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We perform general relativistic simulations of self-gravitating black hole-disks in which the spin of the black
hole is significantly tilted (45◦ and 90◦) with respect to the angular momentum of the disk and the disk-to-black
hole mass ratio is 16% − 28%. The black holes are rapidly spinning with dimensionless spins up to ∼ 0.97.
These are the first self-consistent hydrodynamic simulations of such systems, which can be prime sources for
multimessenger astronomy. In particular tilted black hole-disk systems lead to: i) black hole precession; ii)
disk precession and warping around the black hole; iii) earlier saturation of the Papaloizou-Pringle instability
compared to aligned/antialigned systems, although with a shorter mode growth timescale; iv) acquisition of
a small black-hole kick velocity; v) significant gravitational wave emission via various modes beyond, but as
strong as, the typical (2, 2) mode; and vi) the possibility of a broad alignment of the angular momentum of the
disk with the black hole spin. This alignment is not related to the Bardeen-Petterson effect and resembles a
solid body rotation. Our simulations suggest that any electromagnetic luminosity from our models may power
relativistic jets, such as those characterizing short gamma-ray bursts. Depending on the black hole-disk system
scale the gravitational waves may be detected by LIGO/Virgo, LISA and/or other laser interferometers.

I. INTRODUCTION

Black holes (BHs) immersed in gaseous environments are
ubiquitous in the Universe. Black hole-disks (BHDs) appear
on a great variety of scales, reflecting their diverse birth chan-
nels and sites. From the core collapse of massive stars [1, 2]
and the cores of active galactic nuclei [3–5], to asymmetric
supernova explosions in binary systems [6], and the merger of
compact binaries where at least one of the companions is not
a BH, BHDs may be formed and serve as prime candidates for
multimessenger astronomy.

The magnitude of the spin of the BH, as well as its orienta-
tion relative to the fluid flow, can have large effects, as in the
existence and geometry of a relativistic plasma jet (see e.g.
[7]). This jet, which can be powered either by magnetic fields
threading the event horizon and extracting rotational energy
from the BH [8], or from the accretion flow [9], can precess
when misalignment between the BH and disk angular momen-
tum arises [7, 10, 11]. Such misalignment is expected to be a
common phenomenon [12] both in active galactic nuclei as
well as in BH X-ray binaries [6, 10, 11, 13–17]. Even in the
recent observation of M87 by the Event Horizon Telescope
[18] misalignment could not be excluded [19, 20].

Tilted BHDs are also the outcome from stellar-mass com-
pact object collisions when their individual spins are not
aligned with the orbital angular momentum [21–25]. Popula-
tion synthesis studies suggest that in approximately half of the
BH-neutron star binaries the angle between the orbital angu-
lar momentum and the BH spin is larger than 45◦ [26]. Such
systems will yield misaligned BHDs which in turn will affect
the existence and the properties of an electromagnetic coun-
terpart, such as a short gamma-ray burst or a kilonova.
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Central to the analysis of a tilted BHD is the so-called
Lense-Thirring (LT) precession [27], a gravitomagnetic (GM)
effect, according to which frame-dragging produced by the
rotating and tilted BH causes precession of a test ring with an-
gular velocity ΩGM−ring ≈ 2GJbh/(c

2r3), where Jbh is the
BH angular momentum, and r the ring radius. In the presence
of viscosity (as, for example, created by a magnetic field) the
cumulative effect of LT precession and internal disk viscosity
torques, is the alignment of the angular momenta of the BH
and the disk, a phenomenon known as the Bardeen-Petterson
(BP) effect [28]. BP alignment typically occurs when the scale
height of the accretion disk is substantially smaller than the
viscosity parameter α [4], e.g. when H/R � α [28–30].
Due to the rapid fall-off behavior of the LT angular velocity,
this alignment only affects the inner parts of the disk, within
the so-called BP radius, while the outer parts keep their initial
orientation. The GM field will make the BH precess around
the disk’s rotation axis. This effect has been invoked to ex-
plain the precession of jets in tidal disruption events (where
a star is tidally disrupted by a supermassive BH) [31]. Even
in the absence of a jet, the precession of such disks may have
observable consequences. While disk precession has been in-
voked to explain the quasiperiodic oscillations [32] observed
in the X-ray brightness of a number of neutron star and BH
X-ray binaries [33–36], the BP alignment may prevent disks
from precessing and producing such oscillations [37]. On the
other hand BP alignment may be responsible for the growth
and evolution of BHs [38].

In general, BHD systems (tilted or not) are subject to vari-
ous instabilities that can lead to significant accretion and ab-
late away the disk. One such instability is the so-called dy-
namical runaway instability [39] where the overflow of a po-
tential surface (similar to the Roche lobe) by the disk matter
will lead to a cascading instability and the final consumption
of the disk by the BH [40–42]. In binary mergers where a
BHD is the final remnant, it was found [43, 44] that the ax-
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isymmetric runaway instability is of limited importance due
to the power-law dependence of the specific angular momen-
tum profile of the disk [41]. Therefore its influence in the
formation of ultrarelativistic jets is probably negligible [45–
48].

A less dramatic instability was discovered by Papaloizou
and Pringle [49] that transports angular momentum outwards
and leads to the formation of an one-arm instability, the so-
called Papaloizou-Pringle instability (PPI). Using perturba-
tion theory, the authors found a quartic algebraic equation for
the angular velocity of the perturbation mode whose solutions
contain 2 stable modes (real solutions) and 2 unstable ones
(imaginary solutions). These wave perturbations depend on
the inner and outer radii of the disk [50, 51] and highlight
the importance of these boundaries in the development of the
PPI. The instability manifests itself when the a wave which is
traveling backwards relative to the fluid at the inner edge ex-
changes energy and angular momentum with the wave which
is traveling forwards relative to the fluid at the outer edge. An-
gular momentum is transferred outwards, making the wave at
the outer edge that has positive angular momentum grow in
amplitude while the one in the inner edge that has negative
angular momentum also grow in amplitude, since it is losing
angular momentum [52–61]. A similar mechanism in rotating
stars leads to the ChandrasekharFriedmannSchutz instability
[62–64] which is induced by gravitational radiation. The PPI,
which was originally found in constant specific angular mo-
mentum disks, can also be developed in BHDs with a noncon-
stant specific angular momentum (`) profile [52]. Newtonian
analysis finds disks with ` ∼ rq where q < 2 −

√
3 = 0.266

to be unstable, where the critical exponent q could be even
smaller, i.e. q ∼ 0.25 [53]. In general the growth of the non-
axisymmetric instability is more efficient for a smaller expo-
nent q [51, 53]. Accretion onto the BH has a stabilizing effect
on the PPI since the waves at the inner boundary are disturbed
[55, 58, 65]. This is especially true for wide disks, while in
more slender ones the PPI seems to be less affected [66].

The first full general relativistic simulations of a tilted thick
disk onto a Kerr BH [67] have demonstrated that LT preces-
sion results in a torque that tends to twist and warp the disk,
similar to Newtonian studies [68]. The authors found that
this precession depends primarily on the sound speed in the
disk. For disks where in their bulk the LT timescale was less
than the azimuthal sound crossing time, the disk undergoes
differential precession out to a transition radius. On the other
hand when the the LT timescale was greater than the azimuthal
sound crossing time, the disk undergoes near rigid-body pre-
cession after a short initial period of differential precession.
Another interesting finding in [67] was the tendency for these
disks to align toward the equatorial plane of the BH, despite
the lack of viscous angular momentum transport. According
to the authors this alignment between the angular momentum
of the disk and the BH spin was facilitated by the preferen-
tial accretion of highly tilted disk material that resulted in the
depletion of the misaligned disk angular momentum. Since
the authors considered disks with mass much smaller than
the BH (test-fluid limit) the spin of the BH was unaffected.
Such kind of purely hydrodynamical alignment has also been

found in BH-neutron star simulations [23], where the align-
ment timescale was of the same order as the disk precession
timescale. The authors speculated that this BP-like behavior
is induced by a purely hydrodynamical mechanism, such as
angular momentum redistribution due to a nonaxisymmetric
shock wave excited in the disk1.

The assumption that the mass of the disk is negligible in
comparison with the mass of the central BH may not always
be valid. Some isolated or binary BHs detectable by LISA
may find themselves immersed in extended disks with masses
comparable or greater than the BHs themselves. This may
be particularly true of stellar-mass BHs in AGNs and quasars
or supermassive BHs in extended disks formed in nascent or
merging galactic nuclei. The gravitational pull of the disk
on the binary can be important in such cases, the accretion
rate from the inner disk radius can be high and even super-
Eddington, orbital and spin precession as well as spin flipping
in the case of misaligned disks is a possibility, while density
perturbations in the disk can arise from instabilities. Alterna-
tive scenarios for the formation of massive BHDs include the
collapse of rapidly rotating, supermassive stars or the merger
of binary stellar systems (such as a neutron star-white dwarf)
with significant asymmetry in their mass or spin. In binaries
the mass of the disk depends on how far from the BH is the
secondary compact object being disrupted [73]. If tidal dis-
ruption happens far from the innermost stable circular orbit
(ISCO) of the BH, then a disk with a large mass is produced.
On the other hand, small mass disks (or even essentially no
disk at all) are produced when tidal disruption happens close
to the ISCO of the BH (or inside it). This crucial distance
that controls the importance of self-gravitation for the disk
depends on the mass ratio of the binary, the compactness of
the primary and the BH spin. The mass of the disk increases
with a larger BH spin (since the ISCO decreases with increas-
ing spin) and decreases with a larger BH mass (the ISCO in-
creases with increasing BH mass) [43, 74].

Only by including self-gravity in full general relativity and
tracking the nonaxisymmetric perturbations that self-gravity
may trigger can gravitational waves from the disk be calcu-
lated reliably. Such perturbations and gravitational waves can
be detected by LISA and other instruments [75–80]. Also,
disk self-gravity must be incorporated to determine the as-
trophysical consequences of BH precession, which may, for
example, trigger X-shape radio galaxies [81–83].

General relativistic studies of self-gravitating BHDs have
been performed in a number of works [42, 75–79, 84, 85]
and the roles of the runaway instability, as well as the PPI,
have been elucidated. Although most of the BHDs will not
develop the runaway instability (e.g. [43, 75, 76, 84]), it
cannot be excluded when more favorable circumstances are

1 Notice that in the numerical simulations of [69] using a post-Newtonian
description of the central potential and an artificial viscosity, the BP picture
of an aligned inner disk occurred only at low inclinations and only when
Einstein precession was not accounted for. In high resolution calculations
with the Einstein precession included, the authors found steady-state oscil-
lations in the disk tilt, as well as the breaking of the disks that are relatively
thin and highly misaligned to the BH spin [30, 68, 70–72].
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present [42] (e.g. disks that fill their Roche lobes). Regard-
ing the PPI, it was found that, as in Newtonian gravity, self-
gravitating BHDs are subject to an m = 1 nonaxisymmetric
mode growth under a wide range of conditions 2. In [84] it
was shown explicitly that the m = 1 PPI mode is accom-
panied by an outspiraling motion of the BH, which further
amplifies the one-arm instability. More massive tori and a
constant specific angular momentum profile favors the appear-
ance of the PPI, in contrast with less massive disks and/or a
non-constant ` profile, for which the disk may even be PP-
stable [76]. In addition since the nonaxisymmetric structure
survives long after the saturation of the PPI, these systems
can be promising sources for coincident detections of elec-
tromagnetic and gravitational waves similar to GW170817.
The above works focused on tori around nonspinning BHs
and were later extended to BHDs around spinning BHs in
[77, 79, 85]. In [79] it was speculated that the accretion rate
in PPI unstable disks may be used to measure the BH spin. It
was found that systems of ∼ 10M� –relevant for for BHneu-
tron star mergers– will be detectable by the Cosmic Explorer
out to ∼ 300 Mpc, while DECIGO (LISA) will be able to
detect systems of ∼ 1000M� (105M�). The latter are rel-
evant for disks forming in collapsing, supermassive stars out
to cosmological redshift of z ∼ 5 (z ∼ 1). In [85] an al-
ternative scenario for event GW190521 was put forward. In
particular it was conjectured that GW190521 may not repre-
sent the merger of binary BHs, but instead the stellar collapse
of a very massive star, leading temporarily to a BH of mass
∼ 50M� and a massive disk of several tens of solar masses
that is dynamically unstable to the PPI.

The first general relativistic simulations where the spin of
the BH is tilted with respect to the angular momentum of the
disk were performed in [77, 78], albeit starting from artificial
initial values. In particular the authors first computed mod-
els of self-gravitating, massive tori around nonrotating BHs
[91], and then replaced the resulting spacetime with a tilted
Kerr metric in quasi-isotropic coordinates, while retaining the
hydrodynamical profile. Notwithstanding these initial condi-
tions the authors performed a thorough investigation of the
twist (precession) and the tilt (inclination) of the disk, finding
that for BHD mass ratios of & 4% the assumption of using
a fixed background spacetime is unjustified. The authors ob-
served significant precession and nutation of the tilted BH as
a result of the disk evolution, which cannot be accounted in
fixed spacetime simulations. The LT torque that the BH exerts
on the disk forces the disk to precess as a solid body which
in turn leads to BH precession. The simulations of [77, 78]
showed the universal character of the PPI with regards to ini-
tial spin magnitudes, tilt angles, and disk angular momentum
profiles.

In this work we extend previous studies of self-gravitating

2 Note that early studies in Newtonian gravity [86–90] have shown that self-
gravity inhibits the PPI for all angular momentum profiles, while new kinds
of nonaxisymmetric instabilities arise. These include the I-mode (“inter-
mediate”) that leads to fission, and the J-mode (Jeans instability) that leads
to fragmentation.

BHDs in two ways. For the first time we perform gen-
eral relativistic simulations of tilted BHDs starting from self-
consistent initial values. The tilted BHD models are solu-
tions of the full (i.e. including the conformal metric) general
relativistic initial value problem as described in [92]. Sec-
ond, we extend the parameter space by evolving disks around
rapidly spinning BHs (aligned, antialigned and tilted with re-
spect to the disk angular momentum) having dimensionless
spins up to 0.97. We find that although the saturation of the
PPI appears significantly earlier for tilted BHDs than those
with aligned/antialigned spins, due to the inherent initial non-
axisymmetry, their growth rate is smaller. The maximum den-
sity in the disk can increase by orders of magnitude, while the
disk precesses and warps around the BH. The BH itself also
precesses and its spin can increase or decrease depending the
initial configuration. In one case where the initial BH spin was
tilted at 45◦ with respect to the angular momentum of the disk
the BH was spun up to a maximal value, beyond which we
couldn’t continue our simulation. In another case where the
initial BH spin was tilted by 90◦ accretion spun down the BH.
By computing the precession timescales we confirmed their
agreement with post-Newtonian estimates. The precessing
BHDs are responsible for copious gravitational wave emis-
sion in multiple modes, which we compute. In general the
gravitational wave strain appears to be an order of magni-
tude larger than previous calculations [76, 77, 79, 85] with
a diverse spectrum. Although our simulations do not include
magnetic fields, estimation of the effective turbulent magnetic
viscous timescale shows that it is much longer than the dy-
namical timescale of the one-arm instability. Therefore we
expect these BHDs to be prominent sources of gravitational
waves and Poynting electromagnetic radiation (in the pres-
ence of magnetic fields) and thus excellent sources for mul-
timessenger astronomy.

In this paper, spacetime indices are Greek, spatial indices
Latin, and we employ geometric units in which G = c =
M� = 1, unless stated otherwise.

II. INITIAL DATA

The initial models of the BHDs considered in this work,
models A1-A4 in Table I, have been constructed using the
COCAL code and the method described in [92]. In particu-
lar we solve the full initial value Einstein equations by as-
suming that the conformal 3-dim metric is decomposed as
γ̃ij := fij+hij , where fij is the flat metric and hij the nonflat
contributions. The metric on the 3-geometry γij is related to
the conformal metric through γij = ψ4γ̃ij . The nonflat con-
tributions hij are computed alongside the lapse α, shift βi,
and the conformal factor ψ, assuming det(γ̃ij) = det(fij).
One of the new characteristics of this method is the decompo-
sition of the conformal tracefree part of the extrinsic curvature
as

Ãij = ÃKS

ij + σ̃(L̃W̃ )ij , (1)
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TABLE I. The initial BHD models. The angular momentum of the disks is along the z-axis. Columns are the model name, the magnitude
of the dimensionless BH spin χ = Jbh/M

2
bh, the angles of the spin angular momentum in spherical coordinates (θs, φs), the inner specific

angular momentum `in, the inner edge of the disk rin, the maximum density coordinate rc, the outer edge of the disk rout, the rest mass
of the disk M0, the Arnowitt-Desser-Misner (ADM) mass M , the period of the maximum density point of the disk Pc, the dynamical time
td ∼ 1/

√
ρmax, and the precession angular velocity PGM of the BH as calculated in Sec. II A. Here Mbh is the mass of the BH. Center dots

denote “not applicable”.

Model χ (θs, φs) `in/Mbh rin/Mbh rc/Mbh rout/Mbh M0/Mbh M/Mbh Pc/Mbh td/Mbh PGM/Pc

A1 0.966 (0◦, 0◦) 4.63 10 17.3 49.4 0.259 1.273 462 297 · · ·
A2 0.957 (45◦, 0◦) 4.60 10 17.3 49.4 0.156 1.167 435 371 60

A3 0.968 (90◦, 0◦) 4.85 10 17.9 51.1 0.280 1.298 455 290 35

A4 0.963 (180◦, 0◦) 5.13 10 20.0 57.3 0.242 1.256 520 364 · · ·

where ÃKS
ij is the conformal Kerr-Schild tracefree part, W̃i

an unknown spatial vector, σ̃ a scalar, and L̃ the conformal
Killing operator: (L̃W̃ )ij = D̃iW̃j + D̃jW̃i − 2

3 γ̃ijD̃kW̃
k.

Here D̃i is the covariant derivative with respect to the con-
formal metric γ̃ij . It is assumed that Aij = ψ4Ãij and
σ̃ = 1/(2α). As explained in [92], Eq. (1) with the appro-
priate boundary conditions for W̃i yields a convergent solu-
tion for the potentials hij , which in addition, can be horizon
penetrating. The price paid for this additional decomposition
of the extrinsic curvature is an extra 3 elliptic equations for
the potentials W̃i. For the slicing we assume Kerr-Schild co-
ordinates with K = KKS under the gauge

◦
Dih

ij =
◦
Dih

ij
KS,

with hijKS being the exact Kerr-Schild potentials, and
◦
Di the

covariant derivative with respect to the flat metric fab. We set
∂tγ̃ij = ∂tÃij = ∂tK = 0.

For the Euler equations we assume stationarity and axisym-
metry [92], which is a reasonable assumption whenever the
disk is far away from the tilted BH. The density profiles along
the x axis for our models are plotted in the top panel of Fig.
(1). The disk is described by a Γ = 4/3 polytropic equa-
tion of state3, having constant specific angular momentum
` = −uφ/ut. Note that there exist other diagnostics for the
specific angular momentum, such as j = utu

φ = `/(1−Ω`),
as well as huφ. Here h is the specific enthalpy, uφ the az-
imouthal component of the 4-velocity, and Ω = uφ/ut the
angular velocity of the fluid. The three diagnostics are plotted
in the bottom panel of Fig. (1) for case A1 while similar be-
havior can be found for cases A2-A4. Our disk models have
both ` and huφ constant.

For the numerical solution of the Poisson-type of equa-
tions we use the Komatsu-Eriguchi-Hachisu method for BHs,
which was first developed in [93]. The self-gravitating BHD
is calculated as follows: i) First we calculate a massless disk
[94, 95] around a tilted, spinning BH whose mass is m and
dimensionless spin is a/m = 0.95. We call m the BH bare
mass. ii) Using as initial data the solution obtained in (i) we it-
erate over the Einstein and Euler equations to compute a self-
gravitating disk of a given maximum rest-mass density. iii)

3 This choice is appropriate for a thermal radiation-dominated gas, which
might be found around a supermassive BH, but is not the optimal choice
for BH-neutron star binaries.

FIG. 1. Top panel: Initial rest-mass density distribution for the four
models evolved. Bottom panel: The specific angular momentum of
the BHD model A1. Solid lines correspond to j, dashed lines to
` and dotted lines to huφ. The vertical dashed dotted lines corre-
spond to the event horizon (cyan), the marginally stable radius for
the prograde orbit (brown), and the marginally stable radius for the
retrograde orbit (magenta) around a BH whose dimensionless spin is
χ = 0.95.

By increasing the maximum density of the disk and repeating
step (ii) we compute a sequence of BHDs whose disk mass
is growing. For each solution the angular momentum of the
BH Jbh is calculated through the isolated horizon formalism
[96, 97]. Using the apparent horizon finder described in [93]
we calculate the mass of the BH Mbh [98], and its dimension-
less spin χ = Jbh/M

2
bh. In Fig. 2 a full three-dimensional

rendering of the BHD model A2 is shown. The yellow arrow
depicts the spin of the BH, which is tilted at 45◦ with respect
to the z axis. The latter coincides with the axis of rotation of
the disk. The apparent horizon is denoted by a black spheroid
which is similarly tilted. Models A1, A3, and A4 have similar
disk structure, differing mainly on the tilt angle of the BH.
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FIG. 2. Three dimensional rendering of BHD model A2 at t = 0.
The direction of the BH spin tilted at 45◦ with respect to the z axis
(axis of the orbital angular momentum of the disk) is shown by the
yellow arrow. The black spheroidal region denotes the apparent hori-
zon.

A. Precession frequencies

The relevant post-Newtonian (PN) theory for understand-
ing a massive disk around a tilted BH is summarized in [99],
which we closely follow in the analysis below. In particular
we assume a massive thin disk confined on the xy plane hav-
ing angular momentum Jd along the z-axis, and whose inner
radius is bin while its outer radius is bout (see Fig. 3). The
disk rotates about a BH having angular momentum Jbh tilted
with respect to Jd. We further assume that the disk lies out-
side the BP radius so that it is not driven down to the hole’s
equatorial plane (perpendicular to Jbh). In our simulations
there is no viscosity, so in principle there is no such accretion
and no BP effect4. Now we imagine that the thin disk is com-
posed of massive rings, each one of them having a mass dMR,
and radius b. The ring’s GM field will make the BH precess
around the disk’s rotation axis dJbh/dt = ΩGM × Jbh where
ΩGM = 2JR/b

3 and JR the angular momentum of the ring.
Generalizing to the disk of Fig. 3 we can write

dΩGM =
2

b3
dJR(b). (2)

If σ(b) is the surface gas density and ω(b) the angular velocity
of the ring, we have

dJR(b) = ω(b)b2dMR = ω(b)b2(σ(b) 2πbdb), (3)

where

σ(b) =

∫ h(b)

−h(b)
ρ0(b, z)dz, ω(b) =

∫ h(b)

−h(b)
Ω(b, z)dz, (4)

4 As we discussed in the Introduction, in [23] the authors found such align-
ment in pure hydrodynamical simulations. In any case, even if numerical
viscosity is present we assume that the bulk of the mass and angular mo-
mentum of the ambient disk remains largely intact (apart from precession).

FIG. 3. A thin massive disk on the xy plane with angular momentum
Jd along the z axis rotates around a tilted spinning BH with angular
momentum Jbh. Both of them undergo GM precession about the
total angular momentum J.

are calculated as quadratures over the disk height h(b) at the
particular radius b. In Eq. (4) ρ0(b, z) is the rest-mass den-
sity of our 3d disks, and Ω(b, z) their angular velocity profile.
Note that although in Newtonian gravity von Zeipel’s theorem
[100] states that for a barotropic fluid the angular velocity of a
stationary disk depends only on the distance from the axis of
rotation (Poincaré-Wavre [101]), in general relativity the sur-
faces of constant Ω have cylindrical topology, therefore they
depend not only on the distance from the rotation axis but also
on the distance from the equatorial plane [102, 103].

From Eqs. (2)-(4) the GM precession angular velocity of
the BH will be

ΩGM =

∫ bout

bin

4πω(b)σ(b)db, (5)

where bin and bout are the radial boundaries of the disk. In-
serting in Eqs. (4), (5) the density and angular velocity of our
tilted self-gravitating disk models A2 and A3 we can com-
pute ΩGM. These theoretical PN estimates are reported in the
last column of Table I in terms of the GM precession period
PGM = 2π/ΩGM.

Note that a ring of mass MR rotating with Keplerian angu-
lar velocity around a BH of mass Mbh at a radius bR will be
subject to GM precession with

MΩGM = 2

(
M

bR

)5/2(
Mbh

M

)1/2(
MR

M

)
, (6)

where M is the ADM mass of the system. For our models
{A2, A3} Eq. (6) yields PGM/Pc = {54, 31} in rough agree-
ment with the values shown in Table I. This shows that despite
the constant specific angular momentum our self-gravitating
disks are effectively close to the Keplerian test-ring model.
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Not only does the disk makes the BH to precess: conser-
vation of the total angular momentum J = Jbh + Jd implies
that the BH will make the disk precess, i.e.,

dJd

dt
=

(
2Jbh

b3

)
× Jd. (7)

The precession frequency of the disk ΩGM−disk is related to
the precession frequency of the BH ΩGM as

ΩGM−disk = ΩGM
Jbh
Jd

. (8)

For models A2 and A3 we find that PGM/PGM−disk is of or-
der 1.0 implying that the spin of the BH will precess at the
same timescale as the warping of the disk.

As a final note we mention that the disk’s tidal field will
also exert a torque on the BH that leads to tidally torqued pre-
cession with angular velocity [99]

ΩT =
3aMR

2b3R
cos θs. (9)

For model A2 we find PT/PGM ≈ 8 using bR as the ra-
dius of the maximum density. On the other hand we can
perform an analysis similar to the GM frequency and write
dΩT = 3adMR cos θs/(2b

3), with dMR = σ(b)2πbdb. In-
tegrating as in Eq. (5), we find PT/PGM ≈ 9 in agreement
with the cruder estimate above. Therefore the tidally torqued
precession is secondary to the GM precession and needs very
long evolutions to be probed.

III. EVOLUTIONS

The models A1-A4 of self-gravitating BHDs are evolved
using the ILLINOIS GRMHD moving-mesh-refinement code
that employs the Baumgarte–Shapiro–Shibata–Nakamura
(BSSN) formulation of the Einstein’s equations [104, 105]
to evolve the spacetime fields. Outgoing wave-like bound-
ary conditions are applied to all BSSN variables, which are
evolved using the equations of motion (9)-(13) in [106], along
with the 1+log time slicing for the lapse α, and the “Gamma–
freezing” condition for the shift βi, cast in first-order form
(see Eq. (2)-(4) in [106]). Time integration is performed via
the method of lines using a fourth-order accurate Runge-Kutta
integration scheme with a Courant-Friedrichs-Lewy factor set
to 0.36048. Spatial derivatives are computed with fourth-
order, centered finite differences, except on shift advection
terms, where we employ fourth-order upwind differencing.
We use the Carpet infrastructure [107, 108] to implement
moving-box adaptive mesh refinement, and add fifth-order
Kreiss-Oliger dissipation [109] to spacetime and gauge field
variables. For numerical stability, we set the damping pa-
rameter η appearing in the shift condition to η ≈ 26.6/M .
For further stability we modify the equation of motion of the
conformal factor φ by adding a constraint-damping term (see
Eq. (19) in [110]) which damps the Hamiltonian constraint.
We set the constraint damping parameter to cH = 0.08 (see
also [111]).

High resolution, shock-capturing methods [112, 113] are
used for the equations of hydrodynamics, which are writ-
ten in conservative form. The primitive, hydrodynamic mat-
ter variables are the rest-mass density, ρ0, the pressure P
and the coordinate three velocity vi = ui/u0. The stress
energy tensor is Tαβ = ρ0huαuβ + Pgαβ . For the EOS
we use the ideal gas Γ-law P = (Γ − 1)ρ0ε with Γ =
4/3, and ε the specific internal energy. The grid hierarchy
used in our simulations is summarized in Table II. It con-
sists of a set of 13 nested mesh refinement boxes centered
on the BH apparent horizon. The computational domain is
[−4000Mbh, 4000Mbh]3. The half-side length of the finest
box has ∆xmin = 50Mbh/2

12 = 0.0122Mbh. Note that
the ADM mass is M ≈ 1.2Mbh − 1.3Mbh depending on the
model. In our simulations we do not assume any symmetry.
The extremely high resolution used is necessary in order to
capture accurately the dynamics of the highly spinning BHs.

A. Global structure

The overall evolution of models A1-A4 can be seen in Figs.
4 and 5. At t = 0 (left column of Fig. 4) the disks have
very similar geometries (see also Fig. 1) while the BHs have
the same mass and similar spin magnitudes. Thus the main
difference in our cases is the BH tilt angle, which results in
distinct behaviors for the 4 models. Note that in Figs. 4 and 5
the magnitude of the BH spin vector is not to scale. Also the
shrinkage of the BH and the disk sizes in the right column of
Fig. 4, and the left column of Fig. 5 are due to gauge effects
arising from differences between the initial data and the evo-
lution gauge choices. On the right column of Fig. 4 we depict
a meridional cut at the final moment in our evolutions. For the
aligned case (top row) the BH preserves its spin orientiation
and magnitude and the disk retains its broad characteristics.
The one-arm instability fully develops, but the induced BH or-
bit remains bounded. On the other hand, the antialigned case
(bottom row) after a certain time becomes largely unstable,
with the disk losing its initial structure and exhibiting massive
mass accretion. The BH acquires a kick velocity (keeps drift-
ing away until the end of our simulations). Although the BH
spin orientiation is preserved, its magnitude is significantly
reduced due to accretion.

For the misaligned cases (second and third rows), we ob-
serve the combined effects of (i) BH precession, (ii) disk pre-
cession and warping around the BH, (iii) development of the
PPI, (iv) acquisition of a small BH kick velocity, (v) signif-
icant gravitational wave emission of various modes beyond
the ` = 2, m = 2 which are as strong as the (2, 2) mode,
and (vi) in the A3 case (90◦ initial tilt), we observe an over-
all broad alignment of the disk with the BH spin (third row in
Fig. 4, right column). This alignment is not associated with
the BP effect, which requires a viscosity mechanism absent in
our simulations. True BP alignment has only been observed
in GRMHD simulations of very thin disks with scale heights
below H/R < 0.05 (e.g. [114]). There has been no indica-
tion that BP alignment for thicker accretion disks is possible.
That said, thicker accretion disks can, and do align as a whole,
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TABLE II. Grid parameters used for the evolution of the BHDs of Table I. The computational grid consists of a set of 13 nested refinement
boxes centered on the BH apparent horizon. The step interval in the coarser level is ∆xmax = 50Mbh, while in the finer refinement level is
∆xmin ≈ 0.0122Mbh. Note that the ADM mass M ≈ 1.2Mbh − 1.3Mbh depending on the model.

{x, y, z}min {x, y, z}max Grid hierarchy (Box half-length)
−4000Mbh 4000Mbh {0.5, 1.56, 3.12, 6.24, 12.48, 25, 50, 100, 200, 399, 799, 1597, 4000}Mbh
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FIG. 4. Meridional cuts for the initial (left column) and final (right column) state of the rest-mass density for models A1 (first row), A2 (second
row), A3 (third row), and A4 (fourth row). The direction of the BH spin is given by the yellow arrow. The black spheroidal regions denote the
apparent horizon.
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FIG. 5. Left column full 3d rendering of the disk rest-mass density at the final moment in our simulations. The right column zooms in near the
BH at the same time as the left column. The rest-mass densities are plotted for models A1 (first row), A2 (second row), A3 (third row) and A4
(fourth row). The direction of the BH spin is given by the yellow arrow. The black spheroidal regions denote the apparent horizon.

not just the inner disk [7, 115, 116]. In these cited GRMHD
simulations this “global” mode happens on the viscous time
of the disk and thus does not produce a steady-state solution
as envisioned by BP. In our hydrodynamical simulations the
disks have H/R ∼ 0.625 thus the flow is not susceptible to
BP warps (at least initially). Similarly to [7, 67, 115, 116] the

possible alignment is global, i.e. the whole disk rotates like a
solid body, instead of the alignment of only the inner regions
of the disk typical of the BP picture. In fact, from the third
row, right column of Fig. 5, where the two streams onto the
BH are apparent, we confirm that there is no such alignment
in the inner regions of the disk. Our results are reminiscent of
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TABLE III. Mode growth, pattern speed, and corotating radius for
the m = 1 mode.

Model Im(ω1)/Ωc Ωp,1/Ωc rcr/rc

A1 0.318 0.748 1.17

A2 0.177 0.748 1.17

A3 0.177 0.637 1.24

A4 0.227 0.812 1.12

the behavior described in [67, 115] and referred as “plunging
streams”. The additional complication in our case though is
that the BH-disk spacetime is dynamical and responds to the
motion of the disk. The alignment in case A3 happens in a
shorter timescale than the effective viscous timescale reported
in Sec. III D. As in [67, 115] the plunging streams enter the
BH above and below its symmetry plane from almost antipo-
dal points due to strong differential precession and the non-
spherical nature of the spacetime. For a Kerr BH (which is
very close to the BHD spacetimes close to the horizon) or-
bital stability strongly depends on the inclination of the orbit,
with the unstable region being larger for increasing inclina-
tion. Also the value of rISCO is larger for larger inclinations
[115, 117]. For the A3 case we observe the largest BH kick
velocity which is ∼ 2 km/s. For model A2 (45◦ initial tilt
angle) we could not evolve beyond t ≈ 3133M because the
BH was spun up to maximal spin. At that point both the BH
and the disk experience a tilt by ∼ 45◦ with respect to their
initial orientation, but in opposite directions (see second row,
right column in Fig. 4) Similar to case A3 and [67, 115], we
observe two plunging streams in opposite directions entering
the BH above and below its symmetry plane. The warping of
the disk around the BH for both cases A2 and A3 is significant
(see Fig. 5 second and third row).

B. Mode growth and angular momentum transport

According to previous studies, both Newtonian and gen-
eral relativistic, we expect all our models to be dynamically
unstable to the one-arm (m = 1) spiral-shape instability. In
the general relativistic simulations of [77, 78, 84] it was con-
cluded that if the mass of the disk is larger than & 4% of the
mass of the BH a fixed background spacetime cannot fully
capture the dynamics of the system. In particular in order
to accurately describe the dynamical gravitational interaction
between a time varying BH (in position, mass and spin), as
well as a time varying massive disk, simulations in a non-fixed
background spacetime are necessary, as we perform here.

To quantify the growth of various unstable density modes
we evaluate the parameters [79, 118]

Cm =

∫
r>rah

ρ0u
t√−geimφd3x, (10)

where g is the determinant of the spacetime metric and φ =
tan−1(y/x) the azimuthal angle. The volume integral is per-
formed outside the apparent horizon of the BH and the mode

FIG. 6. Growth of the m = 1 (top panel) and the m = 2 (bottom
panel) modes.

FIG. 7. Phase angle φ1 of the mode m = 1 for models A1-A4.

amplitude is denoted by the normalized quantity Cm/C0,
where C0 = M0 the rest mass of the disk. The pattern speed
of an azimuthal mode m is defined as [119, 120]

Ωp,m =
1

m

dφm
dt

, (11)

with the phase angle φm being

φm = tan−1

(
Im(Cm)

Re(Cm)

)
. (12)

In other words the pattern speed of any mode is proportional to
the slope of the curve φm(t) with the proportionality constant
being 1/m.

As we discussed in the Introduction, the PPI manifests it-
self when a perturbation which is traveling backwards relative
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FIG. 8. Snapshots at three different times of the specific angular momentum ` = −uφ/ut for case A2. To convert to t/M multiply by 373
(see Table I).

FIG. 9. BH trajectory on the xy and xz planes.

to the fluid at the inner edge, and therefore has Ωp,m < Ω,
exchanges energy and angular momentum with a perturbation
which is traveling forwards relative to the fluid at the outer
edge and therefore has Ωp,m > Ω. The radius rcr where the
interaction happens is called the corotation radius and satisfies
Ωp,m = Ω(rcr).

In Fig. 6 we plot the m = 1 (top panel) and m = 2 (bot-
tom panel) mode growths for all cases A1 (aligned, blue line),
A2 (45◦ red line) A3 (90◦ green line), and A4 (180◦ brown
line). The most prominent feature of this plot is the fact that
for both modes, (Cm/C0)(t = 0) for the tilted cases (A2, A3)

are much larger than the ones of A1, A45. In fact for models
A2 and A3 (C2/C0)(t = 0) ∼ O(10−2) is ten to a hundred
times larger than (C1/C0)(t = 0) and initially slightly de-
creases while the latter steadily grows in an exponential man-
ner. When C1/C0 reaches values ∼ O(10−2) then the m = 2
mode grows in a similar manner. In other words the m = 1
mode drives the growth of the m = 2, something that is also
seen in the aligned and antialigned cases (A1, A4). The fact
that in the tilted cases at t = 0 the m = 1 mode amplitude
is already nonzero and much larger than in the aligned or an-
tialigned cases results in a smaller m = 1 growth timescale,
as can been seen from the slope of the fitted dashed lines (in
the top panel of Fig. 6). These timescales are reported in Ta-
ble III second column and are in broad agreement with other
studies [79, 84]. If we denote the growth of the m = 1 mode
as et/τ , we find that τ/Pc = {0.5, 0.9, 0.9, 0.7} for cases A1-
A4, confirming that the instability is indeed dynamical. The
two tilted cases show almost identical growth timescales, even
though the disk in case A3 has almost double the mass of the
disk in case A2 while their radial extent is approximately the
same. Note that in [76, 80] it was found that more compact (or
more massive) disks are more subject to the dynamical insta-
bility, and when M0/Mbh & 0.6 the growth timescale can be
smaller than Pc. Our models show that timescales . Pc are
possible with even less massive disks with M0/Mbh ∼ 0.16.
This result is not surprising [54] since our disk models have
` = const which makes them more prone to the development
of the PPI than the models of [76, 80], which have an noncon-
stant specific angular momentum profile. Given the fact that
models A2 and A3 have the same spin magnitude we con-
clude that the spin tilt is crucial for the determination of the

5 For models A1, A4, at t = 0 slight deviations from Cm ≡ 0, m ≥
1, are due to numerical error, as the disks are constructed to be strictly
axisymmetric in spherical polar coordinates and then interpolated onto a
Cartesian grid.
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growth timescale and can be degenerate with the BH-to-disk
mass ratio.

The phase angle of the m = 1 mode is shown in Fig. 7
and the slopes of the fitted dashed lines (Eq. (11)) provide
the corresponding pattern velocities Ωp,1 that are quoted on
Table III. From this figure one can read easily the time for the
saturation of the PPI. In particular for case A1 it is ≈ 5.5Pc,
for A2 it is ≈ 4Pc, for A3 it is ≈ 3Pc, and for A4 it is ≈
6Pc. These values are in agreement with the top panel of Fig.
6 and show that the larger the tilt, the smaller the timespan
for the development of the nonaxisymmetric instability. After
this initial period, the mode growth saturates and the phase
angle φ1 asymptotes to a constant. Interestingly, the m =
1 pattern speed is almost identical for the cases A1 and A2
despite the different spin orientiations of the BHs, as well as
the different BH to disk mass ratios. This may be related to
the fact that those models have identical inner rin and outer
rout boundaries, which play a crucial role for the explanation
of the PPI [49, 50, 52, 53].

Another critical component of the PPI is the corotation ra-
dius rcr through which angular momentum is transferred out-
wards [49, 53, 54, 58]. In Table III we report the ratio of the
corotation radius to the radius of the maximum density for our
models A1-A4. This ratio is close to unity, which is typical of
them = 1 PPI mode [77, 78, 84]. In terms of the total mass of
the system the corotation radii are rcr/M = {16, 17, 17, 17}.
In order to confirm and better understand the development of
the PPI in thick, tilted self-gravitating BHDs we plot in Fig.
8 the specific angular momentum ` = −uφ/ut at three differ-
ent instances for case A2. At one rotation period (left panel)
the disk has essentially the angular momentum profile of the
initial data i.e. ` = const. After three rotation periods (mid-
dle panel), when the PPI has been well developed, we see
two characteristics: (i) a shock front located at approximately
r ∼ 20M , and (ii) the shock front separating the inner part
(r . 20M ) of the disk with angular momentum regions hav-
ing values smaller than the initial angular momentum (white-
blue areas) from the outer part (r & 20M ) of the disk with
angular momentum regions having values larger than the ini-
tial angular momentum (green-yellow-red areas). Also, a spi-
ral structure in the outer part starts to form. After six rota-
tion periods (right panel), where the PPI is fully developed,
this picture is even clearer and the characteristic spiral arm
is apparent. This shows how the PPI can redistribute angular
momentum by outward transport.

The growth of the one-arm instability results in a pseuso-
binary system consisting of the BH and the m = 1 “planet”
that sets the BH in motion. In Fig. 9 we depict the trajectory
of the BH in the equatorial (top panel) and meridional (bottom
panel) planes. In all cases we notice the characteristic spiral
trajectory resulting from the spiral motion of matter in the disk
(see Fig. 5 left column and Fig. 8) and the conservation of the
center of mass of the system. For case A1 the motion is planar
(in the xy plane) with larger radius of curvature in the begin-
ning when the PPI develops and smaller at the end, when it
has saturated. For the tilted cases A2 and A3 this motion is
three dimensional, while for the antialigned case A4 we again
have a three-dimensional motion due to the destabilization of

FIG. 10. Evolution of the maximum rest-mass density of the disk
(top panel), the BH dimensionless spin (middle panel), and the disk
rest mass (bottom panel).

FIG. 11. Evolution of the BH (solid lines) and ADM (dashed lines)
angular momentum components for the tilted cases A2 (45◦) and A3
(90◦).

the whole system after ∼ 6 rotation periods6. The evolution
of A4 will be further described in the next section. The com-
bined motion of the BH with the self-gravitating disk produces
copious amounts of gravitational radiation, as we will discuss

6 Note that the linear drift observed in the later part of the A2, A3 orbits in
Fig. 9 may be partly due to the BSSN formalism used in our simulations.
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FIG. 12. BH spin precession for the two tilded cases A2 and A3. The
magnitude of the spin vector is not in scale. The gray curve shows
the evolution of the spin from its initial value (red arrow) to its final
value (blue arrow). Green dots denote times t = 3Pc for model A2,
and t = 2Pc for model A3.

next.

C. Precession and gravitational waves

In the top panel of Fig. 10 we plot the evolution of the max-
imum density in the disk. The general trend shows the max-
imum density to be constant until approximately the end of
the development of the PPI, at which point nonlinear growth
sets in and can lead to an increase of ρ0,max by orders of mag-
nitude. Consistent with Figs. 6 and 7 we observe the peak
of ρ0,max for case A1 to happen at ∼ 6Pc which coincides
with the end of the linear growth of the phase angle φ1 in Fig.
7. Similarly for the cases A2, A3, and A4 the peak times are
∼ {4.5Pc, 3.5Pc, 6Pc}. Depending on the characteristics of
the system the maximum density relaxes to values higher or
lower than the initial maximum density and leads to persistent
emission of gravitational waves. Also, as already discussed,
the larger the tilt, the earlier the peak of the maximum density.

In the middle panel of Fig. 10 the dimensionless spin pa-
rameter χ = Jbh/M

2
bh is plotted as a function of time for all

our models. We adopt the AHFinderDirect thorn [121] to lo-
cate and monitor the apparent horizon, and the isolated hori-
zon formalism [122] to measure the mass of the BH, Mbh,
and its dimensionless spin parameter χ. For the cases A1,
A4, we have also confirmed that the Kerr formula for the ra-
tio of proper polar horizon circumference Lp, to the equato-

rial one Le, Lp/Le = 4
√
r2+ + a2 E

(
a2

r2++a2

)
(here E(x) is

the complete elliptic integral of the second kind, r+ the event
horizon in Boyer-Linquist coordinates, and a = Jbh/Mbh

the Kerr spin parameter), and its approximation Lp/Le ≈
(
√

1− (a/Mbh)2 + 1.55)/2.55 [123], yields almost identical
results for the evolution of χ. For the tilted case A2 we ob-
serve that the BH is spun up and approaches maximum spin,
which prevented us to continue the simulation beyond ∼ 8
rotation periods. For the 90◦ tilted case A3 we observe that
when the maximum density peaks at ∼ 3.5Pc significant ac-
cretion onto the BH is initiated, which results in a reduction

of the rest mass of the disk (bottom panel in Fig. 10). At the
same time the mass of the BH increases (in an analogous way
as the decrease of the disk rest mass), which leads to an abrupt
decrease of its dimensionless spin to χ ∼ 0.85. By the end of
our simulation at ∼ 8Pc the disk has 75% of its initial mass
and the spin of the BH asymptotes to χ ∼ 0.82. The most un-
stable case in our simulations is the antialigned case A4. At 6
rotation periods the maximum rest-mass density increases by
two orders of magnitude and shortly afterwards massive ac-
cretion is initiated. That increases the BH mass significantly
and its spin drops to ∼ 0.5. Interestingly, the x and y spin
components do not show any appreciable change (i.e. they re-
main zero), only the z component reduces in magnitude. We
didn’t observe such instability in [79] where a model with a
much smaller spin χ = −0.7 was employed. We plan to in-
vestigate this issue in the future. The evolution of the three
components of the BH spin as well as the three components
of the ADM angular momentum for the two tilted cases A2
and A3 are plotted in Fig. 11. In Fig. 12 we plot the BH spin
for the tilted models A2 and A3 as it evolves from its initial
value (red arrow) to its final one (blue arrow). The gray curve
shows the path of the BH spin vector along our simulations.
In order to verify that precession is observed and measured
well before significant accretion arises, and to measure accu-
rately the GM-induced precession we show a green bullet that
corresponds to t = 3Pc for model A2 and t = 2Pc for model
A3. Although at those times the PPI is growing (see Figs. 6
and 7) the rest masses of the disks are essentially the same as
their initial values. The precession of the BH spin from its ini-
tial value (red arrows) to the green bullets is thus mainly due
to the GM effect. Projecting the gray path onto the x-y plane
and computing its radius of curvature we find that the angle
between the projections of the initial spin vector and the spin
vector corresponding to the green bullet is ≈ 18◦ or PGM/20,
which yields PGM ≈ 60Pc. This value exactly matches the es-
timate from the analysis of Section II A reported in Table I. A
similar calculation for model A3 yields an angle between the
projections of the initial spin vector and the spin vector cor-
responding to the green bullet of ≈ 19◦ or PGM/19. Hence
PGM ≈ 38Pc which is in excellent agreement with the es-
timate reported in Table I. Therefore our simulations are in
agreement with the estimates from the PN analysis in Section
II A.

D. Multimessenger astronomy

BHDs are prominent sources of electromagnetic radiation
due to accretion. In our case because of the self-gravity of the
disk such systems also produce significant amounts of grav-
itational radiation, which makes them excellent sources for
multimessenger astronomy. For the extraction of gravitational
waves we measure the outgoing component of the complex
Weyl scalar Ψ4 expanded in terms of the spin-weighted spher-
ical harmonics with spin weight −2. at various finite radii.
The axis of the spherical harmonics is taken to be the z-axis
which is the initial direction of the disk angular momentum.
The strain h is then computed with a double integration in
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FIG. 13. Strain amplitude (h+) for various gravitational wave modes for the two tilted models A2 and A3. Here rA is the areal extraction
radius and tret is retarded time.

FIG. 14. Left panel: Gravitational wave spectrum of the (2, 2) mode. Right panel: Estimated bolometric luminosities.

time as described in [124].
In previous studies [76, 77, 79, 80], where nonspinning or

aligned BHD systems were analyzed, it was found that the
development and saturation of the PPI leads to an initial wave
burst, and then a relaxation to a persistent quasimonochro-
matic signal of lower amplitude. The peak amplitude of the
strain depends on the disk-to-BH mass ratio as well as the disk
characteristics. Disks of constant specific angular momentum
profiles develop a more pronouced m = 1 instability, thus
the amplitude of gravitational wave is larger. As explained
in [79, 125] it is rh ∼ O((rcΩc)

2) and therefore the ampli-

tude of the strain is directly related to the angular velocity and
radius of the maximum density point.

When the orbital angular momentum and the BH spin are
misaligned this will cause the precession of the orbit and a
modulation of the gravitational waves. As we have seen in
Section II A, the angular velocity of the orbital precession is
much smaller than the orbital angular velocity, which implies
that we will need many rotation periods to observe the imprint
of precession on the gravitational waves. In the left column of
Fig. 13 we plot the (2, 2) mode (top panel) and (2, 1) mode
(bottom panel) of h+ for the tilted case A2 (rA is the areal ex-
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traction radius). As we discussed above we could not evolve
this model beyond 8 rotation periods due to the almost ex-
tremal spin the BH acquires from accretion. Despite that we
observe that the initial amplitude of the strain is much larger
than in the aligned cases (see for example [79]). In this partic-
ular model the (2, 1) mode has a larger initial amplitude than
the (2, 2) mode. The reason for this large initial amplitude is
not due to the rcΩc value mentioned above but from the large
nonaxisymmetry of the system at t = 0. Indeed, the aligned
model A1 has the same rcΩc value as model A2 but it has a
much smaller peak strain even though the rest mass of the disk
is larger.

Similar large amplitudes are found on the right panels of
Fig. 13 where the h+ strain of the modes (2, 2) and (2, 0)
are plotted for the tilted case A3. The large peak of the (2, 0)
mode is also present in the (2, 1) mode, characteristic of mode
mixing. Contrary to the A2 case where the ` = 3 modes are
negligible, case A3 has significant amplitude ` = 3 modes. In
[78] where spins up to χ ∼ 0.5 and tilt angles up to ∼ 30◦

were employed it was found that the gravitational wave sig-
nal has a weak dependence on the initial tilt angle, especially
for disks with nonconstant specific angular momentum pro-
files. The authors observed the smallest peak amplitudes for
the most tilted BH spacetime. By contrast, in our simulations
we see that the gravitational wave signal can be greatly influ-
enced by the tilt angle as discussed above for the cases A2 and
A3. Also, for case A3, which has the largest tilt we observe
the largest peak amplitude.

We compute the Fourier power spectrum of the gravita-
tional waves for the (2, 2) mode by calculating

h̃(f) =

√
|h̃22+ (f)|2 + |h̃22× (f)|2

2
. (13)

Here h̃22+ (f) and h̃22× (f) are the Fourier transforms of the two
independent polarizations + and×. In left panel of Fig. 14 we
plot the dimensionless characteristic strain hc(f) = 2fh̃(f)
for the four models A1-A4. Case A1 and A3 have peaks at
twice the orbital frequency fc while A2 at approximately 3fc
and a secondary one at 2fc. The short evolution of the latter,
due to reaching maximal spin, reflects mainly the initial spec-
tral content for that model, i.e. for tret . 2Pc in left panels
of Fig. 13, where a modulation of the gravitational wave is
present. For tret & 2Pc this modulation is smoothed out. We
expect that this effect is due to the specific structure of the
BHD. As explained in detail in [79] the gravitational waves
depend on the mass of the system from which they originate
and will be excellent sources for the future gravitational wave
observatories. In addition, for tilted BHDs the gravitational
wave strain of modes beyond the (2, 2) mode is as strong as
the (2, 2) one (see Fig. 13 bottom row), thus the magnitude of
their characteristic strain will be comparable with that of Fig.
14 (left panel) and therefore detectable by future gravitational
wave observatories.

In the presence of magnetic fields simulations of com-
pact objects that lead to the formation of BHDs have shown
that they can power relativistic jets [46–48, 126–129] with
an outgoing electromagnetic Poynting luminosity of LEM ∼

1052±1 erg/s. These relativistic jets are consistent with the
Blandford-Znajek mechanism for launching jets and their as-
sociated Poynting luminosities [130]. Although our simu-
lations are lacking magnetic fields we can still estimate the
Poynting electromagnetic luminosity, since the power avail-
able for electromagnetic jet emission is usually proportional
to the accretion power [131], i.e.

LEM = εṀ0c
2 , (14)

where Ṁ0 the rest-mass accretion rate and ε an efficiency fac-
tor O(10−3) to O(10−2). Assuming ε = 0.003 as in [132]
we plot in the right panel of Fig. 14 the electromagnetic lu-
minosity coming out from models A1-A4. The tilted cases
A2, A3 exhibit episodes of accretion at earlier times, due
to the tilted geometry of the ISCO. The larger the tilt, the
earlier these episodes appear (2.5Pc for A3 while 3.5Pc for
A2). Following these periods, accretion continues to grow ex-
ponentially until approximately the saturation of the PPI, at
which point it drops. The tilt seems to affect the asymptotic
value of the accretion rate. Although longer simulations are
needed for more conclusive results, with radiative transport
and magnetic fields incorporated, our simulations show that
case A3 asymptotes to a larger value than case A2, which in
turn asymptotes to a larger value than case A1, with the dif-
ferences being less than an order of magnitude. From Fig.
14 we compute the accretion timescale of our models to be
taccr ≈ 2 × 104 − 105 Mbh consistent with [76, 79]. Anal-
ogous to the accretion rate, the accretion timescales follow
taccr(A1) > taccr(A2) > taccr(A3).

On the other hand, the inclusion of magnetic fields will lead
to the development of the magnetorotational instability [133]
as well as turbulence [134]. The increase of turbulent viscos-
ity will redistribute the angular momentum in the disk with
the possibility of suppressing the PPI. Despite this, if the tur-
bulent viscous timescale is much longer than the timescale for
the growth and saturation of the PPI there may be sufficient
time for a multimessenger event. We estimate the viscous
timescale as

τvis
Pc

=
R2

Pcν
≈ 1

2πα

ΩcR
2

csH
(15)

where ν = αHcs is the shear viscosity, (H, R) the (height,
width) of the disk, cs the sound speed, and α the Shakura-
Sunyaev viscosity parameter [4]. In our case c2s = Γ(Γ −
1)P/((Γ − 1)ρ + ΓP ). For α = 0.01 it turns out that our
models have τvis/Pc ∼ {198, 198, 201, 176}. Even if αSS

is five times larger, the viscous timescale will be ∼ 40Pc i.e.
much larger than the time for PPI development and saturation.
This is especially true for the tilted BHDs, in which case the
PPI grows much earlier than in the aligned/antialigned ones.
Therefore our preliminary conclusion is that the one-arm in-
stability in BHD systems can still be a source for multimes-
senger astronomy. Full general relativistic magnetohydrody-
namic simulations with radiative transport will be needed to
assess reliably the outcome of such systems.
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IV. DISCUSSION

In this work we initiated a study of tilted, self-gravitating
disks around spinning black holes. Our general relativistic,
hydrodynamics simulations are the first that start from self-
consistent initial values and include highly spinning black
holes. In these preliminary simulations we focused on BHDs
that have a constant specific angular momentum profile and
the disk to BH mass ratio is 16% − 28%. We investigated
aligned (0◦), antialigned (180◦), and highly tilted systems
(45◦ and 90◦), all of them having dimensionless spins of
0.96 − 0.97. The nonaxisymmetric mode analysis showed
that the saturation of the PPI happens earlier than in the
aligned/antialigned cases and the m = 1 mode growth is
smaller. The disks precess and warp around the BHs, which
also precess following PN GM precession periods. This
causes the BH center to acquire a small kick velocity. We
confirmed that after outward angular momentum transport is
initiated close to the m = 1 corotation radius, the disk’s
maximum density increases (sometimes by orders of mag-
nitude). Accretion on the BH causes its dimensionless spin
either to increase or to decrease, depending on the configu-
ration. In the 90◦ initial tilt case, we find an alignment of
the disk with the BH spin similar to [7, 67, 115, 116]. This
alignment should not be interpreted as a BP effect for multi-
ple reasons: 1) Our disks have H/R = 0.625 � α (effective
α) in contrast to H/R � α that the BP is known to oper-
ate. Here we have no explicit viscosity. 2) Global alignment
arises and not only around the BH. 3) In addition to 2) the
inner parts of the disk that create the plunging streams on the
BH are not perpendicular to the BH spin, typical of the BP
picture. 4) The alignment is happening on a timescale much
shorter than the effective viscous timescale estimated in Sec.

III D. Tilted systems exhibit earlier accretion episodes than the
aligned/antialigned ones. We also observe a weak dependence
on the BH tilt, with larger tilts leading to higher accretion
rates, although longer simulations are needed. Gravitational
waves from tilted BHDs typically have larger strains than the
ones coming from aligned/antialigned systems and exhibit a
diverse spectrum of modes beyond the (2,2) mode. We expect
such self-gravitating disks to be excellent sources for multi-
messenger astronomy.
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[93] A. A. Tsokaros and K. Uryū, Phys. Rev. D 75, 044026 (2007).
[94] S. K. Chakrabarti, Astrophys. J. 288, 1 (1985).
[95] J.-P. D. Villiers, J. F. Hawley, and J. H. Krolik, The Astro-

physical Journal 599, 1238 (2003).
[96] A. Ashtekar and B. Krishnan, Living Reviews in Relativity 7,

10 (2004).
[97] O. Dreyer, B. Krishnan, D. Shoemaker, and E. Schnetter,

Phys. Rev. D 67, 024018 (2003), gr-qc/0206008.
[98] D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970).
[99] K. S. Thorne, R. H. Price, and D. A. Macdonald, The Mem-

brane Paradigm (Yale University Press, New Haven, 1986).
[100] H. von Zeipel, Mon. Not. Roy. Soc. 84, 665 (1924).
[101] J.-L. Tassoul, Theory of Rotating Stars (Princeton University

Press, 1978).
[102] M. A. Abramowicz, Acta Astronomica 24, 45 (1974).
[103] J. Karkowski, W. Kulczycki, P. Mach, E. Malec,

A. Odrzywołek, and M. Piróg, Phys. Rev. D 97, 104017
(2018).

[104] M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995).
[105] T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D59, 024007

(1999), arXiv:gr-qc/9810065 [gr-qc].
[106] Z. B. Etienne, J. A. Faber, Y. T. Liu, S. L. Shapiro,

K. Taniguchi, and T. W. Baumgarte, Phys. Rev. D77, 084002
(2008), arXiv:0712.2460 [astro-ph].

[107] E. Schnetter, S. H. Hawley, and I. Hawke, Class. Quantum
Grav. 21, 1465 (2004), arXiv:gr-qc/0310042.

[108] Carpet, Carpet Code homepage.

[109] J. G. Baker, J. Centrella, D.-I. Choi, M. Koppitz, and J. van
Meter, Phys. Rev. D 73, 104002 (2006).

[110] M. D. Duez, P. Marronetti, S. L. Shapiro, and T. W. Baum-
garte, Phys. Rev. D 67, 024004 (2003).

[111] C. A. Raithel and V. Paschalidis, Phys. Rev. D 106, 023015
(2022), arXiv:2204.00698 [gr-qc].

[112] Z. B. Etienne, V. Paschalidis, Y. T. Liu, and S. L. Shapiro,
Phys.Rev. D85, 024013 (2012).

[113] Z. B. Etienne, Y. T. Liu, and S. L. Shapiro, Phys.Rev. D82,
084031 (2010).

[114] M. Liska, A. Tchekhovskoy, A. Ingram, and M. van der
Klis, Mon. Not. Roy. Astron. Soc. 487, 550 (2019),
arXiv:1810.00883 [astro-ph.HE].

[115] P. C. Fragile, O. M. Blaes, P. Anninos, and J. D. Salmonson,
Astrophys. J. 668, 417 (2007), arXiv:0706.4303.

[116] J. Dexter and P. C. Fragile, The Astrophysical Journal 730, 36
(2011).

[117] S. A. Hughes, Phys. Rev. D 64, 064004 (2001), [Erratum:
Phys.Rev.D 88, 109902 (2013)], arXiv:gr-qc/0104041.

[118] V. Paschalidis, W. E. East, F. Pretorius, and S. L. Shapiro,
Phys. Rev. D92, 121502 (2015), arXiv:1510.03432 [astro-
ph.HE].

[119] H. A. Williams and J. E. Tohline, Astrophys. J. 315, 594
(1987).

[120] J. W. Woodward, J. E. Tohline, and I. Hachisu, Astrophys. J.
420, 247 (1994).

[121] J. Thornburg, Class. Quantum Grav. 21, 743 (2004), gr-
qc/0306056.

[122] O. Dreyer, B. Krishnan, D. Shoemaker, and E. Schnetter,
Phys. Rev. D 67, 024018 (2003).

[123] S. R. Brandt and E. Seidel, Phys. Rev. D 52, 870 (1995).
[124] C. Reisswig and D. Pollney, Class. Quantum Grav. 28, 195015

(2011), arXiv:1006.1632 [gr-qc].
[125] D. Lai, F. A. Rasio, and S. L. Shapiro, Astrophys. J. 423, 344

(1994), arXiv:astro-ph/9307032 [astro-ph].
[126] V. Paschalidis, M. Ruiz, and S. L. Shapiro, Astrophys. J. Lett.

806, L14 (2015), arXiv:1410.7392 [astro-ph.HE].
[127] M. Ruiz, S. L. Shapiro, and A. Tsokaros, Phys. Rev. D97,

021501 (2018), arXiv:1711.00473 [astro-ph.HE].
[128] M. Ruiz, A. Tsokaros, V. Paschalidis, and S. L. Shapiro, Phys.

Rev. D99, 084032 (2019), arXiv:1902.08636 [astro-ph.HE].
[129] L. Sun, M. Ruiz, S. L. Shapiro, and A. Tsokaros, Phys. Rev.

D 105, 104028 (2022), arXiv:2202.12901 [astro-ph.HE].
[130] R. D. Blandford and R. L. Znajek, Mon. Not. Roy. Astron.

Soc. 179, 433 (1977).
[131] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs,

and Neutron Stars (John Wiley & Sons, New York, 1983).
[132] M. Ruiz, A. Tsokaros, and S. L. Shapiro, Phys. Rev. D 101,

064042 (2020), arXiv:2001.09153 [astro-ph.HE].
[133] S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).
[134] M. Bugli, J. Guilet, E. Müller, L. Del Zanna, N. Bucciantini,

and P. J. Montero, Mon. Not. R. Astron. Soc. 475, 108 (2018).

http://dx.doi.org/10.1103/PhysRevD.103.063037
http://dx.doi.org/10.1103/PhysRevD.103.063037
http://arxiv.org/abs/2101.05440
http://dx.doi.org/ 10.1038/276588a0
http://dx.doi.org/ 10.1038/276588a0
http://dx.doi.org/10.1086/513095
http://arxiv.org/abs/astro-ph/0701278
http://dx.doi.org/ 10.3847/1538-4365/abb367
http://dx.doi.org/ 10.3847/1538-4365/abb367
http://dx.doi.org/10.1103/PhysRevD.83.043007
http://arxiv.org/abs/1011.3010
http://dx.doi.org/10.1103/PhysRevD.103.063037
http://dx.doi.org/10.1103/PhysRevD.103.063037
http://arxiv.org/abs/2101.05440
http://dx.doi.org/10.1093/mnras/231.1.97
http://dx.doi.org/10.1093/mnras/231.1.97
http://dx.doi.org/10.1086/167832
http://dx.doi.org/10.1086/167832
http://dx.doi.org/10.1086/169205
http://dx.doi.org/10.1086/171166
http://dx.doi.org/10.1086/171166
http://dx.doi.org/10.1086/172955
http://dx.doi.org/10.1142/S021827181101944X
http://dx.doi.org/10.1142/S021827181101944X
http://arxiv.org/abs/1104.3685
http://dx.doi.org/10.1103/PhysRevD.99.041501
http://dx.doi.org/10.1103/PhysRevD.99.041501
http://arxiv.org/abs/1810.02825
http://dx.doi.org/10.1103/PhysRevD.75.044026
http://dx.doi.org/10.1086/162755
http://dx.doi.org/10.1086/379509
http://dx.doi.org/10.1086/379509
http://arxiv.org/abs/gr-qc/0206008
http://dx.doi.org/ 10.1103/PhysRevD.97.104017
http://dx.doi.org/ 10.1103/PhysRevD.97.104017
http://dx.doi.org/10.1103/PhysRevD.52.5428
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://dx.doi.org/10.1103/PhysRevD.59.024007
http://arxiv.org/abs/gr-qc/9810065
http://dx.doi.org/ 10.1103/PhysRevD.77.084002
http://dx.doi.org/ 10.1103/PhysRevD.77.084002
http://arxiv.org/abs/0712.2460
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://dx.doi.org/10.1088/0264-9381/21/6/014
http://arxiv.org/abs/arXiv:gr-qc/0310042
http://dx.doi.org/10.1103/PhysRevD.73.104002
http://dx.doi.org/10.1103/PhysRevD.106.023015
http://dx.doi.org/10.1103/PhysRevD.106.023015
http://arxiv.org/abs/2204.00698
http://dx.doi.org/10.1103/PhysRevD.85.024013
http://dx.doi.org/10.1103/PhysRevD.82.084031
http://dx.doi.org/10.1103/PhysRevD.82.084031
http://dx.doi.org/ 10.1093/mnras/stz834
http://arxiv.org/abs/1810.00883
http://dx.doi.org/10.1086/521092
http://arxiv.org/abs/0706.4303
http://dx.doi.org/10.1088/0004-637x/730/1/36
http://dx.doi.org/10.1088/0004-637x/730/1/36
http://dx.doi.org/10.1103/PhysRevD.64.064004
http://arxiv.org/abs/gr-qc/0104041
http://dx.doi.org/10.1103/PhysRevD.92.121502
http://arxiv.org/abs/1510.03432
http://arxiv.org/abs/1510.03432
http://dx.doi.org/10.1086/165163
http://dx.doi.org/10.1086/165163
http://dx.doi.org/10.1086/173556
http://dx.doi.org/10.1086/173556
http://arxiv.org/abs/gr-qc/0306056
http://arxiv.org/abs/gr-qc/0306056
http://dx.doi.org/10.1103/PhysRevD.67.024018
http://dx.doi.org/10.1103/PhysRevD.52.870
http://arxiv.org/abs/1006.1632
http://dx.doi.org/10.1086/173812
http://dx.doi.org/10.1086/173812
http://arxiv.org/abs/astro-ph/9307032
http://dx.doi.org/10.1088/2041-8205/806/1/L14
http://dx.doi.org/10.1088/2041-8205/806/1/L14
http://arxiv.org/abs/1410.7392
http://dx.doi.org/10.1103/PhysRevD.97.021501
http://dx.doi.org/10.1103/PhysRevD.97.021501
http://arxiv.org/abs/1711.00473
http://dx.doi.org/10.1103/PhysRevD.99.084032
http://dx.doi.org/10.1103/PhysRevD.99.084032
http://arxiv.org/abs/1902.08636
http://dx.doi.org/ 10.1103/PhysRevD.105.104028
http://dx.doi.org/ 10.1103/PhysRevD.105.104028
http://arxiv.org/abs/2202.12901
http://dx.doi.org/10.1103/PhysRevD.101.064042
http://dx.doi.org/10.1103/PhysRevD.101.064042
http://arxiv.org/abs/2001.09153
http://dx.doi.org/10.1086/170270
http://dx.doi.org/ 10.1093/mnras/stx3158

	Self-gravitating disks around rapidly spinning, tilted black holes: General relativistic simulations
	Abstract
	Introduction
	Initial data
	Precession frequencies

	Evolutions
	Global structure
	Mode growth and angular momentum transport
	Precession and gravitational waves
	Multimessenger astronomy

	Discussion
	Acknowledgments
	References


