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Unsupervised training of generative models is a machine learning task that has many applications
in scientific computing. In this work we evaluate the efficacy of using quantum circuit-based gener-
ative models to generate synthetic data of high energy physics processes. We use non-adversarial,
gradient-based training of quantum circuit Born machines to generate joint distributions over 2 and

3 variables.

I. INTRODUCTION

High-energy physics seeks to understand matter at the
most fundamental level. Vast and complex accelerators
have been built to elucidate the dynamical basis of the
fundamental constituents. At these large-scale facilities,
high-performance data storage and processing systems
are needed to store, access, retrieve, distribute, and pro-
cess experimental data. Experiments like the Compact
Muon Solenoid (CMS) and the A Toroidal LHC Appa-
ratus (ATLAS) at the Large Hadron Collider (LHC) are
incredibly complex, involving thousands of detector ele-
ments that produce raw experimental data rates over a
Th/sec, resulting in the annual productions of datasets
in the scale of hundreds of Terabytes to Petabytes. In ad-
dition, the manipulation of these complex datasets into
summaries suitable for the extraction of physics parame-
ters and model comparison is a time-consuming and chal-
lenging task.

A crucial element of any analysis workflow in particle
physics involves simulating the physical processes and
interactions at these facilities to develop new theories
and models, explain experimental data, and character-
ize background. These simulations also allow for study-
ing detector response and plan detector upgrades. The
simulation of particle interactions in the detector volume
is often computationally intensive, taking up a signifi-
cant fraction of the computational resources available to
physicists.

Recently, alternative methods for detector simulation
and data analysis tasks have been explored, like machine
learning (ML) applications and quantum information sci-
ence (QIS). Although ML applications have already been
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incorporated in HEP experimental and data analysis en-
vironments, QIS is still an evolving field and its appli-
cations and their suitability remain to be explored. QIS
is a rapidly developing field focused on understanding
the analysis, processing, and transmission of information
using quantum mechanical principles and computational
techniques. QIS may be able to address the conven-
tional computing gap associated with HEP-related prob-
lems, specifically those computational tasks that chal-
lenge CPUs and GPUs, such as efficient and accurate
event generators. Thus, the relevance of having an ef-
ficient simulation mechanism that can faithfully repro-
duce particle interactions after a high-energy collision has
sparked the development of alternative methods. One
particular example is the use of generative models such as
generative adversarial networks (GANSs) [1], which have
been utilized in HEP as a tool for fast Monte Carlo (MC)
simulations [2—4], and as a machine learning-enhanced
method for event generation [5-8]. Some of these studies
report up to five orders of magnitude decrease in com-
puting time. A crucial feature of generative models is
their ability to generate synthetic data by learning from
actual samples without knowing the underlying physical
laws of the original system. In some studies, genera-
tive models have been shown to overcome the statistical
limitations of an input sample in subtraction of negative-
weight events in samples generated beyond leading-order
in QCD [5], and to increase the statistics of centrally
produced Monte Carlo datasets [7]. Quantum-assisted
models have also been proposed for Monte Carlo event
generation [9], detector simulation [10, 11], and determin-
ing the parton distribution functions in a proton [12]. In
this work, we successfully trained a quantum generative
model to reproduce kinematic distributions of particles
in pp interactions at the LHC, with high fidelity. Quan-
tum circuit Born machines (QCBM) trained via gradient-
based optimization [13-15] are examples of circuit-based
parameterized models that can be trained on near-term
quantum platforms.

II. MODEL AND LEARNING ALGORITHM

Although generative models trained in adversarial set-
tings have been proven to be a valuable tool in HEP,
for this work, we focus on generative models trained
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FIG. 1: Diagram of the differentiable QCBM training

scheme.

with non-adversarial methods. Expressly, we set up and
train multiple QCBM using data-driven circuit learning
(DDCL) [13-15]. DDCL employs a classical-quantum hy-
brid feedback loop, as described in Fig. 1.

Generating synthetic data for this HEP application
consists of three stages: first, we encode our data of
M observations with N-dimensional, numerical features
(D = {X® . xm  XOY) into a distribution
P(z) defined over finite length bitstrings (z); second, we
train a parameterized circuit ansatz using DDCL to pre-
pare an approximation of this distribution P(z); third,
we generate synthetic data by decoding bitstrings sam-
pled from P(z). In the following subsection, we describe
these stages in greater detail.

A. Data Encoding

The kinematic distributions of a particle jet in a high-
energy collider experiment such as the LHC can be
constructed as a 2-dimensional joint distribution (over
(pr, mass) features) or 3-dimensional joint distributions
(over (pr,mass,n) features). Each of these kinematic
variables is encoded as a discretized binary string using
g = Q/N qubits. The marginal distribution is discretized
into 29 bins and each bin index is converted to a 29-length
binary bitstring.

For a QCBM constructed with @ total qubits, P(x) is
constructed by concatentating lists of binary bitstrings
which encode the marginals of individual features in a
classical dataset. The N-dimensional correlated data fea-
tures (X(™)) are encoded as 29-length binary strings
(2;). Thus, the total Q qubits contain a concatenation
of g-dimensional bitstrings. The final 2@-length bistrings
are constructed by concatenating the N feature 29-length
binary bitstrings and normalizing the amplitudes.

B. Quantum Circuit Model and Training

The QCBM is an example of an implicit model for gen-
erative learning [16] that generates data by measuring
the system as a Born machine. A QCBM is a parame-
terized unitary U (©) that prepares @-qubits in the state
[e) = U(O) |1hg). The initial state |1)o) is fixed, and
in this study, we use: the all zero-state 1) = [0)%%; a
product state of Q/2 Bell states \<I>+>®Q/2; and a product

state of Q/3 GHZ states |¢) = \GHZ>®Q/3.

Measuring |¢)e) in a fixed basis M ! requires sampling
from the state with Ngjo:s shots. This defines a classi-
cal distribution over the 29 computational basis states
Pg(x) that is used in training, and later used to generate

the synthetic data X.

1. Parameterized Quantum Circuit

Finding the ideal unitary U(©) is dependent on the
parameterized quantum circuit (PQC). The PQC de-
sign plays an essential role in the performance of many
variational hybrid quantum-classical algorithms [17, 18]
by defining the hypothesis class. For our application,
PQCs must be able to model different types of correla-
tions in the input data. This requires circuits to prepare
strongly entangled quantum states and the ability to ex-
plore Hilbert space.

Variational algorithms have been implemented using
quantum circuits composed of a network of single and
two-qubit operations, with rotation angles serving as
variational parameters. The pattern defining the net-
work of gates is referred to as a unit-cell or circuit block
that can be repeated to suit the needs of the application
or task at hand. Recently, the term Multilayer Quantum
Circuit (MPQC) was coined to describe this type of vari-
ational circuit architecture [19]. In this study, we train
two circuit templates or ansatz. Each circuit is defined
using a @-qubit register and specified by the number of
layers d, consisting of a rotation and an entangling com-
ponent. Ansatz 1 has a combined rotation and entangling
gates in a “Brick Layer” or “Simplified 2-design” archi-
tecture and has been shown to exhibit important prop-
erties to study barren plateaus in quantum optimization
landscapes [20, 21]. Ansatz 2 was chosen due to the low
correlation displayed between variables and is an exten-
sion of ansatz employed in benchmarking tasks [14].

The diagram for one layer of each template is shown
in Fig. 2. The rotation gate layers are parameterized by
the arbitrary single-qubit rotation gate implemented in

PennyLane [22], which has 3 rotation angles R(@)gi) =

R(w,&(b)éi), where the layer index ¢ runs from 0 to d,
and 7 is the qubit index.

1 We use the Z-basis M =Z; @ --- ® Z@ unless otherwise noted.
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FIG. 2: Diagram for one layer of the circuit templates
used to construct and train the QCBM. Both ansatz are
constructed using a layered pattern of rotation and
entangling gates. For both ansatz a final layer of
rotation gates is added before measurement.

We choose to train two ansatz that can be embed-
ded onto near-term NISQ devices: either using a 1D
chain of qubits (for Anasatz 1), or the ”disconnected
tree” configuration (for Ansatz 2). For Ansatz 1 used
in this study, the number of parameters to optimize
during training is Npa (N, Q) = 3N, [2Q — 1(2)] + 3Q
for QCBM with odd(even) qubits . For Ansatz 2,
Npar(Ne, Q) = 3(Ng + 1)Q, regardless of whether @ is
even or odd.

2. Training and cost function

Training a QCBM via DDCL optimizes © by minimiz-
ing a loss function L£(P, Pg) such that Pg(z) ~ P(x).
We use the Jensen-Shannon (JS) divergence- a differen-
tiable function that compares two distributions P(z) and

ﬁ@(l‘):
Plog <J\Z> + Pglog (IX(;)] (1)

where M = (P + Pg)/2. The minimum value of the loss
function JS(P|Pg) = 0 is achieved when Pg(z) = P(z).
The model parameters © are optimized using classical
gradient descent methods so that the loss function is min-
imized. The gradient of the loss function is computed
with respect to the circuit parameters using the parame-
ter shift rule [23]. Each QCBM is trained using the Adam
gradient-based optimizer [24] available in the PennyLane
library [22].

JS(P|Pe) = %Z

C. Measurement decoding and post-processing

The output of a QUBM is Pe(z): a classical dis-
tribution over 2Q_length binary strings. To con-
vert Pg(x) to numerical n-dimensional features (D =
{)?(1), . ,)?(’”), ... }), we reverse the steps described in
Section ITA: each binary 29 length string is disassoci-
ated into N composite strings each of length 27, and a
float value randomly drawn from a uniform distribution

defined with the bin edges previously used to map the
samples z,, into the binary basis to generate P(z).

III. VALIDATION ON LHC DATASET

One of the big computational challenges in HEP is the
considerable computing time required to model the be-
havior of subatomic particles both at the vertex and de-
tector level. In Section II, we introduce the architecture
of a quantum generative model that aims to provide an
alternative to traditional Monte Carlo (MC) methods in
the context of data augmentation. Thus, to validate the
proposed model, we consider the simulation of the pro-
duction of pairs of jets in pp interactions at the LHC. The
dataset [6] consists of 10 million di-jet events generated
using MADGRAPH5 version 2.6.4 [25] and PYTHIAS
version 8.307 [26], corresponding to a center of mas en-
ergy of 13 TeV and an integrated luminosity of about
0.5 fb~!. The response of the detector was simulated
by a DELPHES version 3.4.3pre06 [27] fast simulation,
using settings that resemble the ATLAS detector. An
average of 25 additional soft-QCD pp collisions (pile-up)
were added to the simulation to mimic the conditions
of a typical collider event realistically. Jets were recon-
structed using the anti-kr [28] algorithm as implemented
in FASTJET [29], with a distance parameter R = 1.0. A
selection cuts on the scalar sum of the transverse mo-
menta of the outgoing partons HT > 500 GeV was ap-
plied, reducing the sample size to about 4 million events.
The kinematic distributions of the leading jet on the di-
jet system are used to validate the QCBM models and
evaluate its performance in a real-world application.

IV. RESULTS

In this section, we report on the results of training a
QCBM to prepare the target distribution of the dataset
described in Section III. The model performance is eval-
uated by studying the JS divergence value throughout
the training and comparing target (MC expectation) and
generated (the output of the trained QCBM model) dis-
tributions. We explore the encoding of the target dis-
tributions for 2(3) variable joint distributions into 8(12)
qubit systems. This scheme allows for a four-qubit en-
coding per distribution. Unless noted, each marginal dis-
tribution is encoded in a target state binned over 24 = 16
basis states. We trained the QCBM circuits in the ab-
sence of noise to obtain a set of optimal parameters ©.
Then, the circuits were deployed using the trained pa-
rameters on IBM quantum devices to study the effect of
noise in the loss landscape, reproducing the target dis-
tribution. Finally, a local parameter tuning scheme was
applied to improve the performance in the presence of
noise.



A. Training with noiseless qubits
1. 2D Distributions

In Figure 3, the JS divergence values are plotted as a
function of training step. The circuits were trained using
Ngnots = 8192 to prepare a joint 2D distribution corre-
sponding to the marginal distributions of the leading jet
transverse momentum (py) and mass, both binned over
the 16 basis states corresponding to four qubits. Circuits
were constructed using the ansatz configurations shown
in Figure 2 and trained to start from either the all-zero
state ([1o) = [0)®®), or from a product of four Bell states
(|<I>+)®4). We fixed the number of layers Nigyers = 6 for
Ansatz 1 (blue) and 12 for Ansatz 2(red). Each circuit

is trained for 300 steps of Adam with a learning rate
a = 0.01.

—— Ansatz 1 - |0)®?
"""""" Ansatz 1 - |®*)®QR2
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JS(P|Po)
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FIG. 3: JS divergence value as a function of training
step using Ngpots = 8192. Blue(red) points correspond
to Ansatz 1(2). Circuits were initialized in the all zero
state (solid lines) or four Bell states (dashed lines) and
trained to learn a 2D joint distribution.

From Figure 3 we can conclude that: Ansatz 2 con-
verges to a stable JS divergence value much faster than
Ansatz 1, and the training of the QCBM is not affected by
the choice of the initial state. Figure 4 displays the dis-
tributions of samples generated via projective measure-
ments on the qubits in the trained circuits. We observe
that the data generated resembles the target distribu-
tions with high fidelity, with a slightly better agreement
for data generated by sampling from the QCBM con-
structed with Ansatz 2 (red).

In Figure 5, we compare the sampled and target distri-
butions obtained when starting the training from either
an all-zero state (|1o) = [0Y®®) or from a product of four
Bell states (|®+)®*). We define a similarity measure to
perform a systematic comparison of the marginal distri-
butions for each feature by computing the mean absolute
error (MAE) per bin between all normalized target and
sampled marginal distributions:

N 27

D) = 55 Y

From both Figure 5 and Table I, we can conclude that
Ansatz 2, initialized in the all-zero state, reproduces the
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FIG. 4: Top: Target and sampled distributions.
Blue(red) points correspond to Ansatz 1(2). Circuits
were initialized in the all-zero state (|1o) = [0)®®) and
trained to learn a 2D joint distribution. Bottom: Ratio
of target and sampled distributions with horizontal
guide lines marking P/Pg = 0.9 and P/Pg = 1.1.
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FIG. 5: Top: Target and sampled distributions
constructed using Ansatz 1. Circuits were initialized in
the all-zero state (blue) and four Bell states (black).
Bottom: Target and sampled distributions constructed
using Ansatz 2. Circuits were initialized in the all
zero-state (red) and four Bell states (black).

feature marginals with the highest fidelity. On the other
hand, the difference in D(p|p(©)) for the two initial con-
figurations considered is negligible, considering a statisti-
cal error proportional to 1/4/Nsgmpies ~ 0.0005728, im-
plying that the training is independent of circuit initial-
ization.

Another important factor in the process of building the
circuit to prepare the target state is the number of lay-
ers the template or ansatz in Figure 2 is repeated. This
choice will also determine the number of trainable param-
eters in the model. In Figure 6, the JS divergence value is
plotted as a function of training steps for d = {1, 3,6,9}
layers in Ansatz 1; and d = {2, 6,12, 18} layers in Ansatz
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FIG. 6: Loss as a function of training step using

Nspots = 8192. The different curves represent a different
number of layers d, used to construct the 8 qubit
QCBM. Top: Ansatz 1 (blue), and Bottom: Ansatz 2
(red).

’Ansatz‘Npar Initial State ‘D(p|ﬁ(®))‘
1 =10)®8 0.007153
976 [¥0) = [0) Ny
1 o) = |®F) 0.006767
2 | [0) = |0)®® 0.005452
2 lho) = |®T)®* | 0.005696

TABLE I: D(p|p(©)) for 8 qubit QCBM.

2. We can see from this plot that the number of lay-
ers used to construct Ansatz 2 has little impact on the
minimal JS value reached after the training converged.
Nonetheless, it affects how fast the model reaches this
minimal JS value. On the other hand, the training per-
formance of Ansatz 1 is highly dependent on the number
of layers used to construct the circuit. We chose to use
d = 6(12) to construct our QCBM with Ansatz 1(2) to
keep an optimal balance between training time and per-
formance.

This study proposes using quantum generative models
as a data augmentation tool. The ability of generative
models in increasing the statistical precision of the sim-
ulated events beyond the training sample has been stud-
ied in Ref. [30, 31]. The results presented in this section
thus far were obtained by training QCBMSs on a target
distribution using close to 4 million events. We also in-
vestigated how reducing the training dataset size affects
the trained model’s fidelity to reproduce the target dis-
tribution. In Figure 7, the horizontal axis represents the
fraction of the initial training dataset of 4 million events
used to train the QCBM. Once the model is trained, using
a fraction of the full dataset, the JS divergence metric is
evaluated on the target distribution generated using the
whole dataset. The distribution was obtained by evalu-
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FIG. 7: Mean loss between the complete dataset and
the distribution generated by 8-qubit QCBM models
QCBM circuits plotted as solid circles in blue(red) for
Ansatz 1(2). Each QCBM model was trained on partial
data. Shaded regions correspond to mean JS divergence
value £ one standard deviation.

ating the QCBM with the trained parameters with 8192
shots. The sampling process was repeated 1000 times,
and the mean is reported in Figure 7 as a solid blue(red)
dot for Ansatz 1(2). The bands correspond the mean JS
divergence value +o.

(a) Monte Carlo (Ground Truth)
pr |mass

PT = 0.2
mass 0.2 -

(b) Ansatz 1

pT mass
0)25[12F)®7 [10)®® [|@+)®"
T - 0.19 | 0.12
mass 0.19] 0.12 -
(c) Ansatz 2
pT mass
|0)®3 \|<I>+>®4 [0)®5 [j@+)®"
pT - -1.0e-3|-9.1e-3
mass —1.0e—3[—9.16—3 -

TABLE II: Correlation matrices between jet pr and mass
(m) variables in the (a) target distribution, and samples
obtained from the evaluation of the QCBMs constructed
using (b) Ansatz 1 and (c¢) Ansatz 2 in Figure 2 with
the trained parameters. Values displayed for initial states
prepared in the all-zero state (bold) and a product of 4
Bell states (italics).

Finally, we report on the correlation matrix between
the jet pr and mass variables used to construct the target
distribution. In ITa, the values associated with the target
distribution are displayed in black. If the trained QCBM
learned the joint distribution, one would expect to re-
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FIG. 8: JS divergence as a function of training step
using Ngpots = 8192 (solid lines) and Ngpors = 20,000
(triangles). Blue(red) points correspond to Ansatz 1(2).
Circuits were initialized in the all zero state and trained
to learn a 3D joint distribution. QCBM were initialized
in the all-zero state (o) = |0)®'°.

cover the correlation matrix when evaluating the QCBM
with the trained parameters. The results in Table II in-
dicate that this is true for the QCBM constructed with
Ansatz 1 (red), but not for the QCBM constructed with
Ansatz 2. The correlation matrix for the latter case indi-
cates that there is little correlation between the marginal
distributions in the synthetic samples.

2. 8D Distributions

To understand how the trainability of non-adversarial
generative models scales with the number of quantum
registers, we increased the number of qubits in our model
from 8 to 12. This increment translates into a larger num-
ber of basis states (28 = 256 to 2'2 = 4096). Further-
more, the joint probability distribution that we encode
in the target state is now three-dimensional by including
an additional marginal distribution associated with the
”forwardness” of the jet with respect to the beam (jet
n). In Figure 8, the JS divergence loss is plotted as a
function of training step. The circuits were initialized
in the all-zero state () = [0)®'?) and d = 6(12) to
construct our QCBM with Ansatz 1(2). In this plot, we
can also see the effect of increasing the number of shots
during training, reporting a significant difference in JS
divergence values when increasing Ngpors from 8,192 to
20,000.

k When training QCBM with @ = 12 qubits, we also

used an initial state (|ig) = \GHZ>®Q/3) where 3-qubit
subsets are initialized in a GHZ state. The comparison
for the JS divergence value as a function of the training
step from the three initial states considered is displayed
in Figure 9. For Ansatz 1 (blue), the JS value for the
three configurations is very similar for the first 100 train-
ing steps. From step 100 on, the QCBM initialized in a
product of Bell states (blue cross) trains faster and con-
verges to a lower JS value than the QCBMs initialized
in the all-zero (solid blue) and all-plus (blue star) state.
For Ansatz 2, the effect of the initial state used in the
preparation of the circuit has a more negligible effect on
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FIG. 9: JS divergence as a function of training step
using Ngpots = 20,000. Blue(red) points correspond to
Ansatz 1(2). Circuits were initialized in the all-zero
state (solid lines), a product of Bell states (cross), or
the all-plus state (stars), and trained to learn a 3D joint
distribution.

the minimal JS value the model converges after training.
Nonetheless, the QCBMs prepared from the all-plus state
(stars) seem to take longer to converge.

Ansatz| Npar | Initial State | D(p|p(©))
1 lvo) = [0)®'2 | 0.0226
1 |432 |o+)®° 0.0138
1 lbo) = |GHZ)®?|  0.0187
2 lo) = [0)®*2 | 0.0108
2 | 468 |oT)<° 0.0090
2 lvo) = |GHZ)®?|  0.0106

TABLE III: Comparison between target and sampled
distributions according to Eq. 2.

In Figure 10, we compare the distributions of samples
generated via projective measurements on the circuits
evaluated on the trained parameters. The circuits were
initialized in the all-zero state. By looking at Figure
10 and Table III, we observe a degraded performance
in terms of similarity metric (Eq. 2) when compared to
the 8-qubit circuit results. The D(p|p(©)) value increases
from 0.007153 to 0.02226 for Ansatz 1 and from 0.005452
to 0.0108 for Ansatz 2. Again, the trained QCBM that
prepares the target distribution with the highest fidelity
is Ansatz 2.

In Figure 11, we compare the distributions generated
by QCBMs initialized in the three different initial config-
urations. Again, we see little dependence on the initial
state for QCBMSs prepared using Ansatz 2. Nonetheless,
the effect of the initial state in QCBMs prepared using
Ansatz 1 is now more evident.
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(a) Monte Carlo (Ground Truth)

pT mass n
pT - 0.2 |7.3e-12
mass 0.2 - 2.7e-11
n 7.3e-12|2.7e-11 -

(b) Ansatz 1

mass (m)

n
[ T)y®°T|GHZ)®®

y
[0)P2 [[2T)*°[IGHZ)®* | [P T]2T)®°[|GHZ)®7 [ ]0)® ™2
P - 0.16 | 0.16 | 0.18 8.2e-3| 1.2e-3| -1.3e-3
m| 0.16 | 0.16 [ 0.18 -0.014| 4.4e-3| 7.7e-3

7 | 8.2e-3| 1.2e-3| -1.36-3 | -0.014] 4.4e-3] 7.70-3

(c) Ansatz 2

mass (m)

pPT n
0)%12 T127)%° [IGHZ) % | 0)®*2 [|7) ¥ [|GHZ)=*[ 0)¥* []8F)®" [|GHZ)=*

P -4.1e-3] 4.6e-3 | 0.019 -3.7Te-3| -9.1e- 1.6e-3

m | -4.1e-3] 4.6¢-3 | 0.019 6.3e-3 2.2¢-3

n | -8.7e-3] -9.1e-3| 1.6e-3 | 6.8e-3[ 4.9e-3] 2.2¢-3

TABLE IV: Correlation matrices between jet pr, mass
(m), and 7 variables in the (a) target distribution, and
samples obtained from the evaluation of the QCBMs con-
structed using (b) Ansatz 1 and (c) Ansatz 2 in Figure 2
with the trained parameters. Values displayed for initial
states prepared in the all-zero state (bold), a product of
6 Bell states (italics), and a product of 3 GHZ states.

Finally, we report on the correlation matrix between
the jet pr, mass and n variables used to construct the
target distribution. In Table IV, the values associated
with the target distribution are displayed in black. The
results in Table IV display a slight discrepancy in the
original correlation matrix (training dataset) and that
for the samples generated by sampling Ansatz 1 (blue)
with the trained parameters. Again, for the QCBM con-
structed with Ansatz 2, the matrix values indicate that
there is little correlation between the marginal distribu-
tions in the synthetic samples.

B. Noisy Training with Layer-wise Coordinate
Descent

The gradient-based training of the QCBM models pre-
sented in IV A was executed on noiseless (ideal) qubits
but was not used for training on noisy hardware. How-
ever, the performance of the trained QCBM model on
near-term quantum devices will be heavily impacted by
hardware noise. Qubit initialization, gate noise, and er-
rors in the circuit measurement step, all result in state
preparation error that can cause parameterized models
to converge to maximally mixed states, with an overall
effect of flattening the loss landscape [32] and manifests
in a noisy estimation of Pg(z).

While developing error mitigation methods that can
be incorporated into variational training algorithms is
an open area of research, one approach to noise mitiga-
tion is to implement the circuit training with hardware
noise in order to learn optimized parameters that can
compensate for time-independent errors, such as over-
and under-rotation in single qubit gates. We test the ro-
bustness of the final parameters found in Section IV A

to hardware noise by first executing the trained QCBM
models constructed with Ansatz 2 on superconducting
qubit devices. The 8-qubit QCBM (276/312 parameters)
was executed on the 16-qubit device ibmg_guadalupe and
the 12-qubit QCBM (468) was executed on the 27-qubit
device ibm_cairo, both were accessed through a cloud-
based queue.

In the absence of error and noise mitigation we instead
opted to use a localized search over individual parame-
ters. Each parameterized Ansatz (shown in Fig. 2) are
constructed with layers of parameterized rotation gates,
implemented using an arbitrary unitary gate with 3 ro-
tational parameters. Then, we used a layer-wise coor-
dinate descent (LCD) method to optimize each QCBM
performance on hardware. The workflow is shown in Fig.
12. No readout error mitigation or other noise mitiga-
tion methods were used. LCD optimizes the parameters
of a circuit U(©) by searching the multi-dimensional pa-
rameter space along linear cuts of finite width. With N
qubits in the register, each parameter was swept through
a shift of parameters defined by ¢ = —7/4 and spac-
ing 2¢/n. The targeted backends allowed for a maxi-
mum number of circuits per batch (B) which defines the
spacing n = B/N. For the 8-qubit QCBM trained on
ibmg_guadalupe this resulted in a grid spacing of 0.0419.
For the 12-qubit QCBM trained on ibm_cairo this re-
sulted in a mesh spacing of 0.0628. Each circuit was
sampled using Ngpots = 20000.The rotational parame-
ters are optimized starting with the gates closes to the
measurement process.

The top of Figure 13 displays the quartiles of JS loss
over each iteration of LCD with 8-qubit QCBM circuits.
The quartiles are plotted for the QCBM constructed with
Ansatz 1 and 2 and evaluated with the updated parame-
ters after each iteration on the ibmq_guadalupe backend
in blue and red, respectively. The plot also shows how
the JS divergence value degrades as the LCD training pa-
rameters deviate from those obtained during the noise-
less training. On the other hand, hardware performance
is relatively stable. The bottom of Figure 13 shows the
sampled distributions generated by the evaluation of the
QCBM with the parameters that yielded the lowest JS
divergence value during the LCD training. We observe
a more significant discrepancy between the target and
sampled distributions compared to the results reported
in Figure 4, where the QCBM is evaluated with the pa-
rameters obtained during the noiseless training. In Fig-
ure 14, the quartiles of JS loss (top) and the sampled and
target distributions (bottom) are displayed. The QCBMs
are constructed using Ansatz 2, to prepare a 3D joint dis-
tribution in a 12-qubit register. The LCD training was
performed on the ibm_cairo device.

In Figure 15 we show the quartiles of JS for three iter-
ations representative of the different stages of the LCD
training (left). During the first iterations in the training,
the loss landscape is very flat, and the JS value is lower
for the QCBMs evaluated on the gasm_simulator. The
box plots on the left correspond to the JS values obtained
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FIG. 12: Layer-wise coordinate descent (LCD) workflow. (a) a single rotational layer in a N-qubit QCBM model,
(b) is composed of rotational gates R, acting on individual qubits. A batch of n x N circuits is constructed by
sweeping each individual gate over a discrete set of n shifts and executed on a quantum processor (QPU). The loss is
evaluated for each circuit executed (d), the parameter vector © is updated by the values which return the minimal
value, and the updated parameter vector is used to start the search over the next rotational layer (e).

during the parameter sweep in the range € € [-7, §] for
a particular rotation gate in a given layer. Then, we ob-
serve that, for subsequent iterations, the parameter tun-
ing moves the parameters into regions where the perfor-
mance of the noiseless simulator is degraded, and slowly
improving the performance on the quantum device.

As we can see from Figures 13 and 14, noisy train-
ing can improve performance, but there are a number of
obstacles. When the training is initialized with param-
eters pre-trained with noiseless qubits, multiple intera-
tions may be needed to re-train. The gradual improve-
ments in the loss function may not be robust against large
deviations in the device noise. For example, executing
the LCD workflow over all rotational parameters of the
12-qubit QCBM was done over multiple days, probably
causing the discrete change in the loss between iterations
31 and 32.

V. QCBM DESIGN SPACE

Parameterized circuit ansatz used for variational al-
gorithms need to balance expressability with trainabil-
ity. Characterizing expressability is a difficult problem,
and most common analysis relies on computing frame po-
tentials which compare the distributions of states that a
particular ansatz can generate, to the Haar random dis-
tribution [17, 18]. There are considerable ongoing efforts
in determining the characteristics of circuits that lead to
effective training and scaling [33]. In this paper we used
two different ansatz designs and multiple initializations
for the @Q-qubit register. In this section we discuss some

observations based on our results reported in Sections
IVA and IVB. The QCBM models we trained in this
paper used the same parameterization (the arbitrary ro-
tation gate implemented in PennyLane) and entangling
gate operation (the CNOT gate). Each feature was en-
coded into the same number of qubits (4) which defined
the size of the overall register: 8 qubits for 2D distribu-
tions, 12 qubits for 3D distributions.

Between the two ansatz designs, only Ansatz 1 can
generate arbitrary (Q-qubit entanglement and fit arbi-
trary correlations between 2- or 3-variables, regardless
of the choice of initial state. However, as shown in Figs.
3,5,8,11 this ansatz slowly learns. On the other hand,
Ansatz 2 quickly learns, but only prepares a product
state of 4-qubit systems. When the qubit register is ini-
tialized in the all zero state |0)®< or as a set of Bell states
|®T)®9, then Ansatz 2 cannot by definition, model ar-
bitrary correlations between each 4 qubit subset. For
Q = 12, if the circuit is initialized with |GHZ)®*, then
there is local entanglement between the qubit subsets.
Yet as reported in Tables II and IV, this is insufficient
to capture the correlations as seen in the Monte Carlo
data. We observe a trade-off in the modeling capacity of
Ansatz 1 and Ansatz 2: Ansatz 1 can model the corre-
lations between variables but has lower fidelity in fitting
marginal distributions (as quantified by Eq. 2 in Tables
I and IIT and seen in Figs. 4,10). On the other hand,
for Ansatz 2 the generated data fails to capture the cor-
relations in the Monte Carlo data, but has high fidelity
in fitting marginal distributions (as reported in Tables
ILIV). Simply including local correlations in the initial

state by using |GHZ>®4 was insufficient to generate high
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correlations between variables pr and mass.

VI. CONCLUSION

The size of the design space associated with parameter-
ized quantum circuit models is large. This work demon-
strated the efficacy of non-adversarial unsupervised train-
ing of generative models implemented as parameterized
quantum circuits. We demonstrate the usefulness of
these quantum models in the context of a HEP appli-
cation and to assist other practitioners, we have used:
several circuit ansatzes found in the quantum computing
literature and tested the trainability of QCBM initialized
with different quantum states. We quantify the fidelity
of the trained models using: the JS score (also used to
train the models), the MAE of feature marginals, and the
correlation matrices of generated data.

We are encouraged by the success of gradient-based
training for 12 qubit QCBM. We show that for two and
three correlated variables, both ansatz can minimize the
loss to the order of ~ 1072, but whether that corresponds

to models that can faithfully reproduce the kinematic
distributions of a jet in a pp collision typical of the LHC
experiment cannot be deduced by the training loss alone.
Only Ansatz 1 can fit the correlations between variables
in the absence of noise, but the individual marginal fits
for Ansatz 1 are lower fidelity than Ansatz 2. On the
other hand, while Ansatz 2 can reproduce the individual
marginals with high fidelity it cannot by definition, model
correlations, as we see in Tables II and IV. We report
these results to assist other practitioners in the design of
parameterized ansatz for scientific applications.

We also report on the influence of hardware noise on
the QCBM performance. In our study, the QCBM were
trained in the absence of noise and certain trained models
were deployed on near-term devices. In our results we
observe that hardware noise flattens out the landscape.
Additionally, we observe that the addition of hardware
noise does not lead to an increase in correlation between
the encoded variables.

Training in the presence of hardware noise (e.g. us-
ing local parameter tuning or LCD) can improve perfor-
mance, however, without robust error mitigation hard-
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ware fluctuations can undo small improvements in per-
formance (see Fig. 14). Designing scale-able error mit-
igation methods that fully capture correlations in the
hardware is an active area of research in quantum com-
puting. For example, commonly employed methods of
readout error mitigation using measurement fidelity ma-
trices [34-36]. These methods have an advantage in that
the can be incorporated into variational training work-
flows (either gradient-based optimization or LCD) as a
data post-processing step. This motivates the need for
a systematic follow up study of error mitigation efficacy
in this application, with a focus on balancing overhead
with model performance.
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