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It is known that mixed quantum states are highly entropic states of imperfect knowledge (i.e.,
incomplete information) about a quantum system, while pure quantum states are states of perfect
knowledge (i.e., complete information) with vanishing von Neumann entropy. In this paper, we pro-
pose an information geometric theoretical construct to describe and, to a certain extent, understand
the complex behavior of evolutions of quantum systems in pure and mixed states. The comparative
analysis is probabilistic in nature, it uses a complexity measure that relies on a temporal averaging
procedure along with a long-time limit, and is limited to analyzing expected geodesic evolutions
on the underlying manifolds. More specifically, we study the complexity of geodesic paths on the
manifolds of single-qubit pure and mixed quantum states equipped with the Fubini-Study metric
and the Sjöqvist metric, respectively. We analytically show that the evolution of mixed quantum
states in the Bloch ball is more complex than the evolution of pure states on the Bloch sphere. We
also verify that the ranking based on our proposed measure of complexity, a quantity that represents
the asymptotic temporal behavior of an averaged volume of the region explored on the manifold
during the evolution of the systems, agrees with the geodesic length-based ranking. Finally, focusing
on geodesic lengths and curvature properties in manifolds of mixed quantum states, we observed a
softening of the complexity on the Bures manifold compared to the Sjöqvist manifold.

PACS numbers: Complexity (89.70.Eg), Entropy (89.70.Cf), Probability Theory (02.50.Cw), Quantum Com-
putation (03.67.Lx), Quantum Information (03.67.Ac), Riemannian Geometry (02.40.Ky).

I. INTRODUCTION

We divide the Introduction in three parts to better motivate the selection of our goals along with their physical
relevance. In the first part, we highlight the use of geometric concepts originally introduced in quantum computing
and later borrowed by high energy physicists to describe and, to a certain extent, understand black holes behavior.
In particular, we emphasize the geometric characterization of some complexity notions, including gate complexity
and state complexity. In the second part, we outline several distinguishing features that characterize the physics of
systems specified by pure and mixed quantum states. Neither geometry nor complexity are mentioned in this second
part. In the third part, we finally describe our main objectives.

A. Geometry in quantum computing and high energy physics

Geometry plays a fundamental role in science [1, 2], including quantum computing and high energy physics. In Ref.
[3], Nielsen and collaborators used methods of Riemannian geometry to propose a way of finding efficient quantum
circuits capable of performing certain computational tasks. They proposed a geometric measure of quantum algorithm
complexity for quantum circuits constructed with unitary gates. Their formalism led to a geometric continuous-time
version of the discrete gate complexity, a measure of complexity quantifying how hard it is to build a unitary operator
[4]. In such geometric context, finding optimal quantum circuits is equivalent to finding the shortest path between two
points in a certain curved geometry. Essentially, one introduces a Riemannian metric in the space of unitary operators
acting on a given number of qubits. The metric quantifies how hard it is to implement a given quantum computational
task. Then, the distance induced by the metric in the space of unitary operators is employed as a measure of the
complexity of the quantum operation. In addition to gate complexity, one can also introduce in quantum information
science the concept of quantum computational complexity of a state, a measure quantifying how hard it is to build
a unitary transformation that transforms the reference state to the target state [4]. Geometric concepts (including
actions, path lengths, volumes, and complexity) play a fundamental role in high energy physics as well. For instance,
quantum computational complexity measures of geometric origin appear to play a fundamental role in encoding
properties of the interiors of black holes [5]. In Refs. [6, 7], it was shown that the quantum computational complexity
of the dual quantum state is proportional to the spatial volume of the Einstein-Rosen bridge (i.e., a structure linking
two sides of the Penrose diagram of an eternal anti-de Sitter black hole). In Refs. [8, 9], it was argued that the quantum
computational complexity of a holographic state is proportional to the action of a certain spacetime region termed
Wheeler-DeWitt patch. For very insightful applications of Nielsen’s geometric approach to quantum computational
complexity of states and gates in the single-qubit and multi-qubit scenarios of special relevance in high energy physics,
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Knowledge of system Type of state Purity Von Neumann entropy Temperature Entanglement

Complete Pure Maximal Minimal Low Typical

Partial Mixed Not maximal Not minimal High Less typical

TABLE I: Schematic description of physical systems in pure and mixed quantum states in terms of purity, von Neumann
entropy, temperature, and entanglement.

we refer to Refs. [10] and [11], respectively. The analysis in Ref. [10] is rather illuminating because it clearly shows
the effects of replacing a non deformed Bloch sphere equipped with the usual Fubini-Study metric with a deformed
Bloch sphere with a new metric that does not treat all directions in the tangent space in a similar manner. Indeed, in
Nielsen’s geometric approach, the single-qubit Hilbert space is equipped with a metric that stretches directions that
are hard to move in, assigning them a large distance. Two main consequences of this new metric can be summarized
as follows: First, geodesics are no longer generated by time-independent Hamiltonians. Second, suitable choices of the
anisotropy penalty factors specifying the new metric can lead to spaces with negative sectional curvature. This, in
turn, is responsible of the chaotic growth of perturbations (i.e., exponential maximal complexity). For a work focusing
on the connection between a geometric measure of quantum computational complexity and negative curvature, we
refer to Ref. [12]. The work in Ref. [11] attracts great interest for several reasons, including the fact that it addresses
the issue of ergodicity of geodesics on manifolds of negative curvature. This is especially important in view of a
potential application of thermodynamical arguments to complexity evolution. As previously pointed out, Nielsen’s
approach to quantum computation defines a geometric measure on the space of unitary operators. In Ref. [13],
instead, the Fubini-Study metric is used to define a geometry on the space of states to propose a complexity measure
assigned to a target state. This complexity is the minimal distance as measured by the Fubini-Study metric among
all parametrized curves on the space of states that connect the reference state to the desired target state. Within
this approach, the Fubini-Study metric accounts for the complexity by keeping track of the changes of the state (by
means of applications of unitary operations) throughout the preparation of the target state. In Ref. [14], a notion of
mixed state complexity is extended to impure quantum states by replacing the Fubini-Study metric with the Bures
metric (or, alternatively, the quantum Fisher information metric) and, at the same time, extending the nature of
quantum transformations acting on the state to non-unitary operations. Finally, following what happens for pure
states, the complexity of mixed states is identified with the (Bures) length of the geodesic connecting the reference
and target mixed states. To a certain extent and to the best of our knowledge, given the novelty of the introduction of
the concept of mixed state complexity, no comparative analysis exists in the literature between complexity behaviors
associated to physical systems specified by pure and mixed states. We intend to cover this point in this paper.

B. Pure and mixed quantum states

In quantum information science, when one has complete knowledge about a quantum system, one can use a pure state
to describe it. However, complete knowledge is only available in limiting ideal (noiseless) scenarios (i.e., isolated/closed
quantum systems). In practice, one only has partial knowledge about a quantum system. Indeed, small errors may
happen in the preparation, evolution, or measurement of the system due to imperfect devices or to (external) coupling
with other degrees of freedom outside of the system that one is controlling. In these realistic (noisy) cases (i.e., open
quantum systems), quantum systems are described by mixed states. These states are specified by classical probability
distributions over pure states and are used to represent our probabilistic ignorance of a pure state. The density
operator formalism is a very powerful mathematical tool for incorporating a lack of complete knowledge about a
quantum system. Within this formalism, the “quantumness” of the system resides in the off-diagonal entries of the
density matrix. These are interference terms between the pure states that specify the mixture that defines the mixed

state. A particular measure of noisiness of a quantum state is the purity P(ρ)
def
= Tr

(
ρ2
)
of a density operator ρ. The

purity of a pure state is equal to one, and the purity of a mixed state is strictly less than one with 1/N ≤P(ρ) ≤ 1
for an N × N density matrix. The departure of a system from a pure state can also be quantified by means of the

von Neumann entropy SvN (ρ)
def
= −Tr (ρ log ρ). This quantity specifies the degree of mixing of the state describing

a given finite-dimensional quantum system. For a pure state, the van Neumann entropy vanishes. Instead, for a
maximally mixed state characterized by the complete absence of off-diagonal entries in the density matrix (thus,
describing something non-interfering and seemingly classical), the von Neumann is maximal and equals log (2) for a
qubit system.
To the best of our knowledge, there does not exist any comparative geometric analysis of the complexity of pure

and mixed states in the literature. From an intuitive standpoint, there are several reasons why one expects mixed
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states to be more complex than pure states: 1) Mixed states are generally used to describe highly entropic systems
that can exhibit a temperature higher than the one specifying systems in a pure state. In statistical mechanics, for
instance, a physical system at thermal equilibrium is described by a thermal (Gibbs) state [15]. The Gibbs state is

a mixed state with a well-defined finite temperature value. However, at zero temperature (i.e., β
def
= (kBT )

−1 → ∞
with kB denoting the Boltzmann constant), the system is in a pure state. In this limiting case, the density matrix
has every element zero except for a single element on the diagonal. At infinite temperature (i.e., β → 0), instead,
the system is in a maximally mixed state (i.e., a mixture of pure states with equal statistical weights). For example,
consider a spin-1/2 particle in a stationary and uniform magnetic field B0 along the z-direction. The Hamiltonian of

the system can be written as H
def
= (ℏω0/2)σz with ω0

def
= (eB0) /m. Clearly, e and m denote the electric charge and the

mass of the electron, respectively. Moreover, ℏ
def
= h/(2π) is the reduced Planck constant and, finally, σz is the Pauli

phase flip operator. At thermal equilibrium, the density matrix of the system is given by ρTE (β)
def
= e−βH/Tr(e−βH).

A simple calculation shows that ρTE (β) becomes a maximally mixed (or, pure) state as T approaches infinity (or,
zero). For a definition of temperature of arbitrary quantum states, beyond thermal (Gibbs) states used for physical
systems at thermal equilibrium, we refer to Ref. [16]. The temperature quantifies the ability of a quantum system
to cool down or heat up a thermal environment in Ref. [16]. Finally, for a scheme to measure the temperature
of individual pure quantum states by means of quantum interference, we refer to Ref. [17]; 2) Systems in mixed
states are less quantum (or, alternatively, more classical) than systems in pure states. In Ref. [18], it is proven that
entanglement, a quintessential quantum property of physical systems, is typical of pure states, while separability is
connected with quantum mixtures. For intriguing connections of geometric flavor among purity, separability, and
complex behavior in quantum scattering processes, we refer to Refs. [19, 20]. In stead, for possible justifications of
why chaoticity viewed as temporal complexity is softer in quantum systems compared with classical systems, we hint
at Refs. [21–25]. Furthermore, it is known that the existence of speed limits is not something peculiar to quantum
systems [26–28]. Indeed, there are speed limits for classical systems as well [29–31]. In Ref. [31], it was shown that the
quantum counterpart of the classical speed limits derived in Ref. [29] are obtained by quantum systems specified by
density operators describing states that become more and more mixed as ℏ approaches zero; 3) Mixed quantum states
can undergo a richer variety of transformations compared to pure states [32]. In open system dynamics, one needs
to consider general nonunitary quantum evolutions and have the freedom to choose a variety of distance measures
between quantum states. Decoherence and measurements are examples of noncontrollable and controllable nonunitary
processes, respectively. Quantum channels, for instance, provide us with a formalism for discussing decoherence, the
nonunitary evolution of pure states into mixed states [33]. In conventional formulations of quantum mechanics,
instead, pure states can only be connected in a unitary fashion. Moreover, the choice of geometric distance measures
between pure states is more restrained than that between impure states; 4) Mixed states evolutions can exhibit higher
speed values than the ones of pure state temporal changes. In Ref. [34], it is shown that the time optimal mixed
state evolution can be faster than the time optimal pure state evolution. In Ref. [28], it is demonstrated that non-
Markovian (i.e., memory) effects can speed up nonunitary quantum evolutions of arbitrarily driven open quantum
systems. In Ref. [35], it is pointed out that finding the optimal unitary for mixed target states is more challenging
than for pure target states; 5) Mixed qubit states have three local degrees of freedom, while pure qubit states only
have two local degrees of freedom. From a pure geometric perspective, it is reasonable to expect that mixed states are
more complex than pure states [36]. For instance, unlike what happens in optimal-speed unitary evolutions of systems
in pure states, tight evolutions of closed quantum systems in mixed states are typically generated by time-varying
Hamiltonians [36]. We refer to Table I for a schematic description of physical systems in pure and mixed quantum
states in terms of purity, von Neumann entropy, temperature, and entanglement.
Given the lack of a geometric comparative analysis between the complex behaviors exhibited by physical quantum

systems specified by pure and mixed quantum states and, in addition, given the variety of distinguishing physical
features that characterize the evolution of systems specified by pure and mixed quantum states, we intend to capture
here the complexity of these evolutions from a geometric standpoint and provide a geometrical picture of these physical
differences.

C. Our goals

In this paper, we aim to provide a comparative information geometric analysis of the complexity of geodesic paths
of pure and mixed quantum states on the Bloch sphere and in the Bloch ball, respectively. Our investigation is
partially inspired by the above mentioned geometrically flavored investigations. Furthermore, it is motivated by our
curiosity concerning the possibility of describing and, to a certain extent, understanding from a geometric viewpoint
the previously mentioned fingerprints of a greater degree of complexity of mixed quantum states. Finally, it relies on
our insights into the concepts of complexity [37], geometric formulations of optimal-speed Hamiltonian evolutions on
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the Bloch sphere [38, 39], and the role played by the thermodynamic length and divergence (or, alternatively, action) in
studying the complexity of minimum entropy production probability paths in quantum mechanical evolutions [40, 41].
The main questions that we address in this paper can be summarized as follows:

[i] Can we gain physical insights by identifying the distinguishing features that characterize the geometry along
evolution of pure and mixed quantum states?

[ii] Expressing the concept of complexity in terms of volumes of explored regions on curved manifolds, do geodesic
paths on manifolds of mixed quantum states exhibit a higher degree of complexity compared to the complexity
of geodesic paths emerging from the geometry along the evolution of pure quantum states?

[iii] Does the choice of the metric on the space of mixed quantum states have crucial observable physical effects on
the complexity of the underlying geodesic paths?

The layout of the rest of the paper is as follows. In Section II, we introduce our proposed measure of complexity of
geodesic paths on curved manifolds. In Section III, we introduce the geodesic paths on manifolds of pure and mixed
states emerging from the Fubini-Study and the Sjöqvist metrics, respectively. In Section IV, we study the complexity
of the geodesic paths expressed in terms of temporal averages of volume regions explored by the physical systems
during the quantum evolutions. In Section V, we include several physics considerations, including comments on the
concepts of metric, path length, and curvature employed in our analysis. These comments also help emphasizing the
physical significance of our proposed complexity measure. In Section VI, we present our final remarks. Finally, several
technical details, including a comparative analysis between the Sjöqvist and the Bures metrics for mixed quantum
states, appear in Appendix A, B, C, D, E, and F.

II. INFORMATION GEOMETRIC COMPLEXITY

In this section, we present the notion of information geometric complexity (IGC) along with the concept of in-
formation geometric entropy (IGE). These quantities will help quantifying how complex are the evolutions of pure
and mixed states. Before introducing formal details, let us emphasize at the outset that the IGC is essentially the
exponential of the IGE. The latter, in turn, is the logarithm of the volume of the parametric region explored by the
system during its evolution from an initial to a final configuration on the underlying manifold. The IGE is an indicator
of complexity that was initially proposed in Ref. [42] in the framework of the Information Geometric Approach to
Chaos (IGAC) [43]. For clarity, we mention in this paper only the necessary information on the IGAC. However, we
recommend the interested reader to consider the compact discussions on the IGAC in Refs. [44, 45].
In what follows, we begin by presenting the IGE in its original classical setting characterized by probability density

functions. Obviously, when transitioning from classical to quantum settings, parametrized families of probability
distributions are replaced by families of parametrized density operators.
Assume that N -real valued variables

(
ξ1,..., ξN

)
parametrize the points {p (x; ξ)} of an N -dimensional curved

statistical manifold Ms,

Ms
def
=
{
p (x; ξ) : ξ

def
=
(
ξ1,..., ξN

)
∈ Dtot

ξ

}
. (1)

In addition, assume that the microvariables x specifying the probability distributions {p (x; ξ)} are elements of the
(continuous) microspace X while the macrovariables ξ belong to the parameter space Dtot

ξ defined as,

Dtot
ξ

def
=
(
Iξ1 ⊗ Iξ2 ...⊗ IξN

)
⊆ R

N . (2)

Note that Iξj in Eq. (2) is a subset of RN and characterizes the range of acceptable values for the statistical

macrovariables ξk with 1 ≤ k ≤ N . Within the IGAC framework, it is argued that the IGE is a good measure of
temporal complexity of geodesic paths on Ms. The IGE is given by,

SMs
(τ)

def
= log ṽol [Dξ (τ)] , (3)

with the average dynamical statistical volume ṽol [Dξ (τ)] being defined as,

ṽol [Dξ (τ)]
def
=

1

τ

∫ τ

0

vol [Dξ (τ
′)] dτ ′. (4)
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Note that Dξ (τ
′) in Eq. (4) is an N -dimensional subspace of Dtot

ξ ⊆ RN whose elements {ξ} with ξ
def
=
(
ξ1,..., ξN

)

satisfy ξk (τ0) ≤ ξk ≤ ξj (τ0 + τ ′) with τ0 denoting the initial value taken by the affine parameter τ ′ that characterizes
the geodesics on Ms as will be described in more detail shortly. In Eq. (4), the temporal average operation is denoted

with the tilde symbol. We also emphasize that two sequential integration procedures define ṽol [Dξ (τ)] in Eq. (4).
The first integration is defined on the explored parameter space Dξ (τ

′) and leads to vol [Dξ (τ
′)]. Then, the second

integration describes a temporal averaging procedure, is performed over the duration τ of the evolution on Ms, and

finally yields ṽol [Dξ (τ)]. The volume vol [Dξ (τ
′)] in the RHS of Eq. (4) is the volume of an extended region on Ms

and is given by,

vol [Dξ (τ
′)]

def
=

∫

Dξ(τ ′)

ρ
(
ξ1,..., ξN

)
dNξ. (5)

Since we are limiting our present discussion to the IGE in the context of a statistical manifold Ms of classical
probability distributions, ρ

(
ξ1,..., ξN

)
in Eq. (5) is the so-called Fisher density and equals the square root of

the determinant g (ξ) of the Fisher-Rao information metric tensor gFRµν (ξ), gFR (ξ)
def
= det

[
gFRµν (ξ)

]
. Therefore,

ρ
(
ξ1,..., ξN

) def
=
√
gFR (ξ). Recall that in the continuous microspace setting, gFRµν (ξ) is defined as

gFRµν (ξ)
def
=

∫
p (x|ξ) ∂µ log p (x|ξ) ∂ν log p (x|ξ) dx, (6)

with ∂µ
def
= ∂/∂ξµ. Note that vol [Dθ (τ

′)] in Eq. (5) assumes a more simple expression for manifolds equipped with
metric tensors specified by factorizable determinants,

g (ξ) = g
(
ξ1,..., ξN

)
=

N∏

k=1

gk
(
ξk
)
. (7)

In such a scenario, the IGE in Eq. (3) reduces to

SMs
(τ) = log

{
1

τ

∫ τ

0

[
N∏

k=1

(∫ τ0+τ ′

τ0

√
gk [ξk (η)]

dξk

dη
dη

)]
dτ ′

}
. (8)

We remark the g (θ) is not factorizable when the microvariables {x} are correlated. Therefore, in this case, one
is forced to use the general definition of the IGE. We refer to Ref. [46] for a study on the effects of microscopic
correlations on the IGE of Gaussian statistical models.
In the IGAC theoretical setting, the leading asymptotic behavior of SMs

(τ) in Eq. (8) characterizes the complexity
of the statistical models being analyzed. To this end, we consider the leading asymptotic term in the equation for the
IGE,

Sasymptotic
Ms

(τ) ∼ lim
τ→∞

[SMs
(τ)] . (9)

Observe that Dξ (τ
′) specifies the domain of integration that appears in the expression of vol [Dξ (τ

′)] in Eq. (5), and
is defined as

Dξ (τ
′)

def
=
{
ξ : ξk (τ0) ≤ ξk ≤ ξk (τ0 + τ ′)

}
, (10)

where τ0 ≤ η ≤ τ0 + τ ′ and τ0 is the initial value of the affine parameter η. In Eq. (10), ξk = ξk (η) satisfy the
geodesic equations

d2ξk

dη2
+ Γk

ij

dξi

dη

dξj

dη
= 0, (11)

with Γj
ik in Eq. (11) being the usual Christoffel connection coefficients,

Γk
ij

def
=

1

2
gkl (∂iglj + ∂jgil − ∂lgij) . (12)

Note that the elements of Dξ (τ
′) in Eq. (10), an N -dimensional subspace of Dtot

ξ , are N -dimensional macrovariables

{ξ} with components ξj bounded by fixed integration limits ξj (τ0) and ξj (τ0 + τ ′). The temporal functional form
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of such limits can be determined by integrating the N -coupled nonlinear second order ODEs in Eq. (11). Having
introduced the IGE, we term information geometric complexity (IGC) the quantity CMs

(τ) given by

CMs
(τ)

def
= ṽol [Dξ (τ)] = eSMs(τ). (13)

As mentioned earlier, we shall focus on the asymptotic temporal behavior of the IGC as specified by Casymptotic
Ms

(τ)
τ→∞∼

eSMs (τ).
The IGC CMs

(τ) can be interpreted by explaining the meaning of the IGE SMs
(τ) in Eq. (3). The IGE is an

affine temporal average of the N-fold integral of the Fisher density over geodesics regarded as maximum probability
trajectories and, in addition, measures the number of the explored macrostates in Ms. In particular, the IGE at a
given instant is the logarithm of the volume of the effective parameter space navigated by the system at that specific
instant. The temporal averaging procedure in Eq. (4) is introduced to average out the conceivably very complicated
fine details of the probabilistic dynamical description of the system on Ms. Furthermore, the long-time limit in Eq.
(9) is used to properly specify the selected dynamical indicators of complexity by neglecting the transient effects
which enter the calculation of the expected value of the volume of the effective parameter space. In summary, the
IGE provides an asymptotic coarse-grained inferential characterization of the complex dynamics of a system in the
presence of partial knowledge. For further details on the IGC and IGE, we refer to Refs. [37, 47, 48].
Our discussion has followed the original IGAC setting where we assumed to deal with an underlying continuous

microspace yielding a macrospace equipped with a classical Fisher-Rao information metric in its integral form.
However, shifting to a discrete microspace leading to a macrospace with a Fisher-Rao information metric expressed
in terms of a summation is straightforward,

gFRµν (ξ) =
N∑

k=1

1

pk (ξ)

∂pk (ξ)

∂ξµ
∂pk (ξ)

∂ξν
. (14)

From Eq. (14), the Fisher-Rao infinitesimal line element ds2FR becomes

ds2FR = gFRµν (ξ) dξµdξν =
N∑

k=1

dp2k
pk

, (15)

where dpk
def
= (∂µpk) dξ

µ. Moreover, the parameters
{
ξk
}
1≤k≤N

were originally viewed in the IGAC context as

statistical macrovariables emerging, for instance, as suitable expectation values of the microvariables of the physical
system in the presence of partial knowledge. However, due to the fact that in principle the IGE can be fully constructed
from a geometric standpoint once the infinitesimal line element ds2 is known, its extension to quantum manifolds
of density matrices {ρξ (x)} specified by a set of parameters {ξ} with ξ ∈ Dtot

ξ ⊆ RN , including experimentally
controllable parameters such as temperature and magnetic field intensity, is simple as well. For clarity, note that

ρξ (x) ∈ M(quantum)
s replaces pξ (x)

def
= p (x; ξ) ∈ M(classical)

s with M(classical)
s equal to Ms in Eq. (1).

Clearly, to provide estimates of the IGE and of the IGC in Eqs. (3) and (13), respectively, we need to first find the
geodesic paths on the manifolds. Therefore, in the next section, we present the geodesic paths on the manifolds of
pure and mixed states equipped with the Fubini-Study and Sjöqvist metrics, respectively.

III. GEODESIC PATHS

We introduce here the geodesic paths on manifolds of pure and mixed states equipped with the Fubini-Study and
the Sjöqvist metrics, respectively.

A. Geodesic paths on the Bloch sphere: The Fubini-Study metric

We begin by discussing geodesic paths on manifolds of pure states equipped with the Fubini-Study metric. In
quantum mechanics, it is known that the only Riemannian metric on the set of rays, up to a constant factor, which
is invariant under all unitary transformations is the angle in Hilbert space (also known as, the Wootters angle),

θWootters (|ψi〉 , |ψf 〉) def
= arccos [|〈ψi|ψf 〉|] , (16)
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with |ψi〉 and |ψf 〉 being two pure states. It is also known that a concept of statistical distance can be defined
between different preparations of the same quantum system, or to put it another way, between different rays in the
same Hilbert space [49]. This notion of statistical distance is specified completely by the size of statistical fluctuations
taking place in measurements prepared to discriminate one state from another. A major finding obtained by Wootters
in Ref. [49] was showing that such statistical distance coincides with the usual distance (i.e., angle) between rays. The
infinitesimal line element that corresponds to the Hilbert space angle is the so-called Fubini-Study metric gFSµν (ξ), the
natural metric on the manifold of Hilbert space rays. The physical interpretation of this metric in terms of statistical
fluctuations in the outcomes of intrinsically probabilistic quantum measurements that aim at distinguishing one pure
state from another is a major result obtained in Ref. [49]. Before introducing the Fubini-Study metric gFSµν (ξ) in an
explicit manner, we remark that the extension of Wootters’ reasoning to the problem of distinguishing mixed quantum
states was carried out by Braunstein and Caves in Ref. [50]. In the case of mixed states, the Bures angle θBures and
the Bures metric gBures

µν (ξ) replace the Hilbert space angle θWootters and the Fubini-Study metric gFSµν , respectively.
The Bures angle represents the length of a geodesic joining two density operators ρi and ρf and is given by,

θBures (ρi, ρf )
def
= arccos [FB (ρi, ρf )] . (17)

In Eq. (17), FB (ρi, ρf ) is the Bures fidelity defined as

FB (ρi, ρf )
def
=

[
Tr

(√
ρ
1/2
i ρfρ

1/2
i

)]2
. (18)

For clarity, we point out that using Eqs. (17) and (18), θBures (ρi, ρf ) equals arccos
(√

〈ψi|ρf |ψi〉
)
when ρi

def
= |ψi〉 〈ψi|.

Furthermore, when both ρi and ρf are pure states, θBures (ρi, ρf ) reduces to θWootters (|ψi〉 , |ψf 〉) in Eq. (16). Finally,
for completeness, we remark here that the Bures distance dBures (ρi, ρf ) is different from the Bures angle in Eq. (17)
and is formally defined as

dBures (ρi, ρf )
def
=

√
2

[
1−

√
FB (ρi, ρf )

]
. (19)

Returning to the formal introduction of gFSµν (ξ), consider two neighboring single qubit pure states |ψ〉 and
∣∣ψ̄
〉
defined

as,

|ψ〉 def
=

1∑

k=0

√
pke

iφk |ek〉 , and
∣∣ψ̄
〉 def
=

1∑

k=0

√
pk + dpke

i(φk+dφk) |ek〉 , (20)

respectively, with {|ek〉} being an orthonormal basis of the Hilbert space of single qubit state vectors. The infinitesimal
line element between |ψ〉 and

∣∣ψ̄
〉
in Eq. (20) is given by the Fubini-Study metric ds2FS [50],

ds2FS
def
= 1−

∣∣〈ψ̄|ψ
〉∣∣2 =

1

4

1∑

k=0

dp2k
pk

+




1∑

k=0

pkdφ
2
k −

(
1∑

k=0

pkdφk

)2

 . (21)

Using the Bloch sphere parametrization of single qubit states,

|ψ〉 = |ψ (θ, ϕ)〉 def
= cos

(
θ

2

)
|0〉+ eiϕ sin

(
θ

2

)
|1〉 , (22)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π, we get by comparing Eqs. (20) and (22) that

p0 (θ, ϕ) = cos2
(
θ

2

)
, p1 (θ, ϕ) = sin2

(
θ

2

)
, φ0 (θ, ϕ) = 0, and φ1 (θ, ϕ) = ϕ. (23)

Therefore, substituting Eq. (23) into Eq. (21), the Fubini-Study metric ds2FS reduces to

ds2FS = gFSµν (ξ) dξµdξν =
1

4

[
dθ2 + sin2 (θ) dϕ2

]
. (24)

In Eq. (24), gFSµν (ξ) is the Fubini-Study metric tensor, 1 ≤ µ, ν ≤ 2, and ξ =
(
ξ1, ξ2

) def
= (θ, ϕ). For completeness, we

point out that the Fubini-Study distance between two antipodal (i.e., orthogonal) states on the Bloch sphere is π/2.
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Instead, the geodesic distance between two antipodal states is π. Indeed, ds2FS = (1/4)ds2BSM where ds2BSM denotes
the Bloch sphere metric (BSM) defined as [51],

ds2BSM
def
= dn̂ · dn̂. (25)

In Eq. (25), n̂ is the unit vector in R3 given by

n̂
def
=

〈ψ (θ, ϕ) |~σ|ψ (θ, ϕ)〉
〈ψ (θ, ϕ) |ψ (θ, ϕ)〉 = (sin (θ) cos (ϕ) , sin (θ) sin (ϕ) , cos (θ)) , (26)

with ~σ
def
= (σx, σy , σz) being the Pauli vector operator and |ψ (θ, ϕ)〉 given in Eq. (22). From Eq. (24), the only

nonvanishing Christoffel connection coefficients are

Γ1
22 = − sin (θ) cos (θ) , and Γ2

12 = Γ2
21 =

cos (θ)

sin (θ)
. (27)

Therefore, geodesic paths satisfy the geodesic equations in Eq. (11) being specified by the following system of two
coupled second order nonlinear ODEs,

θ̈ − sin (θ) cos (θ) ϕ̇2 = 0, and ϕ̈+ 2
cos (θ)

sin (θ)
θ̇ϕ̇ = 0, (28)

where θ̇
def
= dθ/dη with η being an affine parameter. Integration of Eq. (28) under suitable working conditions yields

geodesic paths given by

θ (η) = cos−1 [aFS sin (η)] , and ϕ (η) = ϕi + tan−1 [cFS tan (η)] , (29)

where a2FS
def
= 1 − c2FS and cFS = cFS (θi, ϕ̇i)

def
= ϕ̇i sin

2 (θi) = const. Note that both θ (η) and ϕ (η) in Eq. (29) are
bounded functions for any η ≥ 0. We remark that the speed of evolution along these paths is constant and equals

vFS
def
= (1/2)

[
θ̇2 + sin2 (θ) ϕ̇2

]1/2
. For a detailed derivation of the relations in Eq. (29) along with their extension to

arbitrary working conditions, we refer to Appendix A. Having found the geodesic paths in Eq. (29), we focus now on
geodesics on manifolds of mixed quantum states equipped with the Sjöqvist metric.

B. Geodesic paths in the Bloch ball: The Sjöqvist metric

W begin by mentioning the motivation underlying the introduction of the Sjöqvist metric from a practical standpoint
in science. From a physical standpoint, the Sjöqvist metric can be related to measurable quantities in suitably prepared
interferometric measurements. For this reason, it is sometimes called “interferometric” metric. The metric can be
regarded as the infinitesimal distance δs2 (ρ, ρ+ δρ) ≈ g (ρ̇, ρ̇) δt2 between two neighboring mixed states ρ and ρ+ δρ
with δρ = ρ̇δt. The mixed state ρ encodes the internal degree of freedom of a particle entering a Mach-Zehnder

interferometer with two beam splitters. The mixed state ρ′
def
= ρ + δρ equals UρU † with U being a unitary applied

to the particle for a small but finite time δt. From an experimental standpoint, the line element δs2 is related to
the probability P0 of finding the particle in the 0-beam (that is, the beam where the unitary transformation U was
applied) after passing the second beam splitter. In particular, up to the leading nontrivial order in δt, one finds that
P0 = 1 − (1/4)δs2. For more details on a direct experimental access to the Sjöqvist line element, we refer to Refs.
[52, 53]. In Ref. [53], the Sjöqvist metric is generalized by extending its applicability to degenerate density matrices
as well. Interestingly, studying finite-temperature equilibrium phase transitions, dramatically different behaviors
between the Sjöqvist and the Bures metrics are noticed in Ref. [53]. Specifically, the Sjöqvist metric appears to be
more sensitive to the change in parameters than the Bures one. Indeed, unlike what happens for the Bures metric, the
Sjöqvist metric infers both zero-temperature and finite-temperature phase transitions. We will return to this point
on the difference between the Sjöqvist and Bures metrics later in our paper.
Resuming the formal introduction of the Sjöqvist metric, consider two rank-2 neighboring nondegenerate density

operators ρ (t) and ρ (t+ dt) connected via a smooth path t 7→ ρ (t) characterizing the evolution of a quantum system.
The nondegeneracy requirement assures that the gauge freedom in the spectral decomposition of the density operators
is represented by the phase of the eigenvectors. This, in turn, implies there is a one-to-one correspondence between a
rank-2 nondegenerate density operator ρ (t) and the set of two orthogonal rays

{
eiφk(t) |ek (t)〉 : 0 ≤ φk (t) < 2π

}
that
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specify the spectral decomposition along the path t 7→ ρ (t). Clearly, if some nonzero eigenvalue of ρ (t) was degenerate,
the above mentioned correspondence would not be valid anylonger. The infinitesimal line element between ρ (t) and

ρ (t+ dt) in the working assumption that
{√

pk (t)e
iφk(t) |ek (t)〉

}
k=0,1

represents the spectral decompositions along

the path t 7→ ρ (t) is given by the Sjöqvist metric ds2Sjöqvist [52],

ds2Sjöqvist
def
= min

[
d2 (t, t+ dt)

]
, (30)

with d2 (t, t+ dt) is defined as

d2 (t, t+ dt)
def
=

1∑

k=0

∥∥∥
√
pk (t)e

iφk(t) |ek (t)〉 −
√
pk (t+ dt)eiφk(t+dt) |ek (t+ dt)〉

∥∥∥
2

. (31)

Following the line of reasoning in Ref. [52], ds2Sjöqvist can be recast as

ds2Sjöqvist =
1

4

1∑

k=0

dp2k
pk

+

1∑

k=0

pkds
2
k, (32)

where dpk = ṗkdt and, recalling Ref. [54], ds2k in Eq. (32) is the Fubini-Study metric along the pure state |ek〉

ds2k
def
=
〈
ėk
∣∣(1̂− |ek〉 〈ek|

)∣∣ ėk
〉
= 〈dek|dek〉 − |〈ek|dek〉|2 , (33)

with 1̂ being the identity operator on the Hilbert space of single qubit quantum states. Using the Bloch sphere
parametrization of single qubit mixed states in the Bloch ball, we have

ρ =
1̂ + ~r · ~σ

2
=

1

2

(
1 + r cos (θ) r sin (θ) e−iϕ

r sin (θ) eiϕ 1− r cos (θ)

)
, (34)

where ~r is the polarization vector given by ~r
def
= rn̂ with n̂ defined in Eq. (26). Note that for mixed quantum states,

0 ≤ r < 1 and det (ρ) = (1/2)
(
1− ~r2

)
≥ 0 because of the positiveness of ρ. For pure quantum states, instead, r = 1

and det (ρ) = 0. From Eq. (34), we observe that the spectral decomposition of ρ is given by

ρ =

1∑

k=0

pk |ek〉 〈ek| . (35)

The two distinct eigenvalues {pk}k=0,1 are given by,

p0 = p0 (r, θ, ϕ)
def
=

1 + r

2
, and p1 = p1 (r, θ, ϕ)

def
=

1− r

2
, (36)

respectively. The orthonormal eigenvectors corresponding to p0 and p1 in Eq. (36) are

|e0〉 = |e0 (r, θ, ϕ)〉 def
=

1√
2

(
e−iϕ

√
1 + cos (θ)
sin(θ)√
1+cos(θ)

)
=

(
e−iϕ cos

(
θ
2

)

sin
(
θ
2

)
)
, (37)

and,

|e1〉 = |e1 (r, θ, ϕ)〉 def
=

1√
2

(
−e−iϕ

√
1− cos (θ)

sin(θ)√
1−cos(θ)

)
=

(
−e−iϕ sin

(
θ
2

)

cos
(
θ
2

)
)
, (38)

respectively. Finally, using Eqs. (36), (37), and (38), ds2Sjöqvist in Eq. (32) becomes

ds2Sjöqvist = gSjöqvistµν (ξ) dξµdξν =
1

4

[
dr2

1− r2
+ dΩ2

]
, (39)



10

with dΩ2 def
= dθ2 + sin2 (θ) dϕ2. In Eq. (39), gSjöqvistµν (ξ) is the Sjöqvist metric tensor, 1 ≤ µ, ν ≤ 3, and ξ =

(
ξ1, ξ2, ξ3

) def
= (r, θ, ϕ). Note when r is constant and equals one, ds2Sjöqvist in Eq. (39) reduces to ds2FS in Eq.

(24). For completeness, we recall that the Bures metric extends to mixed quantum states the Fubini-Study metric
on pure states [55–57]. Furthermore, as shown in Ref. [50], it is equivalent, up to a proportionality factor of four,
to the quantum Fisher information metric. Interestingly, we remark that the Bures infinitesimal line element ds2Bures

between ρ and ρ+ dρ with ρ given in Eq. (34) is given by

ds2Bures = gBures
µν (ξ) dξµdξν =

1

4

[
dr2

1− r2
+ r2dΩ2

]
. (40)

For an explicit derivation of Eq. (40), we refer to Appendix B. From Eqs. (39) and (40), we notice that the angular
part of ds2Sjöqvist does not exhibit the r

2-factor which, instead, appears in ds2Bures. The lack of this factor implies that
the Sjöqvist metric is singular at the origin of the Bloch ball where r = 0 and, unlike the Bures metric, is not defined
for degenerate density operators. Finally, we refer to Ref. [53] for a recent extension of the Sjöqvist metric for the
space of nondegenerate density matrices, to the degenerate case, i.e., the case in which the eigenspaces have dimension
greater than or equal to one. We will go back to this point on the difference between the Sjöqvist and Bures metrics
later in our paper (see also Appendix C and Appendix D).
Returning to the Sjöqvist metric analysis, we see from Eq. (39) that the only nonvanishing Christoffel connection

coefficients are

Γ1
11 =

r

1− r2
, Γ2

33 = − sin (θ) cos (θ) , and Γ3
23 = Γ3

32 =
cos (θ)

sin (θ)
. (41)

Therefore, geodesics satisfy the geodesic equations in Eq. (11) described in terms of a system of three coupled second
order nonlinear ODEs,

r̈ +
r

1− r2
ṙ2 = 0, θ̈ − sin (θ) cos (θ) ϕ̇2 = 0, and ϕ̈+ 2

cos (θ)

sin (θ)
θ̇ϕ̇ = 0, (42)

where ṙ
def
= dr/dη with η being an affine parameter. Interestingly, observe that although the ODE satisfied by the

radial parameter r in Eq. (42) is nonlinear, it is not coupled to the ODEs describing the evolution of the angular
parameters θ and ϕ. Furthermore, the angular motion is identical to the one that emerges when employing the
Fubini-Study metric. Therefore, we refer to Eq. (29) and to Appendix A for details on the angular motion. Instead,
integration of the radial equation of motion in Eq. (42) yields,

rSjöqvist (η) = sin

[
sin−1 (ri) +

ṙi√
1− r2i

η

]
, (43)

where ri
def
= r (ηi), ṙi

def
= ṙ (ηi), and ηi is set equal to zero. We emphasize that the speed of evolution along geodesic

paths is constant and equals vSjöqvist
def
= (1/2)

[(
1− r2

)−1
ṙ2 + θ̇2 + sin2 (θ) ϕ̇2

]1/2
. For an explicit derivation of Eq.

(43) along with a discussion on alternative geodesic parametrizations like the one used in Ref. [52], we refer to
Appendix C. Finally, for a discussion on the integration of the geodesic equations in a Bloch ball equipped with
the Bures metric gBures

µν (ξ), we refer to Appendix D. In Appendix E, instead, we present a summary of curvature

properties of the manifold of pure states equipped with gFSµν (ξ) along with those of a manifold of mixed quantum

states endowed with gSjöqvistµν (ξ) and gBures
µν (ξ). More specifically, for each scenario, we find the expressions of the

tensor metric components, infinitesimal line elements, Christoffel connection coefficients, Ricci tensor components,
Riemann curvature tensor components, scalar curvatures and, finally, sectional curvatures.
At this point, having found the geodesic paths on curved manifolds equipped with the Fubini-Study and Sjöqvist

metrics, we are ready to use our complexity quantifiers in Eqs. (3) and (13) to determine how complex evolutions on
pure and mixed states are.

IV. COMPLEXITY OF QUANTUM EVOLUTION

We study here the complexity of the geodesic paths expressed in terms of temporal averages of volume regions
explored by the physical systems during the quantum evolutions.
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A. Actions, lengths, and accessible volumes

Before studying the complexity, let us first comment on the relevance of the concepts of length and action in
the geometric formulation of physical theories. In the Introduction, we mentioned these concepts play a key role
in the understanding of the physics of black holes [6–9]. However, lengths and actions also play a very important
role in the geometric formulation of thermodynamics [58]. In this case, these two quantities are generally termed
thermodynamic length and thermodynamic divergence, respectively. Indeed, including the theory of fluctuations
into the axioms of equilibrium thermodynamics [59], thermodynamic systems can be characterized by Riemannian
manifolds furnished of a thermodynamic metric tensor that is identical to the Fisher-Rao information metric [60].
Within this geometric setting for thermodynamics, the above mentioned Riemannian structure allows one to introduce
a notion of length for fluctuations about equilibrium states as well as for thermodynamic processes proceeding via
equilibrium states. In analogy to Wootters’ statistical distance between probability distributions as presented in
Ref. [49], the thermodynamic length of a path connecting two points on a manifold of thermal states can be viewed
as a measure of the maximal number of statistically distinguishable thermodynamic states along the path [61]. In
particular, the larger the fluctuations, the closer the points are together. The thermodynamic divergence of a path,
instead, is a measure of the losses in the process quantified by the total entropy produced along the path. For more
details, we refer to Refs. [59, 62, 63]. Having in mind Wootters’ approach, note that the concepts of action and length
are formally different when studying the geometry along the evolution of states. For the sake of reasoning, assume

that the line element of the Riemannian space is given by ds2
def
= gµν (ξ) dξ

µdξν . Then, the action A is given by

A
def
=

1

2
m

∫ τ

0

gµν (ξ) ξ̇
µξ̇νdη, (44)

with ξ̇
def
= dξ/dη. The length L of a path ξµ (η) with 0 ≤ η ≤ τ , instead, is defined as

L def
=

∫ τ

0

√
gµν (ξ) ξ̇µξ̇νdη. (45)

However, for particles of massmmoving along geodesics with constant velocity, both velocity and energy are conserved.
In this case, the path L and the action A are linearly related. Indeed, one has

A =

√
mE

2
L, (46)

where E
def
= (1/2)mv2 and v2

def
= gµν (ξ) ξ̇

µξ̇ν are both constant. Interestingly, we remark that while the length L is
invariant under reparametrization of the affine parameter η, the action A is not. Before proceeding with the calculation
of lengths in Eq. (45) and volumes of explored regions in Eq. (4) yielding the complexity of geodesic paths on manifolds
of quantum states, we make a couple of remarks that can help our intuition when considering the Sjöqvist and Bures
cases with pure calculations. First, considering Eqs. (39) and (40) while performing a change of variables defined by

r
def
= sin (αr) with 0 ≤ αr ≤ π/2, we find that 4ds2Sjöqvist = dα2

r + dΩ2
sphere and 4ds2Bures = dα2

r + sin2 (αr) dΩ
2
sphere

with dΩ2
sphere

def
= dθ2 + sin2 (θ) dϕ2. The structure of the Sjöqvist line element recast in this new form is reminiscent

of the structure of a line element in the usual cylindrical coordinates (ρ, ϕ, z), ds2cylinder = dz2 + dΩ2
cylinder with

dΩ2
cylinder

def
= dρ2 + ρ2dϕ2, once one identifies the pair (αr, dΩsphere) with the pair (ρ, dΩcylinder). Therefore, one can

imagine associating a cylinder with a constant (varying) radius to the Sjöqvist (Bures) geometry, respectively. Note
that the varying radius in the Bures case is upper bounded by the constant value that specifies the radius in the
Sjöqvist geometry. Second, the volumes of the accessible regions of the manifolds in the Sjöqvist and Bures scenarios
are given by,

V
(accessible)
Sjöqvist

def
=

1

8

∫ 1

0

∫ π

0

∫ 2π

0

sin (θ)√
1− r2

drdθdϕ =
π2

4
, (47)

and,

V
(accessible)
Bures

def
=

1

8

∫ 1

0

∫ π

0

∫ 2π

0

r2 sin (θ)√
1− r2

drdθdϕ =
π2

8
, (48)

respectively. Clearly, from Eqs. (47) and (48), we note that V
(accessible)
Bures ≤ V

(accessible)
Sjöqvist . This fact, in turn, is compatible

with our intuitive picture proposed in our first remark. We remark that it is possible that only parts of the accessible
geometric regions are indeed explored during the evolution. In what follows, we shall finally calculate the lengths and
the volumes of the effectively explored regions of the manifolds in the (pure) Fubini-Study and (mixed) Sjöqvist cases.
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B. Evolution on the Bloch sphere

1. Length

In what follows, we focus on calculating the length of geodesics in the unit Bloch ball that lay int the xz-plane
specified by the condition ϕ = 0. In the Fubini-Study metric case, we have

LFS (ηf )
def
=

1

2

∫ ηf

0

dθ

dη
dη =

1

2
θ̇iηf , (49)

or, alternatively, in terms of the angular variable θ,

LFS (θf )
def
=

θf
2
. (50)

Note that LFS in Eq. (50) denotes the Fubini-Study distance (θf/2) and is half the geodesic distance (θf ) on the

Bloch sphere. For completeness, we emphasize that in obtaining Eq. (49) we exploited the relation θ̈ = 0. This
relation can be obtained from Eq. (28) once one imposes the constraint of constant ϕ. Moreover, in getting Eq. (50),

we assumed θi
def
= θ (ηi) = 0, with ηi = 0.

2. Complexity

From the Fubini-Study metric ds2FS in Eq. (24), we note that gFS (θ, ϕ) = sin2 (θ) /16 with gFS denoting the
determinant of the metric tensor gFSµν . Therefore, using Eq. (29), the instantaneous explored volume region VFS (η)
as defined in Eq. (5) becomes

VFS (η) =
1

4
aFS sin (η) arctan [cFS tan (η)] . (51)

Recall that a2FS
def
= 1 − c2FS with cFS = cFS (θi, ϕ̇i)

def
= ϕ̇i sin

2 (θi) = const. Then, setting θi = π/2 for illustrative
purposes, we note that the modulus of the volume of the explored region of the manifold of pure states in Eq. (51)
is upper bounded by π/8, |VFS (η)| ≤ π/8. Therefore, at a time η, less than one eight of the accessible region of the

manifold is actually explored since V
(accessible)
FS = π. From Eq. (51), the average explored region as given in Eq. (4)

represents the IGC in Eq. (13) and turns into

CFS (τ) =
1

4
aFS

IVFS
(τ)

τ
. (52)

The function IVFS
(τ) in Eq. (52) is defined as the integral of VFS (η) with 0 ≤ η ≤ τ and is given by,

IVFS
(τ)

def
=

cFS√
c2FS − 1

arctan

[√
c2FS − 1 sin (τ)

]
− cos (τ) arctan [cFS tan (τ)] . (53)

The above mentioned integral was performed with the help of the Mathematica software. Furthermore, we remark
that IVFS

(τ) is a bounded function for any τ ≥ 0. The asymptotic temporal expression of the IGC CFS (τ) in Eq.
(52) will be compared with the one that we obtain in the case of mixed state evolutions with distinguishability metric
provided by gSjöqvistµν (ξ).

C. Evolution in the Bloch ball

1. Length

In what follows, we focus on calculating the length of geodesics in the unit Bloch ball that lay int the xz-plane

specified by the condition ϕ = 0. In the Sjöqvist metric case, recall that r′2
(
1− r2

)−1
= const.and θ̈ = 0. Therefore,

the length LSjöqvist (ηf ) is given by

LSjöqvist (ηf )
def
=

1

2

∫ ηf

0

√
1 +

r′2

1− r2
dθ

dη
dη =

1

2

√
1 +

r′2i
1− r2i

θ̇iηf , (54)
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or, alternatively,

LSjöqvist (θf )
def
=

1

2

√
θ2f +

[
sin−1 (rf )− sin−1 (ri)

]2
. (55)

Comparing Eqs. (55) and (50), we note that LSjöqvist reduces to LFS when rf = ri = 1. For rf 6= ri, we generally
have

LSjöqvist (θf ) ≥ LFS (θf ) . (56)

Eq. (56) implies that the length of a geodesic path connecting two arbitrary points Pi
def
= (ri, θi, 0) and Pf

def
=

(rf , θf , 0) with ri 6= rf in the Bloch ball laying in the xz-plane (i.e., ϕ = 0) is longer than the length of two arbitrary

points P̃i
def
= (θi, 0) and P̃f

def
= (θf , 0) laying on the Bloch sphere with ri = rf = 1 that intercepts the xz-plane (i.e.,

ϕ = 0). Eq. (56) hints to what might happen when comparing the information geometric complexity of the evolutions
of pure and quantum states as we shall see shortly. Complexities are expressed in terms of volumes. In parametric
spaces of dimension higher than one, relations between length and volumes are not straightforward. Therefore, we
could not easily take the hint as a “proof” of the higher complexity of the evolution of mixed quantum states. For
this reason, we actually estimate this quantity in an explicit manner in the following subsection.

2. Complexity

From the Sjöqvist metric ds2Sjöqvist in Eq. (39), we observe that the determinant of the metric tensor gSjöqvistµν

satisfies the relation

gSjöqvist (r, θ, ϕ) =
1

64

sin2 (θ)

1− r2
. (57)

Therefore, making use of Eqs. (43) and (29), the instantaneous explored volume region VSjöqvist (η) as given in Eq.
(5) turns into

VSjöqvist (η) =
1

8
aFS

ṙi√
1− r2i

η sin (η) arctan [cFS tan (η)] . (58)

Recall that a2FS
def
= 1 − c2FS with cFS = cFS (θi, ϕ̇i)

def
= ϕ̇i sin

2 (θi) = const. Then, putting θi = π/2 for simplicity, we
observe that the modulus |VSjöqvist (η)| of the volume of the explored region of the manifold of mixed states in Eq.

(58) is upper bounded by a function that grows linearly with η with proportionality coefficient given by ṙi/
√
1− r2i

and not by a constant function as in the case of the evolution of pure quantum states. Moreover, recalling that

V
(accessible)
Sjöqvist = π2/4 ≤ π = V

(accessible)
FS , we clearly expect a more complex behavior for sufficiently large values of η in

the case of the geometry along evolution of mixed states since

V
(explored)
Sjöqvist (η)

V
(accessible)
Sjöqvist

≥ V
(explored)
FS (η)

V
(accessible)
FS

. (59)

From Eq. (58), the average explored region as given in Eq. (4) denotes the IGC in Eq. (13) and becomes

CSjöqvist (τ) =
1

τ

∫ τ

0

VSjöqvist (η) dη, (60)

that is,

CSjöqvist (τ) =
1

8
aFS

ṙi√
1− r2i

1

τ

∫ τ

0

η sin (η) arctan [cFS tan (η)] dη. (61)

Denoting f (η)
def
= η and ġ (η)

def
= sin (η) arctan [cFS tan (η)], we integrate by parts the integral in Eq. (61) and get

∫ τ

0

η sin (η) arctan [cFS tan (η)] dη = [ηIVFS
(η)]

η=τ
η=0 −

∫ τ

0

IVFS
(η) dη. (62)
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Type of state Metric Sectional curvature Path length Information geometric complexity

Pure Fubini-Study Constant Shorter Lower

Mixed Sjöqvist Nonconstant Longer Higher

TABLE II: Schematic description of geometric properties (i.e., curvature, length, and complexity) along evolutions of pure and
mixed quantum states on manifolds equipped with the Fubini-Study and Sjöqvist metrics, respectively.

Note that g (η) = IVFS
(η) with IVFS

(η) given in Eq. (53). Finally, substituting Eq. (62) into Eq. (61) and considering
the asymptotic temporal behavior of CSjöqvist (τ), we obtain

Casymptotic
Sjöqvist (τ) =

1

8
aFS

ṙi√
1− r2i

Iasymptotic
VFS

(τ) . (63)

At this point, considering the ratio between Casymptotic
Sjöqvist (τ) in Eq. (63) and the asymptotic temporal behavior of CFS (τ)

in Eq. (52), we get that the relative asymptotic complexity growth in terms of a ratio exhibits a linear behavior given
by

Casymptotic
Sjöqvist (τ)

Casymptotic
FS (τ)

∼ τ . (64)

In the long-time limit, Eq. (64) expresses the fact that the evolution of mixed states in the Bloch ball equipped with
the Sjöqvist metric explores averaged volumes of regions larger that the ones inspected during the evolution of pure
states on the Bloch sphere supplied with the Fubini-Study metric. In particular, there appears to be an asymptotic
linear growth of the ratio between the two IGCs. Finally, in terms of the IGE defined in Eq. (3), we obtain an
asymptotic entropy growth of the relative difference between the two IGEs given by

Sasymptotic
Sjöqvist (τ)− Sasymptotic

FS (τ) ∼ log (τ) . (65)

Eqs. (65) displays the asymptotic logarithmic discrepancy between the IGE in the mixed and pure quantum state
scenarios. Since the IGC is simply the exponential of the IGE, we can interpret this entropic deviation as follows. To
a larger IGE there corresponds a larger IGC. Larger IGCs are larger asymptotic averaged explored volumes. Larger
volumes encode, via the metric, larger fluctuations. The larger the fluctuations, the closer the points (i.e., the states)
are together. The closer points are together, the greater is the likelihood of incorrectly distinguishing quantum states
during the evolutions of the quantum system. This, in turn, leads to higher entropic configurations which are typical of
quantum systems in a mixed quantum state. Note that Eqs. (56), (59), (64), and (65) are non-conflicting and consis-
tent relations in support of arguments yielding to a higher degree of complexity of evolutions of mixed states compared
to pure quantum states from a geometric perspective. Indeed, Eq. (56) is an inequality in terms of lengths. Eq. (59) is
an inequality between ratios expressed by means of accessible and instantaneous explored volumes. Finally, Eqs. (64)
and (65) are complexity and entropic relations that are expressed by means of long-time limits of averaged explored
volumes of regions on and inside the Bloch ball. Interestingly, note that the asymptotic temporal rates of change of
the two IGCs in Eq. (64) scale in a similar fashion, dCasymptotic

Sjöqvist /dτ ∼ dCasymptotic
FS /dτ . This is a consequence of a bal-

ancing effect that occurs between the asymptotic averaged explored volumes, V̄ asymptotic
Sjöqvist ∼ τV̄ asymptotic

FS , and between

the asymptotic temporal rates of change of the averaged explored volumes, dV̄ asymptotic
FS /dτ ∼ (1/τ)dV̄ asymptotic

Sjöqvist /dτ .
From a curvature analysis perspective, the manifold of pure states equipped with the Fubini-Study metric is an
isotropic two-dimensional manifold of constant positive sectional curvature KFS = 4 and constant scalar curvature
RFS = 8. Instead, the manifold of mixed states equipped with the Sjöqvist metric is an anisotropic three-dimensional
manifold of non-constant but positive sectional curvature and constant scalar curvature RSjöqvist = 8. The positivity
of sectional curvatures in both scenarios leads to the presence of convergence in the geodesic spread analysis on both
manifolds. However, given the anisotropic nature in the mixed quantum states manifold with the Sjöqvist metric, the
study of the geodesic spread equation would be more complicated in the scenario of mixed states distinguished via
the Sjöqvist metric. Our remarks concerning the asymptotic rates of change of volumes and IGEs are an indication
of this distinct convergent behavior in the pure and mixed quantum states scenarios. For further details on curvature
properties along with a comparison between the Sjöqvist and Bures manifolds, we refer to Appendix E.
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V. PHYSICAL CONSIDERATIONS

In this section, we present physical comments on the concepts of metric, path length, and curvature employed in our
investigation. Moreover, we clarify the physics behind the evolution of quantum states on curved manifolds in terms
of Bloch coordinates. These comments will help highlighting even further the physical significance of our proposed
complexity measure in Eq. (13).

A. Metric, path length, and curvature

For completeness, we begin by recalling that in quantum mechanics a physical state is not represented by a normal-
ized state vector |ψ (t)〉 ∈ H\ {0} but by a ray. A ray is the one-dimensional subspace to which this vector belongs.
Two normalized vectors are equivalent, |ψ′〉 ∼ |ψ〉, if they belong to the same ray, i.e., if |ψ′〉 = eiφ |ψ〉 with φ ∈ U (1).
This equivalence relation specifies equivalence classes on the sphere S2NH+1, with dimC H = NH + 1. Finally, the set
of equivalence classes S2NH+1/U(1) forms the space of physical states (rays) which is denoted here by P . The space
of rays is the projective Hilbert space P which, in turn, is isomorphic to the complex projective space CPN .

1. Metric

The metric (Eqs. (24), (39), and (40)) on the manifold of quantum states is fixed once the quantum mechanical
fluctuation in energy is specified [54]. Focusing on pure states, when the uncertainty ∆A (η) in the generator of
motion A (η) with respect to the parameter η in the projective Hilbert space P is provided, the metric

ds2FS = gµν (ξ)
dξµ

dη

dξν

dη
dη2 = ∆A2 (η) dη2 (66)

is fixed. In particular, assuming η = t and A (η) =H(t) /ℏ, we have that dsFS = [∆E (t) /ℏ] dt and the dispersion
∆E (t) of the generator of motion can originate from a variety of Hamiltonians H(t). Therefore, the geometry of the
projective Hilbert space, specified by the metric on it, cannot be modified by the dynamics of the system governed by
the Hamiltonian H(t) [64]. This was a major result obtained by Anandan and Aharonov in Ref. [65]. For pure states,
the distance function in the projective Hilbert space P is the distance between two quantum states along a given
curve in P as measured by the Fubini-Study metric defined from the inner product of the representative states in the
(NH + 1)-dimensional Hilbert space H. Anandan and Aharonov showed that this distance equals the time integral of
the uncertainty of the energy, and does not depend on the particular Hamiltonian used to move the quantum system
along a given curve in P . It is dependent only on the points in P to which the quantum states project. In summary,
from a physics standpoint, the metric tensor and its components on the projective Hilbert space P are linked to the
dispersion of suitable quantum-mechanical operators (for instance, the Hamiltonian operator) acting on the underling
Hilbert space H. This connection between metrics and quantum fluctuations is an important physical consideration
to keep in mind throughout our work. This connection extends to the geometric analysis of quantum mixed states as
well [52, 66, 67].

2. Path length

To explain the physical meaning of the Riemannian distance (Eqs. (49) and (54)) between two arbitrarily chosen
pure quantum states, we follow Wootters [49]. For mixed states, we hint to the work by Braunstein and Caves
in Ref. [50]. Two infinitesimally close points ξ and ξ + dξ along a path ξ (η) with η1 ≤ η ≤ η2 are statistically
distinguishable if dξ is at least equal to the standard fluctuation of ξ [61]. The line element along the path is dsFS

with ds2FS = gFSµν (ξ) dξµdξν . The length of the path ξ (η) with η1 ≤ η ≤ η2 between ξ1
def
= ξ (η1) and ξ2

def
= ξ (η2) is

defined as

L def
=

∫ ξ2

ξ1

√
ds2FS =

∫ η2

η1

√
ds2FS
dη2

dη, (67)

and represents the maximal number Ñ of statistically distinguishable states along the path. In particular, the geodesic
distance between ξ1 and ξ2 is the path of shortest distance between ξ1 and ξ2 and is the minimum of Ñ . This connection
between path length and number of statistically distinguishable states along the path is a relevant physical remark to
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consider throughout our investigation. This viewpoint extends naturally to the geometric analysis of quantum mixed
states as well [50].

3. Curvature

What is the physical significance of curvature (Appendix E) in our investigation? We recall that in the Riemannian
geometrization of classical Newtonian mechanics [1], the curvature R of the manifold corresponds, roughly speaking,
to the curvature of the potential V expressed by means of the second derivative of V , R ∼ ∂2V , with the Hamiltonian
of the system given by H(p, q) = p2/(2m) + V (q). More generally, in arbitrary differential geometric settings, the
curvature of the manifold determines the stability (or, alternatively, the instability) of the geodesics via the Jacobi
equation of geodesic spread. This latter curvature interpretation remains valid in our work. However, we can provide
a more specific interpretation for the concept of curvature in our analysis. As pointed out by Braunstein and Caves
in Ref. [68], unlike what happens in general relativity, the geometry on the space of quantum states does not describe
the dynamical evolution of the physical system. Rather, it places limits on our ability to discriminate one state from
another via measurements. In a sense, the geometry of quantum states puts the emphasis on the fact that quantum
mechanics is rooted in making statistical inferences based on observed experimental data. Quantum measurement
theory, in turn, is statistical inference in its essence [69]. Therefore, given the fact that the problem of distinguishing
neighboring quantum states can be formulated as a parameter estimation problem [50], given that quantum mechanics
can be regarded as a theory for making statistical inferences based on observed experimental data [69], and, finally,
since the curvature of a manifold is a measure of how difficult is to do estimations at a given point in statistical science
[70], it is reasonable to interpret the curvature of a manifold of quantum states equipped with suitably defined metric
structures as an indicator of how difficult is to distinguish quantum states by means of parameter estimation at a
given point of the state space. In particular, the higher the curvature, the more difficult is to do estimation at that
point. This is the point of view that we adopt in this paper. For remarks on a physical interpretation of curvature of
manifolds underlying the information geometry of non-interacting gases satisfying the Fermi-Dirac and Bose-Einstein
statistics, we refer to Ref. [71]. Finally, for a work on the estimation of the curvature of a quantum manifold via
measurement on a quantum particle constrained to propagate on the manifold itself, we hint to Ref. [72].

B. Evolution of Bloch coordinates

Having clarified the meaning of metric, path length, and curvature employed in our work we devote some time
explaining the relation between Bloch coordinates and quantum states on the Bloch sphere and inside the Bloch ball

(Appendix A, C, and D). Let us point out from the start that in our work ξµ (η)
def
=
(
ξ1 (η) , ξ2 (η) , ξ3 (η)

)
in Eq.

(66) is specified by the Bloch coordinates, that is, ξµ (η) = (r (η) , θ (η) , ϕ (η)). In this paper, we focused on the
integration of evolution equations for Bloch coordinates used to parametrize quantum states, either pure or mixed.
This choice was not dictated by mathematical convenience only. Indeed, there is a clear physical path connecting
Bloch coordinates, Bloch vectors, and, finally, pure and mixed quantum states. For simplicity, we set η = t in this
discussion. We observe that from the time evolution of the Bloch coordinates, both radial and angular, one can
generally recover the time evolution of the density operators for arbitrary quantum states via the time evolution of
the Bloch vector. Conversely, the opposite is also possible. For a detailed study concerning the time evolution of the
Bloch vector of a single two-level atom that interacts with a single quantized electromagnetic field mode according to
the Jaynes-Cummings model, we refer to Ref. [73]. To be explicit here, we note that the Bloch vector ~p (t) is defined
as

~p (t)
def
= tr [ρ (t)~σ] = (r sin θ cosϕ, r sin θ sinϕ, r cos θ) , (68)

with r = r (t), θ = θ (t), and ϕ = ϕ (t). Focusing for simplicity on the case of unitary quantum evolution, the density

operator ρ (t) = (1/2) [I + ~p (t) · ~σ] in Eq. (68) satisfies the von Neumann equation iℏρ̇ = [H (t) , ρ (t)] with ρ̇
def
= dρ/dt

and I denoting the identity operator on the single-qubit quantum state space. Moreover, for a system in a pure state
that evolves under a time independent Hamiltonian H, ρ (t) = |ψ (t)〉 〈ψ (t)| = U (t) ρ (0)U † (t) with U (t) being the
unitary time evolution operator given by exp [−(i/ℏ)Ht] and |ψ (t)〉 = cos [θ (t) /2] |0〉 + eiϕ(t) sin [θ (t) /2] |1〉 in the
Bloch sphere parametrization. To make very clear this link among Bloch coordinates, Bloch vectors, pure states,
and mixed states, we consider a simple illustrative example for pure states evolution. Assume the system, a spin-1/2
particle, is initially in the state |ψ (0)〉 parametrized in terms of (θ (0) , ϕ (0)) = (π/2, 0). Solving the Schrödinger’s



17

evolution equation iℏ∂t |ψ (t)〉 =H(t) |ψ (t)〉 with H
def
= ℏω0σz , we get

ρ (t) = |ψ (t)〉 〈ψ (t)| = 1

2

(
1 e−2iωot

e2iωot 1

)
=

1

2
[I + ~p (t) · ~σ] , (69)

with ~p (t) = (cos (2ω0t) , sin (2ω0t) , 0). Furthermore, the Bloch angles at time t become (θ (t) , ϕ (t)) = (π/2, 2ω0t).
In general, the state |ψ (t)〉 = U (t) |ψ (0)〉 can be parametrized as |ψ (t)〉 = a (t) |0〉 + b (t) |1〉 with C ∋ a (t) =

|a (t)| eiϕa(t), C ∋ b (t) = |b (t)| eiϕb(t), ϕa, b (t) ∈ R, and |a (t)|2 + |b (t)|2 = 1. With this pure state parametrization,
the Bloch angles θ (t) and ϕ (t) satisfy the relations, tan [θ (t)] = |b (t)| / |a (t)| and ϕ (t) = ϕb (t)−ϕa (t), respectively.
Having clarified the physical meaning of geometrical concepts employed in our analysis, the main take-home message

is the following. We have estimated in this paper the complexity of geodesic paths of both pure and mixed quantum
states by means of a complexity measure (Eq. (13)) expressed in terms of explored volumes of the suitably metricized
curved manifolds that underlay the dynamics (i.e., the change in Bloch parameters, with changes specified by the
parametric evolution operator). The metric structure on the curved manifolds of quantum states is fixed by quantum-
mechanical fluctuations. Moreover, just as path lengths can be interpreted in terms of the maximal number of
distinguishable states traversed during the evolution along the path, the volumes of the parametric space explored in
a fixed temporal interval can be regarded as representing the maximal number of different states visited during the
regional exploration. Clearly, the role played by the infinitesimal increment dξ in the path exploration is replaced by

the infinitesimal volume element dV
def
=
√
g (ξ)dNξ in the regional travel, with g (ξ)

def
= det [gµν (ξ)] and N being the

dimensionality of the curved manifold. Essentially, the Riemannian volume element dV helps gauging the number
of distinct states explored within an infinitesimal volume of a region of the manifold [74]. We are ready now for our
conclusions.

VI. CONCLUDING REMARKS

We present here a summary of our main findings along with limitations and possible future directions.

A. Summary of results

In this paper, we provided a comparative information geometric analysis of the complexity of geodesic paths of
pure and mixed quantum states on the Bloch sphere and inside the Bloch ball, respectively. In this geometric setting,
pure and mixed states were chosen to be distinguished by means of the Fubini-Study (Eq. (24)) and the Sjöqvist
metric (Eq. (39)), respectively. After finding the geodesic paths connecting arbitrary points on (see Appendix A) and
inside the Bloch ball (see Appendix C), we analytically estimated the IGE (Eq. (3)) and the IGC (Eq. (13)) in both
scenarios. The long-time limit of this pair of entropic measures of complexity of evolution of system in pure (see Eq.
(52)) and mixed (see Eq. (63)) states were compared. We observed a degree of complexity for the evolution of mixed
states with the Sjöqvist geometry higher than the one specifying the complexity for the evolution of pure states with
the Fubini-Study geometry (see Eqs. (64) and (65)).
The metric structure on the manifold of quantum states is specified by quantum fluctuations. Path lengths and

volumes can be physically interpreted as indicators of the maximal number of distinguishable states crossed along
trajectories and in volumes of regions of the manifold, respectively. To a higher count of distinct states passed over
in a fixed time interval, there corresponds a higher degree of complexity of the evolution on the underlying manifold.
Within this physically meaningful geometric description, mixed state (geodesic) evolutions appear to be generally
more complex than pure state evolutions.
Our main findings can be outlined as follows:

[1] We proposed a different information geometric way (Eqs. (3) and (13)) to describe and, to a certain extent,
understand the complex behavior of evolutions of quantum systems in pure and mixed states. The ranking is
probabilistic in nature, it requires a temporal averaging procedure along with a long-time limit, and is limited
to comparing expected geodesic evolutions on the underlying manifolds.

[2] We showed (Eqs. (64) and (65)) that the complexity of geodesic paths (Appendix C) corresponding to the
evolution of mixed quantum states in the Bloch ball equipped with the Sjöqvist metric is higher than the
complexity of geodesic paths (Appendix A) arising from the evolution of pure states on the Bloch sphere
furnished with the Fubini-Study metric.
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Metric Sectional curvature Path length Information geometric complexity

Sjöqvist Nonconstant Longer Stronger

Bures Constant Shorter Weaker

TABLE III: Schematic description of distinct features of the Sjöqvist and Bures metrics in terms of sectional curvatures, path
lengths, and information geometric complexities.

[3] We found that the ranking in terms of the information geometric complexity (64), a quantity that represents
the asymptotic temporal behavior of an averaged volume of the region explored on the manifold during the
evolution, is in agreement with the ranking in terms of lengths (Eq. (56)) and, in addition, volume ratios in
terms of accessible and instantaneous explored volumes (59). For a schematic summary, we refer to Table II.

[4] We confirmed that the choice of the metric on the space of mixed states matters. Specifically, we observed
fingerprints of a softening of the complexity on the Bures manifold (Eq. (D20)) compared to the Sjöqvist
manifold. This is in agreement with the presence of longer lengths of geodesic paths on the Sjöqvist manifold
(Eq. (D19)). Furthermore, the two manifolds exhibit different curvature properties. The Bures manifold is
isotropic, while the Sjöqvist manifold is anisotropic (Appendix E). For a schematic outline, we hint to Table III.

B. Outlook

Like most scientific studies, our investigation suffers a few limitations. From a computational standpoint, our pro-
posed complexity measure requires volume calculations which are much harder than action or path length calculations
since there are differential equations to be solved. This particular point is in agreement with what stated in Ref. [9].
Therefore, exact analytical solutions are rare and approximate numerical solutions are unavoidable in more realistic
physical scenarios. From a conceptual perspective, there are at least two weaknesses. First, there is a freedom in the
choice of the metric for mixed quantum states. For further details on the Sjöqvist metric that concern its extension
to the degenerate case along with its relation to the Bures metric, we refer to Appendix F. Second, we only limited
our work to the study of two-level quantum systems. The ambiguity in the metric affects the notion of speed which,
in turn, is related to the concepts of length, action, and complexity. The dependence of the ratio of distance and
time on the choice of the metric on the space of mixed quantum states is in agreement with the considerations carried
out in Ref. [75]. The restriction to a single qubit, while simple and insightful, cannot be expected to cover the full
richness of a higher-dimensional quantum dynamics occurring in an exponentially larger Hilbert space. In particular,
scaling laws with respect to the dimensionality of the Hilbert space of suitable physical quantities cannot be addressed
in this limiting scenario. Moreover, one fundamental quantum phenomenon that escapes a single qubit treatment is
entanglement. This second limitation is similar to the one presented in Ref. [10].
Despite these limitations, we believe our work is relevant also in view of the fact that it paves the way to further

lines of inquiry. For instance, it naturally triggers the following questions: 1) Using our findings along with the
ones presented in Refs. [3, 10], can one compare the complexity of geodesic motion on differently deformed Bloch
spheres by adding anisotropic penalty factors to the Fubini-Study metric?; 2) What happens to the evolution of
mixed states inside a deformed Bloch ball when introducing anisotropic penalty factors? Is the relative ranking in
terms of complexity between pure and mixed states preserved under any arbitrary deformations of the Bloch sphere?;
3) Can one compare the complexity of geodesic paths on a deformed Bloch sphere with the complexity of geodesic
paths in a non deformed Bloch ball? 4) Is there a minimal complexity metric for mixed quantum states?; 5) Using
our curvature calculations and the analysis presented in Ref. [11], how much does one need to deform the Bloch
sphere ( that is, introducing anisotropic penalty factors to get negative sectional curvature) and how high should the
dimensionality of a quantum system be in order to address the issue of ergodicity and properly apply thermodynamic
arguments to complexity evolution? The introduction of anisotropic penalty factors can be motivated by experimental
considerations. For example, considering a spin-1/2 particle in an external magnetic field, it may be the case that
is is easier to apply the field in some direction rather that in another. In this case, the penalty factor would be
larger where it is more complicated to apply the field. Incorporating these factors in our analysis would open up to
lines of investigation of relevance in the context of finding optimal Hamiltonian evolutions, both in terms of efficiency
[38, 39, 76–80] and complexity [40, 41], in the presence of physical constraints dictated by experimental limitations.
We hope our work will inspire other scientists and pave the way toward further investigations in this fascinating

research direction. For the time being, we leave a more in-depth quantitative discussion on these potential extensions
and applications of our theoretical findings to future scientific efforts.
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Appendix A: Geodesic paths on the Bloch sphere

In this Appendix, we derive the geodesic paths on the two-sphere. In the first derivation, we use simple geometric
arguments to obtain the equation of a great circle in spherical coordinates. In the second derivation, we integrate the
geodesic equations to get explicit expressions of geodesic paths θ = θ (η) and ϕ = ϕ (η). Then, combining the geodesic
paths equations, we show that we also get the equation of a great circle in spherical coordinates that matches our
first derivation.

1. Geometric derivation

Geodesics on the two-sphere lie on great circles. Great circles, in turn, can be obtained by intersecting a plane
passing through the origin in R3 with the two-sphere. Assume that the equations of the plane and the two-sphere of
unit radius are given by,

αx+ βy + γz = 0, and x2 + y2 + z2 = 1, (A1)

respectively. In Eq. (A1), α, β, and γ belong to R. Using spherical coordinates, we set x
def
= sin (θ) cos (ϕ),

y
def
= sin (θ) sin (ϕ), and z

def
= cos (θ). Finally, combining the two relations in Eq. (A1), we get the equation of a

great circle in spherical coordinates

cot (θ) = ±a cos (ϕ− ϕ̄) . (A2)

The constants a and ϕ̄ in Eq. (A2) are such that a2
def
=
(
α2 + β2

)
/γ2 and tan (ϕ̄)

def
= β/α, respectively.

2. Dynamics derivation

Consider the system of two coupled second order nonlinear ODEs,





d2θ
dη2 − sin (θ) cos (θ)

(
dϕ
dη

)2
= 0

d2ϕ
dη2 + 2 cos(θ)

sin(θ)
dθ
dη

dϕ
dη = 0

. (A3)

Note that the second relation in Eq. (A3) is equivalent to,

d

dη

(
dϕ

dη
sin2 (θ)

)
= 0, (A4)

that is,

(
dϕ

dη

)2

=
c2FS

sin4 (θ)
, (A5)

with cFS = cFS (θi, ϕ̇i)
def
= ϕ̇i sin

2 (θi) being a real constant where θi
def
= θ (ηi) and ϕ̇i

def
= (dϕ/dη)η=ηi

with ηi set equal
to zero. Using Eq. (A5), the first relation in Eq. (A3) yields

d2θ

dη2
= c2FS

cos (θ)

sin3 (θ)
. (A6)

From Eqs. (A5) and (A6), we note that the original system of coupled ODEs in Eq. (A3) can be uncoupled. However,
Eq. (A6) is nonlinear and we shall use some tricks to find a way of integrating it. Imposing the unit-speed condition,

θ̇2 + ϕ̇2 sin2 (θ) = const.with const. = 1, we employ Eqs. (A5) and (A6) to get

∫
dη = ±

∫
sin (θ)√

sin2 (θ)− c2FS

dθ. (A7)
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Let us perform a change of variables and put ǫ
def
= cos (θ). Then, integration of Eq. (A7) yields

η = ηi ±
[
arctan

(
ǫi√

a2FS − ǫ2i

)
− arctan

(
ǫ√

a2FS − ǫ2

)]
, (A8)

where a2FS
def
= 1 − c2FS. For simplicity, assume θi

def
= θ (ηi) = cos−1 (ǫi) = π/2 with ηi = 0. Then, ǫi = 0 and

manipulation of Eq. (A8) yields

cos (θ) = ±aFS sin (η) . (A9)

We remark that for an arbitrary θi, the analogue of Eq. (A9) squared is simply given by

cos2 (θ) = a2FS sin
2

[
η + arctan

(
ǫi√

a2FS − ǫ2i

)]
. (A10)

As a consistency check, we note that for ηi = 0, Eq. (A10) correctly yields

cos2 (θi) = a2FS sin
2

[
arctan

(
ǫi√

a2FS − ǫ2i

)]
= ǫ2i . (A11)

We also point out here that we could have set ṽ2FS
def
= θ̇2 + ϕ̇2 sin2 (θ) = const.with const. 6= 1. Then, Eq. (A9) would

simply become cos (θ) = ±aFS sin (ṽFSη) with a2FS
def
= 1 − (cFS/ṽFS)

2
. Eq. (A9) allows us to express θ = θ (η). Next,

we need to find the relation ϕ = ϕ (η). Using Eqs. (A5) and (A9), we get

dϕ

dη
=

cFS

1− a2FS sin
2 (η)

. (A12)

Integration of Eq. (A12) leads to,

ϕ (η) = ϕi +
cFS√

−1 + a2FS
tanh−1

[√
−1 + a2FS tan (η)

]
. (A13)

Note that
√
−1 + a2FS = icFS, with i ∈ C denoting the imaginary unit. Furthermore, recalling from Ref. [81] that

the inverse hyperbolic tangent function of a complex variable satisfies the relation tanh−1 (z) = −i tan−1 (iz), setting

z
def
= ix with x ∈ R and z ∈ C, we obtain

−i tanh−1 (ix) = arctan (x) . (A14)

Finally, using Eqs. (A13) and (A14), we get

ϕ (η) = ϕi + tan−1 [cFS tan (η)] , (A15)

that is,

tan [ϕ (η)− ϕi] = cFS tan (η) . (A16)

For completeness, we point out that using Eqs. (A9) and (A16) along with the following two trigonometric identities,

cos2 (θ) =
cot2 (θ)

1 + cot2 (θ)
, and sin2 (η) =

tan2 (η)

1 + tan2 (η)
, (A17)

we get after some straightforward algebraic manipulations the equation of a great circle,

cot (θ) = ±
√

1− c2FS
c2FS

sin (ϕ− ϕi) . (A18)

Eq. (A18) is identical to Eq. (A2) once we identify a and ϕ̄ with

√
1−c2

FS

c2
FS

and ϕi + π/2, respectively.



24

Appendix B: The Bures infinitesimal line element

In this Appendix, we derive Eq. (40). Recall that for the single qubit case the Bures distance between two
infinitesimally close density matrices ρ and ρ+ dρ is given by [82],

ds2Bures
def
=

1

2

1∑

n,m=0

|〈em|dρ|en〉|2
pm + pn

, (B1)

where {|en〉}n=0,1 is an orthonormal basis of eigenvectors of ρ with eigenvalues {pn}n=0,1. Therefore, ρ = p0 |e0〉 〈e0|+
p1 |e1〉 〈e1|. From the expression of ρ in Eq. (34), we get

dρ =
∂ρ

∂r
dr +

∂ρ

∂θ
dθ +

∂ρ

∂ϕ
dϕ, (B2)

that is,

dρ =
1

2

(
cos (θ) dr − r sin (θ) dθ e−iϕ [sin (θ) dr + r cos (θ)− ir sin (θ) dϕ]

eiϕ [sin (θ) dr + r cos (θ) + ir sin (θ) dϕ] − cos (θ) dr + r sin (θ) dθ

)
. (B3)

Finally, using Eqs. (36), (37), (38), and (B3), ds2Bures in Eq. (B1) reduces to ds2Bures in Eq. (40). For further details
on the Bures metric for high-dimensional quantum systems, we refer to Refs. [83, 84].

Appendix C: Geodesic paths in the Bloch ball with the Sjöqvist metric

In this Appendix, we study the geodesic paths in the Bloch ball using the Sjöqvist metric. Recall that the form of
the geodesic equation remains unchanged under affine transformations. An affine transformation of a parameter η is
the change of variable η → η′ = ã η+ b̃, with ã and b̃ in R. Any other transformation will generate extra terms in the
geodesic equation [85]. The affine parameter for a geodesic is unique up to an affine change of variables. Therefore, it
is important to keep in mind that geodesics are curves with a preferred parametrization. In what follows, we explicitly
analyze geodesic paths parametrized in terms of two distinct affine parametrizations.

1. The Sjöqvist θ-affine parametrization

In Ref. [52], Sjöqvist focused on finding geodesic paths connecting points in the Bloch ball laying in a plane that
contains the origin. In other words, using spherical coordinates (r, θ, ϕ) and keeping ϕ =const., geodesics were
obtained by minimizing

∫
dsSjöqvist over all curves connecting points (ri, θi) and (rf , θf ). More specifically, one

obtains the curve [θi, θf ] ∋ θ 7→ rSjöqvist (θ) ∈ (0, 1] that minimizes the length LSjöqvist (θi, θf ) defined as

LSjöqvist (θi, θf )
def
=

∫ sf

si

√
ds2Sjöqvist =

1

2

∫ θf

θi

L (r′, r, θ) dθ. (C1)

In Eq. (C1), r′
def
= dr/dθ and L (r′, r, θ) is the Lagrangian-like function given by

L (r′, r, θ)
def
=

√
1 +

r′2

1− r2
. (C2)

From Eq. (C2), note that L = L (r′, r) does not depend explicitly on θ. Therefore, ∂L/∂θ = 0. In this case, it
happens that the Euler-Lagrange equation

d

dθ

∂L (r′, r)

∂r′
− ∂L (r′, r)

∂r
= 0, (C3)

reduces to the so-called Beltrami identity,

L (r′, r)− r′
∂L (r′, r)

∂r′
= const. (C4)
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Indeed, combining Eq. (C3) with the identity

dL (r′, r)

dθ
=
∂L (r′, r)

∂r′
r′′ +

∂L (r′, r)

∂r
r′, (C5)

we get

dL (r′, r)

dθ
=

d

dθ

(
r′
∂L (r′, r)

∂r′

)
. (C6)

Eq. (C6) finally leads to the Beltrami identity in Eq. (C4). Using Eqs. (C2) and (C4), we get

1√
1 + r′2

1−r2

= const. ≡ cS, (C7)

that is,

r′2

1− r2
= const. ≡ k

def
=

1− c2S
c2S

, (C8)

Integrating Eq. (C8) and imposing the boundary conditions r (θi) = ri and r (θf ) = rf with θi = 0, we finally get the
geodesic path

rSjöqvist (θ) = sin

[
sin−1 (ri) +

sin−1 (rf )− sin−1 (ri)

θf
θ

]
. (C9)

Evaluating Eq. (C7) at θi = 0 and using Eq. (C9), we note that the constant cS can be expressed in terms of ri, rf ,
and θf as

cS = cS (ri, rf , θf )
def
=

θf√
θ2f +

[
sin−1 (rf )− sin−1 (ri)

]2 , (C10)

with 0 ≤ cS ≤ 1, as correctly expected. For completeness, we point out that in terms of initial conditions r (θi) = ri
and r′ (θi) = r′i with θi = 0, rSjöqvist (θ) in Eq. (C9) can be recast as

rSjöqvist (θ) = sin

[
sin−1 (ri) +

r′i√
1− r2i

θ

]
, (C11)

where we used cos
[
sin−1 (ri)

]
=
√
1− r2i in the raw solution of the form r (θ) = sin (c1θ + c2) with real integrations

constants c1 and c2. As a final remark, observe from Eq. (C9) that θ plays the role of the affine parameter that
characterizes the points on the curve of minimal length connecting the initial and final points in the Bloch ball.

2. The canonical η-affine parametrization

To find the geodesic paths in the Bloch ball suing the Sjöqvist metric and parametrized in terms of the “canonical”
affine parameter η, we need to integrate Eq. (42). We note from Eq. (42) that the differential equations for the angular
and radial motion are not coupled. In particular, the angular motion is identical to the one that emerges when using
the Fubini-Study metric. Therefore, we refer to Appendix A for the characterization of the angular motion. Let us
focus here on the radial motion specified by the relation

r̈ +
r

1− r2
ṙ2 = 0, (C12)

with ṙ
def
= dr/dη. Assuming initial conditions given by r (ηi) = ri and ṙ (ηi) = ṙi with ηi = 0, integration of Eq. (C12)

yields

rSjöqvist (η) = sin

[
sin−1 (ri) +

ṙi√
1− r2i

η

]
. (C13)
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Eq. (C13) represents the radial geodesic path parametrized in terms of the affine parameter η, the time coordinate,
related to the proper length dsSjöqvist. Note that the speed of evolution along geodesic paths is constant and equals,

vSjöqvist
def
= (1/2)

[(
1− r2

)−1
ṙ2 + θ̇2 + sin2 (θ) ϕ̇2

]1/2
. (C14)

The constancy of vSjöqvist in Eq. (C14) can be verified by exploiting the constancy of vFS along with the constancy of(
1− r2

)−1
ṙ2 by means of Eq. (C13). Interestingly, assuming ϕ =const., the geodesic equation θ (η) becomes θ̈ = 0.

Therefore, assuming θ (ηi) = 0 and θ (ηf ) = θf , we get θ (η) = (θf/ηf ) η. Then, considering an affine change of

variables defined by η → θ = θ (η)
def
= (θf/ηf ) η, Eq. (C12) becomes

r′′ +
r

1− r2
r′2 = 0, (C15)

with r′
def
= dr/dη. Finally, assuming r (θi) = ri and r (θf ) = rf , integration of Eq. (C15) yields exactly rSjöqvist (θ) in

Eq. (C9).

Appendix D: Geodesic paths in the Bloch ball with the Bures metric

In this Appendix, we study the geodesic paths in the Bloch ball using the Bures metric.

1. The Sjöqvist-like θ-affine parametrization

Following the line of reasoning used in the Sjöqvist affine parametrization case in Appendix C, we use spherical
coordinates (r, θ, ϕ) and keep ϕ =const. Then, geodesics are obtained by minimizing

∫
dsBures over all curves

connecting points (ri, θi) and (rf , θf ). More specifically, one arrives at the curve [θi, θf ] ∋ θ 7→ rBures (θ) ∈ [0, 1]
that minimizes the length LBures (θi, θf ) defined as

LBures (θi, θf )
def
=

∫ sf

si

√
ds2Bures =

1

2

∫ θf

θi

L (r′, r, θ) dθ. (D1)

In Eq. (D1), r′
def
= dr/dθ and L (r′, r, θ) is the Lagrangian-like function given by

L (r′, r, θ)
def
=

√
r2 +

r′2

1− r2
. (D2)

From Eq. (D2), we follow step-by-step the analysis carried out in the Sjöqvist metric case and arrive at the following
analog of Eq. (C7)

r2√
r2 + r′2

1−r2

= const. ≡ cB. (D3)

Manipulating Eq. (D3) and imposing the boundary conditions r (θi) = ri and r (θf ) = rf with θi = 0, we obtain

∫ rf

ri

dr√
r2
(

r2

c2
B

− 1
)
(1− r2)

=

∫ θf

θi

dθ, (D4)

with 0 < cB ≤ r ≤ 1. For notational simplicity, let us put aB
def
= 1/c2B > 1. Then, integration of Eq. (D4) by use of

Mathematica gives

I (r)
def
=

∫
dr√

r2
(

r2

c2
B

− 1
)
(1− r2)

=
r
√
r2 − 1

√
aBr2 − 1√

−r2 (r2 − 1) (aBr2 − 1)
tanh−1

( √
r2 − 1√

aBr2 − 1

)
+ const. (D5)
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Manipulation of Eq. (D5) yields

I (r) = i tanh−1

(
i

√
1− r2√

aBr2 − 1

)
+ const., (D6)

that is,

I (r) = − arctan

( √
1− r2√

aBr2 − 1

)
+ const. (D7)

Substituting Eq. (D7) into Eq. (D5), we finally get that the radial geodesic path in the Bures case is given by

rBures (θ) =

{
1 + tan2 [A− (θ − θi)]

1 + aB tan2 [A− (θ − θi)]

}1/2

, (D8)

where the constant A in Eq. (D8) is defined as

A = A (ri, aB)
def
= arctan

( √
1− r2i√

aBr2i − 1

)
. (D9)

For consistency check, we note that we correctly obtain rBures (θi) = ri with rBures (θ) in Eq. (D8). Moreover,
0 ≤ rBures (θ) ≤ 1 since aB > 1 in Eq. (D8). Clearly, Eq. (D8) with θi set equal to zero should be compared, for a
given pair of initial conditions ri and r

′
i, with its corresponding analog in the framework of Sjöqvist metric (that is,

Eq. (C11)). Such comparison can be carried out once we express aB and A in Eq. (D8) in terms of ri and r
′
i. After

some algebra, it happens that

aB = aB (ri, r
′
i)

def
=

1

r2i
+

r′2i
r4i (1− r2i )

, and A = A (ri, r
′
i)

def
= tan−1

[
ri
r′i

(
1− r2i

)]
. (D10)

For completeness, we point out that aB and A can only be implicitly expressed in terms of the two boundary conditions
ri = r (θi) and rf = r (θf ) via the two relations

r2i =
1 + tan2 A

1 + aB tan2 A , and r2f =
1 + tan2 (A− θf )

1 + aB tan2 (A− θf )
. (D11)

Finally, setting θi = 0 and using Eq. (D10), rBures (θ) in Eq. (D8) can be formally compared with rSjöqvist (θ) in Eq.
(C11).

2. The canonical η-affine parametrization

From Eq. (40), the only nonvanishing Christoffel connection coefficients are

Γ1
11 =

r

1− r2
, Γ1

22 = −
(
1− r2

)
r, Γ1

33 = −
(
1− r2

)
r sin2 (θ) ,

Γ2
12 = Γ2

21 =
1

r
, Γ2

33 = − sin (θ) cos (θ) , (D12)

Γ3
13 = Γ3

31 =
1

r
, Γ3

23 = Γ3
32 =

cos (θ)

sin (θ)
.

Therefore, geodesics satisfy the geodesic equations in Eq. (11) described in terms of a system of three coupled second
order nonlinear ODEs,





r̈ + r
1−r2 ṙ

2 −
(
1− r2

)
r
[
θ̇2 + sin2 (θ) ϕ̇2

]
= 0

θ̈ + 2
r ṙθ̇ − sin (θ) cos (θ) ϕ̇2 = 0

ϕ̈+ 2
r ṙϕ̇+ 2 cos(θ)

sin(θ) θ̇ϕ̇ = 0

, (D13)
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where ṙ
def
= dr/dη with η being an affine parameter. We note from Eqs. (42) and (D13) that, unlike what happens

with the Sjöqvist metric, when using the Bures metric in the Bloch ball, the radial and angular evolutions are coupled.
Integration of the system in Eq. (D13) is rather complicated and, in what follows, we limit our attention to geodesic
paths with constant ϕ. In this case, Eq. (D13) reduces to

{
r̈ + r

1−r2 ṙ
2 −

(
1− r2

)
rθ̇2 = 0

θ̈ + 2
r ṙθ̇ = 0

. (D14)

Manipulating the second relation in Eq. (D14), we note that r2θ̇ = const.Then, given our knowledge of r = r (θ) in
Eq. (D8), we get

∫ θ

θi

r2 (θ) dθ = r2i θ̇iη, (D15)

where ηi is assumed to be equal to zero. Using Eq. (D8), integration of Eq. (D15) with Mathematica along with
some algebraic manipulations yield θ = θ (η) as

θBures (η) = θi +A− tan−1

{
1√
aB

tan
[
tan−1 (

√
aB tanA)−√

aBr
2
i θ̇iη

]}
. (D16)

Observe that θBures (η) is a bounded function for any η ≥ 0. For consistency, note that we correctly obtain from

Eq. (D16) that θBures (ηi) = θi and θ̇Bures (ηi) = θ̇i. Finally, using Eq. (D16) and recalling that r2θ̇ = r2i θ̇i, we get
r = r (η) as

rBures (η) =




aB + tan2
[
tan−1

(√
aB tanA

)
−√

aBr
2
i θ̇iη

]

aB + aB tan2
[
tan−1

(√
aB tanA

)
−√

aBr2i θ̇iη
]




1/2

. (D17)

Note that, 0 ≤ rBures (η) ≤ 1 for any η ≥ 0 since aB > 1 in Eq. (D17). As a side remark, note that the speed of
evolution along these geodesic paths with ϕ-fixed is constant and equals,

vBures
def
= (1/2)

[(
1− r2

)−1
ṙ2 + r2θ̇2

]1/2
. (D18)

The constancy of vBures in Eq. (D18) is a consequence of Eq. (D3) along with the constancy of r2θ̇. As a consistency

check, observe that Eq. (D17) correctly leads to rBures (ηi) = ri and r
2
Bures (η) θ̇Bures (η) = r2i θ̇i = const. Observe that

rBures (η) in Eq. (D17) is the analog of rSjöqvist (η) in Eq. (C13). It is evident from Eq. (D17) that the radial variable

rBures (η) depends on the angular motion via θ̇i and r
′
i = (dr/dθ)θ=θi . This latter quantity enters the expressions of

aB and A as presented in Eq. (D10).
In what follows, we briefly compare features that appear in the Bures and Sjöqvist cases. Using Eq. (D3) and

exploiting the constancy of r2θ̇, we have

LBures (θf ) =
1

2

√
r2i +

r′2i
1− r2i

θ̇iηf ≤ LSjöqvist (θf ) , (D19)

with LSjöqvist (θf ) in Eq. (54). Moreover, using Eqs. (A9), (C13), (D16), and (D17) and noting that V
(accessible)
Sjöqvist =

π2/4 = 2V
(accessible)
Bures , we get after some algebra that for sufficiently large values of η and fixing ϕ,

V
(explored)
Bures, ϕ=const. (η)

V
(accessible)
Bures

≤
V

(explored)
Sjöqvist, ϕ=const. (η)

V
(accessible)
Sjöqvist

. (D20)

In particular, the qualitative behavior of the explored volumes in Eq. (D20) is given by

VSjöqvist, ϕ=const (η) ∼ η cos−1 [sin (η)] , and VBures, ϕ=const (η) ∼
√

tan2 (η)

1 + tan2 (η)
tan−1 (η) . (D21)
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Since the sequential application of the averaging and asymptotic limit procedures preserve the ranking in Eq. (D20),
we expect that the complexity of the evolution on the Bures manifold is softer than that on the Sjöqvist manifold.
This is not completely unexpected given that LBures (θf ) ≤ LSjöqvist (θf ) and, above all, the presence of a correlational
structure in the equations of motion between the radial and angular directions. Such a structure is absent in the
Sjöqvist case. Correlational structures do tend to shrink the explored volumes of regions on the manifold underlying
the dynamics and, therefore, tend to weaken the complexity of the evolution [86, 87]. In summary, although Eq.
(D20) assumes ϕ = const., the information geometric complexity of the evolution of quantum systems in a mixed
quantum states seems to depend on the choice of the metric selected on the underlying manifold.

Appendix E: Curvature of quantum state manifolds

In this Appendix, we outline some curvature properties of the manifold of pure states equipped with the Fubini-
Study metric along with those of a manifold of mixed quantum states endowed with the Sjöqvist and Bures metrics. In
particular, for each case, we report expressions of the tensor metric components, infinitesimal line elements, Christoffel
connection coefficients, Ricci tensor components, Riemann curvature tensor components, scalar curvatures and, finally,
sectional curvatures.

1. Preliminaries

Given a metric tensor gµν (ξ) with corresponding line element ds2
def
= gµνdξ

µdξν , the Christoffel connection coeffi-
cients are defined as [88],

Γρ
µν

def
=

1

2
gρσ (∂µgσν + ∂νgµσ − ∂σgµν) , (E1)

where ∂µ
def
= ∂/∂ξµ and gρσ are the coefficients of the inverse metric tensor such that gρσgσβ

def
= δρβ with δ denoting the

Kronecker delta symbol. From the expression of the Christoffel connection coefficients in Eq. (E1), the Ricci tensor
and Riemann curvature tensor components can be defined as [88]

Rµν
def
= ∂αΓ

α
µν − ∂νΓ

α
µα + Γα

µνΓ
β
αβ − Γγ

µαΓ
α
νγ , (E2)

and,

Rα
µνρ

def
= ∂νΓ

α
µρ − ∂ρΓ

α
µν + Γα

βνΓ
β
µρ − Γα

βρΓ
β
µν , (E3)

respectively. In terms of the quantities in Eqs. (E2) and (E3), the scalar curvature R is given by

R def
= Rµνg

µν = Rαβγδg
αγgβδ. (E4)

We remark that the sign of the scalar curvature of a curved manifold is subject to convention. For instance, following
Weinberg’s sign convention [88], the scalar curvature of a two-sphere of unit radius equals −2. Here, however, we are

using the opposite sign convention. In Weinberg’s book, (Rµν)Weinberg

def
= −Rµν with Rµν in Eq. (E2). Adopting our

sign convention, the scalar curvature of a two-sphere of unit radius equals +2. The scalar curvature R of a manifold
M in Eq. (E4) can also be recast as the sum of all sectional curvatures K (êi, êj) of planes spanned by pairs {êi, êj}
of orthonormal basis elements {êk} with 1 ≤ k ≤ |TpM| [89],

R =
∑

i6=j

K (êi, êj) . (E5)

The pair {êi, êj} is a basis for a 2-plane Π ⊂ TPM, a two-dimensional subspace of the tangent space to M at P .
The sectional curvature K (êi, êj) is defined as [88],

K (êi, êj)
def
=

Riemann(êi, êj , êj, êi)

〈êi, êi〉 〈êj , êj〉 − 〈êi, êj〉2
(E6)

where Riemann(a, b, b, a)
def
= Rαβγδa

αbβbγaδ with a, b being two arbitrary vectors on the 2-plane Π spanned by

{êi, êj} and, finally, 〈a, b〉 def
= gµνa

µbν . The constancy of the sectional curvatures is related to the concept of maximally
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symmetric manifold. Specifically, an isotropic n-dimensional manifold M is a maximally symmetric manifold with
n(n+1)/2 independent Killing vectors where the geometry does not depend on directions. For a maximally symmetric
manifold, the following simplifying relations hold true among the scalar curvature R, the constant sectional curvature
K, the Ricci tensor components Rαβ , and the Riemann curvature tensor components Rαβγδ [90],

R = n(n− 1)K, Rαβ = (n− 1)Kgαβ , Rαβγδ =
R

n(n− 1)
(gβδgαγ − gβγgαδ) . (E7)

Isometries play a key role in the characterization of maximally symmetric manifolds. Recall that an isometry of the
metric gµν (ξ) is a distance-preserving transformation ξ → ξ′ such that [88],

gµν (ξ) =
∂ξ′ρ

∂ξµ
∂ξ′σ

∂ξν
gρσ (ξ

′) . (E8)

All the infinitesimal isometries of the metric gµν (ξ) are determined by the Killing vectors of the metric. Consider an

infinitesimal coordinate transformation ξµ → ξ′µ
def
= ξµ + ǫkµ (ξ), with |ǫ| ≪ 1. A vector field kµ (ξ) is a Killing vector

for the metric gµν (ξ) if it satisfies the so-called Killing condition,

Dρkσ +Dσkρ = 0, (E9)

where Dρkσ
def
= ∂ρkσ − Γλ

σρkλ and ∂ρ
def
= ∂/∂ξρ. For completeness, we point out that what really determines the

infinitesimal isometries of a metric gµν (ξ) is the space of vector fields spanned by the Killing vectors since any linear
combination of Killing vectors with constant coefficients is a Killing vector. In general, it is highly nontrivial solving
the Killing conditions in Eq. (E9).

2. Type of manifold

a. Manifold equipped with the Fubini-Study metric

In the case of the two-dimensional manifold of pure states equipped with the Fubini-Study metric gFSµν (ξ) with

ξ
def
=
(
ξ1, ξ2

)
= (θ, ϕ), the infinitesimal line element is given by ds2FS

def
= (1/4)

[
dθ2 + sin2 (θ) dϕ2

]
. In this case, the

nonzero Christoffel connection coefficients in Eq. (E1) are given by

Γ1
22 = − sin (θ) cos (θ) , and Γ2

12 =
cos (θ)

sin (θ)
. (E10)

Furthermore, using Eq. (E10), the nonzero Ricci and Riemann curvature tensor components in Eqs. (E2) and (E3)
are

R11 = 1, R22 = sin2 (θ) , (E11)

and,

R1212 =
1

4
sin2 (θ) , (E12)

respectively. For completeness, we point out that exploiting the symmetry properties of the Riemann curvature tensor,
we also have R1221 = R2112 = −R1212 and R2121 = R1212. To calculate the sectional curvatures K (êi, êj) in Eq.
(E6), we note that the unit tangent vectors {êr, êθ, êϕ} in spherical coordinates are given by

êr
def
=

∂r~r

‖∂r~r‖
= sin (θ) cos (ϕ) x̂+ sin (θ) sin (ϕ) ŷ + cos (θ) ẑ,

êθ
def
=

∂θ~r

‖∂θ~r‖
= cos (θ) cos (ϕ) x̂+ cos (θ) sin (ϕ) ŷ − sin (θ) ẑ,

êϕ
def
=

∂ϕ~r

‖∂ϕ~r‖
= − sin (ϕ) x̂+ cos (ϕ) ŷ, (E13)



31

where ~r
def
= r sin (θ) cos (ϕ) x̂+ r sin (θ) sin (ϕ) ŷ+ r cos (θ) ẑ, and ‖·‖ denotes the usual Euclidean norm. In the Fubini-

Study case, we have that ds2FS = dsFS·dsFS with the infinitesimal vector element dsFS given by

dsFS
def
=

1

2
êθdθ +

1

2
sin (θ) êϕdϕ, (E14)

where 1/2 and (1/2) sin (θ) in Eq. (E14) denote the so-called scale factors of the metric [91]. Then, inserting Eqs.
(E13) and (E12) into Eq. (E6), we find

KFS (êθ, êϕ) = KFS (êϕ, êθ) = 4. (E15)

Thus, from Eq. (E15), we conclude that the manifold of pure states equipped with the Fubini-Study metric is an
isotropic manifold of constant (positive) sectional curvature with (positive) constant Ricci curvature RFS = 8. As a

final remark, we emphasize that for a two-sphere with metric 4ds2FS
def
= dθ2+sin2 (θ) dϕ2, Killing vectors can be found

[92]

k1
def
= Lx/iℏ = sin (ϕ) ∂θ+cot (θ) cos (ϕ) ∂ϕ, k2

def
= Ly/iℏ = − cos (ϕ) ∂θ+cot (θ) sin (ϕ) ∂ϕ, k3

def
= Lz/iℏ = −∂ϕ. (E16)

Then, the most general Killing vector k is a linear combination of these three independent Killing vectors {k1, k2, k3}.
The three vectors describe rotations and are just the angular momentum operators {Lx, Ly, Lz}, the generators of
the three-dimensional rotation group SO (3; R), expressed in spherical coordinates [93].

b. Manifold equipped with the Sjöqvist metric

For the three-dimensional manifold of mixed states equipped with the Sjöqvist metric gSjöqvistµν (ξ) with ξ
def
=

(
ξ1, ξ2, ξ3

)
= (r, θ, ϕ), the infinitesimal line element is ds2Sjöqvist

def
= (1/4)

[(
1− r2

)−1
dr2 + dθ2 + sin2 (θ) dϕ2

]
. The

nonzero Christoffel connection coefficients in Eq. (E1) are

Γ1
11 =

r

1− r2
, Γ2

33 = − sin (θ) cos (θ) , and Γ3
23 =

cos (θ)

sin (θ)
. (E17)

Moreover, exploiting Eq. (E17), the non vanishing Ricci and Riemann curvature tensor components in Eqs. (E2) and
(E3) become

R22 = 1, R33 = sin2 (θ) , (E18)

and,

R2323 =
1

4
sin2 (θ) , (E19)

respectively. For completeness, we emphasize that exploiting the symmetry properties of the Riemann curvature
tensor, we also have R2332 = R3223 = −R2323 and R3232 = R2323. In the Sjöqvist metric, we have that ds2Sjöqvist =
dsSjöqvist·dsSjöqvist with the infinitesimal vector element dsSjöqvist defined as

dsSjöqvist
def
=

1

2

1√
1− r2

êrdr +
1

2
êθdθ +

1

2
sin (θ) êϕdϕ, (E20)

where(1/2) (1 − r2)−1/2, 1/2 and (1/2) sin (θ) in Eq. (E20) denote the so-called scale factors of the metric. Then,
inserting Eqs. (E13) and (E19) into Eq. (E6), we find

KSjöqvist (êθ, êϕ) = KSjöqvist (êϕ, êθ) = 4, (E21)

and,

KSjöqvist (êr, êθ) = KSjöqvist (êθ, êr) = KSjöqvist (êr, êϕ) = KSjöqvist (êϕ, êr) = 0. (E22)

Thus, from Eqs. (E21) and (E22), we conclude that the manifold of mixed states equipped with the Sjöqvist metric
is an anisotropic manifold of non-constant (positive) sectional curvature with an overall (positive) constant Ricci
curvature RSjöqvist = 8.
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c. Manifold equipped with the Bures metric

In the case of the three-dimensional manifold of mixed states equipped with the Bures metric

gBures
µν (ξ) with ξ

def
=

(
ξ1, ξ2, ξ3

)
= (r, θ, ϕ), the infinitesimal line element is given by ds2Bures

def
=

(1/4)
[(
1− r2

)−1
dr2 + r2dθ2 + r2 sin2 (θ) dϕ2

]
. In this case, the nonzero Christoffel connection coefficients in Eq.

(E1) are given by

Γ1
11 =

r

1− r2
, Γ1

22 = −r
(
1− r2

)
, Γ1

33 = −r
(
1− r2

)
sin2 (θ) , Γ2

12 =
1

r
,

Γ2
33 = − sin (θ) cos (θ) , Γ3

13 =
1

r
, Γ3

23 =
cos (θ)

sin (θ)
. (E23)

Furthermore, employing Eq. (E23), the nonzero Ricci and Riemann curvature tensor components in Eqs. (E2) and
(E3) are

R11 =
2

1− r2
, R22 = 2r2, R33 = 2r2 sin2 (θ) , (E24)

and, modulo symmetries of the Riemann curvature tensor,

R1212 =
1

4

r2

1− r2
, R1313 =

1

4

r2

1− r2
sin2 (θ) , R2323 =

1

4
r4 sin2 (θ) , (E25)

respectively. In the Bures case, we have that ds2Bures = dsBures·dsBures with the infinitesimal vector element dsBures

given by

dsBures
def
=

1

2

1√
1− r2

êrdr +
r

2
êθdθ +

r

2
sin (θ) êϕdϕ, (E26)

where (1/2) (1 − r2)−1/2, r/2 and (r/2) sin (θ) in Eq. (E26) are the scale factors of the metric. Then, inserting Eqs.
(E13) and (E25) into Eq. (E6), we find

KBures (êr, êθ) = KBures (êθ, êr) = KBures (êr, êϕ) = KBures (êϕ, êr) = KBures (êθ, êϕ) = KBures (êϕ, êθ) = 4. (E27)

Thus, from Eq. (E27), we conclude that the manifold of mixed states equipped with the Bures metric is an isotropic
manifold of constant (positive) sectional curvature with (positive) constant Ricci curvature RBures = 24.

Appendix F: Further details on the Sjöqvist metric

In this Appendix, we provide some comparative statements between the Bures and the Sjöqvist metrics. Further-
more, we briefly present the extension of the original Sjöqvist metric to degenerate mixed quantum states.

1. Comparison with the Bures metric

Following the Morozova-Cencov-Petz theorem as reported in Ref. [84], every (Riemannian and monotone) metric
in the Bloch ball at a point where the density matrix is diagonal, ρ = (1/2) diag (1 + r, 1− r), can be expressed as

ds2 =
1

4


 dr2

1− r2
+

1

f
(

1−r
1+r

) r2

1 + r
dΩ2


 , (F1)

with 0 < r < 1. In Eq. (F1), dΩ2 def
= dθ2 + sin2 (θ) dϕ2 is the metric on the unit 2-sphere while f : R+ → R+ is the

so-called Morozova-Cencov function f = f (t). This function satisfies three conditions: (i) f is operator monotone;
(ii) f is self inversive with f (1/t) = f (t) /t; (iii) f (1) = 1. From Eq. (F1), we emphasize that condition (iii),
f (1) = 1 6= 0, serves to avoid a conical singularity in the metric at the maximally mixed state where r = 0 (that is,
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t = t (r)
def
= (1− r) /(1 + r) = 1). For details on the Morozova-Cencov-Petz theorem and further discussion on the

meaning of conditions (i)-(ii)-(iii), we refer to Refs. [84, 94]. For details on the monotonicity of operator functions,
we refer to Refs. [95–99]. In the case of the Bures metric,

ds2Bures =
1

4

[
dr2

1− r2
+ r2dΩ2

]
. (F2)

From Eqs. (F1) and (F2), we find that fBures (t)
def
= (1 + t) /2. Clearly, fBures (t) satisfies conditions (i), (ii), and (iii).

In the case of the Sjöqvist metric,

ds2Sjöqvist =
1

4

[
dr2

1− r2
+ dΩ2

]
. (F3)

From Eqs. (F1) and (F3), we find that fSjöqvist (t)
def
= (1/2)

[
(1− t)

2
/ (1 + t)

]
. We observe that although fSjöqvist (t)

is self inversive, fSjöqvist (1) = 0. Therefore, as pointed out in Ref. [52], the Sjöqvist metric in Eq. (F3) is singular at
the origin of the Bloch ball where r = 0 (i.e., t ≡ t (0) = 1) and the angular components of the metric tensor diverge
because fSjöqvist (1) = 0. For this reason, the original Sjöqvist metric is limited to non-degenerate mixed quantum
states. When considering degenerate quantum states ρ, the Sjöqvist metric must be generalized as discussed in Refs.
[53, 100]. We briefly address this point in the next subsection.

2. Extension to the degenerate case

From Ref. [52] and the main text of this paper (see Eq. (32)), we recall that in the n-dimensional case ds2Sjöqvist
can be recast as

(
ds2Sjöqvist

)(non-degenerate)
=

1

4

n∑

k=1

dp2k
pk

+

n∑

k=1

pkds
2
k, (F4)

where dpk = ṗkdt, ds
2
k

def
= 〈dek|dek〉 − |〈ek|dek〉|2 is the Fubini-Study metric along the pure state |ek〉, and 1̂ being the

identity operator on the n-dimensional Hilbert space. Eq. (F4) is valid in the non-degenerate case. Before introducing
its extension to the degenerate case, we make a remark. Both the Bures and the Sjöqvist metrics can be viewed as
the sum of a classical and a quantum contribution. In both cases, the classical contribution is the Fisher-Rao metric
between two probability distributions. The quantum contributions, however, differ in general. In the Bures case (see
Eq. (B1)), the quantum contribution emerges from the noncommutativity of the density matrices ρ and ρ+dρ. When
[ρ+ dρ, ρ] = 0, the problem becomes classical and the Bures metric reduces to the classical Fisher-Rao metric. In the
Sjöqvist case (see Eq. (F4)), the quantum contribution is the sum of the pure state Fubini-Study metrics ds2k along
the state vectors {|ek〉} weighted with their corresponding probability {pk},

∑
k pkds

2
k. Returning to the extension of

ds2Sjöqvist in Eq. (F4) to the case of degenerate mixed quantum states, following Refs. [53, 100], we have

(
ds2Sjöqvist

)(degenerate)
=

1

4

m∑

k=1

rk
dp2k
pk

+

m∑

k=1

pktr (PkdPkdPk) , (F5)

where ρ
def
=
∑m

k=1 pkPk, rk
def
= tr (Pk) is the rank of the orthogonal projector Pk, and r

def
=
∑m

k=1 rk is the rank of
the state ρ. Obviously, unlike what happens in Eq. (F4), in Eq. (F5) not all projectors Pk are rank-one operators
because of the possible presence of degenerate eigenvalues of ρ. Note that m ≤ l with l denoting the cardinality of the
set of pure states that specify the probabilistic mixture (i.e., quantum ensemble) that defines ρ ∈ Cn×n. Observe also
that l can be greater than n when ρ is non-degenerate. For a complete classification of quantum ensembles yielding
a given density matrix, we refer to [101]. For completeness, we note that when Pk = |ek〉 〈ek| and rk = 1 for any

1 ≤ k ≤ m, tr (PkdPkdPk) equals 〈dek|dek〉 − |〈ek|dek〉|2 and, in addition, Eq. (F5) reduces to Eq. (F4). For details
on the derivation of Eq. (F5), we hint to Refs. [53, 100].


