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We present a new method which accounts for changes in the properties of gravitational-wave
detector noise over time in the PyCBC search for gravitational waves from compact binary coa-
lescences. We use information from LIGO data quality streams that monitor the status of each
detector and its environment to model changes in the rate of noise in each detector. These data
quality streams allow candidates identified in the data during periods of detector malfunctions to
be more efficiently rejected as noise. This method allows data from machine learning predictions
of the detector state to be included as part of the PyCBC search, increasing the total number of
detectable gravitational-wave signals by up to 5%. When both machine learning classifications and
manually-generated flags are used to search data from LIGO-Virgo’s third observing run, the total
number of detectable gravitational-wave signals is increased by up to 20% compared to not using
any data quality streams. We also show how this method is flexible enough to include information
from large numbers of additional arbitrary data streams that may be able to further increase the
sensitivity of the search.

I. INTRODUCTION

In the years since the first detection of gravitational
waves by LIGO-Virgo [1–3], the rate of detection has
grown by over an order of magnitude [4–7]. However,
identifying gravitational waves in the collected data still
requires the use of analysis pipelines that carefully look
through the data. To date, all events detected by LIGO
have been identified by at least one pipeline that uses
matched filtering [8–10]. A wide variety of matched filter
pipelines have been developed to analyze LIGO data [11–
14]. One such pipeline that has been in use since the
first detection of gravitational waves utilizes the PyCBC
software suite [15]. We refer to the offline search config-
uration of this pipeline [16–18] as PyCBC.

The PyCBC search for gravitational waves from com-
pact binary coalescenses (CBCs), is one of the main
matched filter searches used to identify signals in LIGO
data. PyCBC has been used to identified the vast ma-
jority of gravitational-wave signals to date [4–7, 19–21].
As a matched filter search pipeline, PyCBC uses tem-
plates based on post-Newtonian and numerical models of
gravitational-wave signals [22, 23] to identify similar fea-
tures in gravitational-wave detector strain data. Peaks in
the matched filter signal-to-noise ratio (SNR) time series
(referred to as “triggers”) are found from these templates,
and coincident sets of these triggers are assigned a rank-
ing statistic that captures how likely it is that each trigger
is a candidate gravitational-wave signal. The significance
of these candidates is then estimated by simulated large
amounts of background data by shifting the time stamp
of triggers in one detector more than the gravitational-
wave travel time between each site [24].

One of the main challenges to detecting gravitational
waves with matched filter searches is the presence of non-
Gaussian noise artifacts in the data. These artifacts are

bursts of excess power that are referred to as “glitches.”
Glitches are problematic for searches for gravitational
waves as they can mimic or mask some features of as-
trophysical signals. It is also known that specific glitches
can impact the measured search background [25, 26]. As
glitches are known to not be astrophysical in origin, it is
imperative that PyCBC does not mistake a glitch for a real
signal. Numerous features in PyCBC are designed to bet-
ter differentiate glitches from gravitational-wave signals
using the gravitational-wave strain data alone. However,
any additional information that can better help PyCBC
differentiate signals from glitches will improve the ability
of PyCBC to identify gravitational-wave events.

In recent observing runs, hundreds of thousands of
additional data streams beyond the gravitational-wave
strain data were recorded at each LIGO observatory;
these data streams were used to both operate the detec-
tor and monitor the detector environment [27, 28]. These
additional data streams, referred to as “auxiliary data,”
can also be used to identify the source of glitches in LIGO
data or predict the presence of a glitch in the strain data.
Auxiliary data has been shown to be beneficial for use
in gravitational-wave analyses to reject potential candi-
dates due to noise [29], subtract contributions of persis-
tent noise from the strain time series [30, 31], and validate
the astrophysical origin of observed gravitational-wave
events [32]. Information from auxiliary data streams is
generally re-packaged into more informative “data qual-
ity products” that are used by PyCBC.

In this work, we introduce a new method to incorpo-
rate information from these data quality products into
the PyCBC search for gravitational waves. This method is
designed to use information from data quality products
while evaluating the significance of a given gravitational
wave candidate, rather than simply rejecting candidates
that occur during data quality flag segments. This is ac-
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complished by using data quality information as a part
of the statistic used to rank candidates in PyCBC. We will
also demonstrate how this method is generic enough to
allow any data stream to be incorporated into the search
pipeline, including the iDQ time series [33], data qual-
ity flags [29, 32, 34], and the large number of auxiliary
data streams that are recorded at each site. While the
methods described in this text are generalizable to the
analysis of data from all ground-based gravitational in-
terferometers, such as Virgo [2] or KAGRA [35], we ex-
clusively work with data from the two LIGO detectors,
LIGO Hanford and LIGO Livingston, in this work. We
find that use of this new method increases the number
of detectable gravitational-waves in a variety of different
applications.

This work is organized as follows. In the remainder of
this section, we outline the current methods used in the
PyCBC search for compact binaries [16–18], with empha-
sis on how the properties of the detector noise are mod-
elled in the search. We also discuss some of the current
products that are produced by the LIGO collaboration
to track the data quality. We then explain, in Section II,
our proposed improvement to the noise model in PyCBC,
and how this improved model can be used in a variety
of cases. We demonstrate the benefits of our improved
model for multiple applications in Section III. Finally,
we discuss how this improved model will benefit future
searches for gravitational waves in Section IV.

A. Identifying Gravitational-wave Signals

The PyCBC search for compact binaries [16–18] iden-
tifies gravitational-wave events using matched filtering
with gravitational waveforms predicted by general rel-
ativity [22, 23]. The SNR for a matched filter with a
specific waveform template h is [10]

ρ2(t) ≡ ‖ 〈s|h〉 ‖
2

〈h|h〉
, (1)

where the inner product, 〈|〉, is defined as

〈a|b〉(t) = 4Re

∫ ∞
0

ã(f)b̃∗(f)

Sn(f)
e2πitfdf , (2)

with s the strain data, h the template, and Sn(f) the
estimated power spectral density for the time in question.
This is equivalent to cross-correlation in the frequency
domain. Peaks in this SNR time series are labelled as
triggers and correspond to potential signals in the data
that are similar to the template.

If data from gravitational-wave detectors were purely
stationary and Gaussian noise, the matched filter SNR
would be sufficient to identify signals in the data. How-
ever, variations in the properties of the noise, both over

short and long periods, complicate the problem. To ac-
count for the non-idealized features in the data, a “rank-
ing statistic” is created that includes additional informa-
tion about the data and expected signal properties to
better differentiate signals from noise. Ideally, an astro-
physical signal should receive a high ranking statistic,
while a noise fluctuation should receive a lower ranking
statistic (often referred to as being ‘down-ranked”).

The generic form of the ranking statistic is given by
the ratio of the signal and noise distributions [18] for a
given set of parameters, ~κ,

Λopt(~κ) = ηS
r̂S(~κ)

rN (~κ)
, (3)

where ηS is the overall rate of signals and r̂S(~κ) is the
transfer function between the true rate of signals the de-
tectable rate, and rN (~κ) is the rate of noise.

It is convenient to consider the ratio of these two dis-
tributions as the difference of their logarithms,

R(~κ) = log rS(~κ)− log rN (~κ) . (4)

The parameters, ~κ, that are used in both the PyCBC
signal and noise models encode details about the physi-
cal properties of the triggers and how well the measured
data matches that expected of an astrophysical signal. In
addition to the matched filter SNR, numerous signal con-
sistency tests are included [10, 36] to measure how well a
candidate trigger matches the expected signal morphol-
ogy. The signal model is based on the expected distribu-
tion of these parameters for astrophysical signals. These
parameters are then used to calculate a single reweighted
SNR, ρ̂, that quantifies how well the data matches a real
signal in each detector. This value is generally referred
to as the “single-detector statistic.” Additional parame-
ters that corresponds to relationships between the data
in multiple detectors are also used. Full details of the
signal model are provided in [18]. We will outline the
noise model in additional depth for convenience.

The PyCBC noise model is based on fitting the distri-
bution of triggers in the data to an exponential decay
function. The rate of noise triggers for a given template

in a particular detector, ~θ, is fit to an exponential given
by

rN (ρ̂; ~θ) = µ(~θ)α(~θ) exp
[
−α(~θ)(ρ̂− ρ̂th)

]
. (5)

For a given template, ~θ, the term µ(~θ) is the number

of triggers above threshold and α(~θ) is the exponential
decay rate with respect to ρ̂. This ρ̂ is the same single-
detector ranking statistic that is used in the signal model.
Only triggers with ρ̂ > ρ̂th are considered in this fit.

In this time-independent PyCBC noise model, a num-

ber of approximations are already used to calculate µ(~θ)

and α(~θ) [17]. First, a maximum likelihood fit of this
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noise model is performed for for each detector and each
template in the search individually. However, there are
not enough triggers identified per template to to accu-
rately measure both parameters for each template. Ker-
nel smoothing is used to reduce noise in the measured
values of µ and α with respect to the duration of each

template, τ(~θ). Hence the noise model used in the search

is rN (ρ̂; ~θ) ≈ rN (ρ̂; τ(~θ)).
This model of the noise does not include any time de-

pendence, meaning that this fit assumes a single distribu-
tion is valid for each template during the entire analysis
period. To account for variation in the properties of the
noise with respect to time, it is typical for the PyCBC
search to be run separately over relatively short chunks
of data (typically 5 days). However, it is known [32, 34]
that gravitational-wave detector data contains short term
fluctuations on both the hour- and second-scale. While
some techniques have been developed to account for these
fluctuations [37, 38], they do not introduce explicit time-
dependence into the noise model itself.

B. LIGO Data Quality Information

At each LIGO observatory, hundreds of thousands of
data streams are recorded during an observing run to
control and monitor the detectors [28]. A subset of these
data streams have been found to be highly correlated
with periods of excess noise in LIGO strain data. For
example, ground motion that introduces additional mo-
tion of the test masses and increases the chances of scat-
tered light is well monitored by seismic sensors. However,
when this information is used to support the astrophys-
ical analyses, this data is first curated into data quality
products. These data quality products combine multiple
data streams into a single data product that is simpler
for astrophysical analyses to utilize. Similar data qual-
ity products are produced for other gravitational-wave
observatories [39, 40]. The process of developing and fi-
nalizing these curated data quality products has taken
multiple months in previous observing runs [41], increas-
ing the total amount of time required to complete end-
to-end analyses of LIGO data.

One example of a data quality product are “data qual-
ity flags” [29, 32, 34], which mark time periods likely to
contain glitches based on information from specific aux-
iliary data streams. Data quality flags are binary data
streams sampled at 1 Hz that have multiple categories to
indicate the different severity of noise likely to be present
in the detector. These flags are used by PyCBC to remove
times from an analysis or veto triggers identified during
a data quality flag. Other searches [12, 42] instead use
these flags to replace the data with zeroes during flagged
times.

Another data quality product that has been used in
analyses is the iDQ time series [33]. This product is based
on a machine-learning algorithm that uses a large num-
ber of auxiliary data streams to predict the likelihood of a

glitch being present in the detector strain data at a given
time. In O3, iDQ was a single time series sampled at 128
Hz. One key difference compared to data quality flags is
that iDQ is not a binary data stream, and instead assigns
a likelihood to each sample based on the probability that
the strain data contains a glitch. Methods to incorporate
iDQ into a different pipeline used to search for gravita-
tional waves from compact binaries, GstLAL [11], were
recently developed [43]. This method directly used the
iDQ likelihood as an additional term in the ranking statis-
tic of the GstLAL. Additional details on GstLAL can be
found in [42, 44, 45]. Comparisons between the methods
introduced in this work and those currently implemented
in GstLAL are discussed in Section II C.

As use of curated data quality products has been con-
sistently shown to increase the sensitivity of searches for
gravitational waves [26, 29, 43], it is also likely that the
auxiliary data used to generate these products can also
benefit gravitational-wave searches. Furthermore, it is
possible some useful information from the auxiliary data
is discarded when curated data products are generated.
Use of the raw auxiliary data is also attractive as it would
reduce the time to complete an end-to-end analysis of
LIGO data by no longer requiring time to generate data
quality products. However, the large number of differ-
ent data streams with disparate properties has made it
difficult to develop generic methods to incorporate this
data.

II. IMPROVED NOISE MODEL

The changing state of the detectors means that the
PyCBC background will also change with respect to time.
Therefore a more complete description of the noise model
that accounts for this time-dependence should be given
as

rN (ρ̂; ~θ; t) = µ(~θ; t)α(~θ; t) exp
[
−α(~θ; t)(ρ̂− ρ̂th)

]
, (6)

where µ(~θ; t) is the trigger density for a given template

with respect to time and α(~θ; t) is the exponential decay
rate of the background for a given template with respect
to time.

Due to practical limitations, we only consider the time-
dependence of the trigger density, µ, and ignore the time-
dependence of the decay rate, α. The time-dependent
variations that we hope to capture with this improved
noise model can occur over timescales of seconds. Al-
though a large number of triggers are identified by PyCBC
per analysis, the average number of triggers per second
in recent analyses is only 10 triggers per second, even
though hundreds of thousands of templates are used to
search the data. The modest rate of triggers, combined
with the large number of templates considered, means
that there is much less than 1 trigger per template per
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second. This is not a sufficient number of triggers to accu-
rately measure second-scale variations in the trigger rate.
However, if we suitably bin the times and templates, this
is a sufficient number of triggers to measure the time-
dependence of the trigger rate. When using bins, we
approximate the overall time-dependence of the trigger
rate as the originally measured trigger rate multiplied by
an additional bin-dependent factor.

With these approximations, the only change to the

noise model is to µ( ~θ; t), where the time-dependence is

modeled as the product of a time-independent term, µ(~θ)

and a time-dependent term δ(~θ; t). Hence the new ex-
pression for trigger density is

µ(~θ; t) ≈ µ(~θ)δ(~θ; t) (7)

for a given θ, and time, t. The calculation of δ(θ; t)
is different depending on the type of data quality stream
that is being considered.

This method makes no assumptions about the input
data that is used as part of the noise model. In the
case that the auxiliary data is non-informative (i.e. not
correlated with times of high trigger density), the method
should identify that no excess in triggers is measured, and
no change to the noise model will be applied. Therefore,
the sensitivity of the PyCBC search will not be impacted
if non-informative auxiliary data is used by this method.

A. Binning the parameter space

In the current PyCBC noise model, the trigger rate,

µ(~θ), is calculated for each individual template. In
practice, it is not possible to also determine the time-

dependent correction to the trigger rate, δ(~θ; t), for each
individual template. This is due to the relatively low
rate of triggers per template per second. In order to ap-

proximate the value of δ(~θ; t), we choose to group tem-
plates with similar duration into bins (denoted by θb).
We also group times based on the value of the data qual-
ity stream, Ω(t), using additional bins (denoted by Ωd).
We then calculate a single value of δ(θb; Ωd) for each com-
bination of {θb,Ωd}. These data quality bins span the
range of values that the data quality stream can take
and a single time-dependent correction is calculated for
all times in each data quality bin. If we have N template
bins and M data-quality bins, this means we only need
to estimate N × M different corrections to the trigger
rate. An example of how these bins could be constructed
with 3 template bins and 4 data quality bins, along with
the parameters of an example trigger, is shown in Figure
1.

We will label each template bin as θb and each data
quality bin Ωd. This means that the time-dependent cor-
rection the trigger rate in our noise model is defined as

µ(~θ; t) ≈ µ(~θ)δ(θb; Ωd) . (8)

Care must be taken when deciding on the number
of bins to use in an analysis. As the presence of a
gravitational-wave signal will naturally cause more trig-
gers to be observed, there is a risk that real signals will
be down-ranked if the total number of triggers produced
by a signal is a significant fraction of the total number
of triggers in a single bin. Conversely, if not enough bins
are used, variations in time and across the template bank
may not be captured. We found that having at least 50
triggers in each bin was sufficient to minimize the chance
that a real signal would be artificially down-ranked.

In this work, we chose bin sizes such that the smallest
bin contained at least this minimum number of triggers.
This resulted in the choice of 10 template bins and either
2 (the binary case where one bin is much smaller than
the other) or 200 (the non-binary case where all bins are
the same size) data quality bins. This means that either
20 or 2000 different values of δ(θb; Ωd) must be calculated
for every data stream.

We construct our template bins based on template du-
ration, with the goal of recording an equal number of
triggers in each template bin. A representative chunk of
LIGO data from O3 was used to calculate the specific
values of the bin edges used. The bin edges are linearly
spaced at {0, 10, 20 . . . , 100} percentile of the trigger tem-
plate duration. After calculating the bin edges for this
representative chunk of data, the same values of template
duration were used as bin edges in all analyses. This is
the default binning strategy used in this work. Two alter-
nate binning strategies were also investigated, but were
found to result in a smaller sensitivity increase than our
default strategy. More details are given in Section III C.

B. Binary data quality streams

The simplest case we can consider is a binary data
quality stream that only consists of 1s and 0s. Times
where the data quality stream is 1 are often referred to
as “active” times, and times that the stream is 0 are
referred to as “inactive” times. Data quality flags are
one example of a binary data stream. In this scenario,
the time dependence of δ(θb; Ωd) is also binary. We only
have two data quality bins, labeled Ω1 and Ω0. For times
that the stream is active, the time-dependent term of the
noise model, δ(θb; Ω1), is defined as

δ(θb; Ω1) =
Nb,1
T1

Ttot
Ntot

(9)

for a given template bin, θb. Nb,1 is the total number of
triggers in template bin b during times the data quality
stream is active, while Ntot is the total number of triggers
in the analysis. Similarly, T1 is the total amount of time
the data quality stream is active, while Ttot is the total
amount of time in the analysis.

If the binary data quality stream is correlated with pe-
riods of high trigger density, then δ(θb; Ω1) > 1. However,
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FIG. 1. An example of how the template and data quality (DQ) bins are constructed and applied. Left: A plot of the three
different template bins corresponding to different parts of the template bank used in the search. In this case, the range of
templates is characterized using the masses of the primary and secondary components of the simulated compact binary system
template . An “×” marks the template parameters of an example candidate is in the template bin θ2. Right: A plot of an
example data stream that is used to construct four different data quality bins. The dotted line marks the time of an example
candidate. In this case, the example candidates is in data quality bin Ω1. Therefore the time-dependent term used in the PyCBC

noise model for this candidate would be δ(θ2; Ω1).

this is not guaranteed to be the case. If δ(θb; Ω1) ≤ 1,
we impose δ(θb; Ω1) = 1. This is so that the data stream
does not increase the significance of a candidate. All
times when the data quality stream is inactive are also
fixed to δ(θb; Ω0) = 1.

Directly calculating the value of δ(θb; Ω1)

When calculating this time-dependent term of the
noise model, we use the merger time of each candidate
and do not consider the different durations of signals
across the template bank. For candidates with shorter,
sub-second templates, the effect of this assumption is
likely minimal, as this timescale is similar to the dura-
tion of many glitches. This assumption is less valid for
longer signals as it does not account for data quality is-
sues that may be many seconds before the time of merger
of a candidate, but still overlapping the candidate. How-
ever, the signal consistency tests used by PyCBC are
conversely most effective for low-mass candidates [10, 16]
and have been shown to effectively mitigate the impact
of data quality issues on the sensitivity of the search for
such long-duration candidates. Therefore, despite this
assumption, we still expect this method to increase the
sensitivity of the PyCBC search in regions of the param-
eter space that are known to be limited by data quality
issues.

C. Non-binary data quality streams

We can also consider a data quality stream that takes
an arbitrarily large number of values. Such data quality
streams include the iDQ time series or auxiliary data. In
this case, we bin the data points into multiple data qual-
ity bins based on the value of each data point. The total
number of bins used with this method must be tuned
for each analysis. In this work, we choose to use 200
data quality bins so that each bin contained a sufficient
number of triggers to reduce the bias of individual astro-
physical signals.

The correction, δ(θb; Ωd), for each data quality bin, Ωd
is calculated using the same formula as the binary case.
Again similar to the binary case, we fix δ(θb; Ωd) ≥ 1.
Times where the data quality stream is not defined are
still still used to calculate the total time and total number
of triggers, but these triggers during these times are not
reranked using this method.

We can also compare this correction to the model sug-
gested for use with the iDQ time series in [43]. There are
two main differences between our model and the model
from [43]. Firstly, in our model the correction to the
total trigger density is directly computed for each combi-
nation of template bin and data quality bin. This ensures
that an accurate correction is applied for any data qual-
ity stream. Compared to the analytic model designed for
use with the iDQ time series described in [43], there is a
reduced risk of reranking candidates by too much or too



6

little. Our method also does not impose a maximum cor-
rection to the trigger density as was done in [43]. While
this does introduce a risk of an arbitrarily high correction
being applied, such a case would not occur unless there
was indeed a strong correlation between the data quality
stream and the PyCBC triggers, implying that the trigger
is unlikely to come from an astrophysical signal.

D. Multiple data quality streams

For the time-dependent correction associated with two
different data quality streams, δn and δm, we define the
joint time-dependent correction, δnm, as

δnm(θb; Ωd) = max (δn(θb; Ωd), δm(θb; Ωd)) . (10)

This conservative choice ensures that if more beneficial
data quality information is available, the relevant trig-
gers will be down-ranked by a larger amount. The choice
to downrank candidates by the largest time-dependent
correction may lead to some triggers being down-ranked
more or less than would be optimal. For example, this
choice ignores any correlations between the two data
quality streams. However, as both astrophysical signals
and triggers caused by noise are down-ranked the same
amount, we do not expect this to decrease the sensitivity
of the search as compared to not using any data quality
streams.

III. APPLICATIONS

One of the significant benefits of this method of incor-
porating data quality streams into the PyCBC search is its
versatility in a variety of applications. In this section, we
will demonstrate a number of use cases for this method
and investigate how incorporating each data quality
stream increases the detection rate of gravitational-wave
signals by the PyCBC search. In all cases, we find evi-
dence that incorporating these data quality streams can
increase the number of detectable gravitational waves.

The O3 strain data used in this section from both the
LIGO Hanford and LIGO Livingston detectors is avail-
able from the Gravitational Wave Open Science Center
(GWOSC) [46]. Although most auxiliary data recorded
by LIGO is not yet publicly available, there has been
a release of auxiliary data around one event [47] and a
small number of data quality products that are released
publicly alongside the strain data. The majority of these
analyses in this section demonstrate how data quality
products not yet publicly released could be used to im-
prove the sensitivity of the PyCBC search. The source of
each data quality stream, either public or not public, is
described in the relevant section.

A. Search configuration

The analyses presented in this section use data from
5 different analysis periods. These time periods corre-
spond to the chunks of data analysed by the LIGO-Virgo
collaborations during O3. The start and end times of
each chunk are listed in Table I. We label each chunk by
a number between 1 and 5. These chunks were chosen
due to known data quality issues that may impact the
sensitivity of the PyCBC search.

In all examples presented here, we use the ranking
statistic introduced in this work and available as part of
the PyCBC code repository found at [15]. We use a single-
detector ranking statistic that includes the chi-squared
test [10], the sine-Gaussian test [36], and accounts for
variation in the detector’s power spectral density with
time [37]. We use the same template bank as was used in
PyCBC analyses presented in GWTC-3 [6, 48–50]. Unless
explicitly stated, triggers with a single-detector statistic
above 6.5 are used to calculate the time-dependent cor-
rection to the PyCBC noise model. This threshold was
tuned by hand to balance including a sufficient number
of triggers to model the time-dependence and focusing
on the tail of the non-Guassian distribution of triggers.

We compare the sensitivity of the search with and
without incorporating data quality information by com-
paring the volume-time (VT) of the search in each case.
This is done using a large number of simulated signals
that are recovered by the PyCBC search pipeline. The
distance at which a simulated signal can be detected is
then used to estimate the sensitive volume. This volume
multiplied by the duration of the analysis is the VT of
the search. When evaluating the ratio of the VT in each
analysis, we calculate the ratio of the VT by using multi-
ple thresholds of the inverse false alarm rate (IFAR) that
is assigned to each simulated signal in order to deter-
mine if a signal was detected by the search. We further
present results for simulated signals with different chirp
masses [51], M = (m1m2)3/5/(m1 + m2)1/5 for signals
produced by the merger of objects with masses m1 and
m2. Errors for the ratio of the sensitive VT between
analyses with and without DQ are estimated by calcu-
lating the VT ratio for 20 additional thresholds close to
the chosen IFAR threshold.

B. iDQ time series

We analyze each of the chunks discussed above with
PyCBC using the iDQ log-likelihood time series produced
in low-latency as a non-binary data quality stream. The
low-latency log-likelihood time series were produced by
iDQ using the OVL classifier [52, 53]. This classifier
was trained using triggers from 844 LIGO auxiliary data
streams at each detector. This set includes all data
streams that were determined to not be sensitive to
gravitational-wave signals by LIGO detector character-
ization studies [32]. Separate instances of the classifier
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data quality (DQ) products as part of the ranking statistic versus using no data quality products. Each panel corresponds to
using a different combination of data quality products. All quoted VT ratios are relative to the same PyCBC analysis that does
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ratio for each case. The measured VT ratio for all combinations of data quality products is above 1.0, indicating that the use
of these data quality products only has a positive effect. Using both DQ flags and iDQ yields the largest increase in VT of the
4 cases considered.

were trained for each interferometer used. Each instance
of the classifier was trained on triggers generated from
14 days of detector data and used to make predictions
until being replaced by a newly trained classifier. Af-
ter the training of each classifier completed, training of a
new classifier began on the most recent 14 days of data.
We used the time series produced in low-latency, as op-
posed to time series produced offline at higher latency
(and available at [54]), because we found that using the
low-latency version of the iDQ timeseries led to larger
increases in the sensitivity of PyCBC. This is likely due to
the fact that the low-latency data was produced without
the use of multiple time-chunks that were analyzed inde-
pendently (as was done when producing the offline data)
and was therefore more consistently normalized over the
time period considered in this work [33].

Before using the iDQ time series in our analysis, we
first pre-process the data stream. We downsample the
log-likelihood time series from 128 Hz to 1 Hz. This is
done by maximizing the iDQ time series over each integer
second of data. The downsampled log-likelihood time
series is then converted to percentiles, and each trigger is

associated with the log-likelihood percentile at the time
of the trigger. Each template bin is divided into 200
sub-bins by the triggers’ iDQ log-likelihood percentiles,
as described in Section II C.

We find that including the iDQ time series increases
the sensitive VT of the search across the entire parame-
ter space. This increase in search sensitivity from using
the iDQ log-likelihood time series in PyCBC is shown in
the upper left plot of Figure 2. We find that the gain
in sensitivity generally independent of chirp mass, and is
larger for higher choices of IFAR. For triggers with chirp
mass above 80M�, we find a 10% increase in sensitive
VT at an IFAR of 1000 years. This is the largest in-
crease among the chirp masses and IFAR thresholds we
considered.

Compared to the results of the Godwin et al. imple-
mentation of iDQ into GstLAL [43], our results show
a larger increase in sensitive VT for the highest mass
triggers. This is likely because we directly compute the
time-dependent correction to the trigger rate instead of
assuming an analytic formula for down-ranking triggers.
We find that the required correction during times corre-
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sponding to the highest percentiles of the iDQ time series
is lower than used in the Godwin et al. implementation.
It also does not down-rank any excess noise correlated
with iDQ time series percentiles below 50, even in cases
where we include a correction.

C. Alternate Binning Strategies

In addition to the default method of binning the tem-
plate parameter space that is explained in Section II A,
we investigate two alternate methods of binning the tem-
plate parameter space.

In the first alternate binning method, we construct six
template bins with the bin edges in a geometric series
between 0.15 seconds and 150 seconds. Thus the lowest
bin edge is at 0.15 seconds, and each successive bin edge
is larger by a factor of

√
10. This method contains fewer

total bins than the default method and the bins contain
vastly differing numbers of triggers. However, the bin
with the fewest total triggers was designed to contain
roughly the same number of triggers as each of the bins
in the default method.

For the second alternate binning method, we first con-
vert the trigger template durations into percentiles. We
then construct five bins with bin edges placed at per-
centiles of {0, 6.25, 12.5, 25, 50, 100} in the trigger tem-
plate duration based on the entire bank of templates.
Similar to the first alternate method, the number of trig-
gers in each bin is not the same, but the smallest bin is
roughly the same size as each of the 10 bins when us-
ing the default method. The only difference between this
binning method and the default method is the location of
the bin edges; this method places the bin edges in a ge-
ometric series with different amounts of triggers in each
bin while the default method uses a linear series so that
each bin contains the same number of triggers.

As part of evaluating which binning method to use in
this work, we compared the sensitive VT for each binning
method when using the iDQ time series to analyze chunk
2. The relative VT increases from using the default bin-
ning method as compared to each of the two alternative
binning strategies are shown in Figure 3. These alter-
nate binning strategies did not increase the sensitive VT
as much as the default binning method did, so they were
not used in any of our other analyses.

D. Data quality flags

We next investigate the benefits of using data quality
flags as a part of our time-dependent noise model. The
LIGO and Virgo collaboration uses a wide variety of data
quality flags to indicate periods when environmental or
instrumental noise sources are likely to affect the quality
of the strain data. Currently, the PyCBC search uses these
flags to remove triggers during these time periods from
the analysis. However this reduces the analyzable time
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FIG. 3. The ratio of the sensitive volume-time (VT) for the
PyCBC search when using the iDQ time series with different
binning methods. In each case, the ratio of the measured VT
when using the default binning method versus an alternate
binning method is plotted. Top: The ratio of the sensitive VT
when using the default method of binning versus an alternate
method that contains bins of different sizes. Bottom: The
ratio of the sensitive VT when using the default method of
binning versus an alternate method that contains bins chosen
based on the numerical value of the template durations. These
alternate binning strategies perform very similarly, but the
default method outperforms both alternate binning methods.

and could cause the search to miss some gravitational-
wave signals. We can instead use these data quality flags
as binary data streams to take into account the expected
increase in the trigger rate and re-weight the detection
statistic of triggers accordingly. Table I details the data
quality flags active during the analysis periods that we
chose to analyze. These data quality flags are released via
GWOSC as a single, combined data stream [46] but are
not currently publicly available separately. We chose to
consider these data quality flags as multiple data streams,
as each data quality flags was designed to target a differ-
ent noise source, making it easier to measure the effect
of these noise sources on the PyCBC trigger rate.

We also choose to calculate the time-independent por-
tion of the PyCBC noise model after removing candidates
that are present during the data quality flag segments.
These candidates are still considered potential astrophys-
ical candidates and their significance is estimated as de-
scribed in section II B. We find that excluding these time
periods when calculating the time-independent terms in
the PyCBC noise model increases the sensitivity as com-
pared to including them.
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Chunk GPS
interval

Data Quality Flag Flag
Time

Description

1 1239641067 -
1240334090

L1:DCH-
PEM EY ACC BEAMTUBE OMICRON GT 100

1.06% 70 Hz periodic glitches due to an
automated camera shutter in the
End-Y station at LIGO Livingston.

2 1241724868 -
1242485150

H1:DCH-EARTHQUAKE CS Z BLRMS GT 1000 0.48% Non-stationary noise due to high
ground motion at LIGO Hanford.

L1:DCH-THUNDER MIC BP GT 300 0.05% Excess noise due to thunderstorm at
LIGO Livingston.

3 1262192836 -
1262946499

L1:DCH-WHISTLES 0.45% Glitches caused by radio frequency
(RF) beat notes at LIGO Livingston.

4 1263751734 -
1264528232

L1:DCH-WHITENED RF45 AM CTRL GT 1P75 0.27% Glitches due to 45 MHz control signal
at LIGO Livingston.

L1:DCH-WHISTLES 0.83% Same as chunk 3.

5 1264528056 -
1265133171

L1:DCH-WHITENED RF45 AM CTRL GT 1P75 0.54% Same as chunk 4.

L1:DCH-WHISTLES 0.16% Same as chunk 3.

TABLE I. A list of the time periods analyzed and the data quality flags used as data quality streams in this work. All data
quality flag names are sourced from [55]. Flag time refers to the analyzable time impacted by each individual flag in the
analyses period.

The upper right panel of Figure 2 shows that including
data quality information in the PyCBC search increases its
sensitivity, in particular for high mass binaries. In this
region of the parameter space, the number of detectable
gravitational-wave signals increase by 10%. However, the
sensitivity gains vary greatly between analysis periods.
As shown in Figure 4, including data quality information
in the search of chunk 1 data increases the sensitivity to
signals from binary black hole mergers up to 15%. On
the other hand, our approach has just a small effect for
chunk 3. In fact, this period is dominated by glitches that
are effectively identified and down-ranked by the PyCBC
consistency tests [36].

Figure 4 also shows how our approach compares to
the previous method that PyCBC use to incorporate data
quality flags, namely using the data quality flag segments
to veto candidates. The improvements in sensitivity are
due to the increased analyzable time. This increase in
sensitivity compared to using data quality flags as ve-
toes directly translates into more events that can be de-
tected by PyCBC. Although the amount of time vetoed by
data quality flags in recent observing runs is less than
1% [32], the high rate of detections makes it likely that
some events would be missed or recovered with less sig-
nificance by chance due to vetoes.

One such event, GW200129 065458, was identified by
the “PyCBC-Broad” search in GWTC-3 as a coincident
signal between LIGO Hanford and Virgo [6]. This event
was not identified as a three-detector coincidence because
the related trigger at LIGO Livingston was vetoed by a
data quality flag. We find that using data quality flags
for reranking triggers instead of vetoing them allows this
event to also be identified at LIGO Livingston with high

significance.

E. Multiple data quality products

In addition to considering the use of the iDQ time se-
ries and data quality flags separately, we investigated the
benefit of using both types of data quality products at
once. In cases when a trigger is down-ranked by both
the iDQ time series and a data quality flag, only the
larger amount of down-ranking was used, as described in
section II D. We also include data quality flag informa-
tion in the same way as in the previous section; triggers
during data quality flags are removed when the time-
independent noise model is calculated but included when
candidates are identified.

We find that including both the iDQ time series and
data quality flags increases the sensitivity of PyCBC by
up to 20% compared to no use of data quality products,
as shown in the lower left panel of Figure 2. This is
roughly in line with what would be expected from adding
the sensitivity increases from the individual data quality
flag and iDQ results. Although the auxiliary data streams
that were used to create the considered data quality flags
are also used by iDQ, this result suggests that the data
quality issues identified by each product are distinct.

F. Seismic monitors

Seismic activity is a major source of noise for
LIGO [56–58]. Seismic noise can couple into the detector
and appear as scattered light glitches [59, 60]. We use
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FIG. 4. The ratio of the sensitive volume-time (VT) for the
PyCBC search when using data quality (DQ) flags to rerank
PyCBC candidates (blue) or vetoing candidates (orange). The
sensitivity is calculated at fixed inverse false alarm rate of
10 years. Top: Increase in search sensitivity for chunk 1,
an analysis where a data quality flag was known to have a
positive effect. The ratio of the search sensitivity when using
reranking versus vetoing candidates is shown in the second
panel. Bottom: Increase in search sensitivity for chunk 3, an
analysis where a data quality flag was known to have minimal
effect. The ratio of the search sensitivity when using reranking
versus vetoing candidates is shown in the fourth panel. In
both cases, reranking times during data quality flags only
increases the sensitivity of the search compared to vetoing.

seismic trend data as another example of a non-binary
data quality stream.

For the input data quality stream for our analysis, we
use accelerometer data from the corner station at each
observatory. These monitors measure ground motion in
the direction perpendicular to the arms of the interfer-
ometer. The chosen data streams are focused on ground
motion from 0.03 – 0.1 Hz, which is often referred to as
the “earthquake band” as earthquakes are the main con-
tributor to ground motion at these frequencies. These
specific accelerometers have been chosen as they have
been previously shown to be correlated with excess noise
in the gravitational-wave detector data [55, 61]. Addi-
tional monitors of ground motion in directions parallel

to the arms of the interferometer are located at each ob-
servatory.

For this investigation, we choose a single analysis pe-
riod, chunk 2, covering from 5 May 2019 to 21 May 2019.
Similar to the previous investigations, this time was cho-
sen due to the known presence of a data quality issue that
could be correlated with this data stream. This seismic
data is not available for public use via GWOSC, but is
displayed on the public “Detector Status” pages [62].

We found that this increased the sensitivity of the
search by as much as 5% in some regions of the trigger
parameter space. The increase in sensitivity from using
these seismic sensors across different template masses is
shown in the lower right panel of Figure 2. For most of
the parameter space, only a marginal increase in sensi-
tivity is measured. Incorporating additional sensor data
may further increase these sensitivity gains. As the meth-
ods presented in this work are fully generic for any time
series, any useful auxiliary information can be further
incorporated into the search.

G. Large numbers of auxiliary monitors

In each observation run, hundreds of thousands of aux-
iliary data streams are recorded for the full duration of
the run and could potentially be incorporated into the
PyCBC search using the methods described in this work.
However, at the time of publication, the LIGO Scientific
Collaboration has only publicly released auxiliary data
streams for a single data segment for a small subset of
streams. This data release, containing data from 1169
data streams for 3 hours around GW170814 [63] is avail-
able at [47]. Although this amount of data is not suffi-
cient to test if these data streams can be used to increase
the sensitivity of the PyCBC search, we use this data re-
lease to demonstrate how this method can be applied for
a large number of separate auxiliary monitors. We choose
to only include an auxiliary data stream if a data stream
with the same name was available from both sites. This
reduced the total number of data streams used to 1126.

For this investigation, we made multiple changes to
the standard workflow to both increase the likelihood
that relevant features of included auxiliary data streams
are identified as correlated with the PyCBC trigger rate
and decrease the computational cost. When possible,
the auxiliary data was bandpassed and the root-mean-
square (RMS) of the data was calculated with a 1 second
stride. The band-limited RMS is a common tool used in
data quality investigations to identify time periods with
excess noise [55, 61]. Furthermore, the environmental
sources of noise in gravitational-wave detectors are gen-
erally most prominent at lower frequencies [28], so band-
passing the data removes the less useful high-frequency
data. The targeted frequency range for this study was
frequencies less than 100 Hz; specific frequency bound-
aries for the bandpassing were chosen based on the sam-
ple rate of the relevant data in order to restrict the data
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to lower frequencies while still retaining some useful infor-
mation. Data streams with a sample rate of higher than
100 Hz were bandpassed between 10 Hz and 100 Hz while
streams with sample rates between 10 and 100 Hz were
bandpassed between 1 Hz and 10 Hz. Data streams with
sample rates below 10 Hz were instead set to the maxi-
mum value of that stream in each 1 second stride. As this
investigation was not used to estimate the sensitivity of
the search, we used a small template bank targeting chirp
masses between 10M� and 40M�. Due to this smaller
template bank and the small amount of data considered,
we lowered the SNR threshold used to calculate the trig-
ger rate to 4.5 in order to increase the number of triggers
considered.

Due to the large number of auxiliary data streams
considered, it is highly likely that some sources of noise
will be observed by multiple streams. In this case, the
down-ranking applied is given by the description in Sec-
tion II D, namely that the maximum measured down-
ranking among all data streams will be applied.

The measured correlation between trigger rate in
PyCBC and the 1126 data streams is shown in Figure 5.
If the data streams were uncorrelated with the rate of
triggers, we would expect that the distribution of the
measured trigger rate in each bin would follow a Poisson
distribution. A fit of the data with this distribution is
shown in Figure 5 as a black dotted line. For most of
these auxiliary data streams, there is no clear correla-
tion observed between the data stream and the rate of
triggers in PyCBC. However, for 10 data streams at LIGO
Livingston, there is at least one data quality bin with a
measured relative trigger rate above 3.25. This threshold
is much higher than expected due to chance based on the
fitted Poisson distribution.

The data streams that show the strongest correlation
with the PyCBC trigger rate includes sensors designed to
detect ground motion and magnetic noise at LIGO Liv-
ingston. Monitors of ground motion [57, 60] and mag-
netic noise [64] are known to be correlated with glitches in
LIGO data, so it is not surprising that these data streams
are the most significant outliers in the small amount data
considered in this investigation. Details about these 10
outliers are included in Table II.

As auxiliary data is only publicly available for 3 hours,
we were not able to use this improved noise model
to reanalyze the full LIGO data set and identify new
gravitational-wave candidates. However, if auxiliary data
does become available, this method would allow this data
to be directly used in searches for gravitational waves.

IV. CONCLUSIONS

We have demonstrated a novel method of directly us-
ing auxiliary data in a search for gravitational waves.
This method can be applied to both the original auxil-
iary data and derived data quality products that are dis-
tributed alongside the strain data. Although this method
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FIG. 5. Histograms of the measured trigger rate in each data
quality bin from the 1126 auxiliary data streams considered
in this analysis. The relative trigger rate is the ratio of the
rate of triggers in each data quality bin versus the average
rate of triggers at each detector. The data is fit to a Pois-
son distribution, shown as a black dotted line. Data from
LIGO Hanford (top) shows no clear outliers, while data from
LIGO Livingston (bottom) includes a small numbers of out-
liers based on the fitted distribution.

was applied to the PyCBC search for compact binaries,
similar methods can be incorporated to other search al-
gorithms for both compact binaries [12, 13, 42, 65] and
other gravitational-wave sources [66, 67].

With currently available data quality products, this
method was able to increase the sensitivity of the PyCBC
search across a wide range of masses. We find that
the number of detectable gravitational-wave events is in-
creased by up to 20% for a subset of the gravitational-
wave signal population when using a combination of data
products. In general, the increase in sensitivity when us-
ing these data quality streams was higher when using
stricter thresholds for detection and when considering
signals with higher masses. Using data quality flags as
part of the PyCBC search statistic rather than to reject
candidates increases the search sensitivity to 10% for the
highest masses and the strictest detection threshold con-
sidered in this work. Including iDQ information via this
method also increases the sensitivity by a further 5%.
We have also considered using information from auxil-
iary data streams that monitor seismic noise, which can
improve the sensitivity of PyCBC by up to 5%. Finally,
we tested all auxiliary data streams that are currently
publicly available [47] and identify 10 streams that show
significant correlations. This method also removes the
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Data stream name Data stream description Maximum
trigger
rate

P-value

L1:PEM-CS ACC LVEAFLOOR BS Z DQ LVEA Accelerometer 4.05 3.06 × 10−5

L1:HPI-BS BLND L4C RX IN1 DQ Pre-isolator motion in the global ifo basis 3.87 1.94 × 10−4

L1:HPI-ITMY BLND L4C RX IN1 DQ Pre-isolator motion in the global ifo basis 3.66 1.25 × 10−3

L1:HPI-HAM3 BLND L4C RX IN1 DQ Pre-isolator motion in the global ifo basis 3.51 4.45 × 10−3

L1:HPI-HAM3 BLND L4C VP IN1 DQ Pre-isolator motion in the global ifo basis 3.49 5.26 × 10−3

L1:PEM-EX MAG VEA FLOOR Y DQ Magnetometer near ETMX chamber 3.43 8.62 × 10−3

L1:HPI-ITMX BLND L4C RX IN1 DQ Pre-isolator motion in the global ifo basis 3.42 9.35 × 10−3

L1:ASC-INP1 P IN1 DQ Error signal for input beam in pitch 3.42 9.35 × 10−3

L1:HPI-ITMX BLND L4C RY IN1 DQ Pre-isolator motion in the global ifo basis 3.11 3.06 × 10−2

L1:PEM-CS ACC IOT1 IMC Z DQ LVEA Accelerometer 3.26 3.37 × 10−2

TABLE II. List of the auxiliary data streams used in the search of 3 hours of data around GW170814 that are highly correlated
with the rate of PyCBC triggers. All data streams with a maximum trigger rate of over 3.25 are listed. Descriptions of each data
stream are sourced from [47]. The listed p-values are based on the Poisson distribution plotted in the lower panel of Figure 5
and are the probability of observing at least one instance of that value or higher in the considered dataset.

need for data quality products to be curated before use
by PyCBC, reducing the time required to fully analyze
LIGO data.

Ultimately, the benefits of this method are limited by
the available data quality streams. Using data qual-
ity streams that are highly predictive of a high rate of
PyCBC triggers will naturally increase the benefits of this
method. However, compared to previous methods of in-
corporating data quality information, the method out-
lined in this work will not decrease the overall sensitivity
if the auxiliary data stream is uninformative.

The versatility of this method will reduce the re-
quired effort of LIGO data quality experts to produce
derived data quality products. Rather than using hand-
tuned binary data quality flags, this method allows the
PyCBC search to directly ingest the relevant auxiliary data
stream. In addition, directly ingesting the auxiliary data
stream may be more beneficial to the overall sensitivity
of the search.

Similar methods can be applied to the low-latency ver-
sion of the PyCBC search, PyCBC Live [68, 69]. One prac-
tical difference for a low-latency implementation of this
method is that most auxiliary data streams are not avail-
able at the latencies required for detection. At present,
only a subset of data quality flags and the iDQ time series
are available at the required latency.

There are a number of areas of improvement for this
method that could be explored in future works. First, we
could add additional time dependence to our improved
noise model. This method does not account for variance
in the α(t) parameter, which also could impact sensitiv-
ity of the search. There is also an assumption that the
auxiliary data stream does not include any time delay
between the auxiliary data and the time of the PyCBC
trigger. This may not be valid for low-mass signals that

last many seconds or minutes, but data quality issues
impacting this class of signals are already mitigated by
signal consistency tests in the PyCBC analysis. Finally,
this method could be improved by better addressing the
case of multiple correlated input data streams. Address-
ing these limitations would require significant changes to
the method introduced in this work and is therefore out
of the scope of this current study.

This work presents a novel method that is able to di-
rectly use the large datasets produced at a gravitational-
wave observatory in an astrophysical analysis. At
present, this data is not publicly available. Hence,
the maximum benefits of this work can only be real-
ized by internal LIGO analyses. However, this method
demonstrates one such practical use of directly using this
dataset in astrophysical analyses and provides additional
motivation for their curation and release.
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