into Tab.

To see that we can apply the operator formalism to

our problem, consider the ansatz that gab = g
(0)
ab + ηhab

and linearize the Einstein tensor in hab about the Kerr

background g
(0)
ab . Similarly, linearize the Bianchi iden-

tities about the background. Neither the definition of
the Einstein tensor nor the Bianchi identities rely on the
Einstein field equations, and their projection into the NP
equations similarly just relies on choosing a null tetrad.
In addition, the commutation relations used by Teukol-
sky in deriving the master equation hold provided the
directional derivatives and spin coefficients are defined
on the Kerr background. Thus, none of the steps in the
derivation of OT = SabEab change, provided all of these
operators are defined on the Kerr background.

With the operator identity in hand, we apply Sab to
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Eq. (40) and use the identity to write

O[ψ(0)
s ]+ε2O[ψ(2)

s ] + ε2V[h(0)] + ε2C[ϕ(1)] = 0 , (73)

V[h(0)] =Sab(2G(2)
ab [h(0), g(2)]− Tϑ(2,1)ab [ϑ(1), ϑ(1), h(0)]

− V int(1,1)
ab [ϑ(1), h(0)]) , (74)

C[ϕ(1)] =− Sab(2Tϑ(2,0)ab [ϑ(1), ϕ(1)] + V
int(1,0)
ab [ϕ(1)]) ,

(75)

Equations (73)–(75) are a modified Teukolsky equation.
They incorporate both corrections to the leading-order

expression due to the deformation to the background g
(2)
ab

and through the modified dynamics, which couple the
gravitational waves to the field degrees of freedom. It is
not fully decoupled from (39), but as discussed previously
Eq. (73) can be solved at O(1) in the usual manner for the
separable QNM wavefunctions and frequencies. These in
turn can be used to reconstruct the leading order QNM

metric perturbations h
(0)
ab , for example using the meth-

ods of [85, 100]. Those can be used to solve for the fields

ϕ
(1)
A , which therefore can be viewed as being given by

complicated linear operators on h
(0)
ab (i.e. through con-

volution with a Green’s function). Finally, the solutions

ϕ
(1)
A can be fed back into Eq. (73) to solve for the O(ε2)

corrections to the waves.

C. Shifts for the gravitational wave QNMs

Now that we have a modified Teukolsky equation, we
can repeat our expansions in terms of frequency and an-
gular harmonics and apply EVP theory. We encounter a
new conceptual issue as compared to the scalar case in
Sec. IV A and to previous applications of the EVP for-
malism to the shifts of QNM frequencies in Kerr. The
complication is that the modified Teukolsky equation for

the complex scalar ψs depends on the real quantity h
(0)
ab .

Schematically, given a QNM ψs, the reconstructed h
(0)
ab

involves a linear combination of both ψ
(0)
s and its com-

plex conjugate ψ
(0)∗
s ,

h
(0)
ab = Kab[ψ(0)

s ] +K∗ab[ψ(0)∗
s ] , (76)

where Kab is implicitly defined through this expression,
and is a linear operator used to carry out metric re-
construction. This combination of operators inevitably
mixes together two closely related families of QNM solu-
tions in the harmonic expansion of Eqs. (73)–(75).

To proceed we divide the QNM frequencies into two
sets according to the sign of their real part, ω+

`mn and

ω−`mn. In Kerr, each QNM frequency with positive real
part is paired with a corresponding mode with the same
imaginary part but negative real part, and with opposite
magnetic quantum numberm (see e.g. [101]). This means
these modes obey

ω+
`mn = Ω`mn − iγ`mn , (77)

ω−`−mn = −Ω`mn − iγ`mn , (78)

where we have denoted the real part of the frequency
as Ω`mn and the decay rate of the mode as γ`mn. Hence
ω+
`mn = −(ω−`−mn)∗. These frequency pairs can be viewed

as degenerate eigenvalues for perturbations of Kerr, and
to apply the EVP method on the deformed Kerr space-
time we must consider combinations of both modes.

Consider the situation where the Weyl scalars are made
up of a single pair of positive and negative frequency
harmonics, of the form

ψs = ψ+
s + α∗ψ−s , (79)

ψ+
s = ψ̃+

s`mn(r, θ)e−iω
+
`mnt+imφ , (80)

ψ−s = ψ̃−s`−mn(r, θ)e−iω
−
`−mnt−imφ . (81)

Here α is a complex constant, and we have absorbed an
overall amplitude and phase into the definition of the
wavefunctions, so that all that matters is their relative
amplitude and phase. We use the complex conjugate α∗

for later convenience. As we did when computing the
frequency shifts for ϕA, we divide the perturbations to
the QNMs into frequency shifts and perturbations to the
wavefunctions, so that

ψ+
s ≈ ψ+(0)

s + ε2ψ+(2)
s

≈ exp[−i(ω+(0)
`mn + ε2ω

+(2)
`mn )t+ imφ](ψ̃

+(0)
s`mn + ε2ψ̃

+(2)
s`mn)
(82)

and similarly for ψ−s . The leading order wavefunctions
are given by

ψ̃
+(0)
s`mn = sR`mω(r)sS`mω(θ) , (83)

ψ̃
−(0)
s`−mn = sRs`−m−ω∗(r)sS`−m−ω∗(θ) , (84)

where sR`mω solves the radial Teukolsky equation for

a QNM frequency ω
+(0)
`mn , and sS`mω is the correspond-

ing spin-weighted spheroidal harmonic [79]. Similarly,

sRs`−m−ω∗ is the paired wavefunction with −m for the

magnetic quantum number, and −(ω
+(0)
`mn )∗ = ω

−(0)
`−mn in-

serted for the frequency, with Ss`−m−ω∗ the correspond-
ing spin-weighted spheroidal harmonic.

Viewing the additional fields ϕ
(1)
A as linear functionals

of h
(0)
ab , so that ϕ

(1)
A = ϕA[h(0)], Eq. (73) becomes

O[ψ+(0)
s + ε2ψ+(2)

s ] + ε2
(
F [ψ+(0)

s ] + αG[ψ−(0)s
∗]
)

+ α∗O[ψ−(0)s + ε2ψ−(2)s ] + ε2
(
α∗F [ψ−(0)s ] + G[ψ+(0)

s
∗]
)

= 0 . (85)

This expression is organized so that the terms on the
first line and the second line must vanish independently
once expanded in time and angular harmonics. We have
defined

F = (V + Cϕ)K , (86)
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G = (V + Cϕ)K∗ . (87)

Next we expand Eq. (85) in harmonics.
By now the rapidly multiplying decorations on each

quantity have become unmanageable, so from here we
leave the s, ` and n indices implicit. As before, we write
the action of a linear operator on a positive-frequency
harmonic expansion as

O[ψ̃+
me
−iω+t+imφ] = e−iω

+t+imφÕmω[ψ̃+
m] . (88)

Importantly, we define frequency-domain operators Õmω
as evaluated on the positive frequency modes ω+

m and
their corresponding m, so that we do not need to fur-
ther specify which set of frequencies they are evaluated
on. Then, when expanding operators on the negative fre-
quency modes, we exploit the relationship between the
positive and negative frequency modes to write, for ex-
ample,

O[ψ̃−−me
−iω−t−imφ] = e−iω

−t−imφÕ−m−ω∗ [ψ̃−−m] , (89)

Since at our level of approximation, the operators are al-
ways evaluated on the leading order frequencies, there is
no ambiguity in relating positive and negative frequency
modes.

With this, the action of the Teukolsky operator on ψ±,
when expanded in ε, are

O[ψ+] ≈ε2(ω+(2)
m (∂ωÕ)mω[ψ+(0)

m ] + Õmω[ψ+(2)
m ]) , (90)

O[ψ−] ≈ε2(ω
−(2)
−m (∂ωÕ)−m−ω∗ [ψ

−(0)
−m ]

+ Õ−m−ω∗ [ψ
−(2)
−m ]) , (91)

where

(∂ωÕ)−m−ω∗ = [∂ω(Õmω)]m→−m,ω→−ω∗ . (92)

With this, we expand the modified Teukolsky equation
in harmonics and equate each independent harmonic to
zero. This gives the following equations:

ω+(2)
m (∂ωÕ)mω[ψ+(0)

m ] + F̃mω[ψ̃+(0)
m ] + αG̃mω[(ψ

−(0)
−m )∗]

+ Õmω[ψ̃+(2)
m ] = 0 , (93)

α∗ω−(2)−m (∂ωÕ)−m−ω∗ [ψ
−(0)
−m ] + α∗F̃−m−ω∗ [ψ̃

−(0)
−m ]

+ G̃−m−ω∗ [(ψ̃+(0)
m )∗] + α∗Õ−m−ω∗ [ψ̃

−(2)
−m ] = 0 . (94)

In addition, we have the complex conjugates of these
equations, which forms an eigensystem to solve for the
frequency shifts.

In fact, the system to use is Eq. (93) and the com-
plex conjugate of Eq. (94). The zeroth order frequen-

cies from those expressions are ω
+(0)
`mn and −(ω

−(0)
`−mn)∗,

which are equal as noted. Hence the problem is one of
degenerate perturbation theory: we seek two indepen-
dent linear combinations of ψ+

s and (ψ−s )∗, which can
be viewed as the correct modes whose frequencies are

shifted. This is the reason for making the prefactor α∗

explicit in Eq. (79). To proceed, we set

ω+(2)
m = −(ω

−(2)
−m )∗ := ω(2)

m (95)

and solve for the ratio of amplitudes α that allows for a

consistent solution for ω
(2)
m .

First, we must eliminate the perturbed wavefunctions

ψ̃
+(2)
s and (ψ̃

+(2)
s )∗, which we accomplish as in Sec. IV A,

by left multiplication by the appropriate zeroth-order
wavefunctions, and using contour integration with a
weight to make Õmω and (Õ−m−ω∗)∗ self-adjoint. Af-
ter doing so, we make the convenient definitions

〈δO+〉 = 〈ψ+(0)
m |(∂ωÕ)mω[ψ+(0)

m ]〉 , (96)

〈F+〉 = 〈ψ̃+(0)
m |F̃mω[ψ̃+(0)

m ]〉 , (97)

〈G+〉 = 〈ψ+(0)
m |G̃mω[(ψ

−(0)
−m )∗]〉 , (98)

〈δO−〉 = 〈ψ−(0)−m |(∂ωÕ)−m−ω∗ [ψ
−(0)
−m ]〉∗ , (99)

〈F−〉 = 〈ψ̃−(0)−m |F̃−m−ω∗ [ψ̃
−(0)
−m ]〉∗ (100)

〈G−〉 = 〈ψ−(0)−m |G̃−m−ω∗ [(ψ̃+(0)
m )∗]〉∗ . (101)

In terms of these, our system is

ω(2)〈δO+〉+ 〈F+〉+ α〈G+〉 = 0 , (102)

−αω(2)〈δO−〉+ α〈F−〉+ 〈G−〉 = 0 . (103)

We get a consistent solution provided α obeys the
quadratic equation

α2 +

[
〈F+〉
〈G+〉

+
〈F−〉〈δO+〉
〈G+〉〈δO−〉

]
α+
〈G−〉〈δO+〉
〈G+〉〈δO−〉

= 0 .

(104)

The solution is

ω(2) = −〈F+〉+ α〈G+〉
〈δO+〉

. (105)

We see that in general there are two solutions for
how the QNM frequency pair is perturbed, splitting the
degenerate positive and negative frequency modes into
two distinct linear combinations of modes. The shift of
Eq. (105) can be further refined using the two solutions
to Eq. (104). However, the current form is useful also
in the (presumably rare) cases where the positive and
negative frequency modes do not couple in the modified
Teukolsky equation, as is the case for perturbations of
weakly-charged Kerr Newman black holes.

In Kerr, the presence of the modes with ω−`mn with

their relation to the ω+
`mn modes guarantees that pairs

of QNMs with opposite parity, even and odd, share the
same frequency, see Appendix C of [100]. Thus the pair-
ing is a manifestation of the famous isospectrality of axial
and polar perturbations of Schwarzschild (see e.g. [26]) in
the Kerr spacetime. The splitting of these modes under a
generic perturbation appears to be related to a breaking
of isospectrality under generic deformations of Kerr.
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This completes our derivation of the QNM shifts.
Much remains to be desired, including the selection of
a specific metric reconstruction approach and the sim-
plifications of the various operators defined implicitly in
this subsection. We leave this and a further discussion
of issues of QNM parity and isospectrality breaking to
future work.

V. NEWMAN PENROSE APPROACH TO A
GENERALIZED TEUKOLSKY EQUATION

An alternative way to get the corrections to the Teukol-
sky operator of Eq. (73) is to redo the derivation in the
original paper by Teukolsky [79], keeping all the terms
that were set to zero based on assumptions about the
background spacetime and chosen tetrad. We give the
basic character of the results here, but defer the deriva-
tion and full result to Appendix C. For completeness, we
state the ingredients that go into deriving the Teukol-
sky equation. For this derivation, we consider a split-
ting into “background” perturbations which are O(η0)
and “dynamical” perturbations which are O(η). Thus,
the background in principle includes stationary deforma-

tions to Kerr, such as the O(ε) corrections g
(2)
ab discussed

previously, and all background NP quantities are defined
with respect to this background metric and an appropri-
ate null tetrad. The dynamical degrees of freedom then
propagate on this background, and are due to the O(η)
perturbations hab to the metric (i.e. due to the QNMs, in-
cluding O(ε2) corrections to them) and to the dynamical
fields ϕA.

First one needs two Bianchi identities in the NP for-
malism,

(δ∗ − 4α+π)Ψ0 − (D − 4ρ− 2ε)Ψ1 − 3κΨ2 =

(δ + π∗ − 2α∗ − 2β) Φ00 − (D − 2ε− 2ρ∗) Φ01

+ 2σΦ10 − 2κΦ11 − κ∗Φ02 , (106)

and

(∆− 4γ+µ)Ψ0 − (δ − 4τ − 2β)Ψ1 − 3σΨ2 =

(δ + 2π∗ − 2β) Φ01 − (D − 2ε+ 2ε∗ − ρ∗) Φ02

− λ∗Φ00 + 2σΦ11 − 2κΦ12 , (107)

as well as one spin coefficient equation,

(D − ρ− ρ∗ − 3ε+ ε∗)σ

− (δ − τ + π∗ − α∗ − 3β)κ−Ψ0 = 0 . (108)

Lastly, we require a modification to the commutator iden-
tity used by Teukolksy,

[D − (p+ 1)ε+ ε∗ +qρ− ρ∗] (δ − pβ + qτ)−
[δ − (p+ 1)β − α∗ + π∗ + qτ ] (D − pε+ qρ) = Ep,q ,

(109)

where

Ep,q =σδ∗ − κ∆ + q[(τ∗ + π − β̄ + 3α)σ

+ (µ∗ − µ− γ∗ − 3γ)κ+ 2Ψ1]−
p[(α+ π)σ + (−γ − µ)κ+ Ψ1] , (110)

for any constants p and q, as derived in Appendix C. For
backgrounds where κ = σ = 0 and Ψ1 = 0, the correc-
tions Ep,q to the original identity vanish. In our deriva-
tion of the modified Teukolsky equation, no Ricci Iden-
tities are used, so any change to the equations of motion
coming from beyond-GR effects can be absorbed into the
Ricci scalars Φij , and so do not modify our derivation.

Similar to the derivation in [79], we expand all the
tetrads, NP scalars and derivatives into background
and dynamical parts. Schematically, we write them as
ψA + ηψB for any NP quantity or derivative, where the
superscript B denotes the wavelike perturbation of the
quantity and the superscript A denotes the background
value of the quantity. Expanding, we collect the O(η)
terms, since as before, the O(η0) equations must be sat-
isfied by the background solution.

Simply stating the results we derived in Appendix C
here, we find that schematically the modified Teukolsky
equation takes the form

OA[ψB0 ] = TA0 [ΦBij ] +K (111)

This notation follows that of [79]. In Eq. (111), OA and
TA0 are made up of the same NP quantities as the Teukol-
sky master equation, except that they incorporate the
O(ε2) deformations to the metric and the corresponding
corrections to the tetrad, specifically

OA = (D − 3ε+ ε∗ − 4ρ− ρ∗)A(∆− 4γ + µ)A

− (δ + π∗ − α∗ − 3β − 4τ)A(δ∗ + π − 4α)A − 3ΨA
2 ,

(112)

and

TA0 [ΦBij ] =

[D − 3ε+ ε∗ − 4ρ− ρ∗]A(δ + 2π∗ − 2β)AΦB01

−[D − 3ε+ ε∗ − 4ρ− ρ∗]A(D − 2ε− 2ρ∗)AΦB02

−[δ − 3β − α∗ + π∗ − 4τ ]A(δ + π∗ − 2α∗ − 2β)AΦB00

+[δ − 3β − α∗ + π∗ − 4τ ]A (D − 2ε+ 2ε∗ − ρ∗)A ΦB01 ,
(113)

where A denotes that the quantity is evaluated on the be-
yond Kerr background. Meanwhile, the termK [provided
in (C52)] includes any additional modifications which
cannot be captured in this way. This equation is sup-
plemented by an equation governing ΨB

4 , which is the
GHP dual of Eq. (111).

While it is true, and is shown in the appendix, that
K = 0 on vacuum Type D backgrounds in relativity, for
beyond-GR theories we do not expect that the Goldberg-
Sachs theorem [80] enforces the additional simplifications
κ = σ = 0 (and their GHP dual relations) that usually
arise for Type D spacetimes. To avoid any ambiguity we
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spell out the conditions required for K to vanish. We
must firstly have that

σA = κA = λA = ΨA
0 = ΨA

1 = 0 . (114)

Next we must have a background that is a vacuum, specif-
ically all the background Ricci scalars vanish,

ΦAij = 0 , (115)

and lastly one needs that the background Ψ2 follows the
two equations

DΨA
2 = 3ρAΨA

2 and δΨA
2 = 3τAΨA

2 . (116)

Since we are interested in beyond-GR theories, the con-
dition of Eq. (115) does not hold in our case, but some
or all of the conditions in Eq. (114) may hold, partic-
ularly when the background metric remains Type D, in
which case ΨA

0 = ΨA
1 = 0 (as well as the dual relations

ΨA
3 = ΨA

4 = 0). The full equation we have derived does
not assume any of these conditions, but the above condi-
tions achieve the reduction of Eq. (111) to the Teukolsky
equation. When only a portion of the conditions hold,
various contributions to K vanish.

The simplicity of Eq. (111) belies the underlying com-
plexity of the terms in K, and the resultant equation
couples to the wave perturbations of many other NP
scalars, necessitating some tetrad-reconstruction proce-
dure in general. As with our alternate derivation in
Secs. II and IV, this equation also couples to the ad-
ditional fields, which appear in the Ricci scalars, and
must be supplemented with equations of motion for those
fields. For work that focuses on this approach to com-
puting the QNM shifts, and exploits gauge and tetrad
choices to further simplify the above expressions, we re-
fer to [81].

VI. CONCLUSIONS

In this work we have derived a modified Teukolsky
equation for gravitational perturbations in a broad class
of beyond-GR theories, with the goal of computing the
shifts to the QNM spectrum in such theories. Our ap-
proach is primarily adapted to quadratic gravity models
when the modifications to gravity are perturbative, such
as dCS and sGB gravity in the decoupling limit. How-
ever it can be modified to capture other cases, which we
have illustrated by considering the case of weakly charged
black holes. The modified Teukolsky equation is cou-
pled to additional fields, those which are non-minimally
coupled to the curvature and source deformations to the
background Kerr solution. Our equation incorporates
corrections from both the deformation to the Kerr back-
ground and the changes to the dynamics of the fields
arising from the modified equations of motion.

By using as an ansatz that we seek solutions which
perturb around the QNMs of Kerr black holes, we can

partially decouple the additional fields from the gravita-
tional QNMs. This allows for a hierarchical approach to
computing the shifts to the QNM spectra as follows. First
one computes the unperturbed QNM wavefunction for a
given mode on Kerr, including the reconstructed metric

perturbation h
(0)
ab for that mode. This mode serves to

source the additional fields ϑ
(1)
A , usually a non-minimally

coupled scalar field. With the solution to this sourced
scalar, and the unperturbed QNM wavefunction, the cor-
rection to the gravitational QNM frequency can be com-
puted. Finally, we illustrate how these equations can be
used in a concrete expression for the gravitational QNM
shifts, using EVP theory. Along the way, we have shown
that in general deviations from Kerr lift a degeneracy be-
tween positive and negative frequency modes, requiring
degenerate perturbation theory to resolve the spectral
shifts. The connection between these degeneracies, par-
ity breaking, and the loss of isospectrality will be the
subject of future studies.

In this work we do not compute the QNM shifts for any
particular theory. Practical application of our formalism
requires a number of nontrivial steps, which are the tar-
get of future work. To apply our approach, we first must
choose a beyond-GR theory, such as dCS or sGB, com-
pute the non-minimally coupled fields which are sourced
by the background Kerr curvature, and use these as a
source for solving for the stationary metric deformation,

which we denote g
(2)
ab in this work. Next, we require the

solutions for the dynamical field degrees of freedom ϕ
(1)
A ,

generically sourced by the dynamical gravitational QNM

h
(0)
ab . With these elements in place it is straightforward to

compute the QNM shifts. However, our EVP approach
requires the ability to evaluate these quantities for com-
plex r, both inside and outside of the outer horizon r+.
Series solutions for these quantities would be ideal for
this purpose, particularly solutions which are nonpertur-
bative in the black hole spin parameter χ. If particular
cases require direct numerical solutions for any of these
quantities, our approach can be adapted by regularizing
the required integrals by some other means. For exam-
ple, hyperboloidal slicing could provide a promising al-
ternative approach [102–104]. It would also be valuable
to compare specific QNM shifts to those observed in nu-
merical simulations of dCS and sGB binary black hole
mergers [56, 58].

Our approach may also prove valuable in extending ap-
proaches that predict QNMs from generic, parametrized
deviations from the Regge-Wheeler and Zerilli poten-
tials around non-spinning and slowly spinning black
holes [105, 106], and those that seek to reconstruct the
deformations of the effective potential from the QNM
shifts [107]. The method presented here would allow
for the mapping of specific, stationary deformations from
the Kerr spacetime, such as those arising from “bumpy”
black holes [108], onto QNM shifts. However, without
an underlying theory for how such deviations are sup-
ported, our derivation shows that contributions to the
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frequency shifts from modifications to the equations of
motion and coupling to additional degrees of freedom
would be missed.

The formalism presented here represents a first step
towards a concrete prediction of the full QNM spectrum
in specific theories beyond-GR, for Kerr black holes with
arbitrary spin. With such predictions, direct constraints
on the coupling parameters can be derived by applying
Bayesian inference on past and future gravitational wave
detections. Unlike the case of parametrized null tests,
by using specific theories it is straightforward to com-
bine a large number of detections in precision searches
for beyond-GR effects in black hole ringdown. In ad-
dition, if parametrized ringdown tests uncover a viola-
tion of the predictions of relativity, the ability to predict
the shifts to the QNM spectra in particular theories is
critical to identifying the physics underlying such devia-
tions. As we move into the era of precision gravitational
wave physics, we can hope that such subtle deviations
will point the way to a new paradigm for gravitation.
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Appendix A: Operator G(2)

In order to compute the QNM shifts, the expression

G
(2)
ab [h(0), g(2)] is required, as in Eq. (40). To derive it,

we first consider the general problem of expanding the
Einstein tensor Gab around a generic perturbation to a

background metric, gab = g
(0)
ab + hab. In what follows, all

covariant derivatives are with respect to the background

metric g
(0)
ab and all indices are raised and lowered with

the background metric.
First we expand the Riemann tensor in powers of hab,

Rab(g
(0) + h) = R

(0)
ab +R

(1)
ab [h] +R

(2)
ab [h, h] + . . . , (A1)

where R
(0)
ab = Rab(g

(0)) is the full Ricci tensor evaluated

on the background metric, R
(1)
ab is linear in hab and R

(2)
ab

is quadratic in hab. We have (e.g. [109])

R
(1)
ab [h] =∇c∇(ahb)c −

1

2
(∇c∇chab +∇a∇bhcc) ,

(A2)

R
(2)
ab [h, h] =

1

2

[
hcd(∇a∇bhcd +∇c∇dhab − 2∇d∇(ahb)c)

− (∇ch̄cd)(2∇(ahb)d −∇dhab)

+
1

2
(∇ahcd)(∇bhcd)

+(∇chbd)(∇chad −∇dhac)
]
, (A3)

where we have defined the trace-reversed perturbation

h̄ab = hab− (1/2)g
(0)
ab g

cd
(0)hcd. The Einstein tensor is then

Gab(g) = G
(0)
ab +G

(1)
ab [h] +G

(2)
ab [h, h] + . . . , (A4)

where G
(0)
ab = Gab(g

(0)) is the full Einstein tensor on the
background, and for example

G
(1)
ab [h] = R

(1)
ab [h]− 1

2

(
habR

(0) + g
(0)
ab R

(1)[h]
)
, (A5)

where the Ricci scalars R(0), R(1) are defined as the trace
of the Ricci tensors at each order.

Before discussing the next order, we specialize to the

case where the background is vacuum, so that R
(0)
ab = 0.

Then G
(1)
ab [h] = Eab[h] as given in Eq. (28). If the back-

ground is not vacuum, G
(1)
ab still gives the linearized Ein-

stein equation for hab, but with additional terms present
in Eq. (28). With this specialization, the expression for

G
(2)
ab simplifies to

G
(2)
ab [h, h] = R

(2)
ab [h, h] +

1

2
(g

(0)
ab h

cdR
(1)
cd [h]−

habR
(1)[h]− g(0)ab R

(2)[h, h]) . (A6)

Further, we are interested in cases where the perturba-
tion hab is a solution to the linearized equations, with or
without source,

Eab[h] = τab , (A7)

so that R
(1)
ab [h] and R(1)[h] can be further reduced. For

example, when hab is a QNM perturbation h
(0)
ab as in

Eq. (40), R
(1)
ab [h(0)] = 0. Meanwhile, when hab is the

static deformation g
(2)
ab , if convenient we can substitute

Ricci terms for source terms,

R
(1)
ab [g(2)] = τab −

1

2
g
(0)
ab τ , (A8)

τab = T
ϑ(2,0)
ab [ϑ(1), ϑ(1)] + V

int(1,0)
ab [ϑ(1)] . (A9)

With this we express G
(2)
ab [h(0), g(2)] by taking

G
(2)
ab [h, h] and, for each quadratic term in hab, ensur-

ing that one copy is replaced by h
(0)
ab and one by g

(2)
ab ,

summing over both possible substitutions. Further sim-

plifications are made for the R
(1)
ab terms in each case. We

have
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G
(2)
ab [h(0), g(2)] =

1

4

[
gcd(2)(∇a∇bh

(0)
cd +∇c∇dh(0)ab − 2∇d∇(ah

(0)
b)c)− (∇cḡcd(2))(2∇(ah

(0)
b)d −∇dh

(0)
ab ) +

1

2
(∇ag(2)cd )(∇bhcd(0))

+(∇cg(2)b
d)(∇ch(0)ad −∇dh

(0)
ac )
]
− 1

8
g
(0)
ab

[
gcd(2)(∇e∇

eh
(0)
cd +∇c∇dh(0) − 2∇d∇eh(0)ec )

−(∇cḡcd(2))(2∇
eh

(0)
ed −∇dh

(0)) +
1

2
(∇eg(2)cd )(∇ehcd(0)) + (∇cged(2))(∇ch

(0)
ed −∇dh

(0)
ec )

]
+ (g

(2)
ab ↔ h

(0)
ab )

− 1

4
g
(0)
ab h

cd
(0)τcd +

1

4
h̄
(0)
ab τ , (A10)

where the term (g
(2)
ab ↔ h

(0)
ab ) indicates all the previous

terms in the expression with the two types of perturba-
tions exchanged. The final contribution is asymmetric
in the perturbation types because each is sourced differ-
ently, as noted above.

Appendix B: Comparison to the Newman Penrose
approach for weakly charged black holes

Here we confirm that the ε-scaling selected in Sec. III B
matches known results on the perturbation of weakly
charged black holes. We focus on matching a single term
between our modified Teukolsky equation for s = +2 and
the full perturbation equations derived in the NP formal-
ism for the corresponding scalars, Ψ0 and φ0. We use the
expressions given in [92], hereafter DGS, and we cite the
NP equations as given in [90], hereafter SKMHH, whose
definitions of the NP scalars are appropriate for our met-
ric signature. We denote the O(η) dynamical perturba-
tions to the geometry and EM fields with the superscript
B, and all other quantities are assumed to be background
quantities unless noted. When necessary for clarity, these
O(η0) quantities are decorated with the superscript A.

Our point of comparison is the coupling term present
in the GHP dual of DGS Eqs. (3) and (6), keeping in
mind that we set Q = 0 in these equations because we
only need the leading order expressions. Using the back-
ground NP relations, SKMHH Eqs. (7.32e) and (7.32h),
DΨ2 = 3ρΨ2 and δΨ2 = 3τΨ2, we cast the coupling term
of DGS in the form

Φ11Q2ϕ1 = 2κ0φ
∗A
1 [(D − 2ρ)(δ − 2β − 3τ)

+(τ − π∗)(D − 3ρ)]φB0 , (B1)

by commuting factors of Ψ−12 through the directional
derivatives. Here we have chosen to set the NP spin
coefficient ε = 0 at leading order using our background
tetrad, and we have also selected a perturbation to tetrad
such that ΨB

1 = 0. We have also restored the factor
κ0 = 8πG. From the background EM fields, the Ricci
scalars are Φij = κ0φiφ

∗
j , so that only Φ11 and its com-

plex conjugate are nonvanishing at leading order.2

In our approach, the coupling between the gravita-
tional QNMs and the EM QNMs is given by the term

2κ0S
abT

(2,0)
ab [ϑ(1), ϕ(1)] (B2)

when projecting Eq. (62) using Sab and restoring κ0. To
match the coupling term to Eq. (B1), we expand the
projection operator in terms of NP quantities. The only

nonzero projection of T
(2,0)
ab [ϑ(1), ϕ(1)] onto the tetrad is

the one that involves a single copy of the background
Maxwell scalar φA1 and the dynamical perturbation φB0 ,
which is

T
(2,0)
lm = T

(2,0)
ab [φA1 , φ

B
0 ]lamb = 2φ∗A1 φB0 . (B3)

With this, reading Sab off of the source term in [79], we
have

2κ0S
abT

(2,0)
ab = 2κ0 [(δ + π∗ − α∗ − 3β − 4τ)(D − 2ρ∗)

+(D − 4ρ− ρ∗)(δ + 2π∗ − 2β)] (φ∗A1 φB0 ) .
(B4)

To make progress, we use Maxwell’s equations on the
background EM field,

Dφ∗A1 = 2ρ∗φ∗A1 , δφ∗A1 = −2π∗φ∗A1 , (B5)

to bring factors of φ∗A1 through the derivative operators in
Eq. (B4). Next we use the commutator relation SKMHH
Eq. (7.6b),

δDφB0 = DδφB0 + (α∗ + β − π∗)DφB0 − ρ∗δφB0 . (B6)

to match the ordering of derivatives in Eq. (B1). The
result is

2κ0S
abT

(2,0)
ab = 2κ0φ

∗A
1 [(D − 2ρ)δ + (τ − π∗)D

−(β + 3τ)D − βρ∗ −Dβ + 4βρ]φB0 . (B7)

2 The GHP dual of Φ11 is itself, and so it would appear that there
should be no complex conjugate on the φ1 term in the denomi-
nator of the Q−2 operator in DGS Eq. (6).
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The remaining differences can be removed using the back-
ground NP equations,

Dβ = βρ∗ , Dτ = (τ + π∗)ρ , (B8)

bringing Eqs. (B1) and (B7) into agreement. This shows
that the coupling terms are in agreement between the
formalisms, and similar manipulations are expected to
demonstrate agreement between the remaining terms.

Appendix C: Details of the Newman Penrose
approach to a generalized Teukolsky equation

In this section we derive the modified Teukolsky equa-
tion directly from the NP formalism, and connect it to
the discussion in Sec. V. We expand the tetrads and all
the resultant NP quantities and derivatives into back-
ground and wave parts. Background quantities are O(η0)
and have the superscript A, while the wave perturbation
of the quantities are O(η) have the superscript B.

1. Notation

Before we move on we state some convenient notation
that makes the resulting modified Teukolsky equation
more succinct. In particular we create a new notation for
some derivative quantities, since they frequently reappear
in expressions. We define

δp,q = (δ − pβ + qτ) , (C1)

Dp,q = (D − pε+ qρ) , (C2)

Pp,q = [Dp,q − ε+ ε∗ − ρ∗] , (C3)

Qp,q = [δp,q − β − α∗ + π∗] . (C4)

We define further operators

δ∗00 = δ∗ − 4α+ π , (C5)

∆10 = ∆− 4γ + µ , (C6)

and operators acting on Ricci scalars,

Cij0 [Φij ] = (δ + π∗ − 2α∗ − 2β) Φ00

− (D − 2ε− 2ρ∗) Φ01 + 2σΦ10

− 2κΦ11 − κ∗Φ02 , (C7)

and

Cij1 [Φij ] = (δ + 2π∗ − 2β) Φ01

− (D − 2ε+ 2ε∗ − ρ∗) Φ02 − λ∗Φ00

+ 2σΦ11 − 2κΦ12 . (C8)

This converts the Eqs. (106)–(109) into

δ∗00[Ψ0]− D̂2,−4[Ψ1]− 3κΨ2 = Cij0 [Φij ] , (C9)

∆10[Ψ0]− δ̂2,−4[Ψ1]− 3σΨ2 = Cij1 [Φij ] , (C10)

P2,−1[σ]−Q2,−1[κ] = Ψ0 , (C11)

Pp,qδp,q −Qp,qDp,q = 0 + Ep,q . (C12)

Note that Eq. (C12) is an operator identity.
2. Expanding around Kerr Background

Expanding all the NP quantities and derivatives we get
four new equations which are later combined to form the
Teukolsky equation.

a. First Bianchi Identity

Using the first Bianchi identity we get

δ∗ A00 [ΨB
0 ]− D̂A

2,−4[ΨB
1 ]− 3κBΨA

2 = CijA0 [ΦBij ] + CijB0 [ΦAij ]− δ∗ B00 [ΨA
0 ] + D̂B

2,−4[ΨA
1 ] + 3κAΨB

2 . (C13)

We reorder terms and put all the extra terms that are absent in the original derivation into the expression SAB0 ,

δ∗ A00 [ΨB
0 ]− D̂A

2,−4[ΨB
1 ]− 3κBΨA

2 = CijA0 [ΦBij ] + SAB0 , (C14)

where

SAB0 = CijB0 [ΦAij ]− δ∗ B00 [ΨA
0 ] + D̂B

2,−4[ΨA
1 ] + 3κAΨB

2 . (C15)

b. Second Bianchi Identity

With the second Bianchi identity we get another equation,

∆∗ A10 [ΨB
0 ]− δ̂A2,−4[ΨB

1 ]− 3σBΨA
2 = CijA0 [ΦBij ] + CijB0 [ΦAij ]−∆∗ B10 [ΨA

0 ] + δ̂B2,−4[ΨA
1 ] + 3σAΨB

2 . (C16)
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We again reorder terms and put all the extra terms that are absent in the original derivation into the expression SAB1 ,

∆∗ A10 [ΨB
0 ]− δ̂A2,−4[ΨB

1 ]− 3σBΨA
2 = CijA1 [ΦBij ] + SAB1 , (C17)

where

SAB1 = CijB1 [ΦAij ]−∆∗ B10 [ΨA
0 ] + δB2,−4[ΨA

1 ] + 3σAΨB
2 . (C18)

Notice so far that for a Kerr background, ΦAij = 0, σA = κA = 0 and ΨA
0 = ΨA

1 = 0, which makes SAB1 = 0 and

SAB0 = 0. We keep these terms for our analysis.

c. The spin coefficient equation

Expanding the spin coefficient equations we get

PA2,−1[σB ]−QA2,−1[κB ] + PB2,−1[σA]−QB2,−1[κA] = ΨB
0 . (C19)

Multiplying both sides by ΨA
2 ,

PA2,−1[σB ]ΨA
2 −QA2,−1[κB ]ΨA

2 + PB2,−1[σA]ΨA
2 −QB2,−1[κA]ΨA

2 = ΨB
0 ΨA

2 , (C20)

and using the product rule,

Pp,q[fg] = Pp,q[f ]g +D[g]f ,

Qp,q[fg] = Qp,q[f ]g + δ[g]f , (C21)

we can rearrange and get

PA2,−1[σBΨA
2 ]− σBD[ΨA

2 ]−QA2,−1[κBΨA
2 ] + κBδ[ΨA

2 ] = ΨB
0 ΨA

2 − PB2,−1[σA]ΨA
2 +QB2,−1[κA]ΨA

2 . (C22)

Now by looking at the definitions of PAp,q and QAp,q, we can show that

PAp,q−n = PAp,q − nρA , (C23)

QAp,q−n = QAp,q − nτA . (C24)

So now if we want to convert our PA2,−1 into PA2,−4 and QA2,−1 into QA2,−4 so that they match the terms in the Bianchi

Identities, we need to only add and subtract factors of 3ρA and 3τA, respectively.
Continuing with Eq. (C22), we add and subtract 3ρA and 3τA to get

(PA2,−1 − 3ρA)[σBΨA
2 ]− σB(D − 3ρA)[ΨA

2 ]− (QA2,−1 − 3τA)[κBΨA
2 ] + κB(δ − 3τA)[ΨA

2 ]

= ΨB
0 ΨA

2 − PB2,−1[σA]ΨA
2 +QB2,−1[κA]ΨA

2 , (C25)

which can be made more compact by writing

PA2,−4[σBΨA
2 ]−QA2,−4[κBΨA

2 ] = ΨB
0 ΨA

2 − SAB2 , (C26)

where

SAB2 = PB2,−1[σA]ΨA
2 +QB2,−1[κA]ΨA

2 + σB(D − 3ρA)[ΨA
2 ]− κB(δ − 3τA)[ΨA

2 ] . (C27)

We see that SAB2 only vanishes when σA = κA = 0, and the background quantities obey

DΨA
2 = 3ρAΨA

2 and δΨA
2 = 3τAΨA

2 . (C28)

The former are satisfied for any vacuum Type D spacetime in general relativity.
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d. Operator Identity

In this section we prove the operator identity (109). We can expand the expression as

Pp,qδp,q −Qp,qDp,q = [Dp,q, δp,q]− (ε− ε∗ + ρ∗)δp,q + (β + α∗ − π∗)∆p,q , (C29)

where

[Dp,q, δp,q] = [D, δ]− [(pε− qρ), δ]− [D, (pβ − qτ)] . (C30)

In the above operator expression, any NP scalar is essentially an operator that multiplies any function with itself
(e.g ρ[Ψ] = ρΨ). This means that the commutator of the derivative operator with an NP scalar can be defined, and
simplified as

[D, f ](Ψ) = D(fΨ)− fD(Ψ) = D(f)Ψ + fD(Ψ)− fD(Ψ) = D(f)Ψ , (C31)

implying that the commutator of a derivative with a scalar is just the derivative acting on the scalar. This simplifies
what we have above and gives us

[Dp,q, δp,q] = [D, δ] + δ[(pε− qρ)]−D[(pβ − qτ)] . (C32)

We define the result of the operator expression,

Ep,q := Pp,qδp,q −Qp,qDp,q . (C33)

Upon further simplifications we get

Ep,q = [D, δ]− p(Dβ − δε)− q(δρ−Dτ)− (ε− ε∗ + ρ∗)δp,q + (β + α∗ − π∗)Dp,q , (C34)

which then follows to,

Ep,q =[D, δ]− (ε− ε∗ + ρ∗)δ + (β + α∗ − π∗)D − p(Dβ − δε− β(ε− ε∗ + ρ∗) + ε(β + α∗ − π∗))
− q(δρ−Dτ + τ(ε− ε∗ + ρ∗)− ρ(β + α∗ − π∗)) . (C35)

Using the commutation relation

[D, δ] = σδ̄ − κ∆ + (ρ∗ + ε− ε∗)δ − (α∗ + β − π∗)D , (C36)

and three spin coefficient equations,

Dβ − δε = (α+ π)σ + (ρ̄− ε̄)β − (µ+ γ)κ− (ᾱ− π̄)ε+ Ψ1 , (C37)

δρ− δ̄σ = ρ(ᾱ+ β)− σ(3α− β̄) + (ρ− ρ̄)τ + (µ− µ̄)κ−Ψ1 + Φ01 , (C38)

Dτ −∆κ = (τ + π̄)ρ+ (τ̄ + π)σ + (ε− ε̄)τ − (3γ + γ̄)κ+ Ψ1 + Φ01 , (C39)

we find that the commutator becomes,

Êp,q = σδ̄ − κ∆ + q[(τ̄ + π − β̄ + 3α)σ + (µ̄− µ− γ̄ − 3γ)κ+ 2Ψ1]− p[(α+ π)σ + (−γ − µ)κ+ Ψ1] . (C40)

This operator is the right hand side of the operator identity used by Teukolsky in [79], where it is set to zero by the
fact that the background is Type D. This is manifest in the above, where we can see that any background where
σ = κ = Ψ1 = 0 makes this operator vanish.

e. Combining the two Bianchi Identities and the operator equation

To get the Teukolsky equation we compute

PA2,−4[Equation (C17)]−QA2,−4[Equation (C14)] . (C41)

This gives us

PA2,−4
[
∆∗ A10 [ΨB

0 ]− δ̂A2,−4[ΨB
1 ]
]
−QA2,−4

[
δ∗ A00 [ΨB

0 ]− D̂A
2,−4[ΨB

1 ]
]
− 3

(
PA2,−4[σBΨA

2 ]−QA2,−4[κBΨA
2 ]
)
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= PA2,−4[CijA1 [ΦBij ] + SAB1 ]−QA2,−4[CijA0 [ΦBij ] + SAB0 ] . (C42)

Using (C26) we get,

PA2,−4
[
∆∗ A10 [ΨB

0 ]− δ̂A2,−4[ΨB
1 ]
]
−QA2,−4

[
δ∗ A00 [ΨB

0 ]− D̂A
2,−4[ΨB

1 ]
]
− 3

(
ΨB

0 ΨA
2 − SAB2

)
= PA2,−4[CijA1 [ΦBij ] + SAB1 ]−QA2,−4[CijA0 [ΦBij ] + SAB0 ] . (C43)

Now rearranging the first terms gives us,

(PA2,−4∆∗ A10 −QA2,−4δ∗ A00 )ΨB
0 − (PA2,−4δ̂

A
2,−4 −QA2,−4D̂A

2,−4)ΨB
1 − 3

(
ΨB

0 ΨA
2 − SAB2

)
= PA2,−4[CijA1 [ΦBij ] + SAB1 ]−QA2,−4[CijA0 [ΦBij ] + SAB0 ] . (C44)

The operator acting on ΨB
1 is equivalent to our commutator operator relation from Eq. (109) on the background, so

we can substitute that in, yielding

(PA2,−4∆∗ A10 −QA2,−4δ∗ A00 )ΨB
0 − EA2,−4[ΨB

1 ]− 3
(
ΨB

0 ΨA
2 − SAB2

)
= PA2,−4[CijA1 [ΦBij ] + SAB1 ]−QA2,−4[CijA0 [ΦBij ] + SAB0 ] .

(C45)

Now we can get it into a form suggestive of Teukoslky’s equation for ΨB
0 ,

(PA2,−4∆∗ A10 −QA2,−4δ∗ A00 − 3ΨA
2 )ΨB

0 = PA2,−4[CijA1 [ΦBij ] + SAB1 ] + EA2,−4[ΨB
1 ]−QA2,−4[CijA0 [ΦBij ] + SAB0 ]− 3SAB2 ,

(C46)

which is the Teukolsky equation for Ψ0. Note that the T0 source terms that normally exist on the right hand side

of the Teukolsky equation are a subset of the PA2,−4[CijA1 [ΦBij ]]−QA2,−4[CijA0 [ΦBij ]] terms above. We can break up the

CijAa [Φij ] expressions by defining

Cij0 [Φij ] = (δ + π∗ − 2α∗ − 2β) Φ00 − (D − 2ε− 2ρ∗) Φ01 + F ij0 [Φij ] , (C47)

F ij0 [Φij ] = 2σΦ10 − 2κΦ11 − κ∗Φ02 , (C48)

and

Cij1 [Φij ] = (δ + 2π∗ − 2β) Φ01 − (D − 2ε+ 2ε∗ − ρ∗) Φ02 + F ij1 [Φij ] , (C49)

F ij1 [Φij ] = −λ∗Φ00 + 2σΦ11 − 2κΦ12 . (C50)

This splitting up gives us the usual form of the Teukolsky equation,

OA[ΨB
0 ] = TA0 [ΦBij ] +K , (C51)

K := PA2,−4[F ijA1 [ΦBij ] + SAB1 ] + EA2,−4[ΨB
1 ]−QA2,−4[F ijA0 [ΦBij ] + SAB0 ]− 3SAB2 . (C52)

The above can be expanded using the Eqs. (C1)–(C5), (C7), (C8), (C15), (C18) and (C27). One can then get the
equation for Ψ4 using the GHP dual, interchanging la ↔ na and ma ↔ ma∗.

To reiterate the conditions under which the above is zero, we have shown that,

σA = κA = λA = ΨA
0 = ΨA

1 = 0 =⇒ F ijA0 [ΦBij ] = F ijA1 [ΦBij ] = EAp,q = 0 . (C53)

Additional assumptions on top of the ones above yield further simplifications, such as

ΦAij = 0 =⇒ SAB0 = SAB1 = 0 , (C54)

and

(D − 3ρ)AΨA
2 = (δ − 3τ)AΨA

2 = 0 =⇒ SAB2 = 0 , (C55)

which would then completely set K = 0.
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