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We present a new Planck CMB lensing-CMB temperature cross-correlation likelihood that can be used to
constrain cosmology via the Integrated Sachs-Wolfe (ISW) effect. CMB lensing is an excellent tracer of ISW,
and we use the latest PR4 Planck data maps and lensing reconstruction to produce the first public Planck likeli-
hood to constrain this signal. We demonstrate the likelihood by constraining the CMB background temperature
from Planck data alone, where the ISW-lensing cross-correlation is a powerful way to break the geometric
degeneracy, substantially improving constraints from the CMB and lensing power spectra alone.

I. INTRODUCTION

The integrated Sachs-Wolfe effect (ISW, [1]) describes
how photons pick up a net blue or redshift while propagating
through time-varying potentials between last scattering and
when we observe them today. In terms of the Weyl potential
Ψ, ISW imprints a temperature perturbation

∆T (n̂)ISW ≈ 2

∫ χ∗

0

dχΨ̇(χn̂, η0 − χ), (1.1)

where a dot denotes conformal time derivative, η0 is the con-
formal time today, and the integral is along the line of sight
in direction n̂ between us and last scattering at comoving dis-
tance χ∗. In a standard cold matter-dominated universe, lin-
ear gravitational potentials are constant because there is an
exact compensation between decay due to expansion (the sep-
aration between comoving masses gets larger), and growth of
the density perturbations (density perturbations grow propor-
tional to the scale factor during matter domination). In the
late universe, dark energy relatively increases the expansion
rate, leading to a net decay in the amplitude of potentials with
time, and hence a net ISW effect. The ISW is therefore a
probe of the late-time density perturbations, with amplitude
that depends on the dark-energy evolution [2], any modifica-
tion of gravity [e.g. 3], or other beyond flat-ΛCDM perturba-
tion growth (for example curvature, dark matter interactions,
massive neutrinos, etc. [e.g. 4]).

The CMB lensing potential is correlated to ISW because
the same gravitational potentials cause both effects. This is
dominated by the late-time ISW signal from the dark energy
era, which has significant contributions to distances about 1/3
of the way to last scattering. The early-ISW signal from po-
tentials near recombination (due to the radiation density) is
not significantly correlated to the lensing signal because it is
produced very close to the last-scattering surface. The lensing
potential-ISW correlation is therefore a probe of dark energy.

Unfortunately, the ISW signal cannot be measured inde-
pendently as we only have access to the total temperature
anisotropies including the sources from recombination. In
practice, the primordial fluctuations dominate in most cos-
mologies, so that their cosmic variance acts as an irreducible
source of noise for the temperature-lensing cross-correlation
signal. In principle, this can be improved slightly by also us-

ing polarization to constrain the primordial anisotropies, but
even with perfect observations the total signal remains rela-
tively low. This is because the signal is limited to large scales:
for small-scale perturbations there are many density perturba-
tions along the line of sight, leading to most of the signal can-
celling between over- and under-densities. On small-scales
there can be additional ISW contributions even in matter dom-
ination from non-linear growth of structure (the Rees-Sciama
effect [5]), however these are very small [6–8], so we focus
on the linear contribution.

The correlation between the lensing potential and
∆T (n̂)ISW is very high (& 0.9), potentially making CMB
lensing an excellent probe of the ISW signal. A detection of
the Planck lensing-ISW bispectrum was given in [9], and us-
ing temperature lensing cross-correlation in [10]. The ISW
can also be seen in cross-correlation with other large-scale
structure probes, as first detected by Ref. [11] (see Ref. [12]
for a review of subsequent results). CMB lensing has the nice
property that for a given cosmology the amplitude and redshift
kernel are accurately predicted (no bias or source redshift un-
certainty), and the signal can be reconstructed over most of
the sky. Since the correlation is so high, CMB lensing also
has most of the signal. For the foreseeable future, Planck
observations are the only ones that can reconstruct lensing
over the full sky [13, hereafter PL2018], so the Planck lensing
map will remain the best lensing probe of the large-scale ISW
cross-correlation for some time. It is therefore worth trying to
get the best reconstruction, and constructing a likelihood that
can be used in cosmological parameter analysis of extended
models. There has been no previously-published Planck ISW
likelihood, so this is a new (if admittedly not very powerful)
Planck product.

Previous Planck ISW cross-correlations results are exten-
sively discussed in Ref. [12]. Planck lensing-temperature
cross-correlation spectrum results were given in [10], and
recently updated in the PR4 lensing analysis [14, hereafter
PL4]. The PR4 lensing analysis uses more optimal filtering
to improve the lensing signal recovery, and also uses the new
NPIPE (PR4) Planck CMB maps [15] (which include more
data from satellite repointing periods and improve many parts
of the data processing). In this paper we use lensing maps
from PL4 to construct an ISW likelihood, which we then use
to constrain the monopole CMB temperature independently of
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the COBE/FIRAS results [16].

II. MODELLING

We aim to construct a likelihood based on the cross-
correlation spectrum estimator ĈφT` between lensing recon-
struction and the CMB temperature. For Planck noise levels,
the covariance between the CMB lensing reconstruction and
the CMB spectra is known to be very weak and can be ne-
glected [17, 18]. The main correlations to consider are there-
fore between ĈφT` and ĈTT` , and ĈφT` and Ĉφφ` . The CMB
polarization E-mode, being correlated to the primordial tem-
perature, could in principle be used to increase slightly the
signal to noise of ĈφT` [19]. The prospects are however mod-
est (we forecast an improvement of at best 9%), and would
require thorough understanding of the low polarization multi-
poles, where foregrounds and systematics are certainly more
worrisome than in temperature. For these reasons we do not
consider this possibility in this work. For simplicity of use, we
create difference likelihoods containing the additional ISW
information, so that the new likelihoods can simply be com-
bined with the standard full-resolution Planck likelihoods. We
first construct a joint {ĈTT` , ĈφT` , Ĉφφ` } likelihood at low
multipoles (2 ≤ ` ≤ 100). We model the contribution to the
likelihood as a Gaussian ∝ e−

1
2χ

2

with fixed covariance and
discard the constant determinant normalization [20]. We write
then

χ2 ≡ χ2
(
ĈTT` , ĈφT`

)
− χ2

(
ĈTT`

)
(for lensing-ISW only)

(2.1)
for combination with the Planck TT likelihood. For combi-
nation with both the Planck TT and lensing likelihoods we
instead have

χ2 ≡ χ2
(
ĈTT` , ĈφT` , Ĉφφ`

)
− χ2

(
ĈTT`

)
− χ2

(
Ĉφφ`

)
.

(2.2)

One can motivate these equations as follows: within
our joint-likelihood model, − 1

2χ
2 of Eqs. (2.1) and

(2.2) are the conditional probabilities ln p(ĈφT` |ĈTT` ) and
ln p(ĈφT` |ĈTT` , Ĉφφ` ) respectively. According to Bayes’ the-
orem, their combination with the official Planck likelihoods
then gives the joint result including the new cross-correlation
measurement. Although we assume Gaussianity for construct-
ing the ISW-difference likelihood, the combination with full
Planck low-` likelihood accounts more accurately for the non-
Gaussianity of the CMB TT spectrum at low multipoles. To
build our likelihoods we use the lensing reconstruction maps,
as well as Wiener-filtered CMB maps that are obtained by the
lensing reconstruction pipeline as input to the lensing map
estimators. If the instrument noise and CMB are close to
Gaussian with accurately-known spectra, the spectrum of the
Wiener-filtered map is a sufficient statistic for the CMB like-
lihood. The noise and foreground model are not accurate in
practice, however the temperature noise is very small on the
largest scales, and foregrounds can be cleaned, so we ignore
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FIG. 1. Change of the CMB temperature and lensing
spectra along the main degeneracy line defined by constant
ωb/T

3
0 , ωc/T

3
0 , AsT

ns−1
0 and θ? and ns, for varying background

CMB temperature T0 around TFIRAS. Solid (dashed) lines show pos-
itive (negative) T0 increments. The impact on the ISW-lensing CφT`
is much larger in relative terms than on the lensing spectrum. For
Planck noise levels, this results in the lensing and ISW-lensing spec-
tra having almost equivalent constraining power on T0 when consid-
ered independently, despite the much more precise measurement of
the former. The blue and orange solid lines are obtained using CMB
temperature values close to the PR3 and PR4 CMB TT spectra best-
fits. The two lower panels also show the lensing and lensing-ISW
PR4 data points used in this work. On the first two panels DTT

` is
`(` + 1)CTT` /2π. The relative constraining power of these effects
on the spectra can be seen in Fig. 4.
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FIG. 2. Per redshift contribution to CφTISW
` within ΛCDM, for the

amplitudes bins shown in the legend.

these differences. Using a fixed fiducial CTT,fid
` spectrum for

the filtering may be slightly sub-optimal, but this resulting
‘quadratic maximum likelihood’ (QML) estimator [21] can
still be used to construct an unbiased Gaussian likelihood.

In Sec. II A we first discuss the construction of the ĈTT`
and ĈφT` data vectors and the modelling of their predictions.
Their variances and covariances (also to Ĉφφ` ) are discussed
in Sec. II B. Plots of the relevant covariance matrices are rel-
egated to the end of the paper. We do not discuss the Ĉφφ`
data vector, which is exactly the same as in PL4; it is built
using the most precise, inhomogeneously-filtered, κ-filtered
[22] lensing maps. For simplicity of the modelling, when
building ĈφT` we instead use the PL4 lensing maps built with
the 2018 Planck lensing pipeline, which uses homogeneous
noise filtering at a slight cost in signal to noise. We use
the minimum variance (MV) quadratic estimator (QE) recon-
structions, that combine the temperature and polarization QEs
in a way that is approximately optimal. Our new ĈφT` data
points can be seen on the lowest panel of Fig. 1, and formally
give a 4σ detection of a non-zero signal consistent with our
fiducial Planck FFP101 cosmology (shown as the black solid
line). Fig. 2 shows how the signal in each bin depends on
redshift.

A. Data vectors

The public Planck temperature-based likelihoods at 2 ≤
` ≤ 29 are built differently from those at higher multipoles,
and on different sky areas. A large fraction of the signal to
noise on ĈφT` comes from this low-` range, but some part of

1 https://github.com/carronj/plancklens/blob/
master/plancklens/data/cls/FFP10_wdipole_params.
ini

signal extends at higher multipoles (about 50% of the SN is
located below ` = 10, and 5% above ` = 75). In order to
model more accurately the covariances with ĈTT` , we use two
temperature maps to build our bandpowers. For 2 ≤ ` ≤ 29,
we use temperature maps built on the same mask as the low-
` Planck TT likelihood, with fsky ∼ 86%. Above ` = 30,
we construct all bandpowers on the Planck PR4 lensing mask,
which covers 67% of the sky (the lensing masks differ to a
very minimal extent between the PL3 or PL4 analyses). In this
latter case, we neglect the slight differences in sky area and
methodology used for the high-` TT likelihoods (described
below). The differences are expected to be small, with the TT
signal to noise on the range 30 ≤ ` ≤ 100 matching to percent
level that of the PR4 high-` TT that we use (67.8 compared to
68.9). In any case, our TT -bandpowers only serve to model
the small covariance to ĈφT` , which is at most 0.1 for ` ≥ 30.
The approximations we make on the higher multipole range
are therefore not critical (in fact, none of this `-range has any
impact on the results on the internal constraint on the CMB
temperature shown in this paper). On the low multipole range,
our construction of the TT -likelihood matches the public like-
lihood very well (at least for our usage later on, as can be seen
from the black lines in Fig. 4). On the entire multipole range,
the lensing maps are built on the lensing mask.

The first step of our analysis pipeline is to build Wiener-
filtered CMB maps (TWF

`m , EWF
`m , BWF

`m ). These maps are
used for the construction of the lensing map and spectrum,
and the filtered temperature is also directly used for the ISW-
lensing cross-correlation with the large-scale lensing map, and
to build the covariance to the TT auto-spectrum. On PR3 data
we use the official foreground-cleaned SMICA maps, and for
PR4 data the same SMICA maps that were built for PL4, to
which we refer for details on their construction. The same
Wiener-filtering procedure is applied to PL3 and PL4, using
conjugate gradient descent. In the case of temperature-only,
and using the notation of those papers, the equation to be
solved is

TWF = CTT,fidT †Cov−1T dat. (2.3)

The fiducial covariance model Cov always uses a fiducial
transfer function model T built out of an isotropic beam of 5′

together with the pixel window function, and an homogeneous
noise level of 32µK-amin across the unmasked area, with the
exception of the maps used to construct Ĉφφ` which are built
as described in PL4 and account for noise inhomogeneity.

1. TT -data

From the TWF
`m filtered maps, we first build fiducial ampli-

tude estimates. Using the available FFP10 noise-only simula-
tions of our foreground-cleaned maps (for PR4, these also in-
clude large-scale foregrounds residuals), we estimate a noise
contribution N̂` to the auto-spectrum of the filtered data map

https://github.com/carronj/plancklens/blob/master/plancklens/data/cls/FFP10_wdipole_params.ini
https://github.com/carronj/plancklens/blob/master/plancklens/data/cls/FFP10_wdipole_params.ini
https://github.com/carronj/plancklens/blob/master/plancklens/data/cls/FFP10_wdipole_params.ini
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FIG. 3. Left panel: Unbinned Wiener-filtered temperature spectrum fiducial amplitude coupling matrix (see Eq. 2.6), for the multipole ranges
2 ≤ `obs ≤ 99 and 2 ≤ `sky ≤ 120 (by construction our filtering has vanishing response to the CMB dipole), obtained as described in the
main text. For ` < 30, results are built on a larger sky fraction (86%), resulting in almost perfectly diagonal responses and covariances. For
plotting the matrix is rescaled by its diagonal elements (of order unity, shown in the inset), as for a cross-correlation matrix. Right panel: Same
for the φT spectrum amplitude estimates, defined in Eq. (2.11), where some residual Monte-Carlo noise remains visible.

by filtering them and averaging their spectra, and then build

ÂTT` CTT,fid
` ≡

(
1

fTT` (2`+ 1)

∑̀
m=−`

∣∣TWF
`m

∣∣2)− N̂WF
`

fTT`
.

(2.4)
The factor fTT

L applies a preliminary crude isotropic normal-
ization, accounting for masking and the Wiener filter,

fTT` ≡ fsky

(
CTT,fid
`

CTT,fid
` +NTT,fid

`

)2

. (2.5)

In this equation NTT,fid
` is the white noise prediction of our

fiducial covariance model. Both N̂WF and NTT,fid are tiny
corrections and largely irrelevant on all scales considered for
the cross-correlation to the lensing. The amplitude estimator
ÂTT
` is close to unbiased, matching expectation across simu-

lations to about 5% on most scales and up to 15% on the very
smallest multipoles. This mismatch is caused by the residual
mode-coupling still present after Wiener filtering. We define
the response matrixRTT ``sky to the true CMB spectrum CTT`sky
as

〈
ÂTT`

〉
=
∑
`sky

RTT ``sky

(
CTT`sky

CTT,fid
`sky

)
. (2.6)

We get the response matrix as follows. Let F `skymsky

`m be the
matrix representation of the linear Wiener-filtering operation,
connecting the Wiener-filtered CMB T`m mode to the sky
mode T`skymsky

. In terms of the fiducial covariance matrix
model of Eq. (2.3), F may be written

F ≡ CTT,fidT †Cov−1T . (2.7)

From its definition, Eq. (2.6), together with Eq. (2.4), the re-
sponse matrix is directly proportional to

RTT ``sky ∝
∑

m,msky

∣∣∣F `sky,msky

`m

∣∣∣2 . (2.8)

For all purposes in this paper, ` is at most 100, and the cou-
pling extends only across a small range of multipoles. For
these reasons the matrix F remains small enough that it can
be explicitly calculated via brute force calculation: Wiener-
filtering an input map with a single non-zero (`sky,msky)
mode directly gives the corresponding entire matrix row.
There are (`max + 1)2 modes up to multipole `max. The en-
tire matrix can thus be obtained by filtering (`max + ∆`+ 1)2

maps, where ∆` is a buffer accounting for the couplings to
modes smaller than `max. Since all modes are degree-scale
or larger, for this we can use a degraded version of the filter
working at a coarser pixel resolution than the 1.7’ of the na-
tive Planck maps. We used four times larger pixels and a very
generous ∆` = 100. The unbinned coupling matrix is shown
on Fig 3. Due to the approximate symmetry of the mask with
respect to the galactic equator, the non-diagonal elements of
RTT are most prominent for |` − `sky| = 2, but always very
small. On the Planck lensing mask, we see almost constant
couplings of size 9%, 3% and 0.2% relative to the diagonal
for |`− `sky| = 2, 4 and 1 respectively. On the larger sky area
used below ` < 30, the matrix is almost perfectly diagonal.

We use RTT not to undo the couplings in our amplitude es-
timates (which would require inverting the matrix), but rather
to correct the prediction of the amplitude; this choice does not
affect the information content of the spectrum likelihood. On
the FFP10 simulation suite, the estimates are then biased at
most by a tenth of an error bar.
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2. φT -data

Similarly, from the filtered temperature multipoles and
lensing reconstruction estimator φ̂`m we first build fiducial
amplitudes

ÂφT` CφT,fid
` ≡ 1

fφT` (2`+ 1)

∑̀
m=−`

φ̂`mT
WF,†
`m , (2.9)

with

fφT` ≡ fsky

(
CTT,fid
`

CTT,fid
` +NTT,fid

`

)
. (2.10)

Compared to the TT case, it might appear less natural to use
an amplitude defined with respect to a fiducial CφT,fid

` here,
which can be zero in some models. However, the fiducial
spectrum, as well as any prefactor like fφT` , cancels out in
the Gaussian likelihood and hence does not affect final re-
sults. Since we only consider large scales, the temperature
field entering the cross-correlation has negligible lensing con-
tribution and can be treated as unlensed. The correlation with
the lensing quadratic estimator is therefore completely dom-
inated by contractions proportional to CφT` and the lensing
response functions are chosen to make the cross-correlation
estimator non-perturbatively unbiased on the full sky [23]. We
may therefore write the general estimator response as

〈
ÂφT`

〉
=
∑
`sky

RφT ``sky

(
CφT`sky

CφT,fid
`sky

)
, (2.11)

for some matrix RφT . In contrast to RTT , RφT now has a de-
pendence on the cosmological model (though only weakly so)
through the lensing QE estimator response. We account for
this in our likelihood in a way described further below. We
first obtain an unbinned matrix RφT in the fiducial cosmolog-
ical model in the following manner.
We produce CMB-only simulations in pairs, where the mem-
bers of each pair share the same unlensed T and E maps.
The lensing potentials deflecting these unlensed CMB are also
very similar, with the difference that the first pair member has
the expected (small) cross-correlations CφT` and CφE` , while
for the second they have been set to zero. We then perform
the Planck MV QE reconstruction on both maps, resulting in
φ̂w.ISW and φ̂n.ISW respectively, and obtain an estimate of the
response matrix through the cross-spectra

ˆRφT ``sky ∝
∑

m,msky

(
φ̂w.ISW
`m − φ̂n.ISW

`m

)
F
`skymsky

`m T unl
`skymsky

,

(2.12)
where T unl is the unlensed temperature of the pair, and F
the dense filtering matrix calculated in the previous subsec-
tion (see Eq. (2.3)). Using this QE difference greatly reduces
the Monte-Carlo noise of this estimate, by cancelling to a very
high degree the lensing reconstruction noise as well as the
mean-field of the signal-carrying φ̂w.ISW, and provides good

estimates of all of the matrix entries. As for ÂTT , we use
this matrix to forward-model the couplings in our amplitude
predictions.

It is well known that in addition to the main dependency on
the lensing spectrum, the lensing QE gets an additional model
dependence through its normalization: on an isotropic sky, we
may write the QE signal part to good accuracy as

φ̂`m ∝
R`(θ)
R`(θfid)

φ`m, (2.13)

whereR(θfid) is the (arbitrary) normalization that was applied
to the estimate, and R(θ) the true sky lensing response. This
is almost always a very small effect, since the CMB spectra
are known empirically to a very high accuracy already, leav-
ing little wiggle room for significant variations in the response
in most models. The dependency enters exclusively through
the CMB spectra, and is linear in them. We include it in our
likelihood by precomputing the matrices d lnR`/d lnCXY`′
for XY ∈ (TT, TE,EE), allowing us to recalculate quickly
the isotropic response for each point in a Monte Carlo Markov
chain (MCMC) parameter space. We then rescale the predic-
tion by the response ratio of Eq. 2.13. In doing so we neglect
the mask-induced couplings for the purpose of the parameter
dependence, which is perfectly adequate since the couplings
are themselves a few percent level correction already.

B. Covariances

In this section we describe how we build the various covari-
ance matrix blocks. We build these blocks in the same way,
but using temperature maps built on two different masks for
2 ≤ ` ≤ 29 and 30 ≤ ` ≤ 100 respectively. Selected figures
with unbinned covariances are given in the appendix. As dis-
cussed at the beginning of this section, the covariance between
Ĉφφ` and ĈTT` can be neglected and is not discussed here.

1. TT - TT covariance

In addition to the empirical covariance of the spectra from
simulations, we also built a couple of improved estimates to
the covariance, showing that, for all practical purpose, the
non-idealities of the CMB maps (apart of masking) and the
noise contribution can be safely neglected. The dense fil-
tering matrix F of section II A 1, in conjunction with the
input CMBs, allows us to test for the importance of non-
idealities in the CMB and noise FFP10 simulations. To do
this, we improve the convergence rate of the empirical co-
variance by subtracting a covariance estimate built from the
input CMBs and the dense filtering matrix, and adding the
exact analytic mean of this estimate. This subtracts most
of the ideal-CMB realization-dependent variance, giving off-
diagonal coefficients that are smaller by about a factor of 10
or so. The resulting covariance matrix accelerated in this way
shows no significant feature at all, except for the expected
mode-coupling. Our prediction of the covariance from the
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dense matrix seems to be an excellent fit to the empirical ma-
trix, and is used for our covariance in what follows.

2. φT - TT covariance

Since the large-scale temperature modes are effectively un-
lensed, and that the lensing map is built from high mul-
tipoles only, the expected covariance only comes from the
mode-coupled disconnected Gaussian signal proportional to
the product of φT and TT sky spectra. The cross-correlation
of lensing to temperature sharply decays with multipole as the
ISW signal decays, so this covariance should only be relevant
on the very largest scales. To get a more precise unbinned esti-
mate of this Gaussian covariance than just the naive empirical
covariance, we may proceed as follows: according to Wick’s
theorem, the Gaussian part consists of the product of the two
pairs (neglecting scaling factors and constants for simplicity)

Cov[ÂφT ÂTT ]`1`2 ∝
∑
m1,m2

〈
φ̂`1m1

TWF,†
`2m2

〉〈
TWF
`1m1

TWF,†
`2m2

〉
(2.14)

The pairing of large-scale temperatures on the right-hand side
contains so little noise that we can use an analytic formula for
it, assuming the noise model in the filter matches that of the
data. Under this assumption, and defining the matrix K as

K`2m2

`1m1
≡
〈
TWF
`1m1

TWF,†
`2m2

〉
, (2.15)

we then have

K = CTT,fidT †Cov−1T CTT,fid = FCTT,fid. (2.16)

The matrix K can computed by brute force from F , defined
in Eq. (2.7). Hence we may write

Cov[ÂφT ÂTT ]`1`2 ∝
∑
m1,m2

〈
φ̂`1m1

K`2m2

`1m1
TWF,†
`2m2

〉
. (2.17)

For a single Monte-Carlo simulation, and each `1, `2, Eq. 2.17
is now in the form of matrix-vector multiplications, which
can easily be performed. Such an estimate will contain lit-
tle Monte-Carlo noise. Fig. 7 shows the empirical covari-
ance estimate using the 480 FFP10 simulations, and our Gaus-
sian covariance estimate, which seems be a perfectly adequate
model.

3. φT -φT covariance

Here, we also we assume the disconnected contractions
provide a good model. There are two such terms, one pro-
portional the product of the T̂ T̂ and φ̂φ̂ auto-spectra, and the
other the square of φ̂T̂ ,

Cov[ÂφT ÂφT ]`1`2 ∝
∑
m1m2

〈
φ̂`1m1 φ̂

†
`2m2

〉〈
TWF,†
`1m1

TWF
`2m2

〉
+
∑
m1m2

〈
φ̂`1m1T

WF,†
`2m2

〉〈
TWF
`1m1

φ̂†`2m2

〉
.

(2.18)

The first term strongly dominates almost everywhere. To iso-
late the contributions, we proceed as follows. For the first term
in Eq. (2.18) we use the form

Cov[ÂφT ÂφT ]`1`2 3
〈
φ̂`1m1

K`2m2

`1m1
φ̂†`2m2

〉
, (2.19)

similar to Eq. (2.17), where we average over lensing estimates
from the FFP10 simulations. To obtain the second contribu-
tion, we use the ISW-paired noise-free CMB simulations of
Sec. II A 2 to build

Cov
[
dÂφT`1 dÂ

φT
`2

]
−
〈
δφ̂`1m1K

`2m2

`1m1
δ̂φ̂†`2m2

〉
, (2.20)

with δφ̂ ≡ φ̂w.ISW
`m −φ̂n.ISW

`m and (we are suppressing through-
out (2`+ 1) and other prefactors to avoid cluttering)

dÂφT` =
∑
m

TWF
`m δφ̂†`m. (2.21)

This term is at most a percent-level correction to that in
Eq. (2.19) on the lowest multipoles, and could have been
safely ignored. The error bars for ÂφT` calculated in this way
accurately match the empirical errors from the FFP10 simula-
tion suite, as shown in Fig. 6 (right panel).

4. φT -φφ covariance

Due to the separation of scales between the modes used
for lensing and for TWF, the covariance of ÂφT with Âφφ

is expected to come from the ISW signal itself. The Gaussian
isotropic approximation predicts a positive cross-correlation
of size ∼ 0.3 at the quadrupole down to a percent level for
` ∼ 100. To obtain a good unbinned covariance model from
the FFP10 simulations, we reduce primordial CMB variance
by estimating the covariance using the covariance of ÂφT

ISW

,
where

T ISW
`m =

CφT`
Cφφ`

φ`m (2.22)

is the input ISW-signal part of the simulated temperature map.
We use our dense filtering matrix for this purpose. The result-
ing covariance matrix has much lower Monte-Carlo noise and
appears almost diagonal, as can be seen on Fig. 8.

III. CONSTRAINTS ON T0

The background CMB temperature today, T0, is usually
fixed in cosmological analyses because it has been mea-
sured with tight error bars by the FIRAS instrument, achiev-
ing T0 = (2.7255 ± 0.0006)K [25] when combined with
WMAP data. This measurement uncertainty is sufficiently
small that for current data marginalizing over it affects pa-
rameter constraints at a negligible level. The FIRAS measure-
ment remains the only measurement of T0 at this precision,
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FIG. 4. Illustration of the relative constraining power of different
parts of Planck data on the H0-T0 degeneracy (see also Fig. 1).
The curves are obtained by evaluating likelihoods in the toy one-
parameter model defined by constants ωb/T 3

0 , ωc/T
3
0 , AsT

ns−1
0 and

θ? (as well as fixed ns and τ ), which captures well the qualitative
behavior of the full ΛCDM+T0 results (see Fig. 5 and Fig. 9). The
black curve (Planck low-` TT) captures the large-scale ISW effect.
The high-` CMB constraints (comparable to that of the low-`) come
from the differential lensing smoothing effect, and differ somewhat
significantly between PR4 (blue) and PR3 (dashed blue), owing to
the larger sky area used for the PR4 CamSpec likelihood compared
to the PR3 Plik likelihood. The orange curve is obtained with the
PR4 lensing power spectrum alone. The green curve shows the con-
straint from the lensing-ISW data alone, and is new to this work. The
black dashed and dot-dashed (‘HL’, Ref. [24]) lines are approxima-
tions to the Planck low-` TT likelihood that we build and use to take
into account the covariance of the φT and TT spectra as discussed
in the main text. The centre of the approximately flat region of these
posteriors corresponds to ΩΛ changing sign and becoming increas-
ingly negative at high CMB temperature. In the full ΛCDM + T0

parameter space, additional degeneracies slightly reduce the statisti-
cal power of the lensing spectrum.

though there are previous measurements of comparable preci-
sion [26]. Subsequent observations have calibrated using the
FIRAS result, so Planck measures ∆T/T and then scales the
results to be reported in units of TFIRAS ≡ 2.7255K without
giving any direct temperature measurement. It is therefore in-
teresting to consider what happens if we do not impose the T0

constraint, and we now describe how our new ISW likelihood
can be used to constrain the CMB temperature independently.

In a homogeneous and isotropic cosmology, the CMB tem-
perature scales T ∝ 1/a, where a is the scale factor, and so
will appear different to observers at different times. The CMB
temperature T0 can then be thought of as parameterizing when
we are in this cosmology. Clearly a range of temperatures
are consistent with exactly the same underlying evolution, just
with different measured values of the Hubble parameter and a
different scale factor at the time of observation. Since recom-
bination happens at a fixed known temperature, the comov-
ing angular diameter distance to last scattering also changes,
because for lower observed temperatures the CMB is more
distant. This means that observers at different times will see
identical CMB acoustic peak structures, but the angular scale

will be shifted to smaller scales at later times.
Within the framework of ΛCDM cosmologies, models re-

lated by differing values of the cosmological constant have the
same early-universe physics, but different distance-redshift re-
lations, so a shift in angular scale can also be compensated by
a change in the cosmological constant while keeping nearly
identical early-universe physics. From observations of the lin-
ear CMB, there is therefore a very near parameter degeneracy
between T0 and ΩΛ (and hence H0, the ‘geometric degener-
acy’). This is illustrated in Fig. 1, and discussed further in
Refs. [27–29]. The acoustic peak structure of the linear CMB
power spectrum therefore gives almost no information about
the CMB temperature.

This geometric degeneracy is broken on the small-scale
anisotropies by CMB lensing, though only weakly. It is also
broken to a comparable degree by the effect of the ISW signal
on the large-scale temperature, which changes significantly
with the change in cosmological constant required to keep the
angular acoustic scale fixed as the CMB temperature varies.
The CMB temperature therefore shows up as a strong de-
pendency of the lensing-ISW cross-correlation spectrum, as
shown in Fig. 1. The different mapping between redshift and
time also affects the reionization signal, though for Planck
this effect cannot be separately distinguished without know-
ing the true redshift evolution of reionization. Here we focus
on the large-scale ISW signal, and see whether our new like-
lihood can constrain the CMB temperature without using any
non-Planck data.

We assume a base ΛCDM cosmology and follow the nota-
tion, assumptions and priors of Ref. [30]. We use camb2 [31]
to compute the theoretical power spectra and Cobaya3 [32]
to sample cosmological parameters with MCMC. Both these
codes self-consistently handle varying the true CMB back-
ground temperature while allowing data constraints to be fixed
in units of the FIRAS CMB temperature TFIRAS. In camb we
use the Recfast recombination model [33, 34], generalized
in camb 1.3.6 to scale consistently with CMB temperature.
We use the Planck PR4 NPIPE TTTEEE CMB likelihood of
Ref. [35], together with the Planck 2018 (PR3) low-` tempera-
ture andEE polarization likelihoods [30]. TheEE likelihood
mainly constrains the optical depth, with little dependence on
the exact shape of the reionization history producing the po-
larization signal, and hence in itself does not help to break the
T0 degeneracy. For comparison we also show results using
the official PR3 Planck TTTEEE PLIK likelihood (which uses
less sky area than Ref. [35], as well as different foreground
and other modelling).

We sample ωb/T̄
3
0 , ωc/T̄

3
0 , AsT̄

ns−1
0 (with T̄0 ≡

T0/TFIRAS and ωx ≡ Ωxh
2), together with ns, θ?, T0,

and obtain H0 as derived parameter. In this parameter space
we do not constrain ΩΛ to be positive, in contrast to Ref. [28].
Our results are shown on Figs. 9 and 10, with the relevant
H0-T0 subspace reproduced on Fig. 5. We obtain chains
using the CMB spectra-only likelihood, and with lensing and

2 https://camb.info
3 https://github.com/CobayaSampler/cobaya/

https://camb.info
https://github.com/CobayaSampler/cobaya/
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FIG. 5. Left panel: Posteriors on H0 and T0 using Planck PR4 data in our ΛCDM+T0 MCMC chains, with and without the inclusion of the
lensing and lensing-ISW data. Dark blue shows the fixed-temperature ΛCDM results, including CMB and lensing data, for comparison. See
Table I for summary statistics and Fig. 9 for the full parameter set constraints. Right panel: Same for the PR3 data, with a somewhat different
CMB-only constraint due to its greater preference for more lensing smoothing in the temperature spectrum.

lensing-ISW alone and in combination, as well as one refer-
ence PR4 and PR3 ΛCDM Planck chain where T0 is fixed
to the FIRAS value. For the reasons explained above, none
of the ΛCDM early-universe physical parameter constraints
change significantly compared to that reference case, but
H0 becomes largely unconstrained. The PR4 CMB-spectra
prefer a lower H0, and, as visible on Fig. 5, and the PR3
spectra an even lower value. This is due to the well-known
shape of the residuals of the high-` TT Planck spectrum,
preferring a higher level of lensing-like peak smoothing in
ΛCDM [30, Fig. 24], which is also achievable with a higher
CMB temperature in ΛCDM+ T0 (second panel of Fig. 1).
High CMB temperatures can remain acceptable to the low-`
TT data, and (to a smaller extent) to the lensing auto-spectrum
data, but eventually give a very strongly negative ISW-lensing
signal (negative cosmological constant) that is ruled out by
our ĈφT` measurements. For PR3 and PR4, the lensing-ISW
data constraining power outperforms that of the lensing
spectrum.

Simple summary statistics are listed in Table I. Combining
all of our spectra, from PR4 data we find the 68% confidence
limits

T0 = (2.86± 0.12) K

H0 = (63.5± 3.4) km s−1Mpc−1.
(3.1)

These combined constraints are very similar to that coming
from the PR3 release data,

T0 = (2.89± 0.13) K

H0 = (62.6± 3.8) km s−1Mpc−1.
(3.2)

A common extension to ΛCDM is allowing for non-zero
curvature ΩK . For this alone the ISW-lensing data does not
add substantial additional information compared to the lens-
ing spectrum. We noted though that Ref. [36], using the
Planck 2015 likelihoods, and opening both T0 and ΩK (and
combining with other data to break the large degeneracies),
found a preference for a hotter and open Universe at high con-
fidence, and we sought to test this result including ĈφT` . How-
ever, irrespective of our ISW-lensing likelihood, we found
that this preference completely disappears after updating their
analysis from 2015 to 2018 PR3 Planck data. This is because
this preference was coupled to a very large optical depth4,
which is excluded by the much tighter measurement of τ in
the 2018 lowl.EE likelihood compared to 2015 (since usage
of the High Frequency Instrument (HFI) data for this purpose
was finally possible). This brings the preferred temperature
and curvature of this analysis in good agreement with ΛCDM.

IV. CONCLUSIONS

With this paper we provide a new likelihood built from
Planck data that captures the lensing-ISW bispectrum infor-
mation, by cross-correlating the Planck lensing maps to the

4 This was also speculated by the authors of Ref. [36] in private communi-
cation.
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TABLE I. 68% confidence regions on H0 and T0 from Planck PR3
and PR4 data found in our ΛCDM+T0 MCMC chains with and with-
out lensing and lensing-ISW data.

H0[kms−1Mpc−1] T0[K]

PR3 CMB 40+7
−10 3.66+0.35

−0.23

CMB +ĈφφL 53+8
−6 3.23+0.22

−0.29

CMB +ĈφTL 61.6 ± 4.4 2.92 ± 0.15

CMB+ĈφφL + ĈφTL 62.6 ± 3.8 2.89 ± 0.13

CMB + ĈφφL (T0 = TFIRAS) 67.40 ± 0.53 2.7255

PR4 CMB 49+10
−9 3.33+0.32

−0.35

CMB +ĈφφL 59.9+5.2
−4.0 2.98+0.14

−0.18

CMB +ĈφTL 62.9 ± 4.1 2.88 ± 0.14

CMB +ĈφφL + ĈφTL 63.5 ± 3.4 2.86 ± 0.12

CMB +ĈφφL (T0 = TFIRAS) 67.23 ± 0.49 2.7255

large-scale temperature. The signal, probing the low-redshift
universe, is weak and detected at 4σ only. Current lensing
spectrum data measurements are about 10 times more precise,
so the new cross-spectrum band-powers are not expected to
bring much new information in standard models. Neverthe-
less, these data points can prove useful in some extensions of
ΛCDM. Here we showed that they can successfully break
the very strong degeneracy between the Hubble constant and
the CMB temperature when constrained using CMB spectra
alone. With the official 2018 Planck release data (PR3), the
ISW-lensing constraint is almost twice as strong as that from
the lensing spectrum. We also obtained results using the lat-
est (and slightly more precise) CamSpec CMB likelihood and
lensing results [14, 35] (PR4). We found that combining all
bandpowers gives very similar results for both releases, and
consistency with the standard ΛCDM values. Of course the
degeneracy remains strong, and our new Planck internal joint
measurement of the CMB temperature and Hubble constant
do not come close to the precision in ΛCDM with fixed tem-
perature. Nevertheless, the resulting Hubble constant best-fit
value still lies in tension with local measurements by Ref. [37]
by approximately 3σ, with central value shifted even further
from the local measurement value. In models where the back-
ground evolution changes, external data, esp. baryon acoustic
oscillation (BAO) data, can be a much more powerful way
to break the geometric degeneracy. However, there may be
extended models with background evolution consistent with
BAO that modify late-time perturbation growth in such a way
that the ISW likelihood still provides useful additional infor-
mation.

The ISW-lensing likelihood is available in two fla-
vors at https://github.com/carronj/planck_
PR4_lensing, and must be used in combination with the
Planck TT likelihoods in order to properly account for the
covariance between these new data points and the existing
Planck public data.
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