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In this work, we study the lensing effect of the QCD critical point on hydrodynamic trajectories,
and its consequences on the net-proton kurtosis κ4. Including critical behavior by means of the BEST
Collaboration equation of state (EoS), we first consider a scenario in equilibrium, then compare with
hydrodynamic 0+1D simulations with Bjorken expansion, including both shear and bulk viscous
terms. We find that, both in and out-of-equilibrium, the size and shape of the critical region
directly affect if the signal will survive through the dynamical evolution.

I. INTRODUCTION

Understanding the phase structure of Quantum Chro-
modynamic matter has been one of the major endeavors
in nuclear physics for the past several decades. While it
is well understood that a cross-over transition from the
Quark Gluon Plasma (QGP) into a hadron resonance
gas exists at vanishing baryon densities [1–5], it is con-
jectured that at very large densities a first-order phase
transition should appear [6]. In that case, a critical point
would exist at the boundary between the cross-over and
first-order phase transitions. At the critical point, the
transition would be of second-order.

Due to the fermion sign problem, it is not possible
to calculate the QCD equation of state directly at finite
baryon densities with lattice QCD simulations, and thus
locate the critical point [7, 8]. Therefore, its existence
and location have not yet been confirmed. On the other
hand, a number of effective models that reproduce lat-
tice QCD results at low baryon densities predict a crit-
ical point at large baryon chemical potentials [6, 9–22].
The critical point might be reachable within low-energy
heavy-ion collisions at accelerators such as the Relativis-
tic Heavy-Ion Collider (RHIC) as well as future facili-
ties such as the Facility for Antiproton and Ion Research
(FAIR) [23].

At the moment, the primary signature of the criti-
cal point is a peak in the kurtosis κ4 of measured net-
proton distributions [24, 25]. From the theoretical point
of view, one defines the susceptibilities of baryon num-
ber as χn ≡ ∂n(p/T 4)/∂(µB/T )n, where p is the QCD
pressure. It is possible to relate the kurtosis to the sus-
ceptibilities as follows: κ4σ

2 = χ4/χ2, where σ2 is the
variance of the net-proton distribution. This relation-
ship is not strictly exact, since the measured kurtosis is
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for net-protons, while the theoretical quantity relates to
net-baryon number [26–29]. Right at the critical point
one expects a divergence in κ4, because it scales with the
correlation length ξ as κ4 ∝ ξ7 [30]. The higher the or-
der of the susceptibility, the larger the power of ξ it scales
with. For this reason, higher order moments are the ob-
servables of choice for the detection of the critical point,
with the kurtosis being (currently) the best compromise
in terms of signal to noise ratio in experiments.

The qualitative features of the kurtosis κ4 have been
previously studied in the context of a mapping of critical
behavior in the 3D Ising model onto the QCD phase di-
agram, both without [30] and with [31] the inclusion of
all sub-leading terms in the vicinity of the critical point.
In the latter case, it was shown that the specifics of the
Ising-to-QCD mapping have a strong influence on the re-
sulting shape of the critical region, and in turn on the
height and width of κ4 at freeze-out. The behavior of
the net-baryon kurtosis at finite density was also studied
in other approaches, see e.g. [14, 29, 32, 33].

However, previous studies of the kurtosis focused on
equilibrium properties, whereas it is well-known that the
QGP is probed dynamically in heavy-ion collisions, flow-
ing like a relativistic viscous fluid [34–44]. In fact, some
studies suggest that the shear-viscosity-over-enthalpy ra-
tio ηT/w increases significantly at large baryon densities
[45–48] (although critical scaling for ηT/w appears to be
negligible [49]). Even more importantly, the bulk viscos-
ity ζ increases when the speed of sound c2s approaches
c2s → 0 (as it does at the critical point, where this behav-
ior is further affected by critical scaling [50]). Thus, a
peak in ζT/w at the critical point is expected [51], which
is also further enhanced due to criticality, as the bulk
viscosity itself scales with ζ ∝ ξ3 [49, 51–53].

Recent studies have probed the applicability of hydro-
dynamics near the QCD critical point and potential dy-
namical signatures of the critical point [49, 51, 53–60].
Critical points can deform ideal hydrodynamics trajec-
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tories, causing them to merge towards the critical point
[6, 20, 61–63]. This effect is known as critical lensing
[61, 62, 64]. However, it was found recently that far-
from-equilibrium effects at a critical point [51] or first-
order phase transition [65] can also dramatically alter
the path through the QCD phase diagram, a fact con-
firmed also by later works [66, 67]. Thus, it is not clear
what interplay exists between critical lensing and vis-
cous effects. Furthermore, a connection has not yet been
made between the size and shape of the critical region it-
self and potential signatures of criticality. The question
naturally arises: can far-from-equilibrium hydrodynam-
ics smear out any potential signs of the critical point?

Currently, a full, dynamical framework does not ex-
ist to properly describe the evolution of a system in the
vicinity of the critical point. Realistically, one would
require an event-by-event analysis with 3+1D relativis-
tic viscous hydrodynamics with BSQ (baryon number,
strangeness, and electric charge) conserved charges and
critical fluctuations (see [59, 68, 69] for more details).
While significant efforts have been made in this direc-
tion [65, 70–77], the community is still a long way from
reaching this milestone. In the meantime, it is useful to
obtain qualitative understanding from simplified models
to guide experiments and future theoretical studies, once
dynamical models improve over time.

In this work, we explore the lensing effect of the critical
point on evolution trajectories, and its implications on
the kurtosis of net-proton number distributions. First,
we do so in an equilibrium scenario, by incorporating
critical behavior through the BEST Collaboration EoS
[78]. Secondly, we study the effect of out-of-equilibrium
physics by means of simple 0+1D hydrodynamic simula-
tions with Bjorken expansion, which include both shear
and bulk viscosities [51]. In both cases, we investigate
how the non-universal parameters of the Ising-to-QCD
map of the BEST EoS, which have been shown to deter-
mine the size and shape of the critical region [31], also
influence the lensing effect and the resulting net-proton
kurtosis.

We find that, in the cases where the critical region ex-
tends predominantly in the temperature direction, criti-
cal lensing is enhanced, via a clustering of evolution tra-
jectories around the critical point, both in and out-of-
equilibrium. In contrast, when the critical region pre-
dominantly extends in the µB direction, the effect is sig-
nificantly weaker and very few hydrodynamic trajectories
deviate towards the critical point. In general, we find
that both viscous effects and the shape of the critical re-
gion are crucial to the discussion of critical lensing. Due
to the intriguing results presented in this work, future
plans are already underway to explore these effects in
higher dimensions, and in a framework that incorporates
BSQ diffusion.

II. MODEL

A. Equation of State

In this work, we incorporate the effect of a critical
point primarily through the equation of state. We use
the procedure, and the notation, developed in Ref. [78]
for constructing a family of EoS with a critical point. By
construction, these EoSs match lattice QCD results at
µB = 0 up to order O(µ4

B), and contain a critical point
in the 3D Ising model universality class.

The procedure is based on a parametrization of the 3D
Ising model EoS in the vicinity of the critical point [61,
79–81], and a subsequent mapping of 3D Ising variables
(reduced temperature r = (T−Tc)/Tc and magnetic field
h) to QCD variables, temperature T and baryon chemical
potential µB . We follow Ref. [78], which implements a
linear map [82]:

T − TC
TC

= w (rρ sinα1 + h sinα2) , (1)

µB − µBC
TC

= w (−rρ cosα1 − h cosα2) ,

where (TC , µBC) indicate the location of the critical
point, and (α1, α2) are the angles between the horizontal
(T = const) lines and the h = 0 and r = 0 Ising model
axes, respectively. Finally, w, ρ are scaling parameters,
with w determining the global scaling of both r and h,
and ρ determining the relative scaling between the two.

While such a linear map contains six parameters, it is
possible to reduce them to four, as was done in [78], by
imposing that the critical point lies on the chiral transi-
tion line predicted by lattice QCD [83]:

T = T0 + κ2 T0

(
µB
T0

)2

+O(µ4
B), (2)

from which one can obtain TC and α1, given a value
of µBC . As in the original formulation, we use κ2 =
−0.0149 from Ref. [83]. This value is consistent with
more recent results, which also predict the next-to-
leading order coefficient to vanish within error bars [3, 5].

Exact matching to lattice QCD at µB = 0 is imposed
by requiring that the Taylor coefficients used in the ex-
pansion of the pressure obey

T 4cLAT
n (T ) = T 4cNon-Ising

n (T ) + T 4
Cc

Ising
n (T ) , (3)

where cLAT
n are lattice Taylor QCD coefficients [84, 85].

Here, the cIsing
n determine the contribution to the lattice

coefficients due to the presence of the critical point, and
the cNon-Ising

n are defined as the contribution at vanishing
µB from a non-critical background field, namely as the
difference between the lattice and Ising coefficients.

The full pressure is reconstructed as

P (T, µB) = T 4
∑
n

cNon-Ising
n (T )

(µB
T

)n
+PQCD

crit (T, µB) ,

(4)
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where PQCD
crit (T, µB) is the critical pressure mapped onto

QCD from the 3D Ising model, which has been sym-
metrized about µB = 0. The full EoS is then derived
from Eq. (4) via standard thermodynamics relations.

With this procedure, each realization of the equation
of state varies based on the non-universal mapping of
Eq.(1), thus on the parameters µBC , w, ρ, and ∆α =
α2 − α1. For additional details, we refer the reader
to Ref. [78]. This scheme was recently expanded to
include the correct charge conservation constraints for
ultra-relativistic heavy-ion collisions (see Ref. [63]). In
this work, we assume µS = µQ = 0, as in the original
framework.

Finally, the correlation length is also calculated within
the BEST collaboration code as in Ref. [63]. It follows
Widom’s scaling form in terms of Ising model variables
as shown in Refs. [61, 86, 87]:

ξ2(r,M) = f2|M |−2ν/βg(x), (5)

where f is a constant with the dimension of length, which
we set to 1 fm, ν = 0.63 is the correlation length critical
exponent in the 3D Ising Model, g(x) is the scaling func-

tion and the scaling parameter is x= |r|
|M |1/β . For further

details, we refer the reader to Ref. [63].

B. Hydrodynamic Setup

The correct relativistic hydrodynamic description of a
system in the vicinity of a critical point is still an open
question. As far as critical fluctuations of the critical
mode are concerned, progress has been made in recent
years [72, 74, 88–93]. However, a clear consensus has
not yet emerged. We do not include fluctuations of the
critical mode in this work. We also do not include effects
from Kibble-Zurek scaling [94, 95] which also may be
relevant in the critical region during the transition [96].
Nonetheless, we remain sensitive to critical behavior both
through the equation of state, and through the critical
scaling of the bulk viscosity.

The hydrodynamic setup of the current work is the
same as that of Ref. [51], where more details can be
found. In order to qualitatively investigate the influence
of out-of-equilibrium initial conditions and different EoS
on hydrodynamic trajectories in the QCD phase diagram,
as well as on potential observables, we employ the highly
symmetric Bjorken flow picture. While the symmetry
constraints of Bjorken flow are no longer understood to
be good approximations at lower beam energies, they can
certainly provide valuable intuition on the response of the
hydrodynamic system to different EoS.

The equations of motion used in this work are based
on the idea that the dissipative currents, such as the
shear-stress tensor πµν and bulk scalar Π, evolve ac-
cording to relaxation equations that describe how such
quantities deviate from their relativistic Navier-Stokes

values, which is required for any relativistic viscous hy-
drodynamic equations to ensure causality and stabil-
ity. There are three different methods for relativis-
tic viscous fluids: phenomenological Israel-Stewart [97],
DNMR [98], and BDNK [99–102]. In [51], phenomeno-
logical Israel-Stewart and DNMR equations of motion
were compared at a critical point and it was found that
DNMR are more well-behaved numerically when travers-
ing the critical region with a critically scaled bulk vis-
cosity. Due to the fact that the BDNK equations of
motion are more recent, they have yet to be checked at
this time for a non-conformal EOS (see [103]). Thus,
we will only focus on DNMR equations of motion for
this study. Using hyperbolic coordinates with the metric
gµν = diag(1,−1,−1,−τ2), the underlying symmetries of
Bjorken flow imply that all dynamical quantities depend
only on the proper time τ =

√
t2 − z2 and the equations

reduce to [98, 104]

ε̇ = −1

τ

[
ε+ p+ Π− πηη

]
(6)

τππ̇
η
η + πηη =

1

τ

[
4η

3
− πηη (δππ + τππ) + λπΠΠ

]
(7)

τΠΠ̇ + Π = −1

τ

(
ζ + δΠΠΠ +

2

3
λΠππ

η
η

)
(8)

ṅ = −n
τ
. (9)

We note that, in Bjorken flow, the particle diffusion con-
tribution vanishes and, thus, the baryon density equation
can be readily solved to give n(τ) = n0(τ0/τ), where n0

and τ0 are the initial baryon density and time, respec-
tively. The definitions of second order transport coeffi-
cients and the functional dependence of shear viscosity
on T and µB can be found in [48, 51].

We would like to emphasize the importance of Eqs.
(7),(8) in our analysis. Since the shear and bulk viscous
terms are dynamical quantities, they require their own
initial conditions, which allows us to explore many dif-
ferent hydrodynamic trajectories through the phase dia-
gram. After initializing the system at different densities
with different initial conditions in the shear and bulk sec-
tors, we select hydrodynamic trajectories that traverse
the critical region. In practice, we select trajectories that
pass, along lines parallel to the chiral transition line and
shifted downwards by an amount ∆T , within a width of
3.5 MeV on either side of the ideal hydrodynamic trajec-
tory (i.e. the isentropic trajectory) that passes through
the critical point. This means that the trajectories we
select populate a total width of 7 MeV, with the isen-
trope at the center. The initial conditions of the system
are constrained by the Weak Energy Condition [51, 105]
which allows us to initialize the system with{

πηη
ε+ p

,
Π

ε+ p

}
0

≡ {χ,Ω}0 ∈ [−0.5, 0.5].

In this paper, when we plot hydrodynamic trajectories
we will use a specific color scheme depending on their
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respective initial conditions, which was explained in Fig.
2 from [51]. Notice that the purple, blue, and turquoise
lines indicate initial conditions that are consistent with
those typically found from heavy-ion collisions where Π <
0 and πηη > 0. In contrast, the red and orange lines
indicate initial conditions where Π > 0 and πηη < 0, which
are atypical for heavy-ion collisions. Additional details
will be discussed in Sec. V A.

The bulk viscosity used in this work is also the same as
that in Ref. [51]. The expression for the critically scaled
bulk viscosity is(

ζT

w

)
CS

=
ζT

w

[
1 +

(
ξ

ξ0

)3
]
, (10)

as has been used in previous works [49, 51–53]. This
ensures finite bulk viscosity outside the critical region,
which is relevant for our work, as it influences the sys-
tem’s approach to the critical point. The shear viscos-
ity ηT/w(T, µB) that we employ, comes from the phe-
nomenological approach in Ref. [48], where a hadron res-
onance gas model at low T was matched to a functional
form for the QGP. This model ensures that the minimum
of ηT/w(T, µB) will pass through the critical point and
then follow along the first-order line.

III. OBSERVABLES

A. Kurtosis

The kurtosis of net-baryon number distributions is cur-
rently, as mentioned, the most promising signature for
a potential experimental detection of the QCD critical
point in heavy-ion collisions. In practice, it can be di-
rectly connected [26–28] to the fluctuations of the net-
proton (Np) distribution that appear on an event-by-
event basis and can be measured. Most experiments,
including STAR [106], HADES [107], and ALICE [108]
measure the cumulants κn, of the net-p distribution,
which are defined as:

mean M = κ1 = M1

variance σ2 = κ2 = M2

skewness S = κ3 = M3

kurtosis κ4 = M4 − 3M2
2

where Mn is the nth moment of the distribution.
Note that these measurements are beholden to the

acceptance cuts of the detector. Significant amount of
effort has been made to increase the available rapid-
ity window, because this has been shown to push the
kurtosis measurements closer to the equilibrium values
[109, 110]. However, a careful reader might also realize
that if all particles were measured and used to calcu-
late net-charge fluctuations, the results would be trivial.
For instance, heavy-ion collisions must always have global
strangeness neutrality since strangeness is conserved and
the initial ions do not carry any net-S. Thus, for full

acceptance net-S=0. Similarly, for net-p and full ac-
ceptance, the only information provided would be the
number of baryons stopped in the initial state and how
that number fluctuates for a fixed centrality class. Thus,
there is an optimal window between too small vs. too
large kinematic cuts that can yield the actual fluctu-
ations of a net-charge that are sensitive to long range
correlations [111, 112]. Other factors that might impact
the experimental measurements of fluctuations include
canonical ensemble effects [113–117], coordinate vs mo-
mentum space [118, 119], volume fluctuations [120–123],
interactions in the hadronic phase [124, 125], and non-
equilibrium effects [126, 127].

Keeping these caveats in mind, the cumulants defined
above can be related to the so-called susceptibilities of
baryon number:

χBn =
∂np(µB , T )/T 4

∂ (µB/T )
n (11)

which can usually be calculated straightforwardly from
theory, as they require simple derivatives of the pressure.
In terms of the latter, the cumulants κn read:

M = χ1 (12)

σ2 = χ2 (13)

S =
χ3

χ
3/2
2

(14)

κ4 =
χ4

χ2
2

(15)

Since the susceptibilities are extensive variables that
depend – linearly, in a homogeneous system – on the
volume of the system, it is common to define ratios whose
(leading) volume dependence is removed:

M

σ2
=
χ1

χ2
(16)

Sσ =
χ3

χ2
(17)

Sσ3M−1 =
χ3

χ1
(18)

κ4σ
2 =

χ4

χ2
. (19)

Most commonly, experimental results are shown for
the ratios in Eqs. (16-19), because of the aforementioned
advantage of removing the leading volume dependence.
Hence, what is often referred to as “kurtosis”, e.g. in
the well-known plot from [106], is indeed κ4σ

2. Since
net-proton fluctuations are the most sensitive to criti-
cality, we consider only the baryon susceptibilities from
now on and assume that protons are a good proxy for
net-baryons. If one is specifically interested in the inter-
play between all three conserved charges, better proxies
could be used [128]. However, in our current set-up we
cannot distinguish between protons and neutrons and,
therefore, leave this issue for a later work.
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When comparing net-particle fluctuations from theory
and experiment with the aim of studying bulk thermo-
dynamic properties of the system, it is customary to fo-
cus on central collisions, because they contain the largest
number of participants, and are then more likely to be
close to equilibrium.

It is now well-understood in the hydrodynamic commu-
nity that even central collisions in large systems initially
begin far-from-equilibrium [129–133]. While in idealized
systems (0+1D Bjoerken flow with only shear viscosity)
with a trivial EoS (ε = 3p) it appears that universal at-
tractors appear [54, 134–164], the use of a non-trivial EoS
and the inclusion of bulk viscosity significantly compli-
cate the picture [51, 138, 165].

In fact, near the QCD critical point there may not
be enough time for a universal attractor to be reached
[51], also because the hydrodynamic phase appears to be
significantly shorter at lower beam energies [166]. This
means that some memory of the initial conditions is re-
tained by the system until the final stages, and far-from-
equilibrium effects will be crucial for understanding the
influence of initial conditions on kurtosis measurements.

Finally, an additional complication is the discrep-
ancy between the temperature and chemical potential
at which hadrons are formed (i.e. the critical temper-
ature and chemical potential {TC , µBC}) and the tem-
perature and chemical potential {TFO, µB,FO} at which
chemical freeze-out occurs. The chemical freeze-out is
the stage in the evolution of the system at which inelas-
tic collisions between hadrons cease, and particle multi-
plicities can usually be well-described by a hadron reso-
nance gas. However, it is likely that {TFO, µB,FO} is not
significantly below {TC , µBC} because the hadron reso-
nance gas produces many short-lived, heavy resonances
that quickly push the system into chemical equilibrium
[167–176]. In order to take this uncertainty into ac-
count, we will consider three different scenarios in which
∆T = TC − TFO = 1, 3, 5 MeV.

B. Critical Lensing

An interesting question regarding the effect of a criti-
cal point in the QCD phase diagram is, to what extent
it can affect hydrodynamic evolution trajectories, as this
would have direct implications for measured quantities.
If the influence of a critical point is strong enough, hy-
drodynamic trajectories can be modified substantially,
both in- and out-of-equilibrium. In general, what hap-
pens (see e.g., Ref. [78]) is that the critical point attracts
such trajectories, causing their clustering in its vicinity.

In Fig. 1 we show a schematic comparison between
trajectories with a weak or no critical point effect (left)
and others where the effect is pronounced (right). In
the latter case, the trajectories accumulate around the
critical region. In ideal hydrodynamics simulations, one
would anticipate that the system is then much more likely
to pass through the critical region when this effect is

stronger. In this work, we will connect the strength of
this effect to the size and shape of the critical region,
and later explore to what extent it survives in the case
of out-of-equilibrium viscous hydrodynamic simulations
with various initial conditions.

One can try and quantify how much the hydrodynamic
trajectories are deformed by the presence of the critical
point, by deriving s/n with respect to T or µB . The total
derivative of s/n reads:

d(s/n) =
1

n

(
∂s

∂T
dT +

∂s

∂µB
dµB

)
(20)

− s

n2

(
∂n

∂T
dT +

∂n

∂µB
dµB

)
,

from which one can easily see that(
∂µB
∂(s/n)

)∣∣∣∣
T

=
n

∂s
∂µB

∣∣∣
T
− s

nχ2

, (21)

and (
∂T

∂(s/n)

)∣∣∣∣
µB

=
n

∂s
∂T |µB −

s
n
∂n
∂T |µB

. (22)

Near the critical point along the crossover (h = 0), the
critical pressure can be written as

P crit = Arβδ+β , (23)

where A is a constant, and h ∼ rβδ [80]. The scal-
ing of the pressure as r → 0 can be used to estimate
how each thermodynamic quantity behaves at the crit-
ical point (details in Appendix A). Both s and n scale
with rβ , whereas the second-order derivatives diverge as
1/rβδ−β . Substituting each term in Eqs. (21) and (22)
with its full expression in terms of EoS parameters and
r yields (

∂µB
∂(s/n)

)∣∣∣∣
T

∼ r,
(

∂T

∂(s/n)

)∣∣∣∣
µB

∼ r, (24)

and we can conclude that the separation in T and µB be-
tween isentropes goes to zero when the system exhibits
criticality. Given the same set of initial conditions, there
will be a larger density of trajectories in the critical cir-
cular region of Fig. 1 (right), when compared to the
non-critical one (left). This is precisely the lensing effect
we discuss in this work, which we have also observed in
Ref. [51].

IV. RESULTS: EQUILIBRIUM

A. Kurtosis and speed of sound

In this Section, we will investigate how different real-
izations of the BEST Collaboration equation of state (i.e.
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FIG. 1. Schematic visualization of critical lensing, through a comparison of isentropic trajectories with (right) and without
(left) criticality. Both circular regions are centered around the same value, and are the same size. It can be shown (see main
text) that the spacing between curves, (∆T,∆µB), is smaller in the critical case. This leads to a larger density of trajectories
crossing through the same region, given the same set of initial conditions.

different parameters in the Ising-to-QCD map) will influ-
ence the kurtosis and the critical lensing effect. Because
of the numerous complications in studying the physics of
heavy-ion collisions in the vicinity of the critical point,
it is crucial to understand the interplay between the fea-
tures of the equation of state in the critical region, the
evolution trajectories of hydrodynamic simulations, and
observables such as net-proton fluctuations. A partic-
ularly important role is played by the speed of sound,
which is expected to vanish at the critical point. Al-
though the scaling behavior of how c2s → 0 is known,
sub-leading contributions might have an important role,
and thus modify the speed of sound over a sizeable por-
tion of the system evolution. Relativistic hydrodynamics
is quite sensitive to this change in c2s when the trajectory
goes through the critical region, due to the connection
between c2s and ζT/w [51].

In Fig. 2 we show the kurtosis across the {T, µB} plane
for different parameters sets of the EoS. We fix in all
cases:

• TC = 138 MeV

• µBC = 420 MeV

• α1 = 4.6◦

• α2 = 94.6◦

and consider all possible combinations of w = 0.5, 1.0, 2.0
and ρ = 0.5, 1.0, 2.0. The same parameters were studied
in Ref. [31] (Fig. 2), and were chosen to produce varying
critical regions that extend across the transition line (i.e.
across the µB direction of the phase diagram), perpendic-
ular to the transition line (i.e. across the T direction of
the phase diagram), or a combination of both. Following
Ref. [31], we use the magnitude of χB4 to categorize the

size and shape of the critical region. The region where
the critical contribution to χB4 is sizeable, i.e. the critical
region, is shown in white (large and positive) or black
(large and negative). The gray regions indicate a negli-
gible critical contribution, where the effect of the critical
point is absent. Some of us in Ref. [31] described the
connection between the size of the critical region and the
parameters w and ρ. We found its extent in the temper-
ature direction, at constant µB to be ∆crit

T ∼ w−3/7, and
in the chemical potential direction, along the transition
line ∆crit

µB ∼ ρw
1/7.

The concept of critical region arises when considering
where, around the critical point, its influence can reach.
For example, using the common separation of the free
energy in a critical and a regular parts f = freg + fcrit,
one could define the critical region as where freg ∼ fcrit,
meaning the critical effects are as large as the regular, un-
derlining physics. However, similar considerations could
be made for different observables, and different critical
regions would be found. Alternatively, one can relate the
critical region to the ability to extract particular criti-
cal exponents or where scaling functions are rigorously
applicable [177–180]. In the case of this work, we found
it more meaningful to adopt the aforementioned conven-
tion for the size and shape of the critical region. This is
because of its connection to experimental observables as
discussed in Sec. III A.

In Fig. 2, we also show the isentropic trajectory that
passes through the critical point, in either red, green, or
blue. Isentropic trajectories are characterized by having
a constant entropy-to-baryon-number ratio s/n, which is
a conserved quantity in ideal hydrodynamics. If a col-
lision could be well-described without viscous hydrody-
namics, then the initial condition would only be a point in
the {T, µB} plane, after which the system would expand
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FIG. 2. Top three rows: contour plots of the fourth baryon number susceptibility χB
4 , with isentropic trajectories (solid red,

green and blue lines) crossing the critical point. In all cases, we have TC = 138 MeV, µBC = 420 MeV, α1 = 4.6◦, α2−α1 = 90◦.
From top to bottom, left to right, we have w = 0.5, 1.0, 2.0, and ρ = 0.5, 1.0, 2.0. The QCD transition line is represented by
a solid orange line, while the critical point is represented by dots with the same color scheme as the isentropes. In the black
regions χB

4 < 0, in the white regions χB
4 > 0, and in the gray regions χB

4 ' 0. Bottom row: speed of sound along the three
isentropes in each column, with the same color scheme.

and cool along the specific isentropic trajectory defined
by the initial condition.

Near the critical point along the crossover, we can use
the scaling behavior of the critical contribution to the
pressure P crit ∼ rβδ+β and the map between Ising and
QCD variables to determine that the separation between
isentropes along the µB direction scales with the EoS
parameters w and ρ as (detailed derivation shown in Ap-
pendix B):

d(s/n)

dµB
∼ 1

(wρ)r
, (25)

Since d(s/n)/dµB diverges with 1/r as r → 0 with an
overall factor directly proportional to (wρ)−1, we expect
EoS generated from smaller w and ρ values to display a
more dramatic lensing effect.

By comparing our choice of parameters with the shape
of the isentropic trajectory, we can confirm our predic-
tions for the strength of the lensing effect. We find that
critical regions that extend farther along the T direction
(corresponding to smaller w and ρ) generally have a more
pronounced kink near the critical point. This is not the
case when the critical region extends mostly along the
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FIG. 3. The isentropes from all EoS’s in Fig. 2, on a
single plot. The solid, dotted, dashed lines correspond to
w = 0.5, 1.0, 2.0 respectively. The black, green, magenta lines
correspond to ρ = 0.5, 1.0, 2.0 respectively.

µB direction (larger w and ρ). We plot all these isen-
tropic trajectories together in Fig. 3, where the effect is
made even more evident. This shows that the critical
lensing effect is not only affected by the size of the criti-
cal region, but also by its shape. This is because, in ideal
hydrodynamics, it is the speed of sound that determines
the evolution of the system.

In the bottom row of Fig. 2, we show the speed of sound
c2s along the different isentropes for fixed ρ, while varying
w. In all cases, it is apparent that larger values of w lead
to narrower dips in c2s. The value of ρ seems to affect
the low-T region (below the critical point) only. This
is in line with the fact that, as observed, the extent of
the critical region in the temperature direction is ∆crit

T ∼
w−3/7, thus independent of ρ.

To better visualize the critical lensing effect, in Fig. 4
we plot different isentropic trajectories at fixed intervals
of s/nB , for the same parameter choices we previously
showed in Fig. 2.

A picture consistent with that of Fig. 2 emerges, in
which the cases where the trajectories are more deformed
coincide with those where they are also more evidently
amassed, i.e. smaller values of w and ρ.

An interesting point that can be seen from the figures
is that the critical lensing effect exists both on the the
first-order and crossover sides of the critical point. We
will see in Sec. V A that this is still the case when includ-
ing out-of-equilibrium effects. Though other works have
investigated critical lensing in equilibrium, they mostly
have done so in the case of first-order phase transitions
[6, 61, 62, 64]. In Ref. [61], the lensing effect is shown for
trajectories that start both on the crossover side and first-
order side, but in the end almost always pass through ei-
ther the critical point or first-order side of the transition
region (see e.g., Fig. 4 in that paper). The authors of
Ref. [62] study the effects of turning on or off the crit-
ical point, while using a single realization of the model

of Ref. [61]. We aim at gaining a comprehensive picture
by considering a large number of trajectories also on the
crossover side. In fact we find that, depending on the
parameterization, the effect may be more pronounced on
the crossover side (e.g. top-left panel of Fig. 4).

Here, we also differ from previous works by giving a
quantitative thermodynamic argument for why this phe-
nomenon applies for any dynamical system in which the
EoS is physically relevant and the evolved densities take
the system through the critical region (as was discussed
in Sec. III B).

V. RESULTS: OUT-OF-EQUILIBRIUM

A. Critical lensing

In Sec. III B we discussed the critical lensing effect in
equilibrium. The natural question is whether this ef-
fect can survive when the system is potentially far-from-
equilibrium. At large µB , the QGP evolution is influ-
enced by multiple transport coefficients such as shear and
bulk viscosity, as well as by conserved charge (BSQ) dif-
fusion. Currently, the far-from-equilibrium initial condi-
tions at the beam energy scan are not known. Thus, it is
hard to know how much guidance one can receive from
equilibrium trajectories. For this reason, in this section
we explore the possibility of an out-of-equilibrium critical
lensing effect.

All our hydrodynamic simulations use the same
ηT/w(T, µB), the only variability coming from the choice
of equation of state, which in turn affects the bulk vis-
cosity. The effect of the equation of state on ζT/w is
twofold:

1. A minimum in c2s appears at the critical point1 (see
Fig. 2), which in turn generates a peak in ζT/w;

2. The bulk viscosity scales with ξ3 near the critical
point, which further enhances ζT/w, see Eq. (10).

Because of these two separate contributions, one antic-
ipates a large enhancement in ζT/w near the critical
point. We show in Fig. 5 the bulk viscosity along the
critical isentrope, for the three parameter choices in Fig.
6. Exactly at the critical point, universality forces the
peaks to be identical. However, farther away from it,
sub-leading contributions are such that a slightly larger
ζT/w is realized when ρ is smaller, i.e. when the critical
region extends more along the T -direction.

Next, we consider three of the parameter choices shown
in Figs.2,4, namely w = 0.5 with ρ = 0.5, 1, 2 (top row
in both figures). This is because, as we saw, the largest

1 At the time of finishing this paper, an orthogonal study on out-
of-equilibrium c2s at a critical point in holography was released
[181]
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FIG. 4. Same as the top three rows of Fig.2, with additional isentropes corresponding to s/nB =
(23.1, 21.2, 19.5, 18.0, 16.7, 15.6, 14.7, 14.0) (purple solid lines). The isentropes crossing the critical point are shown in the
same color scheme as in Fig. 2.

FIG. 5. ζT/w along isentropes that pass through the critical
point for the three EoS shown in Fig. 6.

effect is given by the direction in which the critical region
extends. This way, we can study three cases where some
lensing is observed, but the cardinal orientation of the
critical region varies from T to µB .

In these three cases, we are able to investigate out-of-
equilibrium effects with our simple hydrodynamic model.
As discussed in Sec. II B, we run the simulations with a
variety of initial conditions, in order to find trajectories
that cross through a certain freeze-out window. As de-
fined in Sec. II B, this window corresponds to 3.5 MeV on
either side of the critical isentrope, measured on a line
parallel to the QCD transition line, and shifted down-
wards by ∆T = 1, 3, 5 MeV in order to account for some
uncertainty in the freeze-out temperature, as mentioned
earlier.

Our initial conditions consist of an initial energy den-
sity, baryon density, shear stress, and bulk pressure, i.e.{
ε, nB , π

η
η ,Π

}
0
. The equation of state maps trajecto-

ries in {ε, nB} to trajectories in {T, µB}. We initial-
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FIG. 6. Hydrodynamic trajectories for three different EoS with fixed w = 0.5 and ρ = {0.5, 1.0, 2.0} (top to bottom). Each
column shows trajectories that pass within ±3.5 MeV plane from the critical isentrope, measured on a line parallel to the
transition line, and shifted downwards by ∆T = {1, 3, 5} MeV (left to right). An extremely large number of initial conditions
were run for each EoS, and only the trajectories that pass through our freeze-out window are shown.

ize the baryon density nB with values ranging between
nB0

= [0.4, 1.0] fm−3, with steps of 0.01fm−3, and the en-
ergy density is kept at ε0 = 1.5 GeV/fm−3. We initialize
the dimensionless quantity πηη/(ε+p) with values ranging
between πηη/(ε + p) = [−0.5, 0.5] with steps of 0.2. Sim-
ilarly, we initialize the dimensionless quantity Π/(ε+ p)
with values ranging between Π/(ε+ p) = [−0.5, 0.5] with
steps of 0.2. Combining all choices independently, we
have a multidimensional grid of 61 × 6 × 6 × 1 = 2196
initial conditions for each equation of state. These ini-
tial conditions are chosen such that they allow us to
scan the entire {T, µB} plane available within the lim-
itations of the BEST EoS (the BEST EoS can become
acausal/thermodynamically unstable beyond µB & 600
MeV, due to the limited number of susceptibilities χBn
available from lattice simulations).

We show our hydrodynamic trajectories in Fig. 6,
for the three values of ρ (top to bottom), and the three
values of ∆T (left to right). The freeze-out line is shown

as a dashed curve shifted downwards by ∆T from the
transition line, and the freeze-out window is denoted by
two solid lines perpendicular to the freeze-out line. Only
trajectories that pass through such freeze-out window for
a specific ∆T are shown.

Notably, from Fig. 6 it seems evident that the value
of ρ is much more important than that of ∆T . When
ρ is smaller, a significantly larger number of trajectories
pass within the freeze-out window, regardless of the def-
inition of freeze-out temperature. Note we also explore
the possibility of a freeze-out window that sits directly
between the critical point in Appendix C and this effects
remains robust. Comparing with Fig. 4, we find a con-
sistent picture. The same effect seen in equilibrium sur-
vives even when far-from equilibrium initial conditions
are used: essentially, we are observing something we can
call dynamical critical lensing.

This dynamical critical lensing provides an exciting
possibility. Even though heavy-ion collisions may ini-
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tially be far-from equilibrium, given a critical point with
a critical region as we have just described, an attractor
may exist that pushes their evolution trajectories towards
the critical point. It would be extremely interesting to
explore this effect in more realistic hydrodynamic simu-
lations, in 2+1D or 3+1D, since higher dimensions would
allow for the incorporation of BSQ diffusion, flow effects,
and the rapidity dependence of baryon density.

There is, of course, the possibility that the scenario re-
alized in Nature is the opposite, namely that the critical
region extends mostly along the µB direction. In such
a case, very few trajectories would converge towards the
critical point, making its detection much more challeng-
ing. We have checked the qualitative features we just dis-
cussed on many more parameter choices than we could
present, and can confirm the general trend that critical
lensing is enhanced when the critical region extends along
the temperature direction.

B. Deviations from Isentropes and Entropy
Production

We saw in the last section that the hydrodynamic tra-
jectories never seem to converge to the isentropic ones.
One might ask why that is. What would happen if the
initial conditions were chosen at equilibrium? The trajec-
tories would not match the isentropes even in this case,
because the QGP (and thus our setup) has non-vanishing
shear and bulk viscosities, so that the magnitude of the
shear stress tensor and bulk pressure grow over time, i.e.
entropy is produced. The evolution trajectories would
resemble the isentropes only if the initial conditions were
chosen at equilibrium, and the viscosities vanished (i.e.
ideal hydrodynamics in equilibrium). Moreover, because
we do know that ηT/w may grow further at large µB ,
and that the bulk viscosity is sensitive to critical scaling,
it is all more important to employ relativistic viscous hy-
drodynamic simulations.

When viscosity is included within a hydrodynamic
framework, entropy is no longer conserved, but rather it
is produced. The amount of entropy production is depen-
dent on how far-from-equilibrium the fluid is throughout
its evolution. In heavy-ion collisions, it is often assumed
that entropy production is small because both ηT/w and
ζT/w are small. However, in short-lived systems that
may begin far-from-equilibrium, that might not be the
case. Additionally, it is not guaranteed that ηT/w and
ζT/w are small also at large chemical potential. One
should then consider the possibility that a large amount
of entropy is produced.

Calculating the amount of entropy production in hy-
drodynamic simulations is quite challenging, because it
receives contributions from both thermal entropy and
out-of-equilibrium entropy. In our setup, we cannot es-
timate the out-of-equilibrium entropy, and can only cal-
culate the thermal entropy from the equation of state.
This means that our results can demonstrate that ther-

mal entropy is produced, but additional contributions
from out-of-equilibrium entropy might exist, which we
are unable to track. We should emphasize that the semi-
positive-definiteness of the entropy change applies to the
total entropy, thus it is possible that this change is neg-
ative when the thermal entropy alone is considered.

With this caveat in mind, we show in Fig. 7 the thermal
contribution to the ratio s/nB , for the same parameme-
terizations of the equation of state shown in Fig. 6, along
the trajectories obtained with ∆T = 1 MeV. We find that
an enormous amount of entropy is produced from early
times until freeze-out, which explains the substantial dif-
ference between equilibrium and out-of-equilibrium tra-
jectories we have previously observed.

We also observe that, for τ . 2 fm, some trajecto-
ries move downwards, which implies a negative change in
thermal entropy. This is not necessarily an issue, because
– as already mentioned – the semi-positive-definiteness of
entropy applies to the total entropy. However, it is also
possible that some trajectories do violate certain causal-
ity conditions (see. [132, 133, 161]). At this time, we
have only checked the weak energy [51, 105] condition,
which is not as stringent as the nonlinear causality con-
straints. Another possibility it that, in these regimes,
the system exhibits non-hydrodynamic behavior such as
cavitation [182–184]. Should that be the case, it is pos-
sible to extend the model to account for these effects in
a way that guarantees stability [185, 186]. However, this
is beyond the scope of this work.

The trajectories that experience this behavior are
shown in red and orange colors, which indicate initial
conditions with Π > 0 and πηη < 0, atypical for heavy-ion
collisions. However, you do achieve Π > 0 in heavy-ion
collision simulations when you match a conformal ini-
tial condition to the non-conformal hydrodynamic sim-
ulations due to the mismatch in EoS [162]. In contrast,
the purple, blue, and turquoise lines correspond to values
typically found in heavy-ion collisions.

Previous attempts have been made to compare lines of
s/nB from heavy-ion collisions (from ideal hydrodynam-
ics) to neutron star mergers [187]. Our findings suggest
that very large deviations should be anticipated due to
entropy production. Thus, one truly requires a solid un-
derstanding of the dissipative effects at large densities in
order to make a comparison between these two systems.
Moreover, because we cannot take into account BSQ dif-
fusion effects in our framework, we anticipate even larger
deviations from isentropes would occur when such effects
are incorporated in full 3+1 relativistic viscous hydrody-
namic simulations.

C. Out-of-equilibrium effects on kurtosis

Early works argued that, besides the peak in the net-
baryon number kurtosis, a dip was to be expected at
larger collision energies, as a sign of the QCD critical
point [30, 188]. However, not all effective models predict-
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FIG. 7. Thermal entropy over baryon number (s/nB) for the same hydrodynamic trajectories shown in the left column of Fig.
6 (w = 0.5 fixed and ρ = {0.5, 1.0, 2.0}, ∆T = 1 MeV).

FIG. 8. Fourth baryon susceptibility as a function of the chemical potential for the same parametrizations of the equation of
state as in Fig. 6, with fixed w = 0.5 and ρ = {0.5, 1.0, 2.0} (top to bottom), and ∆T = {1, 3, 5} MeV (left to right). The dot
on each line is where the isentrope intersects the freeze-out line, and the vertical line signal the freeze-out window. Below each
plot is the histogram for the values of χ4 obtained from out-of-equilibrium trajectories.
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FIG. 9. Average χ4 across all hydrodynamic trajectories
shown in Fig. 8 for various temperatures differences, ∆T , be-
tween the hadronization and freeze-out temperatures.

ing a critical point exhibit such a dip (see e.g. [14, 20],
where χ4 monotonically increases approaching the criti-
cal point). Furthermore, it was recently discovered that,
when including sub-leading effects due to the mapping
between Ising model and QCD phase diagram (not con-
sidered in the earlier works), such dip appears not to be
a robust feature of the dependence of the kurtosis on the
collision energy [31].

We have seen that non-equilibrium effects play a sig-
nificant role in the evolution of the system, and in this
section we will investigate how these effects influence the
kurtosis, by looking at all different trajectories that fall
within our previously defined freeze-out windows. In Fig.
8, we show χ4 as a function of µB .

We consider the same three EoS, and the same trajec-
tories shown in Fig. 6, with the same layout: w = 0.5
always, ρ = 0.5, 1, 2 (top to bottom), ∆T = 1, 3, 5 MeV
(left to right). We highlight the freeze-out windows with
solid, colored lines, and the point where the isentrope
intersects the freeze-out line with a colored dot. Be-
low each of these plots, we show the histogram of the
outcomes of χ4 from all the trajectories. The resulting
measured χ4 would be a convolution of such histograms.
Though not extremely apparent, a couple of trends can
be observed from these plots. As we already knew, the
total number of entries decreases when ρ increases, due
to the reduced lensing effect on the trajectories. On the
other hand, when increasing ∆T , the peakedness of the
distribution decreases, because having a later freeze-out
allows for selecting trajectories that span a larger set of
chemical potentials. Overall, the resulting χ4 is predom-
inantly positive, which is encouraging in view of actual
measurements, which, like in our simplified setup, will be
forced to effectively “integrate” over a range of chemical
potentials, due to the finite width of rapidity bins in the
analysis.

In Fig. 9 we show an “averaged” χ4, obtained by inte-
grating over the probability distributions shown in Fig.

8. We show this for the same ρ, w, ∆T combinations as
previously shown. The value of the isentrope that passes
exactly through the critical point is shown in X whereas
the average χ4 over all trajectories at that ∆T is shown
in the filled in colored circle. In addition, one can find
one standard deviation away from the average χ4 with
the lines. We generally find that, indeed, small ρ and w
lead to a large, positive χ4. In contrast, increasing ρ sig-
nificantly suppresses χ4. For larger separations between
the hadronization and freeze-out temperatures ∆T , χ4

is somewhat suppressed, but this effect is significantly
smaller than that of the choice of ρ, w. We have also
checked effects of the freeze-out window choice on the
χ4. Even with a larger window we still see the same ef-
fect with preferences for trajectories to hit low and high
points in the χ4. In fact, if the window includes both
the peak and dip, the effect of trajectories being pulled
towards the max or min value of χ4 is even more robust.
Obviously, though, an extremely large window will allow
for more fluctuations in χ4 as well.

One complication that can arise from a larger window
is capturing both the peak and dip of χ4 symmetrically.
In this case, it’s possible for the average χ4 seen by the
trajectories to go to zero. In line with this, what is in-
teresting to note, is that for small ρ and w the devi-
ation between the equilibrium χ4 (along the isentrope)
versus the average χ4 is larger. This is not surpris-
ing because small ρ and w also experience more out-
of-equilibrium critical lensing effects. Thus, this sup-
pression of average χ4 is a consequence of critical lens-
ing. However, for these smaller freeze-out windows, even
with the out-of-equilibrium smearing of the average χ4

for small ρ and w the central values remain consistently
larger than w = 0.5, ρ = 1.0. If we then look at 1 stan-
dard deviation away from the central value it is clear
that there’s a skewed towards larger values of χ4 but
there’s some change of extremely small values (or neg-
ative values) as well. Already for w = 0.5, ρ = 1.0 the
critical lensing effect is small enough that there is almost
no difference between the equilibrium value of χ4 and
the out-of-equilibrium average χ4, even when one con-
siders 1 standard deviation from the mean. In contrast,
for w = 0.5, ρ = 0.5, there is a large standard deviation
which is a consequence of the rapid change in χ4 in the
freeze-out window.

It is worth mentioning a caveat in comparing this av-
eraged χ4 to what is actually measured in experiment.
In this work, we have access to each individual “event”
and are therefore able to select on the specific trajectories
that pass through a given freeze-out window. In exper-
iment this is not possible. Instead, the experimentally
measured freeze-out temperature and chemical potential
are extracted for a given beam energy over a large ensem-
ble of events. Thus, subtle difference exist due the the
simplicity of our toy model. However, even with these
differences, works such as this one and Ref. [51] clearly
indicate a non-trivial relation between the initial state
and final freeze-out. In fact, recent studies show that
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these far-from-equilibrium effects may be enhanced for
increased chemical potential [189]. Motivated by these
results, we will directly connect to experimental data us-
ing realistic 2+1 and 3+1 relativistic hydrodynamic vis-
cous models in future work.

VI. CONCLUSIONS

In this work we explored the effect of different
parametrizations of the BEST Collaboration equation of
state, which affect the shape and size of the critical re-
gion around the QCD critical point, on the net-baryon
number kurtosis, and on critical lensing. We found that
the direction along which the critical region extends is
also a relevant factor, besides its size. The lensing effect
was observed both in equilibrium, as well as in out-of-
equilibrium simulations. In both cases, critical regions
that further extend along the T -direction were shown to
induce the largest critical lensing effect, even when the
system was initialized far-from-equilibrium.

Because of this, many more evolution trajectories
passed through the vicinity of the critical point, which
would make its detection more likely in an experimental
setting.

While in ideal hydrodynamics entropy is conserved,
meaning that isentropes serve as good proxies for the
hydrodynamic trajectories through the QCD phase dia-
gram, the presence of viscosity induces a generous en-
tropy production, which makes isentropes a poor guide
for realistic scenarios. This was found to be the case re-
gardless of the equation of state used. As confirmation,
we showed clear evidence for the large thermal produc-
tion of entropy during the whole system’s evolution. Ad-
ditionally, ours is likely a conservative estimate, consider-
ing that we could not estimate the contribution from out-
of-equilibrium entropy production, and that additional
effects (e.g. BSQ diffusion) are expected to play a role,
especially in higher dimensions.

Finally, we investigated the spread in the kurtosis at
freeze-out, using our hydrodynamic trajectories with dif-
ferent equations of state, taking into account the uncer-
tainty on the freeze-out temperature. We found that the
critical lensing induces a non-trivial distribution in χ4 at
freeze-out, which becomes more evident, the closer the
freeze-out point is from the transition line.

This is quite a non-trivial effect, because it would have
a significant impact on the experimentally measured kur-
tosis.

In addition, a critical region extending along the T -
direction produces much larger fluctuations in χ4, such
that large positive or large negative values of χ4 are pos-
sible at freeze-out (this is due to the sharpness in the
peak of χ4 and non-monotonic behavior at µB > µBC).
Critical regions that extend further along the T -direction,
which produce a stronger lensing effect, were also previ-
ously found to be preferred by lattice results at µB = 0
[190]. In contrast, for a critical region extending further

along the µB-direction, χ4 is significantly smaller and
less likely to present a clear signal. However, even with
large fluctuations for critical regions along the T -axis,
the average χ4 ends up being large and clearly positive,
whereas it is clear that critical regions along the µB di-
rection have orders of magnitude smaller average χ4. We
find that the difference between the hadronization tem-
perature and freeze-out temperature plays a smaller role
than the difference in the EoS themselves.

To our knowledge, this is the first study wherein differ-
ent type of critical regions were compared, while coupling
to full viscous hydrodynamics. Certainly, a number of ef-
fects remain to be explored. The most obvious next step
is to move to higher-dimensions in the equations of mo-
tion, i.e. with 1+1D [77] or 3+1D setups [74, 75, 191].
Already at 1+1D, diffusion can be considered, which is
expected to be suppressed at the critical point [67]. Fur-
thermore, a non-trivial coupling between BSQ conserved
currents exists [192], and diffusion currents also couple to
shear and bulk viscosity at the level of the equations of
motion [98, 193, 194]. It remains to be seen whether these
effects are even further enhanced in more realistic simu-
lations. At this point, we are still quite far from studies
that can make direct comparisons to experimental data,
because this would require a freeze-out procedure that
conserves BSQ charges followed by hadronic transport
[195, 196]. Thus, we cannot comment e.g., on the ef-
fects of kinematic cuts at this time. However, it has been
shown that the anti-proton-to-proton ratio p̄/p may be
sensitive to deformations in the trajectories [62]. It is
unclear how strong out-of-equilibrium effects at freeze-
out would change this, since these corrections may affect
this ratio. Finally, memory effects may play a significant
role in these types of simulations [96], which would be
interesting to study in a future work.
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Appendix A: Critical Scaling of Thermodynamic
Variables

We can rearrange the map between Ising and QCD
variables to write

h(T, µB) =
tan (α1) (µB − µBC) + (T − TC)

TCw(sin (α2)− cos (α2) tan (α1))
(A1)

r(T, µB) =
tan (α2) (µB − µBC) + (T − TC)

ρwTC(sin (α1)− cos (α1) tan (α2))
, (A2)

and define the differential operations

∂T = hT∂h + rT∂r (A3)

∂µB = hµB∂h + rµB∂r, (A4)

where the subscripts correspond to partial derivatives
(e.g. hT = ∂h

∂T |µB ) and

∂h ∼
r1−βδ

βδ
∂r. (A5)

We obtain the critical scaling of different thermodynamic
variables by applying the operations in Eqs. (A3) and
(A4) to the pressure as defined in Eq. 23,

s ∼ ∂TP crit =S0
rβ

TCw (sin (α2)− cos (α2) tan (α1))

+ S1
rβδ+β−1

TCρw (sin (α1)− cos (α1) tan (α2))
(A6)
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nB ∼ ∂µBP crit =N0
tan (α1) rβ

TCw (sin (α2)− cos (α2) tan (α1))

+N1
tan (α2) rβδ+β−1

TCρw (sin (α1)− cos (α1) tan (α2))
,

(A7)

where Si and Ni are constants which depend only on
β and δ. The expressions for second-order derivatives
are significantly longer and are shown below only up to
leading order in r,(

∂s

∂T

)
µB

∼ (∂T )2P crit

∼ 1

rβδ−βT 2
Cw (sin (α2)− cos (α2) tan (α1))

2 ,

(A8)

χB2 ∼ (∂µB )2P crit ∼ sin2 (α1) csc2 (α1 − α2)

rβδ−βT 2
Cw

2
, (A9)

(
∂s

∂µB

)
T

=

(
∂nB
∂T

)
µB

∼ ∂T∂µBP crit

∼ sin (2α1) csc2 (α1 − α2)

rβδ−βT 2
Cw

2
.

(A10)

We obtain the scaling behavior of the T and µB separa-
tion between isentropes by substituting the full expres-
sion for each quantity into Eqs. (21) and (22), resulting
in Eq. (24).

Appendix B: Scaling of the Separation Between
Isentropes as a Function of Equation of State

Parameters

At the crossover line, T is a function of µB , as specified
by Eq. (2), so Eq. (21) becomes

d(s/n)

dµB
=

1

n

(
∂s

∂T

∂T

∂µB
+

∂s

∂µB

)
(B1)

− s

n2

(
∂n

∂T

∂T

∂µB
+

∂n

∂µB

)
.

Near the critical point, we can write

d(s/n)

dµB
∼ (∂µBP

crit)−1

(
∂TP

crit ∂T

∂µB
+ ∂µB∂TP

crit

)
(B2)

− ∂TP
crit

(∂µBP
crit)2

(
∂T∂µBP

crit ∂T

∂µB
+ ∂µB∂µBP

crit

)
,

and by using the operations defined in Eqs. (A3, A4),
obtain the behavior of d(s/n)/dµB along the crossover
line, near the critical point, as a function of the Ising
variable r and the EoS input parameters,

d(s/n)

dµB
∼

(βδ − 1)
(
2βδκ2µB cos (α2) rβδ + βδT0 sin (α2) rβδ − 2κ2µBρr cos (α1)− ρrT0 sin (α1)

)
T0TCw (ρr sin (α1)− βδ sin (α2) rβδ) 2

. (B3)

Using both the approximation for the exact values of
the 3D Ising exponents, β = 1/3, δ = 5, and the mean-
field values β = 1/2, δ = 3, the leading terms are the
same up to an overall constant A∗

d(s/n)

dµB
∼ A∗ csc (α1) (2κ2µB cot (α1) + T0)

wρrT0TC
+ . . . .

(B4)

Appendix C: Shifting the Freeze-out window

For completeness, in this section we include results for
a shifted freeze-out window. In this case, instead of cen-
tering the freeze-out window on the isentrope, we hold
the central µB fixed at 420 MeV and just vary ∆T alone.
We include results for ∆T ∈ {1, 3, 5} MeV in Fig. 10 and
results for ∆T = 0 in Fig. 11 for all three different EoS
that were previously shown in Fig. 6. Due to the shifted
freeze-out window, the limitations of our EoS range be-
gin to have a larger affect. Although, we can still obtain
a number of reasonable trajectories.

Because the trajectories bend back towards µB → 0
after the phase transition (at least initially), a shifted
freeze-out window underneath the critical point implies
that the trajectories do not, generally, pass across the
critical point (unless ∆T . 1 MeV is quite small).
Rather, these trajectories pass across the first-order
phase transition line and then bend back towards smaller
µB , passing underneath the critical point at the freeze-
out window. Thus, qualitatively, they are different types
of trajectories than what we previously saw. Despite this
subtle difference, the results are still consistent with Fig.
6 in that critical regions that are stretched across the
T -axis experience the most critical lensing.

One can also check how the average χ4 values have
changed in the shifted case in comparison to the main
portion of the text. We show these results in Fig. 12.
The averages no longer are near their isentropic values
and the average values have fallen orders of magnitude in
comparison to Fig. 9. One should also note that caution
should be used in interpreting the results for the isen-
tropic χ4 value for ∆T = 0 since exactly at the critical
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FIG. 10. Hydrodynamic trajectories for three different EoS with fixed w = 0.5 and ρ = {0.5, 1.0, 2.0} (top to bottom). Each
column shows trajectories that pass within ±3.5 MeV plane from µB = 420 MeV, measured on a line parallel to the transition
line, and shifted downwards by ∆T = {1, 3, 5} MeV (left to right). An extremely large number of initial conditions were run
for each EoS, and only the trajectories that pass through our freeze-out window are shown.

FIG. 11. Same as Fig. 10, but for ∆T = 0.

point this value should diverge and must be regulated in
the EoS table. Additionally, the isentrope that passes ex-

actly through the critical point typically no longer passes
through the shifted freeze-out window, therefore, it’s not
comparing the same point in the phase diagram.
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FIG. 12. Average χ4 across all hydrodynamic trajectories for
the shifted freeze-out window.
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