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ABSTRACT

Based on entropy considerations and the arrow of time Penrose argued that the universe
must have started in a special initial singularity with vanishing Weyl curvature. This is often
interpreted to be at odds with inflation. Here we argue just the opposite, that Penrose’s
persuasions are in fact consistent with inflation. Using the example of power law inflation,
we show that inflation begins with a past null singularity, where Weyl tensor vanishes when
the metric is initially exactly conformally flat. This initial state precisely obeys Penrose’s
conditions. The initial null singularity breaks T -reversal spontaneously and picks the arrow
of time. It can be regulated and interpreted as a creation of a universe from nothing, initially
fitting in a bubble of Planckian size when it materializes. Penrose’s initial conditions are
favored by the initial O(4) symmetry of the bubble, selected by extremality of the regulated
Euclidean action. The predicted observables are marginally in tension with the data, but
they can fit if small corrections to power law inflation kick in during the last 60 efolds.
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1 Introduction

Complex things which break don’t reassemble on their own. Putting them together takes a
toll and this toll is exacted by the increase of entropy of the system describing the process
of breaking and reassembly. This trend can be used to define a global arrow of time in
the universe, in contrast to generic microphysical phenomena which typically respect time
reversal.

Penrose has taken this observation a step further [1], arguing that this phenomenon
implies that the universe originated from a special initial state, characterized by a singularity
in whose vicinity the geometry of the universe is very well approximated by conformal
flatness, with (almost) vanishing Weyl tensor. This is also often interpreted as a problem for
inflation (for a range of viewpoints, see [2–10]). Recall that the idea of inflation [11–13] is to
blow up a universe from an initially small region, whose initial contents is much smaller than
the vast complexity observed in the universe today. This is regardless of how the contents
is inventoried, naively by counting over the initial volume, or more consistently by using the
initial apparent horizon size. Either way, the late universe has far more contents than the
early one. The difficulty with this obvious fact is that something other than inflation seems
to be needed to select this seemingly improbable initial state. In other words, if the entropy
count is used as a measure of likelihood, it seems to suggest that inflation presupposes an
unlikely initial state.

Curiously, this argument overlooks the simple experiential fact that in many models of
inflation the initial state of inflation is both singular and has an almost conformally flat geom-
etry, in full accord with the technical aspects of Penrose’s hypothesis. Indeed, the now-classic
Borde-Guth-Vilenkin theorem asserts that inflationary spacetimes are past geodesically in-
complete [14] (see also [15]), which at least at the semiclassical gravity level implies that
inflation starts out of a singularity. Moreover, once inflation sets in1, it quickly dilutes initial
deviations from homogeneous and isotropic FRW metric [16–25], which being conformally
flat has vanishing Weyl tensor, by symmetry. Thus it seems that at least ‘mechanically’, if
we accept Penrose’s argument that the initial state is singular and Weyl flat, it is completely
consistent to get inflation to spring forth from it. In some sense, actually, this state would
appear to favor subsequent inflation as the origin of observed structures, since Weyl flatness
favors a very smooth initial universe and something is required to break that smoothness
spontaneously, instead of explicitly – precisely what inflation is intended to do.

To make our point, we employ the example of power law inflation [26–29]. We explain
that the inflationary past ultimately begins with a past null singularity [30, 31], for both
spatially flat and spatially open FRW metrics. Since both of these metrics are initially exactly
conformally flat, they have vanishing Weyl tensor. Clearly, the initial null singularity breaks
time-reversal and picks the arrow of time. Thus both of these metrics, maximally extended
into the past satisfy Penrose’s Weyl curvature hypothesis and hence describe universes with
an arrow of time which nevertheless inflate. We don’t think our examples are unique. Other
examples may also exist, which feature spacelike instead of null singularities, such as the
closed universe arising from the instantons in the no-boundary proposal. In fact, when we
regulate the null singularity examples, which we consider in detail below, the regulators are

1A careful critic would without doubt express a concern right now that maybe inflation never sets in. We
postpone our reply aimed at dispelling this concern for later in this paper.
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spacelike surfaces, which we consider in detail later on. The point we are trying to make,
however, is that regardless of the specific nature of the singularity, the selection of the initial
state which realizes Penrose’s Weyl curvature hypothesis might be a consequence of the
quantum completion of inflation, which is anyway necessary, instead of needing a completely
separate mechanism.

The question about what specifically selects the initial singularity can be addressed using
quantum cosmology and no-boundary proposal. The past null singularity can be understood
in terms of the singular Hawking-Turok instantons [32–36]2, which can be regulated and
interpreted as an expanding nonsingular bubble (for various approaches see [38–42]). Using
this approach gives the reason for the selection of the initial Weyl-flat state of inflation: it
minimizes the Euclidean action thanks to the O(4) symmetry of the configuration and the
smallness of the primordial bubble which seeded the universe [43,44].

The model actually yields predictions close to the current BICEP/Keck bounds [45],
which can be improved with small corrections3 to the potential during the last 60 efolds.
Alternatively, if the resolution of the H0 tension is Early Dark Energy (EDE) [46–48], the
CMB fits need a slightly higher scalar spectral index nS ∼ 0.98 – 0.995 [49–51], which is
readily retrofitted by power law inflation. Interestingly, for the parameters which are close
to the observationally favored values, the regime of universe self-reproduction in power law
inflation is relegated to the cutoff physics, and so are superseded by the primordial bubble.
This means, once fixed by the birth of the universe, the arrow of time remains unaffected by
subsequent dynamics.

A very interesting question is how to interpret the cosmological perturbations, both scalar
and tensor, which arise during inflation from the entropic point of view. Scalar perturbations
are model dependent, although in all models of inflation they are an intrinsic ingredient of
inflationary dynamics. Tensor perturbations are however universal, depending only on the
scale of inflation. Both modes however utilize the same “seed”, which is the uncertainty
principle of quantum fluctuations in the inflationary vacuum. In (quasi)-de Sitter geometries
this leads to the spontaneous emergence and growth of anisotropies and inhomogeneities,
which may be viewed as an avatar of de Sitter instability [52–57]. This instability, from
the entropic point of view, indicates that the pure de Sitter, appearing as the state with
vanishing Weyl curvature, is a special state of the theory that dynamically evolves into the
more generic states, which include the perturbations. It would be interesting to test this
idea in more detail.

2 Power Law Inflation

Power law inflation is driven by a scalar field with an exponential potential, with the field
rolling off to φ =∞. The potential is parameterized by [26–29]

V (φ) = V0e
−cφ/MPl , (1)

where φ is a canonically normalized scalar field, c is a numerical constant of order unity, and
MPl ∼ 2 × 1018 GeV is the Planck scale. Clearly, V0 is degenerate with the initial value of

2A different method to start the universe with a null singularity has been proposed in [37].
3We will ignore the specific form of those corrections here, and work with purely exponential potentials

because the causal structure analysis is considerably simpler.
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φ. Alternatively, the dynamics can also be parameterized by an equation of state

p = wρ , (2)

where p and ρ are pressure and energy density, respectively. In general, for homogeneous
solutions the equation of state parameter w is a function of time until the self-similar at-
tractor is reached. When c �

√
2 (which is the requirement that the geometry describes

an accelerating expansion) a typical configuration will settle into the attractor fixed point
within a few Hubble times, and w → const.

The scalar sources the FRW metric

ds2 = −dt2 + a2(t)
( dr2

1− kr2
+ r2dΩ2

)
. (3)

Here we will be particularly interested in the k = 0,−1 cases, with spatially flat or open
hyperbolic slices. Equations of motion are

3H2 + 3
k

a2
=

ρ

M2
Pl

, ρ̇+ 3H(ρ+ P ) = 0 , with ρ =
φ̇2

2
+ V , p =

φ̇2

2
− V , (4)

where the Hubble parameter is H = ȧ/a.
To find the attractor, we substitute ρ and p into (2) and hold w fixed, which gives the

first order equation φ̇2/2 = 1+w
1−wV . This is easy to solve; after straightforward algebra, we

find the attractor form of ρ (with p = wρ),

ρ =
4

c2
1

1 + w

M2
Pl

t2
. (5)

Next, the conservation equation yields ρ = ρ0(a0/a)3(1+w), and so comparing with (5) we

find a ∼ t
2

3(1+w) . The Friedmann equation then shows that unless w = −1/3, the curva-
ture contribution is subleading relative to the attractor energy density. Neglecting it and
substituting ρ of (5) into it yields, using H = 2

3(1+w)t
,

1 + w =
c2

3
. (6)

Clearly, imposing w → −1 requires |c| � 1. In any case, the attractor is [26–29] (since
2

3(1+w)
= 2

c2
, and using φ̇2

2
= 2

c2
M2

Pl

t2
)

a = a0
( t
t0

) 2
c2 , φ = φ0 +

2MPl

c
ln(

t

t0
) . (7)

Here a0, t0 and φ0 are integration constants; a0 is pure gauge, which we can fix to unity
choosing a(t0) = 1. The others satisfy V0e

−cφ0/MPlt20 = 2M2
Pl(6− c2)/c4.

This solution applies at late times. At early times, it may be altered at small t If the
universe is spatially curved, specifically open, with k = −1, and the curvature initially dom-
inates. In that case, the scale factor changes to a = t/t0, while the scalar field configuration
remains largely the same.
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In either case, it is evident that t→ 0 is an initial singularity. In fact, when w ≤ −1/3,
this hypersurface is null [30, 31], as we will review below. Here we merely note that the
requirement of using Einstein’s equations consistently near the singularity imposes a physical
cutoff on t0. Since

M2
PlR =

48M2
Pl

c4t20

(
1− c2

4

)
, (8)

requiring that the effective curvature remains below some cutoff M4
UV imposes

t20
>∼

48M2
Pl

c4M4
UV

(
1− c2

4

)
. (9)

SinceMUV
<∼MPl/

√
N where N is the number of light field theory species [58,59], and |c| �

1, this implies that t0 � 1/MPl. We will see that this essentially pushes the selfreproduction
regime of inflation too close to singularity, and cuts it out of the semiclassical regime.

Let us now turn to observables. The scalar and tensor perturbations spectra evaluated
on the attractor are

PS =
( H2

2πφ̇

)2
, PT =

8H2

(2π)2M2
Pl

. (10)

Taking t∗ as the instant when the attractor evolution starts to dominate, corresponding to
the value φ∗, and introducing N = ln(a(t)/a∗) as the number of efolds that transpired until
time t, we find that the field variation is ∆φ/MPl = cN , and that the scalar power, tensor
power, spectral index nS and the tensor-scalar ratio during this epoch are [26–29]

PS = PS(t∗)
( k
k∗

)−2c2/(2−c2)
, PT = r PS , nS = 1− 2c2

2− c2
, r = 8c2 , (11)

where PS(t∗), k∗ are the Planck normalization values, PS(t∗) ' 2.1×10−9 [60]. These formulas
are totally independent ofN , which is only determined by the variation of φ in the field space,
cN = ∆φ/MPl. Note that as consequence in these models the spectral running vanishes,
α = dnS

d ln k
= 0. These examples are a special case of constant roll inflation [61]. If we

normalize the parameters by setting nS ' 0.965 for the CMB anisotropies, we find c ' 0.185
and r ' 0.274. As it stands, this is in conflict with bounds on r from BICEP/Keck [45],
calibrated to plain vanilla ΛCDM late universe. However, since the exponential potential
by itself can’t be the whole story, after all needing corrections to accommodate reheating at
the very least [39], those deviations could fit [45]. Alternatively, if the resolution of the H0

tension forces a modification of ΛCDM, by for example inclusion of the EDE [46–48], the
primordial scalar spectrum may need to be slightly modified to compensate for the change
in the evolution of fluctuations [49–51].

For example, if we pick c such that r <∼ 0.036, to match the bounds of [45], we find

c <∼ 0.067 , nS >∼ 0.995 . (12)

To fit the CMB we may need a slightly higher scalar spectral index nS ∼ 0.98 – 0.995 [49–51].
This means that nominally the exponential potentials satisfying (12) might still be in the
game. For those values of c, the power controlling the attractor expansion rate is 2/c2 >∼ 444.
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Further, as noted above, the total variation of φ for N efolds is

∆φ = cMPlN , (13)

which for N ∼ 60 yields ∆φ ' 4MPl, in some tension with the purported swampland
bounds [62], but not much. We will not worry too much about this issue here. We do note,
however, that for these values of parameters, the bound on the cutoff t0 of Eq. (9) leads to

t0 >∼
4
√

3

c2

( MPl

MUV

)2
M−1

Pl . (14)

At earlier times t < t0, quantum gravity is doing most of the driving.

3 Causal Structure

We now turn to the causal structure of the power law inflation models, following [30, 31].
Our particular interest is in the maximally extended past of the solutions with k = 0,−1.
We already know that the geometries with power law scale factor are singular at t→ 0, but
the question is, what kind of a singularity is that. For simplicity, we start with k = 0, and
extend the scale factor

a(t) =

(
t

t0

) 2
3(1+w)

, (15)

over the whole real semiaxis (0,∞). At future infinity, this scale factor is unbounded; however
the curvature goes to zero and locally the flat space approximation becomes ever better. To
understand the global picture, we look at the Penrose diagram describing such spacetimes.
To obtain it, we conformally map the solution on a section of the Einstein static universe,
which is a direct product R× S3 with the metric

ds2 = −dτ 2 + dχ2 + sin2(χ)dΩ2 . (16)

The section of R × S3 which describes power law inflation is the region bounded by the
images of the singularities and/or past and future causal boundaries.

We find the required conformal map as a composition of two maps. First we transition
to the conformally flat metric ds2 = ω2(x̄)ηµνdx̄

µdx̄ν . In the second step, we map this metric
to the static Einstein. The first map comprises of changing coordinates by

(1 + 3w)
t̄

t0
= 3(1 + w)

(
t

t0

) 1+3w
3(1+w)

, ω(t̄) =
( 1 + 3w

3(1 + w)

t̄

t0

) 2
1+3w

. (17)

When −1 < w < −1/3, the coordinate t̄ is negative and inversely proportional to t, varying
from −∞ to 0 as t changes from 0 to ∞: the t̄-axis has the same orientation as the t-axis.

The second map is defined by

r

t0
=

1

2

(
tan(

χ+ τ

2
) + tan(

χ− τ
2

)
)
,

t̄

t0
=

1

2

(
tan(

χ+ τ

2
)− tan(

χ− τ
2

)
)
. (18)
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Since r ∈ [0,∞), t̄ ∈ (−∞, 0), and χ ∈ [0, π], it follows that τ ∈ [−π, 0]. Putting together
these formulas, the flat power law inflation metric is

ds2 = C2t20
[cos(χ−τ

2
) cos(χ+τ

2
)]

4
|1+3w|−2

4 sin
4

|1+3w| (|τ |)

(
−dτ 2 + dχ2 + sin2(χ)dΩ2

)
, (19)

where C is an O(1) constant, and

|1 + 3w|
6(1 + w)

(
t

t0

) |1+3w|
3(1+w)

=
(

tan(
χ− τ

2
)− tan(

χ+ τ

2
)
)−1

. (20)

Using this, we see that the ultimate future of power law inflation, t → ∞, for any fixed
value of r, maps onto tan(χ−τ

2
) = tan(χ+τ

2
): i.e precisely the latitude circle τ = 0 on the

cylinder. Because the spacetime ends there, we cut out the portion of the cylinder R × S2

above it. On the other hand, the singularity corresponds to the limit t → 0 for any fixed
r. By (18), (20), we see that it maps onto the curve tan(χ−τ

2
) → ∞, which corresponds to

τ = χ−π. It is clear that this is the null semi-circle connecting the points (−π, 0) and (0, π)
on the cylinder. Since this hypersurface is the ultimate singular past of power law inflation,
we must throw out the portion of the cylinder beneath it. Then we unwrap what remains,
and find the causal structure of Fig. (1).

Figure 1: Causal structure of a spatially flat endless power law inflation. Depicted are the
event horizon, the apparent horizon RAH and r = const. and t = const. hypersurfaces.

Each point in Fig. (1) corresponds to an angular S2. The ultimate past, which realizes
the outcome of the Borde-Guth-Vilenkin theorem [14], is a null singularity. If power law
inflation never ends, the future is a spacelike infinity. Any observer must have a future
horizon, which in their rest frame is the null inward line ending in the upper left corner of
the diagram. Any observer would find the universe at any given finite time to be of finite
size, being able to causally explore only the interior of the diamond bounded by the horizon
and the singularity.
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The causal structure analysis so far concerns spatially flat geometry k = 0. What if the
universe is open, k = −1? As we noted above, in this case, the expansion rate is set by
a competition between spatial curvature and the exponential potential. At late times, the
potential wins because of the attractor behavior. However, early on the curvature can be
dominant. When that happens, the scale factor is a linear function of the comoving time,
a = t/t0. In this limit the metric is

ds2 = −dt2 +

(
t

t0

)2 ( dr2

1 + r2
+ r2dΩ2

)
. (21)

At first glance one might think the metric is locally just a Milne wedge of the flat Minkowski
in an accelerated reference frame. However, thanks to t0 this is not so: there is a real
curvature singularity at t→ 0. The singularity is again null, as we can see by mapping the
slice of the spacetime near t = 0 onto the static Einstein universe. In this case the analogue
of eq. (17) is

t̄ = t0 ln(t/t0) + . . . , ω(t̄) = e
t̄
t0 + . . . . (22)

and so

ln(t/t0) + . . . =
1

2

(
tan(

χ+ τ

2
)− tan(

χ− τ
2

)
)
. (23)

The ellipses denote the subleading terms when t→ 0. Hence the singularity again maps on
the past null semi-circle τ = χ− π.

At larger values of t this geometry changes into the attractor-controlled section, where
the curvature is locally negligible. If power law inflation lasts forever, the Penrose diagram is
very similar to Fig (1), except for the local differences near the null singularity, as depicted
in Fig (2).

Figure 2: Causal structure of a spatially open power law inflation. It is an amalgam of the
past k = −1 regime and a future power law attractor, matched together at a time ∼ t̂ (which
in reality is a slab of worldvolume few Hubble times thick).

Clearly, both of these cases are reminiscent of the spatially flat charts of de Sitter, with
the exception that the past horizon is replaced by a null singularity. Nevertheless as long
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as the metrics are purely FRW – isotropic and homogeneous – Weyl tensor vanishes there.
Unlike in de Sitter the future horizon is not at constant spatial separation from the observer,
but grows according to (w < −1/3)

LH = a(t)

∫ ∞
t

dt′

a(t′)
=

3(1 + w)

|1 + 3w|
t , (24)

which shows that the volume of any spacelike hypersurface inside the causal diamond grows
extremely large. Yet the volume outside grows even larger [30,31].

The cosmic inventory, as tallied by a single observer who receives the signals from their
past, can be accounted for by the capacity of the holographic screen, which is bounded by
the area of the apparent horizon [63–65]. The apparent horizon RAH is a boundary of the
normal region of space, which colloquially we may think of the largest region that behaves
as a locally Minkowski space. Specifically, it is the largest region inside which the beams of
all outward geodesics, future or past oriented, spread out. On the apparent horizon, at least
one class refocuses. This means, the apparent horizon behaves like a lens. In our case, the
exterior of the apparent horizon in all our examples is an anti-trapped region, meaning that
all past oriented null geodesics outside of the apparent horizon, inward or outward bound,
are converging. This is because of the null singularity in the past.

To find the location of the apparent horizon, recall that it is the hypersurface where at
least one family of null lines has vanishing expansion. If we consider a sphere of radius ar
with area A ∼ a2(t)r2, along the radial null geodesics dt = ±a(t)dr, the gradient of A is
A′ ∼ a′r + ar′ where the prime denotes the derivative with respect to the affine parameter
of the null line. The extremum yields the comoving size of the apparent horizon to be
r = 1/ȧ(t), and so the proper apparent horizon size is4

RAH =
1

H
=

3(1 + w)

2
t . (25)

Clearly, since RAH/LH = |1 + 3w|/2 < 1 for −1 < w < −1/3, RAH is always inside the
future horizon. On the diagram of Fig. (1), it is the arc RAH between the lower left corner
and the upper left corner.

Given the discussion above, it should be obvious that to get a realistic cosmology out
of power law inflation, we need to end inflation and reheat the universe. We also need to
perturb the reheating surface with the scalar and, unavoidably, tensor fluctuations which we
discussed in the previous section. Under those conditions, it is easy to see that the causal
structure of such a universe is represented by the Penrose diagram of Fig. (3). There we
allow for the possibility that very early on the universe is open and curvature dominated,
then transitions to the attractor regime, which ends globally with reheating. The reheating
surface will be smooth only down to one part in 10000, due to the inflationary fluctuations.
As we discussed in the preceding section, the dynamics can match the observations, with
some tweaks.

It is interesting to get an idea of the complexity of this universe at its various stages. We
pick an observer and let them count what they see, from the comfort of their rest frame.

4In truth, RAH = 1/
√
H2 + k/a2, but we neglect the curvature term assuming the attractor to be a long

stage. In the regime where the curvature term dominates over the scalar the variation of RAH is slower than
linear, but it still goes to zero on the singularity.
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Figure 3: Causal structure of a spatially open power law inflation which exits to radiation
and matter dominated FRW. It is an amalgam of the past k = −1 regime, a future power
law attractor, and the postinflationary decelerating FRW.

They do so by collecting the photons arriving from afar, and originating from as early as
near the null singularity (or gravitons instead of photons, since the universe is far more
transparent for those). As those null rays approach the observer – they are future oriented
inward geodesics – they cross the apparent horizon and focus to the origin in the normal
region of spacetime surrounding the observer. The total amount of information coming in
must satisfy the horizon area bound [63–65], S <∼ AAH/4GN . Since the apparent horizon
expands, the information contents grows, but during the accelerated epoch the variation is
very slow. The apparent horizon area evolves according to ȦAH/AAH = c2H, which by using
N = ln(a/a∗) we can express as variation per efold,

dAAH
AAH

= c2dN , (26)

and so during the attractor stage since c � 1, the maximal entropy is growing very slowly.
This slow increase5 continues until the end of inflation, after which the growth rate changes
to dAAH/AAH = O(1)dN , with the precise details being controlled by the post-inflationary
cosmic inventory.

The evolution in the semi-classical regime being adiabatic, with a globally fixed arrow
of time as selected by the null singularity, means the “entropy” is crossing the apparent
horizon during inflation very slowly, and after inflation much more rapidly. Still, close to the
singularity the geometry may still undergo a phase of selfreproduction. If so then different
segments of the attractor regime of inflation could be subject to different perturbations, that

5Which could be associated with the horizon crossing of the perturbations [66,67].
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can trigger the onset of exit at different times, or perhaps even prevent it altogether. If so
those phenomena could alter the arrow of time in some parts of the spacetime. However, if
we demand that the attractor dynamics yields observables close to the current limits, the
selfreproduction regime is excised out of the semiclassical limit. We can verify this as follows.
The boundary of selfreproduction is approximately given by the field values where PS ' 1,
or more accurately the equality of the classical field variation integrated over a Hubble time
and the quantum fluctuation induced by cosmic acceleration,∫

Hubble time

dφ ' H

2π
. (27)

In other words, where the field variation is slow enough, the quantum Brownian drift can
compensate it, and “reboot” inflation. Using φ̇ = 2MPl

ct
and H = 2

c2t
yields for c� 1

tboundary =
1

πc3
M−1

Pl (28)

Selfreproduction could only occur for t < tboundary, and the slow roll regime of inflation for
t > tboundary (we could have phrased this condition in terms of the gauge invariant variable φ
instead, but since we gauge fixed the solution that is not necessary). However: our result for
the cutoff t0 of Eq. (14) severely obstructs the selfreproduction regime. Namely, comparing
(14) and (28),

t0
tboundary

>∼ 4
√

3πc
( MPl

MUV

)2
' 4
√

3πcN , (29)

where as we noted above N is the number of light species in the theory, below the cutoff. If
we take those to only count the Standard Model degrees of freedom, N ∼ 120, and so the
right hand side is ∼ 2612c. If we further require that nS is not greater than 0.998, we find
c >∼ 0.044. This means that for the values of c closest to fitting the data, the ratio of Eq.
(29) is much greater than unity, t0

tboundary
� 1. Since only the time interval t > t0 is allowed

in the effective theory, it means that the regime of selfreproduction is basically confined to
the spacetime sliver right next to the null singularity in Fig. (3) that it is pointless to think
about it. In other words, the selfreproduction regime is behind the Planckian cutoff surface
above the null singularity, and it makes no sense physically in the solutions depicted by Fig.
(3). As a result, the arrow of time, once set, remains preserved in those solutions. Taking
the solution to start from the null singularity as a homogeneous and isotropic FRW implies
the vanishing of its Weyl tensor in the far past. This will be violated later, by evolution,
since quantum fluctuations of the scalar will perturb the geometry, and this will contribute
to the entropy production in the late universe. This is all fully consistent with Penrose’s
Weyl curvature hypothesis. The question is, what selects this initial condition.

4 Cosmic Bubbles

A rationale for selecting the initial condition which approximates really well the null singu-
larity with vanishing Weyl tensor could be provided using the framework of no boundary
proposal for quantum cosmology [68] and weighing the probabilities by the tunneling wave-
function prescription for the initial conditions [69,70]. We will argue below that the process
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which mediates the creation of the universe depicted by the causal structure of Fig. (3) is
closely related to the Hawking-Turok instanton [32–36]. We start by first briefly reviewing
the Hawking-Turok instanton.

The idea is to imagine a theory of open inflating universe which tunnels from nothing,
with a generic potential that can support 60 efolds of inflation. This universe originates by
a formation of a bubble of spacetime, and the universe is its dynamical interior. The pre-
genesis stage is described by an Euclidean geometry which resembles a squashed sphere [32].
The scalar gradients will get large in some region of the Euclidean space, and produce a
singularity which lies on the hypersurface of vanishing extrinsic curvature along which the
analytical continuation is carried out [32–36]. In this regime, the simple limit of relevant
equations is

ds2 = dσ2 + b2(σ)
(
dψ2 + sin2 ψdΩ2

)
, (30)

for the Euclidean metric and

φ′′ + 3
b′

b
φ′ = ∂φV ,

b′′

b
= − 1

3M2
Pl

(φ′2
2

+ V
)
,

b′2

b2
=

1

b2
+

1

3M2
Pl

(φ′2
2
− V

)
, (31)

for the scalar and gravitational equations. The prime is a derivative with respect to σ. In
this regime, the field φ is rolling in the upside-down potential −V . Let us initially consider
a point where the geometry is regular, and hence sufficiently close to it must be locally
R4. If we place the coordinate origin at that point, near it we must have b → σ + . . .,
and by symmetry φ′ → 0, φ → const. (otherwise we would encounter a singularity in φ′′,
and consequently in φ too). Moving away from this point, b grows, but at a rate which is
decreasing due to the b′′ equation. So b reaches a maximum, and turns around. Past it, the
scalar derivatives grow fast for generic potentials, and take over, forcing φ to diverge at some

σ = σ∗. In this limit b →
(
3
2
C2

M2
Pl

)1/6
(σ∗ − σ)1/3 and φ → const. −

√
2
3
MPl ln(σ∗ − σ). Note

that this behavior generalizes the spherical limit b = sinσ which describes φ = const., with
a constant potential.

The metric (30), with these properties of b, can now be analytically continued in two steps.
First, changing the latitude coordinate ψ to ψ = π/2+iτ at the equatorial hypersphere gives

ds2 = dσ2 + b2(σ)
(
−dτ 2 + cosh2 τdΩ2

)
, (32)

which describes an anisotropic cosmology just “north” of the equator [32], which has a
timelike singularity at σ = σ∗. This geometry also has a horizon at σ = 0, where its
Euclidean counterpart had a regular point. We can analytically continue across σ = 0,
therefore, by using τ = iπ/2 + χ and σ = it, while defining a(t) = −ib(it) [32]. Since b has
no singular points along the imaginary axis, a(t) is well defined. The metric in this latter
region is

ds2 = −dt2 + a2(t)
(
dχ2 + sinh2 χdΩ2

)
, (33)

i.e. precisely an open universe. This is precisely the same metric as our metric of Eq. (3),
with one exception: here, t→ 0 is a regular null hypersurface, a horizon rather than a null
singularity. The singularity is now resolved, and hides in the past of the horizon, as depicted
in Fig. (4) (see [32–36]). Notice that since the metrics are analytic continuations of each
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other, and eg. (30) is conformally flat, Weyl tensor remains zero everywhere. This shows
that the replacement of the null past singularity by a timelike regulator which asymptotes
to null does not affect the interpretation of the solutions.

Figure 4: Resolving the singularity: on top, a spatially open power law inflation which can
exit to radiation and matter dominated FRW; t = 0 null surface is now a horizon. There is
a timelike singularity behind it. This singularity can be excised by cutting out the region
of space around it and replacing it with a bubble of flat space surrounded by a tensional
domain wall [38], whose worldvolume lies between the singularity and the t = 0 horizon, or
its generalizations [39–42].

In the final step, as in [38–42] we excise the region around the singularity and replace it
with a bubble, surrounded by a domain wall with some tension. We will not repeat all the
technical procedure here, instead referring the reader to the various options in [38–42]. The
important point is that the worldvolume of the spherical domain wall asymptotes the past
horizon from below. The surface energy density of the bubble is controlled by its initial size,
and so the smaller it starts, the larger the density will be. In turn, this controls the scale
of the Euclidean action of the resolved configuration. For example in perhaps the simplest
regularized case, where the bubble’s interior is a ball of flat space, replacing the singular
region.

Note that the metric surgery with cutting and pasting various pieces together across a
domain wall will not change the Weyl tensor of the configuration for the metrics which are
O(4) symmetric. The reason is that the symmetry conditions are very restrictive for the
metric, and only allow a single “free” function to appear in the metric - the scale factor,
which is also the conformal factor. It is the only term in the metric which picks up the
boundary conditions. Thus the Weyl tensor remains insensitive to the singularity regulator.
If Weyl is zero without the regulator, it remains zero with it.

Garriga found that the matching conditions b′/b|out = −κ|C|/3b3 and b′/b|in = 1/b with
the bubble wall tension modeled by µ = µ0 − αeκφ yield the regulator contribution to the
Euclidean action which is

Ssing =
1

3
SGH =

π2|C|
κ

. (34)
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With the inflationary potential also included, one will find additional contributions. A very
thorough survey of possible instantons and the actions which govern their nucleation rate
is given in [40]. In the case when the Hawking-Turok instanton is regulated by a tensional
domain, the full O(4) Euclidean action is given by [40]

SHT/D = − 24π2

3M2
PlH

2

(
1− cos(Hσm)

)
. (35)

where 3M2
PlH

2 = U(φinitial) and σm is the location of the domain wall which serves as a
seam between two geometries. The trick used by [40] to construct the regular solution is to
orbifold around the wall6 instead to think of it as a boundary between the Hawking-Turok
solution in the bulk and a ball of flat space excising the singularity. This can be interpreted
as a creation of two jointed open universes, or by identifying the two, a single Hawking-
Turok geometry with a singularity excised by a wall at the end of the world. This actually
may assist with obstructing the interpretation of the regulated solution as coming from a
bubble of nothing in 6D, which may be problematic for its use as a regulator of Hawking-
Turok processes [41, 42]. We will not delve into this very interesting issue any further here.
Instead we will treat the action of (35) as an estimate of the Hawking-Turok nucleation
rate, even thought it is probably sensitive to the precise details of the UV completion of the
configuration.

Figure 5: Resolving the singularity: the beginning a spatially open power law inflation which
exits to radiation and matter dominated FRW. The past null singularity is interpreted as a
domain wall of a bubble which initially nucleated at Planckian density.

6This is very similar to warped braneworld constructions of, e.g. [71–74].
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Note, that the wall will get closer – ie approach its asymptotically null worldvolume –
the faster the smaller it starts, because it starts closer to the horizon initially. The regulated
geometry is depicted in Fig. (5). It should be clear that for all practical intents and purposes,
if the universe arises as the interior of an initially small bubble, whose energy density is
at or above the cutoff, this wall will behave practically as an almost null singularity: its
worldvolume will be approximately null, and its energy density at the cutoff. Near the wall
Weyl tensor will still be zero, and the geometry will behave to leading order just like the
solution depicted in Fig. (3).

Using the tunneling from nothing probability prescription to estimate the likelihood of
such a universe, [69, 70],

P ∼ eSeuclidean ' e
− 24π2

3M2
Pl
H2

(
1−cos(Hσm)

)
, (36)

explains the selection of the initial conditions. First off, the O(4) symmetry is favored over
more complicated initial configurations by minimizing the action. Second, the initial values
of φ which maximize the initial value of the potential are preferred over those which make it
small. Both of these conditions select inflationary history, and the exponential potential cuts
off the possible attainable number of efolds – by not plateauing in the UV. This explains,
at least in this context, how inflation starts7. Likewise, these conditions are also compatible
with Penrose’s conjecture, since the initially O(4) invariant geometry gives a vanishing Weyl
tensor, and the (almost) null (regulated) singularity picks the global time direction. One can
then study entropy production, initially by studying metric perturbations, as in e.g. [75,76],
and later with the contributions from reheating and postinflationary evolution. The evolution
of the apparent horizon area, Eq. (26), is consistent with post-nucleation entropy growth.
Since many of the specific details can be found in the literature, we will not delve into the
details here.

5 Summary

In this article, we have presented an argument that Penrose’s vanishing Weyl curvature
hypothesis, along with the initial singularity in the universe, motivated by the entropy
considerations and the observed global arrow of time, is actually consistent with the infla-
tionary paradigm. As an example, we used power law inflation which initially starts with a
Hawking-Turok nucleation process, with likelihood described by the tunneling from nothing
probability. Note that here we demonstrated the compatibility of Penrose’s Weyl curvature
hypothesis and inflation – where by inflation we mean the (semi)classical evolution of the
background augmented with the selection of tunneling from nothing probability as a theory
of initial conditions – without explicitly showing a more microscopic origin of either of these
premises. That suffices for our purposes here. Going beyond this goal requires a more precise
exploration of the realms of quantum gravity, not easily accessible by present means.

Curiously, the resulting dynamics could even be in marginal agreement with the current
data. We note however that similar conclusions should hold for other models of inflation
which start with the universe in a small bubble. The presence of the past (null) singularity

7And addresses the issue of footnote 1.
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will be generic for flat or open FRW universes in the extreme past whenever the field value
and the potential in that regime are not exactly constant. The gradients near the past horizon
will induce a large backreaction, and require regularization. Thus the general conclusions
presented here may hold even for potentials which fit the data better.
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