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ABSTRACT

We use long-run, high-resolution hydrodynamics simulations to compute the multi-wavelength light

curves (LCs) from thermal disk emission around accreting equal-mass supermassive black hole (BH)

binaries, with a focus on revealing binary eccentricity. LCs are obtained by modeling the disk thermo-

dynamics with an adiabatic equation of state, a local blackbody cooling prescription, and corrections

to approximate the effects of radiation pressure. We find that modulation of multi-band LCs on the

orbital time scale are generally in-phase (to within ∼ 2% of a binary orbital period), but they con-

tain pulse substructure in the time domain that is not necessarily reflected in BH accretion rates Ṁ .

We thus predict that binary-hosting AGN will exhibit highly correlated, in-phase, periodic bright-

ness modulations in their low-energy disk emission. However, detectability of these modulations in

multi-wavelength observing campaigns could be compromised because observed stochastic variability

in AGNs typically has a higher amplitude than our proposed signal. It is possible that observations

over temporal baselines of many binary periods may make the signal more prominent, but this would

need to be analyzed carefully. If jet emission is predicted by Ṁ , then we predict a weaker correlation

with low-energy disk emission due to the differing sub-peak structure. For the binary parameters we

explore, we show that LC variability due to hydrodynamics likely dominates Doppler brightening for

all equal-mass binaries with disk Mach numbers . 20. A promising signature of eccentricity is weak or

absent “lump” periodicity. We find hints that a significant lag exists between Ṁ and low-energy disk

emission for circular binaries, but they are in-phase for eccentric binaries, which might explain some

“orphan” blazar flares with no γ-ray counterpart.

Keywords: Eccentricity (441) — Binary stars (154) — Astrophysical black holes (98) — Gravitational

wave sources (677) — Hydrodynamical simulations (767)

1. INTRODUCTION

Cosmic structure forms hierarchically (White & Rees

1978), thus galaxies merge frequently (e.g. Lotz et al.

2011). Since most galaxies host a supermassive black

hole (SMBH) (e.g. Kormendy & Richstone 1995; Fer-

rarese & Ford 2005; Kormendy & Ho 2013), post-merger

galaxies will likely host a supermassive black hole binary

(SMBHB) at some stage of their evolution (Begelman

et al. 1980). Gravitational waves from orbiting SMBHB

systems will likely be observed by the upcoming Laser

Interferometer Space Antenna (LISA) mission (Amaro-

Seoane et al. 2017), and the NanoGrav collaboration has
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recently reported a Pulsar Timing Array (PTA) stochas-

tic common-process signal (Arzoumanian et al. 2020),

which might be the cumulative gravitational wave back-

ground sourced by a population of SMBHBs.

For now, the identification of compact SMBHBs (sub-

parsec separation, year-like orbital period) relies on elec-

tromagnetic (EM) surveys (e.g. Graham et al. 2015;

Charisi et al. 2016; Liu et al. 2019, 2020; Chen et al.

2020). Those studies, and many others, report evi-

dence for periodically modulated light curves from ac-

tive galaxies (AGN), ranging from infrared to γ-ray en-

ergies (for a recent review, see De Rosa et al. 2019).

However, it is not unlikely to observe several cycles of

apparent brightness modulation in stochastically vari-

able sources (Vaughan et al. 2016). Furthermore, bi-

narity is not the only possible cause of genuine period-

icity; there are single-SMBH disk processes that might
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produce quasi-periodic emission as well. These include

limit-cycles triggered by Lightman-Eardley instabilities

(Lightman & Eardley 1974; Frank et al. 2002), or iron

opacity-driven modulations of the disk thickness (Jiang

& Blaes 2020). Detailed predictions of the multi-band

EM signatures of binary accretion are thus motivated

to aid in the interpretation of electromagnetic SMBHB

candidates.

There are at least two independent causes of periodic

variability from accreting binaries: Doppler brighten-

ing, and hydrodynamic variability. Doppler modulation

is caused by the line-of-sight orbital velocity v‖, and

induces O(v‖/c) corrections to the emission from gas

around each BH component. This effect can be reli-

ably computed for a range of orbital parameters and

orientations (e.g. D’Orazio et al. 2015; Hu et al. 2020;

Charisi et al. 2021). Hydrodynamic variability refers to

any other changes in the system’s luminous output that

are connected to the dynamics of binary accretion. This

includes fluctuations in the thermal emission from the

disk surfaces arising from adiabatic, viscous, or shock

heating. It can also include modulations of a jet lu-

minosity, as induced for example by the time-varying

mass accretion rate onto one or both BH components.

Our focus in this work is on modeling the hydrodynamic

variability of SMBHBs.

Simulated light curves modulated by hydrodynamic

processes in accreting equal-mass, circular binaries have

been reported previously (e.g. Bode et al. 2012; Giaco-

mazzo et al. 2012; Noble et al. 2012; Gold et al. 2014;

Farris et al. 2015a,b; Tang et al. 2018; d’Ascoli et al.

2018; Paschalidis et al. 2021; Gutiérrez et al. 2021).

However, eccentricity can evolve due to interaction with

the surrounding gas (see e.g. Roedig et al. 2011; Roedig

& Sesana 2014). Zrake et al. (2021) found that bina-

ries in the gas-driven regime are likely eccentric with

e ' 0.4 − 0.5 (see also D’Orazio & Duffell 2021). Pre-

sentations of simulated light curves from eccentric bina-

ries have been limited (see e.g. Bogdanović et al. 2008).

Since gravitational radiation damps eccentricity (Peters

1964), only very compact binaries, in the gravitational

wave-driven (GW-driven) regime, are expected to be on

nearly circular orbits (e . 0.01; Armitage & Natarajan

2005; Zrake et al. 2021). It is thus important to predict

light curves of both circular and eccentric systems. In

particular, robust EM signatures of orbital eccentricity

could indicate whether an electromagnetic SMBHB is in

the GW- or gas-driven regime, independently of the BH

mass and separation estimates.

In this work, we calculate the light curves of accreting

SMBHBs with year-like orbital periods, and eccentricity

values of e = 0, 0.45, and 0.7. Light curves of the ther-

mal disk emission are computed at infrared and optical

wavelengths. We also report nominal light curves of non-

thermal γ-ray emission, based on the assumption that

the jet luminosity is controlled by the accretion power,

which we can accurately measure from our simulations.

These predictions can serve as a guide to interpreting

AGNs (especially blazars) that exhibit periodicity at dif-

ferent wavelengths. We pay particular attention to the

differentiating characteristics of eccentric versus circular

binaries

The paper is organized as follows. In §2 we describe

our models for the binary, disk, gas, and cooling pre-

scription, as well as other technical details. In §3 we

describe pertinent numerical details of our simulations,

including the disk initial conditions. Results are pre-

sented in §4. We focus primarily on the following LC

observables: modulation periods, amplitudes of hydro-

dynamic variability, relative power in different electro-

magnetic bands, and temporal lags and correlations be-

tween bands. We discuss our results in greater detail

in §5, including: evidence of binarity (§5.1), evidence of

eccentricity (§5.2), Doppler brightening (§5.3), consid-

erations which must be made when applying our results

to observations, with particular blazars used as a basis

for discussion (§5.4), and caveats of our approach (§5.5).

We conclude in §6. The appendix describes numerical

prescriptions that were used to attain stable, long-term

numerical evolution (§A), sensitivity tests and their tab-

ulated results (§B), details of a Doppler brightening cal-

culation (§C), and numerical convergence properties of

the solution scheme (§D). Throughout this work, “or-

bits” refer to binary orbits unless specified otherwise.

2. MODELS

2.1. Binaries

Our aim is to model the light curves of accreting

SMBHB systems in the gas-driven evolutionary phase,

with realistic orbital parameters and hydrodynamic con-

ditions. We motivate our fiducial model selections from

the following considerations. First, gas accretion tends

to equalize the binary component masses (see e.g. Far-

ris et al. 2014; Duffell et al. 2020), so we have chosen

to simulate equal-mass systems. Equilibrium eccentrici-

ties for equal-mass binaries have now been measured in

simulations, so we choose models with those eccentric-

ity values. Observationally relevant orbital periods for

electromagnetic surveys and PTAs are typically year-

like, so we choose the component mass and separation

accordingly.

The disk hydrodynamic conditions are selected in part

to satisfy the requirement that the vast majority of the

system’s infrared and optical emission is produced on
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length scales that are resolved in the simulation. In

other words, the simulation domain must enclose the

part of the circumbinary disk which emits in the in-

frared, and the thermal emission at unresolved length

scales very near the BH components should be mostly

at UV and higher energies. This requirement implies

the disk surface temperatures must lie in a particular

range. The temperature is controlled by an appropriate

choice of the disk surface density and effective viscosity.

See §2.9 & §2.10 for more discussion about how we meet

these requirements.

These considerations motivate a fiducial model with

mass ratio q ≡ M2/M1 = 1, total mass M ≡ M1 +

M2 = 8 × 106M�, and orbital period Tbin = 1 yr

(semi-major axis a ' 9.7 × 10−4 pc ' 2530Rg, where

Rg = GM/c2). We consider three different eccentricity

values e ∈ {0, 0.45, 0.7}. The circular e = 0 and eccen-

tric e = 0.45 cases were found to be equilibrium val-

ues for binaries in the gas-driven regime in Zrake et al.

(2021), and a similar equilibrium eccentricity of e = 0.4

was later reported in D’Orazio & Duffell (2021). Both

studies used a locally isothermal equation of state for

the gas, with orbital Mach number vkep/cs = 10, where

vkep =
√
GM/r is the Keplerian orbital velocity and cs

is the isothermal sound speed.

Calculating thermal emission from the disk surface re-

quires a self-consistent treatment of the gas thermody-

namics, so in this study we drop the locally isothermal

simplification and solve the hydrodynamics equations

with an adiabatic equation of state (see §2.3) and radia-

tive cooling prescription (see §2.7). As demonstrated in

Tiede et al. (2020), the disk thermodynamics can have

a significant effect on the binary orbital evolution, so

the equilibrium value e ' 0.45 is expected to be ap-

proximate in our case, and we leave to future work a

determination of the equilibrium value of eccentricity

with more realistic thermodynamics. A more extreme

eccentricity of e = 0.7 is included in our study, in order

to check how generic our results are.

Embedded in a thin accretion disk, these binaries are

likely in the gas-driven regime of orbital evolution, where

significant eccentricity is expected. We estimate the

semi-major axis at which there is a transition between

gas-driven and GW-driven regimes, aGW, by equating

the rate of gas-driven inspiral to the rate of GW-driven

inspiral. This is done by plugging Post-Newtonian evo-

lution (Peters 1964) of the semi-major axis a into the

following relation and then solving for a:

da

dM
= −` a

M
, (1)

where ` = O(1) is an “eigenvalue” (Paczynski 1991;

Popham & Narayan 1991) determined by gas accretion

physics. For example, an effective value of ` ' 0.43 was

reported for binaries with non-zero, near-equilibrium ec-

centricity (D’Orazio & Duffell 2021). The result of this

substitution is

a4
GW =

M

Ṁ

1

`

64

5

G3M1M2M

c5(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4

)
.(2)

Specializing to equal-mass binaries with eccentricities of

either e = 0 or e = 0.45, and scaling Eq. (2) according

to our target system parameters (described fully in sub-

sequent sections), we obtain the expression for arbitrary

total binary mass M , accretion rate Ṁ , and accretion

eigenvalue `, relative to our fiducial binary:

aGW'10−3 pc×B(e) (3)

× `−1/4

(
Ṁ

10ṀEdd

)−1/4(
M

8× 106M�

)3/4

where B(e = 0) ' 0.73 and B(e = 0.45) ' 1. In other

words, our fiducial binary is very close to having gravi-

tational waves start to dominate over gas torques.

2.2. Disk

When discussing the general characteristics of our tar-

get system, we speak of a single black hole of mass M ,

surrounded by a geometrically thin and optically thick

Shakura-Sunyaev accretion disk model with constant-α

viscosity (Shakura & Sunyaev 1973) (α = 0.1) undergo-

ing near-Keplerian rotation. However, we will be plac-

ing a binary in the system instead of a single black hole.

We largely follow the purely Newtonian treatment given

in Goodman (2003), except we relate the disk effective

temperature Teff to the mid-plane temperature T via

T 4
eff =

4

3

T 4

κΣ
, (4)

and we use the sound speed appropriate for a fluid com-

posed of a nontrivial mixture of gas and radiation.1

We assume the black hole accretes at 10× the Edding-

ton rate, i.e. Ṁ = 10 ṀEdd, where ṀEdd = LEdd/(ηc
2)

and the radiative efficiency is assumed to be η = 0.1.

This choice of accretion rate is primarily motivated by

obtaining a numerically tractable Mach number M ∼
O(10), which also allows a comparison with past work.

1 Rather than the relation T 4
eff = 2T 4/(κΣ) and isothermal

sound speed cs =
√
P/ρ used in Goodman (2003). The sound

speed for a mixture of gas and radiation pressure is given by c2s =
γβP/Σ, where γβ ≡ β + (4 − 3β)2(Γ − 1)/(β + 12(Γ − 1)(1 −
β)), Σ and P are the vertically integrated mass density and total
pressure, β is the gas pressure fraction β ≡ Pgas/P, and Γ is the
adiabatic index of the gas component of the fluid. γβ interpolates
between γ0 = 4/3 and γ1 = Γ.
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The disk is Toomre-stable out to a radius such that

Q ≥ csΩ/(πGΣ) = 1, where Ω is the Keplerian angular

frequency of the gas and Σ = 2hρ is the surface density.

The disk semi-thickness h around a single black hole is

given by an approximate solution to the equation of ver-

tical hydrostatic balance, h '
√
P/ρΩ−1, and P is the

total (i.e. gas and radiation) pressure. In terms of the

semi-major axis of our chosen binary, a ' 10−3 pc, the

disk is Toomre-stable out to r ' 11 a. We neglect the

self-gravity of the disk, which is justified to the extent

that the disk is Toomre-stable out to a radius signifi-

cantly larger than a.

The orbital Mach number profileM(r) = vK(r)/cs(r)

increases rapidly with radius. For example, M(a) ' 7,

M(1.5a) ' 11, and M(3a) ' 21. (Note that

in our simulations, the Mach number profile de-

velops self-consistently from a balance of heating

and cooling.) The effective optical depth τeff =√
τabsorp(τabsorp + τscattering) at some radii of interest

from the single black hole is τeff(r = a) ' 105 and

τeff(r= 0.02a) ' 2, where we estimate τabsorp from the

Planck mean opacities tabulated online2 for Milky Way

elemental abundance, and we take the scattering opac-

ity to be due to electron scattering. Our assumption

of optical thickness and blackbody cooling spectra are

justified to the extent that τeff > 1. The viscous time

scale tν ≡ (2/3)r2/ν becomes equal to the cooling time

scale tcool ≡ U/Q̇ at r ' 0.18a ' 460Rg, where U is the

surface density of internal energy and Q̇ is the cooling

rate per area. Our assumption of radiative efficiency

is justified to the extent that tcool < tν , which may be

violated in the innermost regions of the minidisks in our

binary simulations.

In our target model above, radiation pressure domi-

nates the disk. For example, the gas pressure fraction

β ≡ Pgas/P at some radii of interest are β(r = a) '
9.4 × 10−4 and β(r= 3a) ' 0.016. Including radiation

pressure in simulations is a nontrivial task algorithmi-

cally, and the disk may be subject to limit-cycle insta-

bilities (Lightman & Eardley 1974; Frank et al. 2002).

Thus, we use only gas pressure in this work, and below

we describe our strategy to approximate the effects of

radiation pressure.

2.3. Gas

We use a Γ-law equation of state with Γ = 5/3, yield-

ing the equation of state P = Σε(Γ − 1), where Σ and

P are respectively the vertically-integrated mass density

and pressure, and ε is the specific internal energy den-

sity at the mid-plane of the disk. We use constant-α

2 https://aphysics2.lanl.gov/apps/

viscosity yielding a kinematic shear viscosity ν = αcsh,

where c2s = ΓP/Σ. For a binary, the disk semi-thickness

is h =
√
P/Σ/Ω̃, where Ω̃ =

√
GM1/r3

1 +GM2/r3
2 and

r1, r2 are the distances from a field point to the respec-

tive point masses M1, M2.

The vertically-integrated Newtonian fluid equations

keep the lowest nontrivial order in powers of z/r un-

der the conditions of a thin disk (h/r � 1) and mirror

symmetry about z = 0. These equations read

∂tΣ +∇j
(
Σvj

)
=SΣ (5)

∂t (Σvi) +∇j
(

Σvjvi + δjiP
)

= gi +∇jτ ji + Sp,i (6)

∂tE +∇j
[
(E + P) vj

]
= vjgj +∇j

(
viτ ji

)
− Q̇+ SE , (7)

where vi is the mid-plane horizontal fluid velocity; E =

Σε + (1/2)Σv2 is the vertically-integrated energy den-

sity; gi is the vertically-integrated gravitational force

density; τ ji = Σν
(
∇ivj +∇jvi − (2/3)δji∇kvk

)
is the

viscous stress tensor (in a form that is trace-free in a

3-dimensional sense)3 with zero bulk viscosity; SΣ, Sp,i,

and SE are the mass, momentum, and energy sinks; and

Q̇ is a radiative cooling term, described in §2.7. Thermal

conductivity is neglected.

2.4. Gravity

We model the vertically-integrated gravitational force

from a point mass Mn as that arising from a Plummer

potential,

Φn = − GMn√
r2
n + r2

s

, (8)

where rn is the distance from a field point to the nth

mass, and rs is the softening length. In this work, we set

the softening length equal to the sink radius, rs = rsink

(defined in §2.5). Alternative models of the vertically-

integrated gravitational force, such as assuming rs ∝ h,

may yield stronger gravity near point masses, which may

alter the gas dynamics appreciably. We leave a careful

study of this to future work.

2.5. Sinks

To model accretion onto scales below the grid sepa-

ration, we use torque-free sink prescriptions (Dempsey

et al. 2020; Dittmann & Ryan 2021) for each point mass.

The torque-free sink models a steady accretion flow with

3 Note this viscous stress tensor should be understood as being
inserted after vertical integration of the perfect fluid equations,
as a model of unresolved turbulence and magnetic fields.

https://aphysics2.lanl.gov/apps/
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a torque-free inner boundary, implying that angular mo-

mentum is advected inward and viscously transported

outward in equal measure. The sink terms are

SΣ =−sΩΣ
∑
n

wn (9)

Sp,i=−sΩΣ
∑
n

v∗i,nwn (10)

SE =−sΩ
∑
n

E∗nwn, (11)

where the star superscript is defined below, s is a di-

mensionless sink rate, Ω =
√
GM/a3 is the Keplerian

angular frequency of the binary, and wn is a dimension-

less window function defined in terms of a sink radius

rsink and a distance rn =
√

(x− xn)2 + (y − yn)2 from

a field point (x, y) to the nth point mass (xn, yn) as

wn = exp {−(rn/rsink)4}. (12)

For rn/rsink > 4, we truncate the window function to

wn = 0. Torque-free sinks are achieved through an ad-

justment of the velocities, which appear in Eqs. (10)

& (11) with a star superscript:

~v∗n ≡ ((~v − ~vMn
) · r̂Mn

) r̂Mn
+ ~vMn

, (13)

where vi,Mn is the velocity of point mass Mn and r̂Mn

is the unit radial vector in a coordinate system centered

on point mass Mn. This adjustment removes the angu-

lar component of the velocity in the frame that moves

with and is centered on the point mass. When used in

Eqs. (10) & (11), torque-free sinks are attained. Note

that the kinetic energy in Eq. (11) has been modified

such that E∗n ≡ Σε+ (1/2)Σ (~v ∗n )2.

2.6. Accretion rate

In our target system, we assume an accretion rate of

10× the Eddington rate in the background disk with

radiative efficiency η = 0.1. Recent numerical work has

shown that such super-Eddington accretion rates can be

physically realized (see e.g. Jiang et al. 2019), but our

motivation for this choice is primarily to obtain numer-

ically tractable Mach numbers. However, note that the

rate of mass flux in the disk is not necessarily the rate

of mass absorbed by the black hole, since there may be

outflows which occur at subgrid scales or are otherwise

uncaptured phenomena in our simulations. The surface

density and viscosity are related to the accretion rate

via Ṁ = 3πΣν (see e.g. Frank et al. 2002).

As mentioned above, we are modeling our target sys-

tem using a gas-dominated fluid. Our strategy to do so

is to match the Mach number of the initial disk profile of

1.0 1.5 3.0

radius [a ≈ 9.7× 10−4 pc]

7

11

21

M
ac

h
n
u

m
b

er

Circumsingle α-disk Mach Number Profiles

target model (with radiation pressure)

gas pressure only, matched at r ∼ a
gas pressure only, matched at r ∼ 1.5 a

gas pressure only, matched at r ∼ 3 a

Figure 1. Mach number profiles of circumsingle α-disks,
which are used as initial conditions for binary simulations.
The Mach number in models with only gas pressure are
matched to the radiation-dominated target model at specific
radii.

our target system at one particular radius, via large ad-

justments of the accretion rate into the extremely super-

Eddington regime. The extremely super-Eddington ac-

cretion rate should be viewed as an artificial aspect of

our gas-dominated simulations, whose purpose is only to

yield Mach numbers in a similar range as the radiation-

dominated target model. As a check of the sensitivity

of our results, in our gas-dominated model we study

three cases where the initial Mach number is matched

to the target system at radii r = {a, 1.5a, 3a} (where

the initial Mach number is M ' {7, 11, 21}, respec-

tively). The accretion rates which achieve these Mach

numbers in the gas-dominated model are respectively

A ≡ {6.7×106, 8.15×105, 2.3×104} times the Eddington

rate. See Fig. 1 for a comparison of the initial Mach

profiles of the target model and its gas pressure approx-

imations.

Since the effective temperature is related to the accre-

tion rate via

T 4
eff ∝ Ṁ, (14)

these artificially high accretion rates in the gas-

dominated models result in artificially high effective

temperatures, which affect the light curves in different

bands. Thus, when computing light curves in post-

processing, we adjust the effective temperature uni-

formly back down to our target system via the map

T 4
eff → T 4

eff × 10/A, where the factor of 10 comes from

the target system’s accretion rate of 10 × ṀEdd. In a

steady disk, this mapping exactly reproduces the ef-

fective temperature profile of our target system; in the
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presence of a binary, there is nontrivial dynamics, so this

mapping is approximate. In our binary simulations, the

artificially high accretion rates scale up viscous heat-

ing, radiative cooling, and shock heating in roughly the

same proportions. To see this, note that viscous heating

scales linearly with Ṁ as long as velocity profiles remain

approximately invariant,

∇j
(
vjτ ji

)
∝ Σν ∝ Ṁ. (15)

Radiative cooling scales similarly,

Q̇ ∝ T 4
eff ∝ Ṁ. (16)

Lastly, shock heating is described by the Rankine-

Hugoniot condition for the energy equation, which scales

linearly with Ṁ as long as the adiabatic index Γ and

Mach number M are also held approximately fixed:

E= Σε+ (1/2)Σv2

=P
(

1

Γ− 1
+ (1/2)M2Γ

)
∝P ∝ Σcsh ∝ Σν ∝ Ṁ. (17)

We believe the largest discrepancy will be in shock heat-

ing, primarily because the Mach number is not matched

well everywhere (the radiation-dominated model has a

steep increase of M with r, whereas the gas-dominated

model has a much flatter profile – see Fig. 1).

2.7. Cooling

We model radiative cooling assuming geometrically

thin, optically thick gas, using

Q̇ =
8

3

σT 4

κΣ
, (18)

where σ is the Stefan-Boltzmann constant, κ = 0.4

cm2 g−1 is the opacity due to electron scattering, and

T = (mp/kB)P/Σ is the mid-plane temperature as-

suming hydrogen dominates the gas density. In post-

processing, the effective temperature on one face of the

disk is obtained from Q̇ via the relation

Q̇ = 2σT 4
eff , (19)

where the factor of 2 comes from the fact that cooling

occurs on both faces of the disk.

2.8. Spectra

We assume blackbody emission from each cell of our

domain, which allows us to compute the cooling lumi-

nosity in different bands. We therefore neglect possible

dynamical variations in optical thickness. We neglect

Doppler effects, so our light curves are valid for observers

who are oriented face-on to the disk. We take the in-

frared range of wavelengths λ to be 700 nm−1 mm, and

the optical range to be 400 nm−700 nm.

2.9. Sub-sink emission

To estimate the cooling luminosity occurring below

the sink scale, we model the sub-sink disks as gas-

dominated Newtonian multi-color α-disks with Γ = 5/3

that is instantaneously in equilibrium with the respec-

tive accretion rates as registered by the sink terms. We

integrate the cooling luminosity from the sink radius

rsink down to the innermost stable orbit r = 6GMn/c
2

of an assumed Schwarzschild black hole. The purpose of

this estimate is to gauge how much of the electromag-

netic emission is resolved on the grid. We report the

infrared and optical bands since we can resolve them

to a high degree, whereas only a small minority of UV

and higher-energy bands are resolved. Note that we

perform the effective temperature mapping described in

§2.6 when estimating the sub-sink emission.

2.10. Super-domain emission

Similarly to our estimate of the sub-sink emission,

we also estimate the missing emission at radii beyond

our computational domain, except the assumed accre-

tion rate is the constant one prescribed in the initial

conditions. Super-domain optical emission is negligi-

ble (O(1037) erg/s), whereas infrared emission is not. A

caveat is that the super-domain emission may not be

well-represented by an axisymmetric disk, since it may

be Toomre-unstable or subject to ionization instabilities.

3. NUMERICS

We use Cartesian coordinates on a square domain with

side length 2D, where D = 15a is the fiducial domain ra-

dius measured from the center of the grid. Our fiducial

resolution is ∆x = ∆y = 0.01a, and we use a Courant-

Friedrichs-Lewy factor in the range C ≡ 0.02− 0.1 (de-

pending on how demanding the simulation proves to be),
giving a time step ∆t = C∆x/max(|vx|+ cs, |vy|+ cs).

We utilize the Harten-Lax-van Leer-Einfeldt (HLLE)

flux formula, piecewise-linear extrapolation of primitive

variables to the cell interfaces, and 2nd-order Total Vari-

ation Diminishing (TVD) Runge-Kutta time stepping.

Slope limiting is done using the generalized minmod lim-

iter, with parameter θ = 1.5. This value yields a good

balance between robustness and low numerical diffusion.

The cooling term in Eq. 18 is included on the right-

hand-side of the energy evolution equation, Eq. 7. In

regions where the cooling time scale is shorter than the

time step size ∆t, the gas temperature can go nega-

tive unless additional care is taken. A robust approach,

described in Ryan & MacFadyen (2017) and which we

have adopted in our code, is to apply the cooling term in

a semi-implicit manner, where the internal energy sub-

tracted in a time step is determined by analytic integra-
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tion of the cooling curve over the time interval ∆t, such

that ∆Q =
∫ t+∆t

t
Q̇(t′)dt′. This procedure is effective,

and not costly in terms of performance.

“Buffer” source terms are employed in the vicinity of

the grid boundaries which drive the solution to the ini-

tial conditions for the disk. This results in a squishy

outer boundary which prevents the square grid edges

from propagating artifacts into the inner region of the

domain. For fluid variables ~U and initial condition ~U0,

the buffer source terms have the form

~B ≡ −f(r)Ω|r=D
(
~U − ~U0

)
|r=D−0.1a, (20)

where f(r) increases linearly from 0 at r=D−0.1a to

1000 at r=D (and is zero otherwise), and Ω|r=D is the

Keplerian angular frequency at the domain radius.

Additional artificial prescriptions for code stability are

described in Appendix A. Sensitivity tests of our sci-

ence results to various prescriptions are described in

Appendix B. Where applicable, we quote results with

uncertainties as indicated by the sensitivity tests.

3.1. Initial conditions

The disk initial conditions are

Σ = Σ0

(rsoft

a

)−3/5

P=P0

(rsoft

a

)−3/2

~v=

√
GM

rsoft
φ̂, (21)

where rsoft =
√
r2 + r2

s . We also initialize a central

cavity of radius 2a with a sharp edge by multiplying Σ

and P by

10−4 + (1− 10−4) exp{−(2a/rsoft)
30}. (22)

For the case M(1.5a) ' 11, we set Σ0 ' 0.48M/a2,

P0 ' 0.002MΩ2
bin. For the case M(a) ' 7, we set Σ0 '

1.7M/a2, P0 ' 0.019MΩ2
bin. For the case M(3a) ' 21,

we set Σ0 ' 0.057M/a2, P0 ' 6.7×10−5MΩ2
bin.

3.2. Grid refinement

We evolve all runs initially with a resolution of ∆x =

0.02a and sink radius rsink = 2∆x. The disk settles into

a statistically quasi-steady state on the order of a vis-

cous time, which for our different Mach number runs

is tν ' 50 − 500 orbits. When the runs are near our

desired analysis time (typically 600 orbits), we refine

the grid uniformly to a resolution of ∆x = 0.01a, us-

ing zeroth-order interpolation and keeping the sink size

fixed (so that rsink = 4∆x following refinement), and run

for an additional 100 orbits in order to allow the system

to settle (typically to 700 orbits). Based on qualita-

tive inspection of the mass accretion rates, the system

typically settles within . 10 orbits following refinement

(and more quickly for higher resolution and smaller sink

radius). The duration for our analysis is the subsequent

100 orbits (typically orbits 700− 800). We present tests

of sensitivity to the analysis time and the duration of

pre-analysis evolution at ∆x = 0.01a in Appendix §B

(test labels: AT and ET, respectively).

In our resolution and sink-shrinking tests (test labels:

∆x and rsink, respectively), we refine the grid again at

700 orbits from ∆x = 0.01a to ∆x = 0.005a, and evolve

at the latter resolution until 800 orbits. In the case of the

sink-shrinking test, we keep the ratio rsink/∆x = 4 fixed,

since we believe the sink is well-resolved at this value,

and we scale up the dimensionless sink rate according

to the viscous time at the sink radius, s ∝ r2
sink. The

duration for our analysis at a resolution of ∆x = 0.005a

is then roughly orbits 800− 840.

In our sink-shrinking test, we refine the grid once more

at 800 orbits to ∆x = 0.0025a, once again keeping the

ratio rsink/∆x = 4 fixed and scaling up the sink rate

according to s ∝ r2
sink. Since the computational cost of

running at this resolution is so high, we begin analysis

immediately, with the analyzed duration being roughly

orbits 800− 814.

3.3. Integrating Planck spectra

The blackbody luminosity from an area element dA of

the computational domain between frequencies ν1 and

ν2 is

dL = πdA

∫ ν2

ν1

2hν3c−2dν

exp{ hν
kTeff
} − 1

. (23)

For computational expedience, we perform the fre-

quency integral in Eq. (23) approximately using the

method of Widger & Woodall (1976), with the sum

in their equation (6) carried out to n = 15, which re-

sulted in O(1)% accuracy in our tests. When integrating

Eq. (23) over the area of the disk, we omit the buffer

region r>D−0.1a.

4. RESULTS

In this section, we provide descriptions of some of our

figures and make basic observations. We go into greater

depth about the astrophysical implications of our results

in §5. When applicable, we quote ranges for our results,

which accommodate all of our sensitivity tests presented

in Appendix §B. This is a conservative approach that is

preferable to quoting simple averages of our test results,

because the tests are not all equally important.
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α = 0.1 e = 0

M = 21

α = 0.1 e = 0.45

M = 11

M = 7

Figure 2. Surface density snapshots, raised to the 1/4th
power to improve contrast. Left and right columns are circu-
lar and eccentric binaries. All binaries are orbiting counter-
clockwise. Eccentric binaries are shown at pericenter. From
top to bottom, rows correspond to three Mach number runs
which we have labeled M ∈ {21, 11, 7}. The M = 11 case
displayed is our highest resolution run, with ∆x = 0.0025a
and rsink = 4∆x. The other Mach numbers are at ∆x =
0.01a and rsink = 4∆x. White circles are centered on each
black hole, with radius rEgg ≡ a×0.49/(0.6+ln(2)) (Eggleton
1983) for the circular binary and (1−e)×rEgg for the eccen-
tric binary. In physical units, these radii are ' 3.7× 10−4 pc
for the circular binary and ' 2.0× 10−4 pc for the eccentric
one.

We have removed long-term (& 20-orbit) trends and

applied sub-sink corrections to all light curves, and ap-

plied super-domain corrections to the infrared light

curves, as described in §2.9 & §2.10. The super-

domain correction to the infrared light curves amounts

to roughly 2 × 1042 erg/s when the domain radius is

D = 15a, and roughly 1.5 × 1042 erg/s when D = 20a.

The super-domain correction is uniform in time, whereas

the sub-sink correction depends on the instantaneous

accretion rate by each sink. For circular binaries, the

proportion of time-varying luminosity that is resolved

on the grid at a resolution of ∆x = 0.01a and sink ra-

dius rsink = 4∆x is approximately 87% for optical and

97% for infrared. In our sink radius sensitivity tests,

where ∆x = 0.005a and rsink = 0.04∆x, the resolved

portions improve to approximately 94% for optical and

99% for infrared. Reducing the sink further, so that

∆x = 0.0025a and rsink = 4∆x, we resolve approx-

imately 98.5% of optical and 99.7% of infrared. For

eccentric runs with e = 0.45, the trends for the resolved

portions of time-varying luminosity as the sink radius

is reduced is approximately {80%, 91%, 97%} for opti-

cal and {97%, 99%, 99.7%} for infrared. We therefore

believe we are able to capture enough optical and in-

frared emission to make conclusions that are useful to

observing campaigns.

To orient the reader, in Fig. 2 we display snapshots

from our runs at different Mach numbers. All binaries

orbit counter-clockwise in the figure. The runs with the

highest Mach number (M(3a) = 21, top row) have no-

tably disordered accretion streams and cavity walls, rel-

ative to the lower-Mach runs. Mach number is known to

affect the stability of compressible laminar flows in ways

which are difficult to anticipate in general. However, in

a disk with constant-α viscosity, ν ∝ M−2 and thus

higher-Mach flows in circumbinary disks are less stable

due to the Reynolds number scaling with Mach number

as Re ∝ M2. The eccentric runs (right column) are all

shown at pericenter passage. White circles are drawn

around each black hole corresponding to the Eggleton

estimate of the Roche lobe radius (specialized to q = 1,

see Eggleton 1983): rEgg ≡ a × 0.49/(0.6 + ln(2)) for

the circular binary, and we extend this to the eccentric

case via the same adjustment that the pericenter dis-

tance would receive, namely rEgg → (1 − e)rEgg. The

M ∈ {7, 21} snapshots in Fig. 2 are from runs with

resolution ∆x = 0.01a, whereas the snapshots from the

M = 11 runs (middle row) are from our highest resolu-

tion runs with ∆x = 0.0025a. All snapshots shown have

rsink = 4∆x.

Fig. 3 displays optical and infrared light curves (in

the system’s cosmological rest frame) over a 15-orbit
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Figure 3. Light curves in the optical (blue) and infrared (red) bands for circular (e = 0, left column) and eccentric (e = 0.45,
right column) binaries. From top to bottom, rows correspond to Mach numbers 21, 11, 7. The lump period features prominently
in the circular case. Each light curve includes corrections from our estimates of sub-sink and super-domain emission.

window for our fiducial viscosity α = 0.1, eccentrici-

ties e ∈ {0, 0.45}, resolution ∆x = 0.01a, and sink ra-

dius rsink = 4∆x. From top to bottom, rows represent

different initial Mach number profiles parametrized by

M(3a) ' 21,M(1.5a) ' 11, andM(a) ' 7; each case is

a different representation of our target system accreting

at 10× the Eddington rate, as described in greater detail

in §2.6. We observe that the qualitative appearance of

the light curves can vary substantially with Mach num-

ber, in particular the eccentric case with M = 21. In

all cases, the light curves have a spiky appearance, and

the visual impression of periodicity tends to decrease at

larger Mach number. Also evident in Fig. 3 is the pres-

ence of the “lump” period in the light curves from the

circular binary. The lump has been seen in past stud-

ies, and has been described as an m = 1 over-density

that moves along the eccentric cavity wall surrounding

the binary, with a period equal to several binary orbital

periods. In addition to the lump periodicity, we observe

in Fig. 3 a faster modulation on the order of the orbital

period. The orbital modulation is especially obvious in

the eccentric case, for M ∈ {11, 7}. We also observe

that variability in the light curves is substantial (which

is purely hydrodynamic, in contrast with a Doppler vari-

ability). For the circular binary, the root-mean-squared

(RMS) variability is 3.3− 8.5% in the optical band, and

0.90 − 2.6% in the infrared. For the eccentric binary,

it is larger: 7.7 − 15% in the optical and 1.9 − 3.5% in

the infrared (see Tables 1 & 2). Note that the peak-to-

trough difference is roughly 3× the RMS variability. We

compare this variability to Doppler brightening in §5.3.

Fig. 4 provides quantitative corroboration of our quali-

tative judgements about Fig. 3. The panel organization

is the same, except Lomb-Scargle periodograms (nor-

malized to a maximum value of 1) are plotted versus

frequency in units of orbits−1. The lump frequency is

obvious for the circular binary, having a range of val-

ues corresponding to a period of ' 5 − 10 binary or-

bital periods. We also see prominent peaks near the or-

bital frequency of 1, although for the circular binary the

peak is quite obviously at ' 1.4 orbits−1. The peak at

' 1.4 orbits−1 decreases towards the orbital frequency

in our sink-shrinking tests. This behavior is shown in

Fig. 5. But to be conservative about our conclusions,

the range of frequencies for the near-orbital modulation

for the circular binary is quoted as 1.0−1.5 in Appendix

§B, and we refer to this modulation as the “fast” fre-

quency ffast or the “near-orbital” frequency. A similar

frequency of 1.46 orbits−1 was observed in past studies

(e.g. Roedig et al. 2012; Noble et al. 2012; Shi & Kro-

lik 2015), and was interpreted as a beat frequency (for

example, 2(fbin − flump), where fbin and flump are the

binary and lump frequencies). Given the lump frequen-

cies we find, and the fact that the near-orbital frequency

varies in our sink-shrinking tests, our ffast does not ap-

pear to be such a beat frequency. Instead, our sink-

shrinking test shows that our ffast is a phenomenon de-

pendent on gravitational softening, sink size, sink rate,

and/or resolution (since our sink-shrinking test varies all
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Figure 4. Normalized Lomb-Scargle periodograms of the optical (blue) and infrared (red) light curves for circular (e = 0, left
column) and eccentric (e = 0.45, right column) binaries. From top to bottom, rows correspond to Mach numbers 21, 11, 7. The
peak in the circular case at ' 1.4 orbits−1 decreases towards the orbital frequency in our sink-shrinking tests (see Fig. 5).
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Figure 5. Normalized Lomb-Scargle periodograms of the
infrared light curves for the M ' 11 circular binary at dif-
ferent sink sizes. Resolution is increased as the sink size is
reduced, such that the sink radius is always rsink = 4∆x.
The 1.4 orbits−1 frequency appears to approach the orbital
frequency in the limit of small sink. Temporal baselines have
been truncated to the length of the highest resolution case,
∼ 14 orbits, which has widened the peaks to a similar width.

of these parameters simultaneously). We found in our

investigations that ffast−forb is the precession frequency

of the minidisks, primarily driven by gravitational soft-

ening. Although gravitational softening is required for

stability in Newtonian simulations, in the 2-dimensional

thin disk setting, gravitational softening is required to

account for the vertically-integrated, plane-parallel com-

ponent of the gravitational force on the disk. Thus, if a

result depends on softening, it does not necessarily fol-

low that the result is an artifact. Instead, the result may

depend on the disk’s vertical structure. We will report

on this precession phenomenon and its dependence on

softening in greater detail in future work.

The periodograms for the eccentric binary have a com-

parative absence of the lump frequency. Interestingly,

however, it is not completely absent, especially in the

infrared band. The M = 21 case has several peaks

at low frequency, which may indicate a lump-like phe-

nomenon. There is a qualitative suggestion of the pres-

ence of a lump in the corresponding panel of Fig. 2.

Since higher Mach number flows are inherently less sta-

ble, it is arguably not surprising that a lump could ap-

pear at higher Mach numbers around the eccentric bi-

nary. Further investigation of lump-like periodicity in

high-Mach number disks around eccentric binaries is be-

yond our present scope, but it suggests that some eccen-
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Figure 6. Normalized Lomb-Scargle periodograms for the
total minidisk emission and emission coming from elsewhere
(primarily accretion streams and the cavity wall). As a rep-
resentative case, we only show the infrared emission from
the run with M = 11, ∆x = 0.005a, rsink = 4∆x. Op-
tical emission (not shown) is similar, except for a slightly
less prominent lump periodicity. For the circular binary, the
lump periodicity is almost absent in the minidisk emission.
Emission from the accretion streams and the cavity wall has
a noticeable peak at 2 orbits−1, which we interpret as ejected
accretion streams shock-heating the cavity wall twice per or-
bit.

tric binaries can be circular binary “imposters.” In the

eccentric M ∈ {11, 7} cases, the first harmonic of the

orbital frequency appears clearly; harmonics often arise

as the Fourier-representation of periodic pulses that do

not have a purely sinusoidal shape (as is the case in the

corresponding panels of Fig. 3).

To gain insight into where modulated emission comes

from, we present Fig. 6 for the M = 11 case only,

showing normalized Lomb-Scargle periodograms for the

infrared emission coming from the minidisks (regions

within rperi/2 from each black hole) and emission com-

ing from elsewhere (mostly the accretion streams and

cavity wall). We refer to the latter emission as the

“cirumbinary” (CBD) emission. The optical case (not

shown) is similar, so we omit it in order not to clutter

Fig. 6. Other Mach numbers are also similar, so we be-

lieve Fig. 6 is representative. For the circular binary, we

observe that the net minidisk emission is dominated by

the near-orbital period, whereas the accretion streams

and/or cavity wall are dominated by the lump periodic-

ity. In the eccentric case, all emission is dominated by

the orbital period. Spatial maps of the optical and in-

frared luminosity are displayed in Fig. 7, showing bright

optical

α = 0.1 e = 0

IR

optical

α = 0.1 e = 0.45

IR

Figure 7. Luminosity map snapshots, raised to the 1/4th
power to improve contrast. Only theM = 11 case is shown,
from our highest resolution runs. Left and right columns
are circular and eccentric binaries. All binaries are orbiting
counter-clockwise. Eccentric binaries are shown at pericen-
ter. Top and bottom rows optical and infrared maps.

minidisks, a diffuse glow in the lump, and narrow bright

features along accretion streams and the shock-heated

cavity wall. For the circular binary, just as the minidisk

emission is not modulated significantly on the lump pe-

riod, nor are the accretion rates as registered by the

sinks. This means that lump periodicity does not trans-

mit to the jet emission via Ṁ . However, it is conceivable

that lump periodicity could manifest in the jet via up-

scattering of photons emitted from the CBD.

We also note that for the circular binary, a beat fre-

quency appears in the emission from the individual mini-

disks (not shown). This beat frequency is ffast − fbin,

and it is completely out-of-phase between the minidisks,

which explains why it does not appear in the peri-

odogram of the net minidisk emission in Fig. 6. It has

a value similar to a lump frequency (' 0.16 orbits−1

in the top panel of Fig. 6), but is clearly distinct from

the lump frequency flump ' 0.11 orbits−1. Since ffast

moves towards fbin in our sink-shrinking test, the beat

frequency ffast− fbin seems to approach zero. Since our

sink-shrinking test varies the resolution, sink size, sink

rate, and gravitational softening length simultaneously,

the beat frequency must be a function of this subset of

parameters. We will also investigate this in future work.
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Figure 8. Infrared-to-optical color as a function of time for circular (e = 0, left column) and eccentric (e = 0.45, right column)
binaries. From top to bottom, rows correspond to Mach numbers 21, 11, 7. Each light curve includes corrections from our
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Figure 9. Snapshots of the optical depth to electron scat-
tering τes, displayed on log scale. Only the M = 11 case is
shown, from our highest resolution runs. Left and right are
circular and eccentric binaries, respectively. Regions with
τes < 1 are in gray.

In Fig. 8 we plot the infrared-to-optical ratio (“color”),

with the same panel organization as Fig. 3 & Fig. 4.

The lump periodicity for the circular binary is notice-

ably suppressed in comparison with Fig. 3. To the extent

that the lump periodicity is eliminated in the color, that

indicates that the lump signal is in-phase between the

optical and infrared bands, and with a similar magni-

tude (relative to the average) and shape in both bands.

We describe this as “achromaticity” of the lump peri-

odicity. In Table 6, we quantify the degree to which

the prominence of lump periodicity (in relation to the

near-orbital frequency) decreases when going from the

individual infrared and optical bands to the color: the

prominence of lump periodicity decreases by 46 − 83%

compared to optical and 80−99% compared to infrared.

This is interestingly different from the well-established

“bluer when brighter” chromaticity of general stochastic

AGN variability.

For the eccentric binary, for M ∈ {11, 7}, although

the orbital modulation in different bands is clearly in-

phase (peaking at pericenter, i.e. integer values of orbits,

see Fig. 3), the magnitude and shape of the two bands is

nonetheless different enough that the color peaks mid-

orbit (at apocenter, i.e. at times halfway between integer

orbits). The average color is useful to compare to the
emission from a steady circumsingle disk around a black

hole of mass equal to the binary’s mass. The circums-

ingle disk color is 0.94, whereas a circular binary has a

modest enhancement to 0.97− 1.2, and an eccentric bi-

nary has an even greater enhancement to 1.3− 2.1. The

color variability on the near-orbital time scale is also a

notable observable: RMS of 2.4 − 6.2% for circular bi-

naries, 6.3 − 12% for eccentric binaries. See Tables 6

& 7. A direct comparison to the complex phenomenol-

ogy of AGN observations (see e.g. Padovani et al. 2017)

is involved, and is beyond the scope of the present study.

In Fig. 10 we plot the optical LC and total accre-

tion rate Ṁ from our sink-shrinking study (test label:

rsink in Appendix §B). The accretion rates are mea-

sured by the sink terms, in a neighborhood of the black

holes. The rows show resolutions ∆x = 0.005a (top)
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and ∆x = 0.0025a (bottom). The lag between the opti-

cal LC and Ṁ appears converged, and is highly in-phase

for the eccentric binary (right column); for the circular

binary (left column), they are nearly out-of-phase. The

infrared LC (not shown) is in-phase with the optical

LC. If jet emission is well-predicted by Ṁ , then this is

a tantalizing hint of a smoking-gun signature of eccen-

tricity, in SMBHB candidates with well-differentiated

jet and disk emission. Without having performed sink-

shrinking tests for all of our sensitivity tests in Appendix

§B, this result is not up to the same standard of evi-

dence as our other results tabulated in Appendix §B.

However, it stands to reason that the smaller minidisks

in the eccentric case result in less buffering of incom-

ing perturbations, thereby allowing a greater degree of

synchronicity between the consequent minidisk heating

(and thus emission) and accretion by the black holes.

Lastly, in order to assess our assumption that the gas

is optically thick everywhere, we display the electron

scattering optical depth τes of the gas in Fig. 9, where

regions with τes < 1 have been greyed out. The electron

scattering optical depth τes is a lower bound for the ef-

fective optical depth (see §2.2). To compute this, as

per §2.6, we first scaled the surface density down to the

general level of our target model via the approximate

map

Σ→Σ×
(

10

A

)
(24)

This map follows from these relations:

Ṁ→ Ṁ ×
(

10

A

)
(25)

Ṁ = 3πΣν (26)

ν→' ν, (27)

and ansatz (for some n):

Σ→Σ×
(

10

A

)n
. (28)

The only regions with τes < 1 are in the low-density

cavity, from which a subdominant amount of luminosity

is expected.

5. DISCUSSION

In this section, we discuss our results in greater depth,

organizing into two categories: signatures of a binary in

general, and signatures of an eccentric binary in partic-

ular. We then discuss the effect of Doppler brightening,

which is often a central consideration when modeling bi-

nary quasar light curves (see e.g. D’Orazio et al. 2015;

Charisi et al. 2021). Finally, we discuss, as an illustra-

tive example, a particular quasar with a claimed quasi-

periodic light curve, to which our results may be rele-

vant in the future. The optical and infrared signatures

we discuss presuppose that the emission from the system

is either dominated by the thermal disk emission (rather

than the jet(s), a dusty torus, etc. – see Padovani et al.

2017), or otherwise that the thermal disk component can

be separated out through spectral modeling.

Throughout this section, we refer to root-mean-square

(RMS) variabilities. RMS variability is a readily recog-

nized measure, but keep in mind that the peak-to-trough

variability (which is more easily judged visually in plots)

is roughly 3× the RMS variability.

5.1. Signatures of a binary

One signature of binarity that would be very conspic-

uous with a sufficiently long temporal baseline is the si-

multaneous presence of two significant periodicities sep-

arated by a factor of ' 4.5 − 16. These would be the

orbital (or near-orbital) periodicity and the lump peri-

odicity. Harmonics of either of these periods are likely,

but harmonics are such a generic phenomenon (encod-

ing non-sinusoidal pulse shapes) that they are not strong

evidence of binarity by themselves. Even more conspic-

uous would be different relative weights of the lump ver-

sus near-orbital periodicity in different bands. We tend

to find that the lower energy bands (infrared) tend to

have an over-representation of the lump periodicity, and

an under-representation of the near-orbital periodicity,

relative to higher energy bands (optical).

We generally find that optical variability on the or-

bital time scale is significantly larger than infrared; we

found that infrared RMS variability is ' 0.90 − 3.5%,

whereas optical RMS variability is ' 3.3− 15% (see Ta-

bles 1 & 2). This itself is a signature of binarity, but may

not be sufficiently specific to be convincing. Note that

stochastic AGN variability amplitudes are also gener-

ally larger in bluer bands, but the ratio between optical

and infrared is significantly below the factor of 3− 4 we

found for binaries here. If ordinary quasar light curve

rms variability is on the order of 10%, then the peri-

odic hydrodynamic variability due to a binary may very

well be obscured, especially without a temporal baseline

extending for many binary orbital periods.

The preponderance of our simulations show lags be-

tween optical and infrared that are consistent with zero

(but see Tables 4 & 5 for a few exceptions). Our tem-

poral cadence is roughly 2% of an orbit, which trans-

lates into lags . 1 week compared to our orbital pe-

riod of 1 year (in the source frame). We measure lags

by computing the discrete correlation function (Edelson
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Figure 10. Optical LC and total Ṁ normalized by their averages for the M = 11 high-resolution sink-shrinking study (test
label: rsink in Appendix §B). Top row: ∆x = 0.005a, bottom row: ∆x = 0.0025a. Both cases have rsink = 4∆x. Left column:
circular binary, right column: eccentric binary. Significant lags are apparent in the circular case, but absent in the eccentric
case. The lags appear consistent between the two resolutions, suggesting the lags are well-resolved.

& Krolik 1988) between the two signals, and seeing at

which lag the first local maximum occurs; correlations

are quoted as the value at that local maximum. We find

the level of correlation between optical and infrared to

be ' 0.64 − 0.96. See Tables 4 & 5. If ordinary quasar

variability is of order 10% and uncorrelated, one would

reasonably expect a decrease in these correlations by an

amount on the order of 0.1. Even so, the level of correla-

tion between different bands for circumbinary emission

is quite high.

The infrared-to-optical ratio (“color”) is on average

' 0.97− 2.1, above the corresponding circumsingle disk

color of ' 0.94 (see Tables 6 & 7). This may be an

important signature of binarity, but it would be impor-

tant to understand how much other processes in circum-

single disks (e.g. Lightman-Eardley or ionization insta-

bilities) could enhance the color above ' 0.94. Chro-

matic variability from a binary can be quite large (we

find ' 2.4 − 12%), and periodicity is generally present.

For circular binaries, the prominence of lump periodicity

compared to the near-orbital frequency decreases sub-

stantially when going from specific bands to the color.

For example, the lump prominence decreases by 80−99%

from the infrared band, and by 46 − 83% from the op-

tical band. See Table 6. This degree of achromaticity

is unusual for AGN. It is worth mentioning a very re-

cent work (Negi et al. 2021) finding chromatic variability

in blazars, in particular. Although our results apply to

more general AGN, we discuss applications of our results

to blazars in §5.4.

5.2. Signatures of an eccentric binary

Most of our simulations show a large relative lack of

lump periodicity in eccentric binaries versus circular bi-

naries. This may signal eccentricity, but some of our

simulations show that it is possible for eccentric bina-

ries to be circular imposters by exhibiting significant

lump periodicity. Thus, relative strengths of lump ver-

sus near-orbital periodicity in different bands are tenta-

tive ways of distinguishing eccentric and circular bina-

ries which require further elucidation.

In optical, infrared, and in color, eccentric binaries

have systematically higher variability on the orbital time

scale. This is especially true of optical, with circular

binaries exhibiting ' 3.3 − 8.5% variability and eccen-

tric ones exhibiting ' 7.7 − 15% variability. See Ta-

bles 1, 2, 6, and 7. The average color is also significantly

larger for eccentric binaries: ' 1.3−2.1 for eccentric ver-

sus ' 0.97− 1.2 for circular. On the other hand, we do

not find a significant difference in correlations between

infrared and optical emission.

As discussed at the end of §4, Fig. 10 shows a tanta-

lizing result that the jet emission may have a significant

lag with respect to low-energy disk emission for circular

binaries, but not for eccentric binaries. Deeper inves-

tigations are warranted, i.e. performing sink-shrinking

tests for all of our sensitivity tests in Appendix §B. Such

a suite of simulations would be significantly more costly
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than those we have already performed, and we intend to

do so in future work.

5.3. Doppler brightening

If the binary is not viewed face-on, then emitting gas

parcels will appear Doppler brightened (or dimmed). In

particular, the net motion of gas in each minidisk will

cause Doppler brightening tied to the orbital motion of

the black holes. Doppler brightening is a relativistic

effect appearing first at order v‖/c, where v‖ is the net

line-of-sight velocity of the minidisk. Roughly speaking,

the binary orbital motion only brightens the minidisks,

since they have net motion with their respective black

holes. Other emitting gas, such as the cavity wall, is

not moving as quickly. In our simulations, we consider

minidisk emission to be coming from within a distance

rperi/2 from its black hole – such regions are drawn in

Fig. 2.

For our particular binary parameters, the orbital ve-

locity is ' 0.02c for the circular binary, and ' 0.033c

for the e = 0.45 binary at pericenter. We have checked

how large the Doppler brightening effect is for our sys-

tem, and found it to be negligible (. 1% effect on light

curves for edge-on observers). However, it is of interest

to estimate how large the orbital velocities would have

to be for Doppler brightening to be important. We do

so in this section.

Brightness variability coming from the Doppler ef-

fect competes with hydrodynamic effects. We seek

to estimate how large v/c must be for hydrodynamic

and Doppler variability to have equal amplitude (see

also D’Orazio et al. 2015). To this end, we schemati-

cally decompose the total observed luminosity as

Lobs
tot (t) = 〈Ltot〉 (1 + δDoppler(t) + δhydro(t)) , (29)

where 〈Ltot〉 is the average intrinsic total luminosity,

and the relative variabilities δDoppler(t) and δhydro(t) are

caused by Doppler and hydrodynamic effects, respec-

tively. Our aim is to compare the amplitudes of these

two terms. Two considerations must be made. First,

only the fraction of the total luminosity produced by the

minidisks is subject to Doppler brightening from binary

orbital motion. Second, the net change in observed flux

includes Doppler-brightening of the approaching mini-

disk, in addition to Doppler dimming of the receding

one. These effects tend to oppose each other, and would

cancel at first order in v/c if the minidisks both had the

same power-law spectra. Let b ≡ 〈LMD〉/〈Ltot〉 quantify

the fraction of average emission that originates in the

minidisks (and is thus susceptible to Doppler modula-

tion), and let f ≡ 〈L2〉/〈L1〉 quantify the average mini-

disk brightness asymmetry (defined such that f ≤ 1),

where 〈L1〉 and 〈L2〉 are average luminosities for the in-

dividual minidisks. We relegate a detailed calculation

to Appendix §C, and provide the main results of the

calculation here.

To maximize the Doppler variability, we consider

edge-on observers, resulting in

δDoppler(t) ' 3.44 b

(
1− f
1 + f

)
v

c
sin(Ωbint), (30)

where v is the orbital velocity. The factor of 3.44

comes from an estimate of the power-law spectral in-

dex (see Appendix §C). The hydrodynamic variability

has a minidisk contribution δMD(t), and a contribu-

tion from elsewhere – we call the latter the “circumbi-

nary” (CBD) contribution δCBD(t), so that δhydro(t) ≡
δMD(t)+δCBD(t). These contributions are estimated as

δMD(t) = 1.5 bAMD(t) (31)

δCBD(t) = 1.5 (1− b)ACBD(t), (32)

where AMD(t) and ACBD(t) are quasi-periodic modula-

tions with amplitudes (≡ ĀMD and ĀCBD) equal to the

root-mean-square (RMS) variability of unboosted mini-

disk and CBD emission, respectively. These two contri-

butions tend to be coherent with each other, but to be

conservative about the amplitude of δhydro, we take it

to be the maximum of the amplitudes of δMD and δCBD.

The amplitude of δDoppler then equals δhydro when

v/c ' 1.5

3.44 b

(
1 + f

1− f

)
max{bĀMD, (1− b)ĀCBD}. (33)

We compute this estimate of v/c for all of our simu-

lations in Appendix §B. By taking the minimum v/c

across all of our simulations,

• e = 0, optical: v/c & 0.16

• e = 0, infrared: v/c & 0.14

• e & 0.45, optical: v/c & 0.12

• e & 0.45, infrared: v/c & 0.16.

All of these line-of-sight velocities are rather high; by

comparison, the orbital velocity of our circular binary is

v/c ' 0.02, or v/c ' 0.033 at pericenter for our e = 0.45

binary. Most binaries would be viewed at some inter-

mediate angle, as opposed to edge-on, which increases

the required orbital velocity to achieve parity between

Doppler brightening and hydrodynamic variability by a

few tens of percent.

Our results indicate that Doppler modulation of

brightness is generally sub-dominant to hydrodynamic

variability in accreting equal-mass binaries with disk
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Mach numbers M . 20, even when the binary has sig-

nificant eccentricity. These results are consistent with

findings from Tang et al. (2018), which were limited

to circular binaries. On the other hand, we note that

lower-mass ratio binaries have smaller hydrodynamical

variability, particularly for q . 0.05 (Farris et al. 2014;

D’Orazio et al. 2016), and Doppler variability can be

dominant for these (D’Orazio et al. 2015). Exploring

how the relative importance of Doppler modulation and

hydrodynamic variability translates to unequal-mass

systems, and to higher Mach numbers, will be the sub-

ject of future work.

If periodic Doppler brightening signals are most de-

tectable for low mass ratio binaries or higher Mach

number disks, then their detection would serve to con-

strain those parameters. Excitingly, if mass ratio can

be constrained by other means (e.g. GWs), then peri-

odic Doppler brightening signals might provide a rare

constraint on disk Mach numbers, which in turn con-

strains combinations of other disk parameters like ac-

cretion rate, turbulent viscosity, and surface density.

5.4. Application to periodic blazars

Since we are primarily focusing on the resolved in-

frared and optical thermal emission from the disk, our

predictions are most relevant for supermassive black hole

binaries in AGN for which the jet emission components

are either subdominant or can be modeled out. For

this reason, predictions about thermal disk emission are

not directly relevant to BL Lacertae objects, since they

are more dominated by jet emission at all wavelengths.

However, we do predict properties of the jet emission to

the extent that they track accretion rates. Energy con-

siderations motivate a schematic relationship between

jet power Ljet and the accretion rate,

Ljet ≈ ηṀc2, (34)

where η is the efficiency. This relationship is generally

not expected to hold instantaneously, but rather on av-

erage (e.g. Paschalidis et al. 2021; Combi et al. 2021).

However, for the binaries considered in this work, the

periodic variability of Ṁ takes place on the binary or-

bital time scale of 1 year, whereas the characteristic or-

bital time near the black holes is a few minutes. Thus,

given how slow the accretion rate modulations are for

our binaries, it is sensible to expect Eq. (34) to hold in

a quasi-stationary sense in our case.

In this section, as a basis for an illustrative discus-

sion, and to limit our scope, we focus primarily on a

specific flat spectrum radio quasar (FSRQ) for which

there is a recent claim of quasi-periodic oscillations at

a period of ' 2.6 years in γ-rays: PKS 0208-512 (Peñil

et al. 2020). Only a few cycles are present in the data,

therefore stochastic flaring is not precluded. However, it

serves as a useful case to explore ideas on how our results

could be applied to binary blazars. This object is at a

redshift of z ' 1 (Peterson et al. 1976), which means the

source frame periodicity is ' 1.3 years. If this periodic-

ity corresponds to the orbital period of a putative binary,

then it is similar to the fiducial model we studied in this

work. The total black hole mass has been estimated

based on various assumptions to be (6 − 25) × 107M�
(Stacy et al. 2003; Yang & Fan 2010), which is in the

range of ' 8− 30 times the total binary mass we stud-

ied in this work. The disk effective temperature of PKS

0208-512 can be made similar to the system we stud-

ied in this work via a corresponding scaling down of the

accretion rate, to ' (0.01 − 0.15) × ṀEdd. This would

make many of our predictions applicable (see §5.5 for

more discussion of this point). However, one still has to

isolate the thermal disk emission, which could be done

through model fits of the observed broadband spectrum.

In addition to γ-ray data, there exists X-ray, optical, and

infrared data for PKS 0208-512, and they have been an-

alyzed in a number of contexts (see e.g. Chatterjee et al.

2013; Khatoon et al. 2021). It has been suggested that

the disk emission is observable when the jet activity is

low (Chatterjee et al. 2013). However, we are unaware of

a periodicity analysis in bands other than γ-rays (Peñil

et al. 2020).

Using Eq. (2), we can check that the above putative

binary with total mass ' (6 − 25) × 107M� is in the

GW-driven regime for a wide range of parameter val-

ues. One can therefore expect that it is circularizing. If

it has circularized sufficiently, then our predictions for

equal-mass circular binaries may apply. Assuming PKS

0208-512 hosts a near-equal mass, near-circular binary,

we predict that the thermal disk emission in infrared and

optical (or far-infrared and near-infrared in the observer

frame due to cosmological redshift ν → ν/(1+z)) should

exhibit in-phase (< 20 days in the observer frame)

brightness modulations on near-orbital time scales, with

a prominent lump period of ' 4.5− 16 times the orbital

period. The lump period will be more prominent (rela-

tive to the orbital period) in lower-energy disk emission.

Given the semi-major axis of a ' (2− 5)× 10−3 pc im-

plied by the inferred binary mass range and a 1.3-year

orbital period, the maximum orbital velocity is on the

order of v/c ' 0.03 − 0.08 for a circular binary and

v/c ' 0.05 − 0.13 for an eccentricity of e = 0.45. Since

PKS 0208-512 is a blazar (i.e. viewed nearly face-on),

the line-of-sight orbital velocities are likely well below

the levels in §5.3. Thus, Doppler brightening on the

orbital time scale is very likely irrelevant, so we can pre-
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dict that a binary would produce spiky orbital periodic-

ity, with the near-infrared light curves (observer frame)

having more significant (3.3− 8.5%) RMS variability in

comparison to far-infrared (0.90− 2.6%).

Keeping our caveats from §5.5 in mind, and the as-

sumptions above, we predict that periodic modulations

in the jet emission will be significantly out-of-phase with

disk emission. Absence of the lump frequency in our

measurements of the Ṁ time series also implies that if

modulations of γ-ray brightness reflect the intrinsic jet

power (as per e.g. Combi et al. 2021), the jet emission

should not be modulated by the lump. On the other

hand, the lump periodicity has been observed to appear

in Ṁ in past work using the same non-isothermal equa-

tion of state as ours (e.g. Farris et al. 2015a). It would

be interesting to understand the conditions under which

lump periodicity does and does not transmit to accre-

tion rates, including the effect of the sink size, since that

informs whether one should expect jet power to be sys-

tematically modulated on that time scale.

On the other hand, if modulations of γ-ray brightness

instead reflect the supply of seed photons to the inverse

Compton process in the jet, then some long-term trends

in blazar γ-ray light curves might reflect lump periodic-

ity in that external supply of seed photons. For example,

it has recently been noted that PKS 0208-512 has had

an increase in γ-ray activity beginning around 2019 (see

e.g. Khatoon et al. 2021), and the trend in flare ampli-

tudes suggests a lump-like (e.g. ' 5-orbit) period. So it

is worth considering jet brightness modulations arising

from the supply of seed photons from the disk. In this

scenario, one would expect the inverse Compton compo-

nent of the blazar spectral energy distribution to have

an imprint of lump periodicity (whereas the lower en-

ergy sychrotron component would have such an imprint

only if the lump periodicity transmits to the accretion

rates).

In this external inverse Compton scenario, since the

cavity is the region whose emission is primarily mod-

ulated at the lump period (see Fig. 6), the time delay

between CBD brightening and upscattering of the resul-

tant photons by the jet would be at least on the order

of the light-travel time from the cavity wall to the black

holes. This delay is of order ' 1% of an orbital period

for the putative binary in PKS 0208-512.

If the lump period is indeed being transmitted to

jet emission, then in addition to predicting flares in

early/mid-2021, early-2024, and mid-2026, the ampli-

tude of those flares will show evidence of reverting to

the low-activity state similar to the years 2009− 2017.

An “orphan” flare from PKS 0208-512 in the optical-

near-infrared band (i.e. no γ-ray counterpart) was re-

ported between the two γ-ray flares that bracket the

interval from 2008 − 2011 (Chatterjee et al. 2013). Or-

phan flares in low-energy bands could be explained by

a binary, since one would expect flares in disk emis-

sion that are out-of-phase with the jet (either due to

the binary being circular, or even for eccentric bina-

ries since the pulse substructure of disk emission can

be distinct from Ṁ ; see Fig. 10). Since the low-energy

flares occur while the jet is not flaring, the disk emis-

sion would be more visible at that time than otherwise.

If binarity is the cause of an orphan flare, we would

predict that the orphan low-energy flares have a ther-

mal spectrum (i.e. originating in the disk), whereas the

low-energy flares coincident with γ-rays would be non-

thermal (i.e. originating in a jet).

Lastly, the BL Lacertae object PKS 2155-304 has

several reports of 1.7-year γ-ray periodicity, but differ-

ent studies disagree about whether optical data has the

same 1.7-year periodicity or roughly half of that (0.87

years) (e.g Zhang et al. 2014; Sandrinelli et al. 2014,

2016; Covino et al. 2020; Peñil et al. 2020; Bhatta 2021).

If optical flares from the disk around a binary are out-

of-phase with jet flares, one would expect a periodicity

in the optical band at roughly twice the jet periodic-

ity. Since the flares in disk emission may be weaker

than the jet, they may be harder to discern in the data,

which might explain the mixed claims of 0.87-year and

1.7-year periodicity in the literature.

5.5. Caveats

In this section, we discuss some caveats, focusing on

the ones we believe are most important for interpreting

EM signatures of SMBHB candidates.

Firstly, when generalizing our results about optical

and infrared emission to other binary parameters, one

must pay special attention to the overall effective tem-

perature of the gas. If the effective temperature of

our system were scaled down, then infrared and opti-

cal emission would come from deeper inside the gravi-

tational wells of each black hole. Then, the lump pe-

riodicity would feature less prominently, and the frac-

tion of emission coming from the minidisks would be

increased. That effect would be reversed if the effective

temperature were instead scaled up. Thus, one ought to

think spatially, by associating our results about infrared

and optical emission with whatever emission is coming

' 7.6−28% and ' 37−84% from the minidisks, respec-

tively (see b in Tables 8 & 9); which band of emission

that corresponds to will depend on the accretion rate Ṁ ,

binary mass M , and orbital semi-major axis a roughly

via T 4
eff ∼ MṀa−3. However, if the amplitude of peri-

odic signals depend on such parameters, then our results
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should not be taken as generic. One also must apply a

cosmological redshift to the bands (ν → ν/(1+z)), since

our results are quoted in the cosmological rest frame of

the source.

Secondly, we caution against over-interpreting the

shapes of specific pulses seen in Fig. 3. The pulse shapes

for a given model change from one cycle to the next,

and also vary in character between models with different

nominal Mach numbers. Our tests show reliable results

about the frequency content of the pulse time series (i.e.

near-orbital and lump frequencies having values within

a certain range, see Table 3), and it is safe to say that

the pulse shapes resulting from hydrodynamic processes

are probably “spiky,” and not perfectly periodic.

Furthermore, the Mach number of the gas depends

strongly on the accretion rate. For lower accretion

rates, the Mach number can easily become greater than

100; for example, if our target system were accreting at

0.1× ṀEdd instead of 10× ṀEdd (all else being equal),

then the initial condition would have M(a) ' 240. Our

Fig. 3 suggests that the visual appearance of light curves

depends very strongly on Mach number, becoming nois-

ier at higher Mach. One wonders whether light curves

from very high-Mach number circumbinary accretion

disks would present any obvious periodicity at all, unless

from Doppler modulation. However, even though the

Mach numbers we have simulated are in a narrow range

of possible values, the Mach numbers we have simulated

are physically reasonable. In particular, the Mach num-

bers we simulated do not require super-Eddington ac-

cretion rates; the Mach profile of the α-disk models we

use are nearly invariant when simultaneously scaling the

black hole mass up by a factor of n and the accretion rate

(expressed in multiples of Eddington) down by a factor

of n. Thus, for example, a binary with M = 109M� ac-

creting at 0.1× the Eddington rate would have similar

Mach number as the systems we study in this work.

Next, as we have mentioned above, we are primar-

ily predicting the thermal disk emission. Infrared wave-

lengths are expected to be heavily contaminated by dust

near the quasar (e.g. Padovani et al. 2017), which must

be taken into consideration when applying our results

to observations. However, since the specific bands we

present should be thought of more generally as what-

ever emission is coming ' 7.6 − 28% and ' 37 − 84%

from the minidisks, dust will not be a contaminant in

general (in particular, for sufficiently higher binary mass

and/or compaction).

We can only infer properties of the jet emission to the

extent that it is predicted by Ṁ (which has some theo-

retical support, e.g. Paschalidis et al. 2021; Combi et al.

2021) or by the disk supply of seed photons. Our infer-

ences about Ṁ are not up to the same standard as our

other results quoted in Tables 1 through 9, because that

was not a primary design goal of our study. We believe

that our conclusions involving Ṁ would be at the same

standard as our infrared and optical conclusions if we

performed sink-shrinking studies in all of our sensitiv-

ity tests in Appendix B. Currently, we only performed

a sink-shrinking study for our fiducial M = 11 run.

Some further caveats are commonplace ones associ-

ated with two-dimensional simulations: e.g., in reality,

the binary orbital plane may be tilted with respect to the

accretion disk; the vertically integrated fluid equations

may not be sufficiently accurate in highly dynamical

settings such as circumbinary accretion; the constant-

α prescription for unresolved turbulence and magnetic

fields may be inadequate, etc. Furthermore, we have not

varied the binary mass ratio, we simulated a Newtonian

system, and neglected the self-gravity of the gas. Re-

stricting to equal-mass binaries limits our ability to in-

form interpretations of PG 1302-102, for example, which

is a SMBH binary candidate crucially believed to have

a small mass ratio, which increases the orbital velocity

of the secondary black hole to account for large am-

plitude sinusoidal modulations via Doppler brightening

(D’Orazio et al. 2015). However, we did pay special

attention to our system parameters to ensure the disk

is reasonably Toomre-stable, optically-thick, far from

the ionization-unstable regime (T ∼ 6500 K), not deep

within the gravitational-wave driven regime (so that

large eccentricity is not precluded), etc.

6. CONCLUSIONS & OUTLOOK

We study eccentric and circular equal-mass binaries

near the transition between gas- and GW-driven evo-

lution using two-dimensional simulations. We report

multi-band light curves for the thermal disk emission,

and compared them to jet emission under the assump-

tion that jet power is proportional to the accretion rate.

We find that optical and infrared (low-energy) disk emis-

sion in different bands are generally in-phase to within

∼ 2% of an orbital period, and that the low-energy emis-

sion is in-phase with the long term (i.e. orbital) variabil-

ity of the accretion rate for eccentric binaries. Tanta-

lizingly, low-energy disk emission is almost completely

out-of-phase with accretion rates for circular binaries,

and is thus a possible smoking-gun signature of circu-

larity. This seems consistent with the fact that circular

binaries harbor larger minidisks than eccentric binaries,

since one expects larger minidisks to provide more effec-

tive buffering of incoming perturbations. It is also clear

that periodic low-energy disk emission can have pulse

substructure that is quite distinct from accretion rates.
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We find that the well-known “lump” period features

more prominently in the low-energy disk emission from

circular binaries (compared to eccentric binaries), and

more prominently in emission coming from accretion

streams and the cavity wall (compared to the minidisks).

The lump period is virtually absent in accretion rates,

suggesting that jet power could not be modulated at the

lump frequency through the mechanism of mass accre-

tion. An alternative mechanism for lump periodicity to

imprint upon jet power is inverse Compton scattering

of low-energy photons originating in the disk, in which

case the time delays between CBD brightening and jet

brightening would be much smaller than an orbital pe-

riod.

We also compare the amplitude of periodic, hydrody-

namic light curve variability to periodic Doppler bright-

ening signals arising from bulk translational motion of

the minidisks. We estimate that Doppler brightening is

only on par with hydrodynamic variability for very high

orbital velocities, typically v/c & 0.12 − 0.16. Doppler

brightening and gravitational redshift have previously

been reported to primarily cause an overall dimming ef-

fect for equal-mass binaries near merger (Tang et al.

2018), rather than a smooth sinusoidal modulation. We

therefore conclude that periodicity in low-energy light

curves from disks around equal-mass binaries (with char-

acteristic disk Mach numbers . 20) generically has a

spiky, possibly noisy character associated with hydrody-

namic effects, rather than the smooth and orderly char-

acter associated with Doppler brightening. We provided

simulation data in Tables 8 & 9 which we hope will be

useful for modeling Doppler brightening from accreting

binaries.

We also found that the RMS variability of light curves

is generally less than the ∼ 10% stochastic variability

found in typical AGN (see Tables 1 & 2). Phase-folding

a longer temporal baseline of data is a strategy which

might reduce the stochastic component of light curves

and reveal the periodic signal.

Our results here should aid the identification of gen-

uine binaries among candidates identified as periodic

quasars. The time-domain dataset from the forthcom-

ing Vera Rubin Observatory’s Legacy Survey of Space

and Time (LSST) will replace current samples (of a few

× 100,000 quasars with sparsely sampled light-curves

in a single band) with tens of millions of quasars sam-

pled at the much higher cadence of once per few days in

multiple bands (LSST Science Collaboration et al. 2009;

Ivezić et al. 2019). This will allow searches for periodic

quasars at much higher fidelity and extending to much

shorter periods (Xin & Haiman 2021), thereby providing

a way to diminish stochastic variability. Our results will

be especially applicable to this large anticipated AGN-

variability dataset.
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APPENDIX

A. NUMERICAL PRESCRIPTIONS

We use density and pressure floors in the conservative-to-primitive variable transformation. The floor values are

respectively set to Σ(t=0, r=a)× 10−10 & P(t=0, r=a)× 10−10. If the pressure is found to be below the floor value,

it is set to the floor value. If the density is found to be below the floor value, both the density and pressure are set to

their floor values and the velocity is set to zero.

A component-wise velocity ceiling is applied in the conserved-to-primitive variable transformation. If a velocity

component is found to be greater than 10aΩbin, then it is set to 10aΩbin. This compares with a typical maximum

speed on the grid of ' 3aΩbin, corresponding to the orbital speed at the sink radius. We find that the velocity ceiling

is rarely invoked, but it prevents the time step from becoming prohibitively small in rare scenarios whereby a fluid

element is temporarily accelerated to high speeds in the neighborhood of a sink. For reference, the speed of light is

approximately 50aΩbin for our binary parameters.

We employ a Mach ceiling to the cooling prescription, which acts to regulate the cooling strength when the updated

Mach number would exceed the Mach ceilingMc = 105. This is achieved by limiting the rate of cooling such that the

updated specific internal energy (Ryan & MacFadyen (2017)) has a minimum value of

2

Γ(Γ− 1)

v2

M2
c

. (A1)

We find the Mach ceiling is applied very infrequently.

B. SENSITIVITY TESTS

We checked the sensitivity of our results to variations in many parameters and prescriptions. The tests and their

labels are enumerated below, and the labels are used when quoting results in Tables 1-9. Tabulated results are rounded

to 2 significant figures. All tests except the variation of viscosity are alternate representations of our target system

described in §2.1 & §2.2. All tests are variations of our “fiducial” run parameters: M(1.5a) ' 11, e ∈ {0, 0.45},
∆x = 0.01a, D = 15a, floors 10 orders of magnitude below the initial conditions at r = a, rsink/∆x = 4, s = 10,

analysis time of 700−800 orbits, rs = rsink, α = 0.1, and disk initial conditions given in §3.1.

1. {label: M} Mach number M(3a) ' 21, M(a) ' 7 (fiducial is M(1.5a) ' 11)

2. {label: D} Domain radius: D = 20a at fixed resolution ∆x = 0.01a (fiducial is D = 15a)

3. {label: ∆x} Resolution: ∆x = 0.005a (fiducial is ∆x = 0.01a)

4. {label: VC} Velocity ceiling of 20aΩbin (fiducial is 10aΩbin)

5. {label: F} Floors on pressure & density: 15 orders of magnitude smaller than the initial conditions at r = a

(fiducial is 10 orders of magnitude)

6. {label: rsink} Sink radius: rsink ∈ {0.02a, 0.01a}, keeping rsink/∆x = 4 constant (fiducial is rsink = 0.04a)

7. {label: s} Sink rate: s ∈ {2, 50} (fiducial is s = 10)

8. {label: AT} Analysis time: 1300 orbits (fiducial is 700 orbits)

9. {label: ET} Evolution time from grid refinement at 600 orbits until the analysis time: 200 orbits (fiducial is 100

orbits), corresponding to analysis times 800−900 orbits (fiducial is 700−800 orbits)

10. {label: α} Viscosity: α = 0.02 (fiducial is α = 0.1)

11. {label: e = 0.7} Eccentricity of e = 0.7 (fiducial eccentric run is e = 0.45)

12. Gravitational softening length rs: this is changed simultaneously with the sink radius, since we fix rs = rsink

The disk initial conditions we use for the viscosity test are fixed to the α = 0.1 case, for simplicity; for α = 0.02, the

self-consistent initial densities and pressures at r = a would vary by a factor of a few above the value in the α = 0.1

case.
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M D ∆x VC F rsink s AT ET α total range

optical avg. [1042 erg/s] 8.6-14 9.4 9.9 9.5 9.5 8.2-8.5 8.7-11 8.9 9.0 6.0 6.0-14

infrared avg. [1042 erg/s] 9.5-14 10 9.6 10 10 9.6-9.7 10-11 9.5 10 5.8 5.8-14

optical variability [RMS %] 3.3-7.7 5.6 3.3 5.5 5.5 5.2 5.5-5.6 5.9 5.7 8.5 3.3-8.5

infrared variability [RMS %] 1.1-2.4 1.4 0.90 1.4 1.4 0.95-1.1 1.4-1.5 1.7 1.4 2.6 0.90-2.6

Table 1. Circular binary: root-mean-square variability (RMS) for the fast periodic modulation 1/ffast. The median peak-to-
trough difference is roughly 3× the RMS variability. We also provide the average luminosity.

M D ∆x VC F rsink s AT ET α e = 0.7 total range

optical avg. [1042 erg/s] 4.4-8.7 6.2 5.4 6.3 4.4 4.1-5.2 5.4-6.8 5.3 5.7 2.7 5.7 2.7-8.7

infrared avg. [1042 erg/s] 8.5-12 9.4 8.5 9.2 8.5 8.5-9.0 8.9-11 8.8 9.3 4.5 8.7 4.5-12

optical variability [RMS %] 8.4-15 7.7 9.1 13 15 9.5-10 13-15 11 9.7 15 13 7.7-15

infrared variability [RMS %] 2.0-2.6 2.4 2.3 3.5 2.8 1.9-2.4 3.0-3.2 2.6 2.3 2.2 3.1 1.9-3.5

Table 2. Eccentric binary: root-mean-square variability (RMS) for the orbital modulation. The median peak-to-trough
difference is roughly 3× the RMS variability. All columns are for e = 0.45 except the column labeled e = 0.7. We also provide
the average luminosity.

M D ∆x VC F rsink s AT ET α total range

flump [orbits−1] 0.11-0.22 0.11 0.11 0.11 0.11 0.10-0.11 0.10-0.11 0.093 0.10 0.10 0.093-0.22

ffast [orbits−1] 1.3-1.4 1.4 1.3 1.4 1.4 1.0-1.2 1.4 1.4 1.4 1.5 1.0-1.5

Table 3. Circular binary: flump and ffast.

M D ∆x VC F rsink s AT ET α total range

lag [orbits] 0.0 0.0 0.0 0.0 0.0 -0.02-0.0 0.0 0.0 0.0 0.0 [−0.02,0.02)

correlation 0.88-0.91 0.88 0.83 0.83 0.87 0.75-0.80 0.82-0.89 0.84 0.81 0.85 0.75-0.91

Table 4. Circular binary: lags and correlations between infrared and optical. A positive lag corresponds to infrared lagging
optical.

M D ∆x VC F rsink s AT ET α e = 0.7 total range

lag [orbits] 0.0-0.08 0.0 0.0 0.0 0.0 0.02 -0.02-0.0 0.0 0.0 0.0 0.0 [−0.02,0.08]

correlation 0.80-0.94 0.64 0.89 0.94 0.93 0.89-0.94 0.93-0.96 0.78 0.94 0.88 0.90 0.64-0.96

Table 5. Eccentric binary: lags and correlations between infrared and optical. A positive lag corresponds to infrared lagging
optical. All columns are for e = 0.45 except the column labeled e = 0.7.

M D ∆x VC F rsink s AT ET α total range

color average 1.0-1.1 1.1 1.0 1.1 1.1 1.2 1.0-1.2 1.1 1.1 0.97 0.97-1.2

color variability [RMS %] 2.5-5.6 4.5 2.6 4.3 4.4 4.3-4.4 4.3-4.5 4.5 4.5 6.2 2.4-6.2

color (circumsingle disk) 0.94

lump achromaticity [vs optical, %] 46-76 81 74 81 77 51-71 75-79 83 76 47 46-83

lump achromaticity [vs infrared, %] 80-98 99 97 99 98 97-98 97-98 98 98 96 80-99

Table 6. Circular binary: properties of the infrared-to-optical color. We quote the average and the root-mean-square variability
(RMS). The median peak-to-trough difference is roughly 3× the RMS variability. We also provide the color for the corresponding
circumsingle disk. The last two rows show the percentage that the ratio of lump-to-orbital peak frequencies decreased from the
optical & infrared bands to the color. This measures the degree of achromaticity of the lump period, relative to each band.
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M D ∆x VC F rsink s AT ET α e = 0.7 total range

color average 1.3-2.0 1.5 1.7 1.5 2.0 1.8-2.1 1.6-1.7 1.7 1.7 1.7 1.5 1.3-2.1

color variability [RMS %] 7.2-12 6.3 7.5 9.8 12 8.2-8.8 9.9-12 9.5 9.4 12 10 6.3-12

color (circumsingle disk) 0.94

Table 7. Eccentric binary: properties of the infrared-to-optical color. We quote the average and the root-mean-square variability
(RMS). The median peak-to-trough difference is roughly 3× the RMS variability. We also provide the color for the corresponding
circumsingle disk. All columns are for e = 0.45 except the column labeled e = 0.7.
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C. DOPPLER BRIGHTENING

Doppler brightening is a relativistic effect appearing first at order v‖/c, where v‖ is the net line-of-sight velocity

of the minidisk. At a given photon frequency ν, assuming that the intrinsic emission is a power-law in ν, Fν ∝ να,

the Doppler brightening signal at lowest order in v‖/c modifies the unboosted flux Fν to an observed flux F obs
ν as

F obs
ν = Fν [1+(3−αν)v‖/c]. Here αν is the power spectral index at frequency ν, which is on the order of αν ' −few×0.1

(for a very recent and extensive discussion, see Charisi et al. 2021). For the purpose of estimation, we set αν = −0.44

(as in Vanden Berk et al. 2001; Charisi et al. 2021) below and replace fluxes with luminosities F → L.

As a crude approximation, we assume that the net binary motion only Doppler brightens the minidisk emission.

To help inform modeling of the Doppler signal, we provide some useful information in Tables 8 & 9. In particular,

expressed as percentages: the average fraction of emission coming from both minidisks (b), the average asymmetry

of minidisk emission (dimmer minidisk luminosity divided by the brighter one, f), and the purely hydrodynamic

RMS variability of emission from the minidisks (ĀMD) and elsewhere (ĀCBD). Note that the median peak-to-trough

difference in luminosity (modulated at the orbital frequency) is roughly 3× the RMS variability.

Let the dimmer minidisk be labeled “ 2,” with average luminosity 〈L2〉 ≡ f〈L1〉, where L1 is the luminosity of the

brighter minidisk. The net luminosity from both minidisks is

Lobs
MD'L1(1 + 3.44v‖/c) + L2(1− 3.44v‖/c), (C2)

(which is a similar to equation (36) from Charisi et al. 2021). The intrinsic luminosity of the minidisks varies hy-

drodynamically on the orbital time scale. Let us write this as L1 = 〈L1〉(1 + (3/2)A1(t)), where 〈L1〉 is the time-

averaged luminosity from minidisk 1 and A1 is the fractional RMS hydrodynamic variability. Similarly for minidisk

“2”: L2 ' 〈L2〉(1 + (3/2)A2(t)) = f〈L1〉(1 + (3/2)A2(t)). The line-of-sight velocity also varies on the orbital time

scale, with some phase with respect to the hydrodynamic variability; for edge-on observers the effect is maximal,

v‖ = v sin(Ωbint). The observed luminosity from the minidisks is then

Lobs
MD'〈L1〉 (1 + f)

[
1 +

3

2

A1(t) + fA2(t)

1 + f
+

(
1− f
1 + f

)
3.44

v

c
sin(Ωbint)

]
+O

(
Ā1

v

c

)
+O

(
Ā2

v

c

)
. (C3)

We neglect the last two terms on the basis that they are of order Ā1(v/c) or Ā2(v/c). Denote amplitudes with an

overbar. We observe in our simulations that Ā1 ' Ā2 ≡ ĀMD, where ĀMD is provided in Tables 8 & 9. So we

approximate (A1(t) + fA2(t))/(1 + f) ' AMD(t).

We must also consider the hydrodynamic variability of non-minidisk emission. Let us call this “circumbinary”

(CBD) emission, and write LCBD = 〈LCBD〉(1 + (3/2)ACBD(t)), similarly to the unboosted minidisk emission. ĀCBD

is provided (as percentages) in Tables 8 & 9. The CBD emission has a much weaker Doppler boost, so we treat it

as unboosted. We have the total average unboosted emission being 〈Ltot〉 = 〈LCBD〉 + 〈LMD〉, and 〈LMD〉 = b〈Ltot〉
where b is quoted (as percentages) in Tables 8 & 9. Then 〈LCBD〉 = 〈LMD〉(1− b)/b = 〈L1〉(1 + f)(1− b)/b. The total

boosted luminosity is then

Lobs
tot '〈L1〉 (1 + f)

[
1 +

1− b
b

+

(
1− b
b

)
3

2
ACBD(t) +

3

2
AMD(t) +

(
1− f
1 + f

)
3.44

v

c
sin(Ωbint)

]
, (C4)

or rewritten with a prefactor 〈Ltot〉 = 〈L1〉(1 + f)/b,

Lobs
tot '〈Ltot〉

[
1 + (1− b) 3

2
ACBD(t) + b

3

2
AMD(t) + b

(
1− f
1 + f

)
3.44

v

c
sin(Ωbint)

]
. (C5)

For clarity, let us define δCBD(t) ≡ (3/2)(1 − b)ACBD(t), δMD(t) = (3/2)bAMD(t), and δDopper ≡ 3.44b((1 − f)/(1 +

f))(v/c) sin(Ωbint), so that we obtain a form of the equation with a similarly simple appearance as Eq. (29):

Lobs
tot '〈Ltot〉 [1 + δCBD(t) + δMD(t) + δDoppler(t)] . (C6)

The CBD and MD fluctuating parts tend to be coherent. To place conservative lower bounds on the orbital velocities

which achieve parity between Doppler brightening and hydrodynamic variability, we take the hydrodynamic variability

amplitude to be the maximum between the CBD and MD contributions (rather than their coherent sum), i.e. δ̄hydro ≡
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M D ∆x VC F rsink s AT ET α total range

b [optical, %] 53-83 75 81 75 75 78 73-77 77 75 84 53-84

b [infrared, %] 15-25 21 25 21 21 21 20-23 23 21 28 15-28

f [optical, %] 98-100 99 79 99 100 78-97 98-100 100 100 100 78-100

f [infrared, %] 98-100 99 81 99 100 79-97 99-100 100 100 100 79-100

ĀMD [optical, %] 4.4-12 7.8 4.5 7.5 7.7 7.1-7.2 7.3-8.0 7.5 7.8 10 4.4-12

ĀMD [infrared, %] 3.4-11 6.3 3.4 6.1 6.2 4.5-5.1 5.9-6.2 6.1 6.3 8.9 3.3-11

ĀCBD [optical, %] 9.7-12 10 6.2 10 11 5.5-6.7 10-11 14 11 22 5.5-22

ĀCBD [infrared, %] 1.2-2.5 1.3 0.79 1.4 1.4 0.71-0.84 1.4 1.8 1.4 2.5 0.71-2.5

Table 8. Circular binary. Rows 1 & 2: average percentage of emission coming from the minidisks (approximated as those
regions within (1/2) rperi from each black hole). Rows 3 & 4: the minidisk asymmetry in average luminosity, expressed as a
percentage, with the brighter minidisk luminosity always in the denominator (so that the asymmetry is always ≤ 100%). Rows
5 & 6: the root-mean-square variability (RMS) averaged over both minidisks (they are similar), expressed as a percentage.
Rows 7 & 8: the RMS variability of the circumbinary disk emission (i.e. emission from everywhere other than the minidisks),
expressed as a percentage. The median peak-to-trough difference is roughly 3× the RMS variability.

M D ∆x VC F rsink s AT ET α e = 0.7 total range

b [optical, %] 37-73 59 63 64 60 57-59 49-64 58 55 71 43 37-73

b [infrared, %] 7.8-17 11 12 13 9.5 9.0-10 9.8-12 11 11 14 7.6 7.6-17

f [optical, %] 41-72 33 52 55 44 35-63 52-95 55 64 45 62 33-95

f [infrared, %] 47-76 39 56 60 50 42-67 57-94 60 68 51 67 39-94

ĀMD [optical, %] 12-17 16 11 12 17 12 14-18 17 15 20 19 11-20

ĀMD [infrared, %] 8.0-12 11 6.7 8.1 11 6.7-7.4 9.1-12 11 10 15 15 6.7-15

ĀCBD [optical, %] 12-23 20 24 29 25 22-24 25-27 24 20 19 21 12-29

ĀCBD [infrared, %] 2.1-2.6 3.1 2.8 3.7 2.7 2.3-3.0 3.1-3.7 3.4 3.0 1.7 3.4 1.7-3.7

Table 9. Eccentric binary. Rows 1 & 2: average percentage of emission coming from the minidisks (approximated as those
regions within (1/2) rperi from each black hole). Rows 3 & 4: the minidisk asymmetry in average luminosity, expressed as a
percentage, with the brighter minidisk luminosity always in the denominator (so that the asymmetry is always ≤ 100%). Rows 5
& 6: the root-mean-square variability (RMS) averaged over both minidisks (they are similar), expressed as a percentage. Rows 7
& 8: the RMS variability of the circumbinary disk emission (i.e. emission from everywhere other than the minidisks), expressed
as a percentage. All columns are for e = 0.45 except the column labeled e = 0.7. The median peak-to-trough difference is
roughly 3× the RMS variability.

max(δ̄MD, δ̄CBD). Setting this equal to the Doppler variability amplitude δ̄Doppler and solving for v/c, we obtain

Eq. (33):

v/c ' 1.5

3.44 b

1 + f

1− f max
(
bĀMD, (1− b)ĀCBD

)
. (C7)

D. INDEPENDENT RESIDUAL TEST

We test our solution scheme by performing an independent residual test using all the equations of motion. This

test consists of plugging a simulated numerical solution into the equations of motion, discretized in space and time

using 2nd-order finite differences. The residual evaluator is written independently from the simulation code (hence

it is “independent”), so as not to contaminate it with any bugs that may be present in the simulation code. This is

a form of analytic convergence test, since the equations of motion hold analytically. Thus, only two resolutions are

necessary for this test. As the accuracy of the numerical solution increases, one expects to see that the equations of

motion are being solved to within an error that converges to zero at 1.5th-order. Since we evaluate the equations of

motion using finite differences, this test is only valid while the solution is smooth.

The initial conditions for this test are chosen in order to activate all terms in the equations of motion, and such that

no symmetries exist. Such conditions ensure a stringent test. The initial conditions we choose are depicted in Fig. 11,
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Figure 11. Initial conditions for the independent residual test, described in Eqs. (D8).

and are given by:

r2≡x2 + y2

r2
1≡ (x− a)2 + (y − a)2

r2
2≡ (x+ a)2 + (y + a)2

Σ =
(
1 + exp {−(r1/a)2}

)
Ma−2 (D8)

P=
(
1 + exp {−(r2/a)2}

)
MΩ2

bin

vr = sin{φ− π/4} exp{−5(a/r)− (1/3)(r/a)2}MΩbin

vφ=
√
a/r exp{−5(a/r)− (1/3)(r/a)2}MΩbin.

We also set Γ = 5/3, q = 0.5, M = 0.033M�, a = 10−4 pc, α = 0.001, rsink = a, s = 0.05, and D = 6a. Low resolution

corresponds to ∆x = 2D/256 and high resolution corresponds to ∆x = 2D/512. All terms in the equations of motion

are active, including radiative cooling (§2.7), torque-free sinks (§2.5), and the buffer source terms (§3). The residuals

are plotted versus time in Fig. 12; the residuals have been subjected to spatial L2-norms. The high-resolution residual

is also shown scaled up by a factor of 21.5, which is expected to coincide with the low-resolution residual while the

solution is smooth. The formation of steepening gradients is evident starting around t ' 0.15 orbits.
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Figure 12. Independent residual tests using all the equations of motion. The expected 1.5th-order convergence is obtained
while the solution remains smooth, and degrades as shocks form, causing the test validity to break down. The vertical axes are
given in units where M = a = Ωbin = 1.


