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We propose two frequency-domain filters to analyze ringdown signals of binary black hole mergers.
The first rational filter is constructed based on a set of (arbitrary) quasi-normal modes (QNMs) of
the remnant black holes, whereas the second full filter comes from the transmissivity of the remnant
black holes. The two filters can remove corresponding QNMs from original time-domain ringdowns,
while changing early inspiral signals in a trivial way — merely a time and phase shift. After filtering
out dominant QNMs, we can visualize the existence of various subdominant effects. For example, by
applying our filters to a GW150914-like numerical relativity (NR) waveform, we find second-order
effects in the (l = 4,m = 4), (l = 5,m = 4) and (l = 5,m = 5) harmonics; the spherical-spheroidal
mixing mode in the (l = 2,m = 2) harmonic; and a mixing mode in the (l = 2,m = 1) harmonic
due to a gravitational recoil. In another NR simulation where two component spins are anti-aligned
with the orbital angular momentum, we also find retrograde modes. The filters are sensitive to the
remnant properties (i.e., mass and spin) and thus have a potential application to future data analyses
and parameter estimations. We also investigate the stability of the full filter. Its connection to the
instability of QNM spectra is discussed.

I. INTRODUCTION

Ringdown is the final stage of a gravitational wave (GW)
signal emitted by a binary black hole (BBH) coalescence.
It is associated with the oscillations of the remnant black
hole (BH), and contains rich information of the system.
With an increasing number of GW events [1–4] observed
by ground-based detectors [5–7], comprehensive studies of
the ringdown signal and its rich features become crucial
to understanding the geometry of extreme spacetimes and
testing General Relativity (GR).
A standard description of the ringdown comes from

the BH perturbation (BHP) theory. The perturbation
of a single BH has been an important topic for decades
[8–11]. GWs emitted by the BH during ringdown are
characterized by a set of quasinormal modes (QNMs) 1,
which are complex and dissipative by their nature. As a
consequence, the time-domain evolution of each QNM is
a damped sinusoid. Due to the no-hair theorem [14–17],
QNMs predicted by GR are completely determined by
the mass and spin of the BH. Therefore, measuring the
frequency and decay rate of a QNM from a ringdown
signal would allow people to infer the mass and spin of
the BH, as pointed out by Echeverria [18]. This method is
dubbed BH spectroscopy. The idea was then generalized
by Dreyer et al. [19] and Berti et al. [20, 21], and they
showed that one could test the no-hair theorem if multiple
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1 Except for the late gravitational tail [12, 13].

modes are observed at the same time. Later on, a lot of
effort has been made to investigate BH spectroscopy under
different scenarios [22–41]. In particular, the studies by
Cardoso et al. [10, 42, 43], Foit et al. [44] and Laghi et al.
[45] implied that QNMs could reflect the quantum nature
of BHs or other exotic compact objects (ECOs); hence
one can use this fact to test GR and constrain modified
gravity [46–49]. Since the detection of GW150914 [50],
BH spectroscopy with real observational data has become
available. Carullo et al. [51] studied the late-time portion
of the ringdown of GW150914 and found no evidence
for the presence of more than one QNM. Then Isi et
al. [52] extended the analysis to the peak of the strain
and showed evidence of at least one overtone, with 3.6σ
confidence. This led to a test of the no-hair theorem at
the ∼ 20% level. Recently, Cotesta et al. [53] raised an
opposing viewpoint that the search for the first overtone in
the ringdown of GW150914 might be impacted by noises,
therefore the conclusion still remains controversial [54, 55].
On the other hand, Capano et al. [56] studied the QNM
spectrum of GW190521 [57] and found the l = m = 3
harmonic. More GW events were used to perform BH
spectroscopy in Refs. [58–60].
The inspiral-merger-ringdown (IMR) consistency test

is another important extension of BH spectroscopy. One
can infer the properties of binaries separately from the
inspiral waves and the ringdown waves, and check whether
they are consistent with the predictions of GR. The idea
was proposed originally by Hughes et al. [61], and more
careful analyses were carried out later [62–65]. So far, no
deviation from GR has been found in observational data
[66–69]. In addition, Refs. [70, 71] used this method to
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test Hawking’s area law [72].
An essential ingredient for BH spectroscopy is to under-

stand how QNMs are excited at merger [73–86] and when
the ringdown starts [87–89]. An accurate investigation for
a BBH system during a highly nonlinear regime was not
available until the numerical relativity (NR) breakthrough
was made in 2005 by Pretorius [90]. Since then, a usual
method to study the ringdown of a numerical waveform
has been fitting it to the prediction of BHP theory. For
example, Buonanno et al. [91] decomposed the ringdown
signal into a sum of the fundamental mode and several
overtones. Berti et al. [92, 93] and Kamaretsos et al. [79]
fit the ringdown of unequal-mass, nonspinning systems
with only the fundamental mode. London et al. [94] car-
ried out a more systematic study for various nonspinning
BBHs and identified overtones within the NR waveforms.
On the other hand, the fitting was also an important
step to calibrate the effective one-body model [95–99].
Later, given the motivation of BH spectroscopy with real
observational data, Thrane et al. [100] fit the ringdown
of a GW150914-like NR simulation without any overtone,
and they found some inconsistency between the QNM
model (with fundamental modes only) and NR waveform.
This puzzle was resolved by Giesler et al. [101], where
the authors found that the inclusion of overtones could
extend the linear regime to the peak strain amplitude.
This work sparked another wave for ringdown modeling,
including the study for multimode ringdown fitting [102],
and the impacts of other effects on ringdown signals, such
as retrograde modes 2 [103], more overtones [104], precess-
ing systems [105], angular emission patterns [106], and
the Bondi-van der Burg-Metzner-Sachs freedom [107].
It is surprising to see that the linear BHP theory is

good enough to explain the waveform beyond the peak
of the strain, given that the dynamics at the merger are
believed to still be violent. Okounkova [89] provided a
possible explanation based on previous Kerrness tests [87]:
most of the near-zone nonlinearities 3 are absorbed by
the event horizon and barely escape to infinity. Nonethe-
less, it still seems elusive to draw an incontrovertible
conclusion, since recent studies [110, 111] showed that
multipole moments of dynamical horizon are also com-
patible with the superposition of linear QNMs soon after
the formation of the common horizon. Furthermore, it
was shown that applying second-order BHP theory to
the close-limit approximation could improve the agree-
ment between the ringdown model and the full numerical
waveform — the improvement was not only limited to
the regime near the peak, but also extended to the late
portion of the ringdown signal [112]. Then it is natural
to ask: where are the second-order effects? In the past,
the second-order perturbation of a Schwarzschild BH was

2 The author of Ref. [103] used the name “mirror mode” instead.
In this work we will always use “retrograde mode”.

3 Here we do not consider the wave-zone nonlinearities, say the
memory effect, which has been obtained from NR [108, 109].

used by Tomita et al. [113, 114] in the process of a gravi-
tational collapse to investigate the stability of the horizon.
Cunningham et al. [115] treated the spin as a small per-
turbation during the Oppenheimer-Snyder collapse and
studied its second-order effect. Later on, second-order
perturbation theory was motivated by the close-limit ap-
proximation [116], including the metric perturbation of a
Schwarzschild BH [112, 117–122] and the perturbation of
a Kerr BH within the Newman-Penrose formalism [123].
Recently, more comprehensive treatments were used to
deal with the perturbation of a Kerr BH and its metric
reconstruction [124–126]. An important feature of second-
order BHP theory is that the master equation has the
same potential as the first-order theory, while the source
term is quadratic in terms of the first-order perturbations.
Accordingly, the time evolution of the second-order per-
turbations can be influenced by the second-order QNMs,
known as “sum tones” and “difference tones” [127–131].
For instance, Nakano et al. [129] found the existence of
a component twice the (l = 2,m = 2) QNM in the
(l = 4,m = 4) harmonic by looking at a perturbed
Schwarzschild BH. So far, very few studies have been
done on the second-order effects within the ringdown of
a BBH waveform. London et al. [94] investigated 68 NR
waveforms and presented the evidence of the second-order
mode (l1,m1, n1)× (l2,m2, n2) = (2, 2, 0)× (2, 2, 0) in the
(l = 4,m = 4) harmonic via time-domain fitting. Beyond
the second-order effect, Sberna et al. [132] showed that
the growth of BH mass due to the absorption of the linear
QNMs can induce a third-order secular effect.

The time-domain fitting proves to be powerful to extract
the physics from ringdown signals. However, one always
has to be careful of overfitting — more QNMs included
(e.g., overtones or retrograde modes) may act as additional
basis functions to misinterpret other effects. Taking this
caveat into consideration, in this paper we propose a
complementary tool to analyze a ringdown waveform —
we define two frequency-domain filters that are able to
remove any particular QNM from the ringdown. After
the dominant mode is filtered out, we can visualize the
existence of subdominant effects, including mode mixing,
second-order modes, and retrograde modes.

This paper is organized as follows. In Sec. II, we intro-
duce two types of filters and show their properties. Then
in Sec. III, we apply the two filters to NR waveforms and
discuss the results. Section IV focuses on the stability
of the filter under perturbations. Next, in Sec. V, we
discuss how the filter depends on the remnant BH’s mass
and spin. We also investigate the possibility to use the
filter for parameter estimation. Finally, we summarize
the results in Sec. VI.

Throughout this paper, we use the geometric units with
G = c = 1. We always use the notation ωlmn to refer to
the (l,m, n) QNM.
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II. QNM FILTERS

In this section, we introduce two types of filters for
QNMs. In Sec. IIA we first review briefly the QNM de-
composition model of a ringdown signal. Then in Sec. II B
we describe a rational filter, which can remove any par-
ticular QNM from a ringdown signal. Two toy models
are used to explore the effect of this filter. After under-
standing the effects of the rational filter, in Sec. II C we
argue that the inverse of the remnant BH’s transmissivity
can also serve as a filter. Remarkably, we find that the
waveform filtered by this filter has a physical meaning.

A. Decomposing late waveforms into QNMs

It has been widely accepted that the late part of the GW
emitted by binary black-hole mergers can be described as
a linear combination of QNMs and a power-law tail, which
arise from different features of the retarded gravitational
Green’s function Glm: the QNMs correspond to poles
of Glm, while the power-law tail arises from integrating
along a branch-cut Glm [133].
In the special case of a high-mass-ratio merger, which

can be modeled as an orbiting and then plunging particle,
QNM excitations at late times have been computed [77,
78, 80] and further analyzed in terms of multipole and
overtone excitations [82, 84, 85, 134]. As an example, in
linear perturbation theory, the gravitational waveform at
infinity sourced by the particle can be described by

h(t, r∗) =
∑
lm

∫
dω

2π e
−iωt

∫
dyGlm(r∗, y, ω)Slm(y, ω),

(1)
where Slm(y, ω) is the source term, and it has the general
form of

Slm(y, ω) = eiωT (y)P (ω, y) (2)

where (T (y), y) parametrizes the radial trajectory of the
particle, and P (ω, y) is a rational function of ω. For each
y, as long at t > T (y) one can close the ω-contour from
the lower-half complex plane, hence only collect the poles
of the Green’s function Glm and a branch-cut contribution
which corresponds to power-law tails. Even though the
particle’s T (y) becomes infinity for y → −∞, the source
term P (ω, y) exponentially decays to zero, soon after y
becomes negative, i.e., when the particle plunges across
the light ring and approaches the horizon.

Gravitational waveforms from collapsing stars and merg-
ing comparable-mass BHs were argued to have similar
late-stage properties [18, 115, 135–139]. The regime of
QNM decomposition is often referred to as the “linear
regime”, although the decomposition requires both linear-
ity and homogeneity (i.e., the QNMs are homogeneous
solutions to the linearized Einstein’s equations).
Now assuming that a ringdown signal h(θ, φ, t) is a

linear combination of QNMs, starting from t0, namely

h(θ, φ, t) = (h+ − ih×)(θ, φ, t)

=
∑
kmn

[
Akmne

−iωkmn(t−t0) S−2 kmn(aωkmn, θ, φ)

+A′kmne
iω∗

kmn(t−t0) S∗kmn−2 (aωkmn, π − θ, φ)
]
, (3)

where ×,+ refer two polarization states of the GW, a is
the dimensional spin of the BH, ωkmn are the frequen-
cies of QNMs, S−2 kmn(aωkmn, θ, φ) are the spin-weighted
spheroidal harmonics [140], and (Akmn, A

′
kmn) are the

mode amplitudes. It is usually more convenient to decom-
pose the waveform in terms of spin-weighted spherical
harmonics Y−2 lm (θ, φ)

h(θ, φ, t) =
∑
lm

hlm(t) Y−2 lm (θ, φ). (4)

with hlm being the (l,m) spherical multipole har-
monic. The mode mixing between the two bases:
S−2 kmn(aωlmn, θ, φ) and Y−2 lm (θ, φ), is given by [141,

142]

S−2 kmn(aωlmn, θ, φ) =
∑

l

µ∗mlkn(aωlmn) Y−2 lm (θ, φ).

(5)

By combining Eqs. (3), (4) and (5), we obtain the QNM
decomposition model for hlm:

hlm =
∑
k,n

[
Cmlkne

−iωkmn(t−t0) + C ′mlkne
iω∗

k−mn(t−t0)
]
.

(6)

Explicit relations between Cmlkn and Akmn [Eq. (3)] can
be found in Ref. [85]. Note that the second term in
Eq. (6) corresponds to the retrograde modes, which are
also dubbed “mirror modes” in Refs. [103, 143]

B. The rational filter and two toy models

For simplicity’s sake we consider a single QNM signal
in the time domain:

h(t) = e−iωlmn(t−t0)Θ(t− t0), (7)

where ωlmn is the complex frequency of a specific QNM,
Θ(t− t0) is the Heaviside step function, and t0 refers to
the start time of the mode. If we are interested in the
regime of t > t0 and want to annihilate the mode content
ωlmn therein, a natural choice is to use a time-domain
operator (

d

dt
+ iωlmn

)
h(t) = δ(t− t0), (8)
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t > t0

ωlmn

ω*lmn

ℱlmn

h̃(ω)

Re

Im

Figure 1. The pole of the original waveform h̃(ω) (in blue) and
the filtered one h̃filter(ω) (in orange). The contour is closed
from the upper (lower) plane when t < t0 (t > t0).

with δ(t − t0) being the Dirac function. However, this
operation can lead to additional numerical noises. In-
stead, we first transform the signal h(t) in Eq. (7) to the
frequency domain

h̃(ω) = 1√
2π

∫
h(t)eiωtdt, (9)

and obtain

h̃(ω) = i√
2π

eiωt0

ω − ωlmn
. (10)

Then we define a frequency-domain filter Flmn:

Flmn = ω − ωlmn

ω − ω∗lmn

, (11)

where ∗ represents the complex conjugate. We remark
that the numerator of Flmn corresponds to the annihila-
tion operator [Eq. (8)] in the frequency domain, while the
denominator is introduced to make |Flmn| = 1 (when ω is
real-valued) and therefore ensure that the filter does not
diverge at high frequency. Finally, we impose the filter
via

h̃filter(ω) = Flmnh̃(ω), (12)

and transform the filtered signal to the time domain again

hfilter(t) = 1√
2π

∫
h̃filter(ω)e−iωtdω, (13)

which yields

hfilter(t) = −e−iω∗
lmn(t−t0)Θ(t0 − t). (14)

Notice that the sign of the argument in the Heaviside step
function Θ has changed. This can be understood in terms
of the impact of the filter on the pole of the waveform,
as shown in Fig. 1. The pole of the original waveform
h̃(ω) (in blue) lies in the lower half plane, implying its
excitation after t0. After imposing the rational filter Flmn,
the pole is lifted to the upper panel (in orange). Therefore,
the filtered waveform becomes a ring-up signal prior to
t0, whereas the original ringdown is removed after that
moment.

40 20 0 20 40
t

1.0

0.5

0.0

0.5

1.0 Re e−iωtΘ(t)

After filter

Figure 2. The effect of the frequency-domain filter in Eq. (11)
on a single QNM signal. The mode is chosen to be the funda-
mental (l = 2,m = 2) QNM of a Kerr BH with dimensionless
spin 0.69. The signal starts at t = 0, and it is padded with 0
for t < 0. After applying the filter, the original signal (its real
part is shown as the black curve) is removed from the regime
of interest (t > 0), whereas an undesired “flipped ringdown”
is introduced for t < 0 (red curve). This “flipped ringdown”
resembles the original signal, but decays backward in time.

To be specific, we consider a toy model in Fig. 2 to
illustrate the effect of the filter. We pick the fundamental
(l = 2,m = 2) QNM of a Kerr BH with dimensionless
spin χ = 0.69. The QNM frequencies are obtained from
the PYTHON package qnm [144]. The start time t0 is
set to 0. Indeed, we can see that within our interested
regime t > t0, the filter is able to remove the mode content
ωlmn completely. Meanwhile, the ring-up signal (“flipped
ringdown”) is introduced before t0. As we will see, this
feature can contaminate GWs at merger, but it will not
affect our analysis as long as we focus on the regime t > t0.
As for an early, low-frequency inspiral signal, since its
frequency ω is small compared to ωlmn, we can perform
a Taylor expansion around ω = 0

Flmn = exp[−iφlmn − iωtlmn + O(ω2)], (15)
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where the two real constants tlmn and φlmn are given by

φlmn = −2 tan−1 ω
i
lmn

ωr
lmn

, tlmn = − 2ωi
lmn

|ωlmn|2
, (16)

with ωr
lmn and ωi

lmn being the real and imaginary part
of ωlmn = ωr

lmn + iωi
lmn, respectively. Consequently,

imposing the filter Flmn to the low-frequency inspiral
signal is equivalent to shifting the original signal in phase
and backward in time4. For a Kerr BH with χ = 0.69, the
(l = 2,m = 2) fundamental mode leads to tlmn ∼ 0.57Mf ,
which can be neglected for most of ringdown analyses.
However, if we want to remove a series of QNMs, we need
to apply:

Ftot =
∏
lmn

Flmn, (17)

where n stands for the overtone index. Then the time
shift tlmn may not be negligible anymore.

We then switch our attention to a more realistic case: a
Schwarzschild BH perturbed by an even-parity Gaussian
pulse. The Zerilli equation [145] is solved numerically.
Figure 3 shows the waveform h22 at future null infinity.
We see h22 (the black curve) consists of the excitation,
ringdown, and tail regime. After applying the filter F220
(the red curve), the ringdown oscillations are completely
removed from the tail beyond a certain time around the
merger, yet a few wiggles appear prior to that time. This
is due to the nonphysical “flipped ringdown” (see the
red curve in Fig. 2). The difference between the original
h22 and the filtered waveform, as shown in the lower
panel of Fig. 3, corresponds to the combination of the
“flipped ringdown” and the real ringdown (namely the
combination of the black and red curves in Fig. 2). Note
that here we have undone the time shift induced by the
filter by aligning two waveforms in the early regime. The
peak of the difference (the vertical green dashed line)
represents the start time of the ringdown t0 [see Eq. (7)].
In addition, we see a generic feature: a new damped
sinusoid that decays backward in time shows up before
the onset of the original signal. For a BBH waveform, it
appears before the entire inspiral regime, thus it does not
impact our analysis.

C. The full filter: the inverse of BH transmissivity

Following Teukolsky’s approach for the linear pertur-
bation of a Kerr BH with dimensional spin a [146, 147],
we first write

Ψ = ρ−4ψ4 = Rlm(r, ω) S−2 lm(aω, θ, φ)eiωt, (18)

4 Strictly speaking, Eq. (16) is for zero frequency components. An
accurate estimation for other low frequencies is not needed in this
paper.

10-10

10-8

10-6

10-4

10-2

100

Reh22

Reh filter
22

500 400 300 200 10010-10

10-8

10-6

10-4

10-2

100

0 100 200 300

|Re(h filter
22 − h22)|

t

Figure 3. The impact of the filter F220 on the GW emitted by
a single, perturbed Schwarzschild BH. In the upper panel, the
real part of the filtered waveform (red curve) is compared with
the original h22 (black curve). Note that here we have undone
the time shift induced by the filter by aligning two waveforms
in the early regime. In the lower panel, the difference between
the two waveforms corresponds to the combination of the
“flipped ringdown” and the real ringdown (see the black and
red curves in Fig. 2). Its peak (the vertical dashed line)
represents the start time of the ringdown.

where ρ = −(r − ia cos θ)−1, (t, r, θ, φ) is the Boyer-
Lindquist coordinate system, and ψ4 is the Weyl scalar.
The radial function Rlm(r, ω) satisfies the radial Teukol-
sky equation [146, 147]. The up-mode solution Rup

lm to the
homogeneous Teukolsky equation is of particular interest
to us. Its asymptotic behavior near future null infinity
and the horizon is given by [148]

Rup
lm ∼


r3eiωr∗ , r∗ → +∞,

Dout
lm eiωr∗ + ∆2Din

lme
−iωr∗ , r∗ → −∞,

(19)

with ∆ = r2 − 2r + a2 and r∗ being the tortoise radius.
Fig. 4 exhibits the physical meaning of the up-mode
— a wave is emitted from the past horizon H − and it
gets reflected and transmitted by the BH potential. The
transmissivity and reflectivity are given by 1/Dout

lm and
Din

lm/D
out
lm , respectively. As for a QNM of the BH, its

mode frequency ωlmn satisfies

Dout
lm (ωlmn) = 0. (20)

Therefore, we can write

Dout
lm ∼

∏
n

(ω − ωlmn). (21)
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h̃ D outlm
ℋ −

ℐ +ℋ+

II I 

h̃

h̃ D
in

lm

ΣShell

Figure 4. The physical meaning of FD
lm based on the hybrid

approach. The spacetime is split by a time-like world tube
ΣShell (red line) into an inner PN regime II and an outer
BHP regime I. During the spacetime reconstruction, we take a
waveform from NR at null infinity I +, and evolve it backward
into the bulk using BHP theory as if ΣShell were not there.
The result is proportional to the up-mode solution to the
homogeneous Teukolsky equation. In particular, an image
wave h̃Dout

lm needs to appear at the past horizon H −, and
it is proportional to the filtered waveform. The image wave
is spurious since the entire H − lies inside the PN regime II,
where the BHP theory does not apply. It exists there as a
source to drive the wave in regime I. During the ringdown
phase of h̃, the linear QNMs are free ringing of the remnant
BH and hence can be annihilated by Dout

lm , whereas nonlinear
pieces are driven by some sources and thus cannot be removed.

Comparing Eq. (21) with the filter in Eq. (17) [also
Eq. (11)], we see Dout

lm serves the same role as Ftot: it
can remove all ωlmn’s that are associated with the indices
(l,m) at once. In practice, since Dout

lm diverges as ω → 0
[149], we instead define a filter

FD
lm = Dout

lm

Dout∗
lm

, (22)

which is a direct analogue of Eq. (11) to ensure |FD
lm| = 1

when ω is real-valued. Below we will call FD
lm the full

filter.
Interestingly, unlike the filter in Eq. (11) that was

introduced purely phenomenologically, the current fil-
tered waveform h̃Dout

lm bears a physical meaning. To
be concrete, in Ref. [150], some use the hybrid approach
[137, 138] to reconstruct the spacetime near merging com-
pact objects based on NR waveforms at future null infinity
I +. Below we give a brief introduction and refer the
interested readers to Refs. [137, 138, 150] for more details.

The hybrid method is an approximated, ab initio wave-
form mode. For a BBH merger spacetime in Fig. 4, the
spacetime is split by a time-like world tube ΣShell into an
inner strong-gravity region II and an outer weak-gravity
region I, where the strong-gravity metric in II is given
by the post-Newtonian (PN) theory while the one in I
is provided by BHP theory. The hybrid method evolves
two metrics jointly and they communicate via boundary
conditions on the world tube ΣShell. Note that close to
the merger, the PN theory may break down, but the
errors stay within the BH potential as long as the shell
ΣShell falls rapidly enough into the future horizon H +.
As a result, the hybrid method was able to predict a
reasonable inspiral-merger-ringdown waveform for a BBH
system [137, 138].

In Ref. [150], on the other hand, we reversed the process
— we started with a NR waveform at I + and evolved it
backward into the bulk (the region I) using BHP theory.
This process allows us to construct the entire spacetime
as if the worldtube were not there. It turns out that
the solution is proportional to the up-mode solution in
Eq. (19), and the coefficient is determined by the NR
waveform h̃ at I +. As shown in Fig. 4, the process
leads to an outgoing wave h̃Dout

lm at the past horizon
H −, although it is not real because the entire H − lies
inside the strong-gravity region, where BHP theory does
not apply. Nevertheless, we can think of the filtered
waveform h̃Dout

lm as an image wave, which is akin to the
image charge in electrodynamics. The image wave exists
there to drive the signal in region I — acting as a source
— by providing a desired boundary condition on ΣShell.
In particular, during the ringdown phase of h̃, a linear
QNM corresponds to the free ringing of the BH, and thus
there is no corresponding source term. Consequently, it
can be annihilated by Dout

lm , which is consistent with our
phenomenological construction in Sec. II B. In contrast,
second-order effects (during the ringdown phase) [117, 125,
126] are driven by sources, and hence cannot be removed
by Dout

lm . The filtered waveform h̃Dout
lm represents the

image wave (an effective source) for the second-order
effects.

Table I. A list of NR simulations (nonprecessing) used in this
paper. The first column is the SXS identifier [151]. The
second column is the mass ratio q > 1. The third column gives
the number of quasicirular orbits that the systems undergo
before the merger. The fourth and fifth columns correspond to
the initial spin components along the direction of the orbital
angular momentum (the z−axis). The remnant mass (Mf ),
as a fraction of the total system mass Mtot, and spin (χf ) are
in the final two columns. The waveform SXS:BBH:0305 is a
GW150914-like system.

ID
q Ncycle χz

1 χz
2

Mf

Mtot
χf

SXS:BBH:
0305 1.2 15.2 0.33 −0.44 0.952 0.692
1107 10.0 30.4 ∼ 10−6 ∼ 10−8 0.992 0.261
1936 4.0 16.5 −0.8 −0.8 0.985 0.022
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Figure 5. The effect of the filter Flmn on h22 of SXS:BBH:0305. Here we have aligned the early inspiral portion between the
original signal h22 (black) and the filtered waveforms. After removing ω220 from the original waveform, the oscillation in the
ringdown of the filtered waveform (red) is consistent with the QNM ω221 (blue). If we further remove ω22,n=1...7, the residual
shows the existence of the QNM ω320 (cyan), which is caused by the spherical-spheroidal mixing. For comparison, we evaluate
the numerical error of this waveform (gray) by taking the difference between two adjacent numerical resolutions.

III. APPLICATIONS OF THE FILTERS

In this section, we use three NR simulations,
SXS:BBH:0305, 1107 and 1936, in the Simulating eXtreme
Spacetimes (SXS) catalog [151] as examples to demon-
strate the applications of the filters. As summarized in
Table I, these three waveforms are for nonprecessing sys-
tems: the initial individual spins χz

1,2 are (anti-)aligned
with the orbital angular momentum (along the z-axis),
and the mass ratio between the primary BH and the

secondary BH is denoted by q, i.e., q > 1. The systems
undergoNcycle quasicircular orbits before the merger. The
remnants are Kerr BHs with mass Mf and spin χf . In
particular, SXS:BBH:0305 is a GW150914-like system
[50]. We want to emphasize again that our rational filter
leads to a time shift backwards in time. For the sake
of comparison, in this section we always undo the time
shift by aligning the early portions of waveforms (i.e.,
minimizing their mismatch).
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A. The GW150914-like system: SXS:BBH:0305

In this subsection, we investigate several (l,m) harmon-
ics of SXS:BBH:0305. Sec. IIIA 1 focuses on h22, where
we show that the ω320 QNM mixes into h22 due to the
spherical-spheroidal mixing [141, 143, 152]. Sec. IIIA 2
focuses on second-order effects in h44, h54 and h55 con-
tributed by the quadratic couplings h2

22 and h22h33, re-
spectively. Finally in Sec. III A 3, we study the leakage of
the ω220 mode into the harmonic h21 due to the gravita-
tional recoil [152, 153].

40 20 0 20 40 60 80 100
t/Mf

10-6

10-5

10-4

10-3

10-2

10-1

100
SXS:BBH:0305: Re h22

Ftot =
7∏

n= 0

F22n

ω320

FDlm

Figure 6. A comparison between the full filter FD
lm [Eq. (22)]

and the rational filter Ftot [Eq. (17)] associated with ω22,n=0...7.
The latter one is more accurate to reveal the existence of
the QNM ω320 in h22 of SXS:BBH:0305. We attribute the
inaccuracy of the full filter to the numerical noise when we
interpolate the value of Dout

lm from the Black Hole Perturbation
Toolkit.

1. h22: the spherical-spheroidal mixing

It was found that the harmonic h22 of
SXS:BBH:0305 can be modeled as a superposition
of ω22,n=0...7 up to the peak strain amplitude [101]. To
compare our analysis results using the new method with
theirs, we first apply a filter Fl=2,m=2,n=0 [Eq. (11)]
to h22. As shown in Fig. 5, the filtered waveform (the
red curve) has a smaller amplitude than h22 in the late
ringdown regime, and we see that the main residual
oscillation is consistent with the frequency and the
decay rate of the first overtone ω221 (blue). Here the
blue dashed curve is obtained by fitting the filtered
waveform within the window of [12, 28]Mf ; and the mode
amplitude and phase of the first overtone are 0.08 and
−0.57 rad at t = 12Mf . We note that the amplitude of
the first overtone is reduced by F220 [154]. One needs to
take the reduction factor into account while comparing

with the original amplitude, and we leave this comparison
for future work. On the other hand, the result serves as
strong evidence to support that Flmn is indeed able to
annihilate the corresponding (l,m, n) QNM.

Next we continue to remove ω22,n=1...7 based on the con-
clusion in Ref. [101], and obtain the green curve in Fig. 5.
We can see that the oscillation is consistent with ω320
(cyan) in the window of [16, 65]Mf , whose amplitude and
phase are ∼ 4.4× 10−4 and −0.79 rad at t = 16Mf after
the filters. To ensure the oscillation is physical rather than
numerical artifacts, we compute the numerical (trunca-
tion) error of this NR simulation by taking the difference
between two adjacent numerical resolutions. We see that
the residual in the filtered waveform is still above the nu-
merical noise floor. Therefore, this piece of the dominant
residual signal corresponds to the spherical-spheroidal
mixing in the remnant Kerr spacetime5 [141, 143, 152].
Meanwhile, we find the filter shifts the waveform back-
ward in time by ∼ 14.1Mf , close to the prediction given
by Eq. (16)

n=7∑
n=0

tl=2,m=2,n ∼ 12.9Mf . (23)

In Fig. 5 we have aligned the early inspiral portion between
the original signal h22 (the black curve) and the filtered
waveforms for comparisons.

Then in Fig. 6 we investigate the effect of the full filter
FD

lm [Eq. (22)], where the value of Dout
lm is obtained from

the Black Hole Perturbation Toolkit [157]. The result is
almost identical to that of the rational filter Ftot up to
t ∼ 10Mf , but it is less accurate to reveal the spherical-
spheroidal mixing. We attribute the inaccuracy to the
numerical noise when we interpolate the value of Dout

lm
from the Black Hole Perturbation Toolkit, and we leave
a more precise calculation of Dout

lm for future studies. In
addition, we find a nice property of the full filter FD

lm: it
does not give rise to any time shift, as opposed to the
rational filter. One could benefit from this feature in real
data analyses.

2. h44, h55, h54: the second-order QNMs

London et al. [94] found evidence for the second-order
mode in the h44 harmonic, contributed by a quadratic
coupling ∼ h2

22. Therefore, it is expected to see the sum
tone 2ω220 in the ringdown of h44. In the upper panel of
Fig. 7, we first remove the linear QNMs ω44,n=0...3 from
h44, and then fit the filtered waveform with 2ω220 in the
window of [12, 30]Mf . We can see a decent agreement.

5 The supertranslation can also make h32 leak into h22, e.g., Eq. (8)
of Ref. [152]. We have checked that the presence of the mode ω320
is due to the spherical-spheroidal mixing by transforming the
waveform to the superrest frame using the technique presented
in Ref. [155]. For more on this, see Ref. [107, 155, 156].
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Figure 7. Second-order modes in h44 (top), h54 (bottom left), h55 (bottom right) of SXS:BBH:0305. After removing linear
QNMs and relevant spherical-spheroidal mixing modes from original waveforms (black curves), filtered waveforms (red curves)
contain oscillations that are consistent with the sum tone of 2ω220 or ω220 + ω330 (green dashed curves). As for the harmonics
h55 and h54, the comparison is done in the superrest frame to avoid other mixing modes.

The corresponding mode amplitude and phase are 7.9×
10−4 and 3.1 rad at t = 12Mf after the filters. In addition,
the signal is larger than the numerical (truncation) error,
which is evaluated by computing the difference between
two adjacent numerical resolutions. This result shows that
the second-order mode does exist in the ringdown regime.
Furthermore, we find evidence for the presence of ω220 +
ω221 and 2ω221 in the ringdown of h44 as well, and we leave
more discussions in our follow-up work [158]. On the other
hand, while we are preparing our manuscript, we notice
that Ref. [159] also carries out comprehensive studies on
the second-order modes with a different approach, so we
refer the interested reader to Ref. [159] for more details.
In addition, it is also expected that h55, h54 can be

sourced by h22h33 and h2
22, respectively. In this case, we

find that one has to map the waveforms to the superrest
frame [107, 156] to reveal these second-order effects. We
do this using the technique presented in Ref. [155], based
on the SpECTRE code [160, 161]. In the bottom left panel
of Fig. 7, after removing the linear QNMs ω54,n=0...3, as
well as ω44,n=0...3 and ω64,n=0...3 caused by the spherical-
spheroidal mixing, we find the residual signal of h54 is
consistent with the sum tone 2ω220 in the window of
[10, 40]Mf , with an amplitude of 1.2×10−5 and a phase of
−2.9 rad at t = 10Mf . As for h55, the bottom right panel
of Fig. 7 shows the existence of ω220 + ω330 in [8, 28]Mf ,
whose amplitude and phase are 1.9 × 10−5 and −1.96
rad at t = 8Mf . Nevertheless, we see the amplitudes
of these two second-order effects are on the same order
of the numerical noise, therefore their existence is not
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conclusive.
Finally, we want to remark again that the amplitudes

of the second-order effects are reduced by the filters. In
consequence, the amplitudes obtained from our approach
are smaller than their original values.

25 0 25 50 75 100 125 150
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superrest Reh21

extrapolated Reh21

extrapolated w/o 21{0-2}+31{0-2}
superrest w/o 21{0-2}+31{0-2}
ω220

Figure 8. Leakage of the ω220 mode into the h21 harmonic
due to the gravitational recoil. After removing ω21,n=0...2 and
ω31,n=0,1 from the original h21 waveform (black curve), the red
curve exhibits the presence of the ω220 mode (yellow dashed
curve). If we transform the waveform to the superrest frame
(blue curve) and repeat our filtering process, the mixing mode
ω220 will be completely removed (green curve).

3. h21: the mode mixing due to a gravitational recoil

We repeat our process for the harmonic h21 of
SXS:BBH:0305. As shown in Fig. 8, after removing the
linear QNMs ω21,n=0...2 and the spherical-spheroidal mix-
ing modes ω31,n=0,1, we find the remaining oscillation is
consistent with the mode ω220 (the red and yellow dashed
curves). We then use ω220 to fit the filtered waveform
in the window of [55, 92]Mf . The result is shown as the
yellow dashed curves. The corresponding mode amplitude
and phase are 9.5 × 10−6 and −0.62 rad at t = 55Mf .
This leakage is caused by a boost in the orbital plane, and
this phenomenon has been discussed by Kelly et al. [152]
and Boyle [153]. To verify this, we transform the wave-
form to the superrest frame (the blue curve) [107, 156],
where the remnant BH is in the center-of-mass frame.
After applying the same filter, we can see the mixing is
completely removed (the green curve), while the other
portion of the waveform remains unchanged.

We note that the leakage of ω220 into h21 is a common
phenomenon, especially for high mass-ratio events whose
kick velocities are relatively large. Failing to take this
effect into account may misinterpret the mixing mode
ω220 as retrograde modes [103, 143]. We will explain

more details in Sec. III B.
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Figure 9. Retrograde mode −ω∗
2−20 in the ringdown of

SXS:BBH:1936. Top panel: after removing the ω22,n=0...3
modes and the spherical-spheroidal mixing mode ω320 from
the original harmonic h22 (black curve), we reveal the presence
of −ω∗

2−20 (green dashed curve) in the residual waveform (red
curve). Bottom panel: the phase evolution of the original
waveform (black curve) and the filtered waveform (the red
curve). The phase of the original waveform decreases mono-
tonically, indicating that the prograde modes are dominant.
However, the phase of the filtered waveform starts to grow
at the same time as the residual oscillations in the top panel
appear, which demonstrates that the residual oscillations are
retrograde modes.

B. The retrograde modes

It was found that taking into account the retrograde
modes [e.g., the second term of Eq. (6)] would expand
the linear perturbation regime. To partially address the
debate on overfitting, we use our rational filter as a com-
plementary tool to visualize the presence of the retrograde
modes.

We first take SXS:BBH:1936 with non-negligible retro-
grade modes (see Appendix A of Ref. [150]). In the top
panel of Fig. 9, we remove the prograde modes ω22,n=0...3
and the spherical-spheroidal mixing mode ω320 from the
original harmonic h22 (the black curve), then the red curve
shows the existence of −ω∗2−20 in the residual. In the plot,
the green dashed curve is obtained by fitting the filtered
waveform with −ω∗2−20 in the window of [28, 60]Mf . Its
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Figure 10. Same as Fig. 9, the retrograde mode −ω∗
2−20 in the

h22 of SXS:BBH:1107.

mode amplitude and phase are 3.9× 10−4 and 2.6 rad at
t = 28Mf . To further support our result, we investigate
the phase evolution of the waveforms. For a prograde
mode, its phase should decrease monotonically over time
due to the term e−iωlmnt [see the first term of Eq. (6)],
whereas a retrograde mode’s phase should increase due
to the term eiω∗

l−mnt [see the second term in Eq. (6)].
In the bottom panel of Fig. 9, we see the phase of the
original waveform (the black curve) decreases with time,
indicating that the progrades are more dominant. After
applying the filter, the decreasing trend terminates at
∼ 16Mf after the peak and the phase starts to grow at
the same time that the residual oscillations in the top
panel appear. This observation confirms the physical
origin of the residual oscillations.
Then we look into the case of SXS:BBH:1107 inves-

tigated by Dhani [103]. As shown in Fig. 10, there are
a few cycles in the filtered residual waveform h22 (the
red curve) that are consistent with the retrograde mode
−ω∗2−20. Meanwhile, the phase of the filtered waveform
also grows within that regime, which serves as more evi-
dence. Nevertheless, the retrograde mode in this case is
weaker and noisier than that of SXS:BBH:1936. Further-
more, we find applying retrograde filters (not only the
fundamental mode but also overtones) has little impact
on the early portion (t . 0) of the red curve in Fig. 10,
meaning there is no strong evidence for the existence of
retrograde modes within that regime. As for the har-
monic h21, we find it has a mixing component from the

mode ω220 due to the gravitational recoil, similar to the
case discussed in Sec. IIIA 3. This effect was not taken
into consideration by Dhani [103], so we speculate that
this could be the cause for the crests and troughs in the
mismatch of h21, e.g., Fig. 3 of Ref. [103].

Finally, we want to note that the vertical dashed lines
in Figs. 9 and 10 do not necessarily correspond to the
start time of the retrograde mode −ω∗2−20 in the original
waveforms (the black curves), because of the time shift
induced by our rational filter. To undo the time shift, here
we simply align the early inspiral portion of the filtered
waveforms with the original ones, making the location of
the dashed lines less informative.
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Figure 11. The up-mode solution of an ECO. We assume that
a GW emerges from the horizon (r∗ = −∞) and its amplitude
is unity. It bounces back and forth within the cavity formed
by the ECO surface and the BH potential. The GW seen by
an observer at infinity consists of the main transmissive wave
1/Dout

lm and a series of echoes.

IV. THE STABILITY OF THE FULL FILTER FD
lm

The QNM spectra of BHs have been found to be unsta-
ble [162–166]. In particular, Cheung et al. [166] classified
the instability into two categories: “migration instability”
and “overtaking instability”. For migration instability, the
fundamental QNM drifts drastically from its unperturbed
value when the perturbation is distant from the BH. This
kind of instability is related to the asymptotic behavior of
the eigenfunction near the horizon (e−iωlmnr∗) and infinity
(eiωlmnr∗). Recalling that Im ωlmn < 0, the eigenfunction
of the QNM increases exponentially as |r∗| → ∞. Any
small perturbation of the BH potential at a large |r∗|
will lead to a significant change of ωlmn. For overtaking
instability, a family of new modes appears near a bumpy
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Figure 12. The filter FD ECO
lm of a nonspinning ECO in the time domain. In the top panel, we set b to 200Mf (blue) and 300Mf

(red), while fixing the value of ε to 10−1. They are compared with that of a Schwarzschild BH (black). In the bottom panel,
we choose ε = 10−1, 10−2, 10−3 (blue, red and yellow) and set b to 200Mf . In both cases, the original signal (around t ∼ 0)
remains unchanged. The perturbation appears as periodic echoes with the time interval 2b. The amplitude of the nth echo is
proportional to εn.
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BH, trapped between two potential barriers 6. One of the
new modes might have a smaller decay rate than the un-
perturbed fundamental mode when the perturbation is at
a large distance. Consequently, this new mode overtakes
the original fundamental mode.

The spectral instability, however, may have a limited ef-
fect on observational results (e.g., time-domain responses
of a BH), as discussed in Refs. [43, 162–164, 167, 168].
Nollert [162] and Barausse et al. [163, 164] showed that
the prompt time-domain response is independent of per-
turbations when the perturbations are far from the system,
even though the QNMs of the perturbed system are com-
pletely different from the ones of an isolated BH. Cardoso
et al. [43] drew a similar conclusion while considering near-
horizon perturbations. In fact, as pointed out by Hui et
al. [169] and Berti et al. [167], despite the nonlocality
of QNMs, one needs to appreciate the causal structure
of the system while considering the time-domain signals
— a time response reflects the nature of each single po-
tential bump that is causally connected to the observer,
e.g., the prompt ringdown of a regular BH. The QNMs
of the perturbed system do not show up until very late
times as “echoes” [170] when the initial Cauchy data trav-
els and experiences the entire potential7. Therefore, the
time-domain signal is stable in the sense that the original
waveform remains unchanged, whereas the additional per-
turbation appears only as echoes that are well separated
from the original signal in time.

The instability of the QNM spectra implies that QNMs
may not be the most natural basis for ringdowns. One
might need to rearrange QNMs into new subsets and
sum each subset to form a new basis, in either time or
frequency domain. In fact, the Backwards One-Body
(BOB) model [175] is an inspiring example, where the
contributions of overtones associated with the same (l,m)
harmonic are rearranged and summed into a single time-
domain function∼ sechγt, where γ is a constant. One may
further postulate that the time-domain function could be
treated as the leading term of a new set of basis and the
term ∼ sechγt provided by the BOB model contains most
power of the ringdown. Another relevant time-domain
basis was discussed by some of us for superkick systems
[176]: it was found that the time-domain basis can even be
extended to the inspiral regime for the superkick systems.
A direct consequence is the collective excitation of QNMs
— the amplitudes of different QNMs are correlated as a
result of the time-domain basis being projected to the
QNM basis. In fact, such a correlation (universality) has
been found in not only the superkick systems [176], but
also extreme mass-ratio inspirals [82–85, 134].

6 They are called “matter-driven” modes by Barausse et al. [163,
164].

7 We note that QNMs can become complete under some conditions
[171–173] (see also Refs. [162, 174] for relevant discussions). In
particular, Beyer [171] showed the completeness of QNMs of the
Poeschl-Teller potential at a late time — a regime where solutions
can be expanded with respect to its QNMs.

Based on the above discussions, we want to ask: Do the
filters reflect the nature of the system? Can we distinguish
a BH from other objects (e.g. a bumpy BH or an exotic
compact object) using our filters? In particular, since the
full filter FD

lm contains a collection of the corresponding
QNMs ωlmn’s as a result of Eq. (21), is the filter stable
or not under perturbations in the BH potential, given
the spectral instability? In fact, a similar topic has been
investigated recently by Kyutoku et al. [168]. The “phase
shift” introduced by the authors is essentially the phase of
our full filter in Eq. (22), and they showed that the phase
shift of a Schwarzschild BH is stable when it is perturbed
by a small Pöschl-Teller bump. In this work, we continue
their studies and adopt another simple model to provide
a qualitative answer. More sophisticated discussions are
left for future work.

In Fig. 11, we consider an exotic compact object (ECO)
whose surface is close to the would-be horizon. The surface
can partially reflect GWs and the reflectivity R is given
by

R = εe−2ib, (24)

where ε is a constant, and r∗ = −b is the location of
the ECO surface with the factor of two representing the
round trip between the ECO surface and the BH potential.
By imposing a physical boundary condition based on the
membrane paradigm at the ECO surface [177], we obtain
the up-mode solution [in parallel with Eq. (19)]:

Rup ECO
lm ∼


r3eiωr∗ , r∗ → +∞,

D̃out
lm eiωr∗ + ∆2D̃in

lme
−iωr∗ , r∗ → −∞,

(25)

with

D̃out
lm = Dout

lm

[
1− (−1)l+m+1R Dlm

4Clm

Din
lm

Dout
lm

]
, (26)

where the factor Dlm/Clm comes from the Teukolsky-
Starobinsky (TS) relation [148, 178]. We refer interested
readers to Appendix A for derivation. Note that Eq. (26)
takes a similar form to the Wronskian in Eq. (5.2) of
Ref. [169].

We then define the filter FD ECO
lm for the ECO system:

FD ECO
lm = D̃out

lm

D̃out∗
lm

. (27)

To transform the filter to the time domain, we first need
to apply the Planck-taper filter F(ω) [179] to remove the
high-frequency contribution:

F(ω;ω1, ω1) =


0, ω < ω1,

1
ez + 1 , ω1 < ω < ω2,

1, ω > ω2,

(28)
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Figure 13. Same as Fig. 12. The real part of FD
22 in the frequency domain.

with

z = ω2 − ω1

ω − ω2
+ ω2 − ω1

ω − ω1
. (29)

Figure 12 shows a nonspinning ECO case. The filters for
a spinning ECO have the same qualitative feature so we

refer readers to Appendix B for results. In the absence of
perturbations, we see that the black curve assembles the
Dirac function δ(t) near t = 0 because of the fact that
|FD ECO

22 (ω)| = 1. Most of the signals (i.e., the damped
sinusoids) lie on the left side of the Dirac function (t < 0),
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and the reason is exactly the same as the flipped ringdown
in Fig. 2. We also see the tail-like feature at an earlier
time.
Next, we turn on the perturbation. Since Cheung et

al. [166] found the spectral instability with b varied, in
Fig. 12a, we first compute the filter with two choices of
b, while fixing ε = 0.1. We find the modification to the
original signal is negligible. The major change is a series
of echoes with an interval of ∆t ∼ 2b — well separated
from the original signal (in the plot we only show the
first one or two echoes). Meanwhile the amplitude of
the echo is independent of b. We remark that the δ-
function is removed from echoes since the TS coefficient
|Dlm/Clm| → 0 as ω →∞. Then in Fig. 12b, we fix the
value of b to 200Mf but vary ε. Again, the perturbation
has little impact on the original signal, and the amplitude
of the echo scales linearly with ε. Compared to the recent
work by Berti et al. [167], our studies include not only the
fundamental mode, as Berti et al. [167] did, but also more
overtones. Nevertheless, the qualitative features in our
results are the same as theirs. Finally, Figure 13 shows
the real part of FD ECO

22 (ω) in the frequency domain for
completeness.

V. INFERRING REMNANT PROPERTIES
FROM THE RATIONAL FILTER

We have shown that our rational filter Flmn is able to
remove a specific QNM ωlmn from the ringdown regime
and reduce the root sum square (RSS) of the ringdown. In
particular, the ringdown signal can be almost completely
removed if we apply a filter with a series of corresponding
modes. Since the mode frequencies ωlmn are determined
by the mass Mf and spin χf of the remnant BH, in this
section, we investigate how the ringdown RSS decreases
depending on the choices of Mf and χf .

We define the RSS of a filtered harmonic hf
lm(t) within

a time interval [t0, t1] to be

RSS =

√∫ t1

t0

|hf
lm(t)|2dt. (30)

We still take the GW150914-like waveform
SXS:BBH:0305 as an example. We fix t1 to 100Mf and
let t0 vary. Then we apply a filter:

FN (Mf , χf ) = F320(Mf , χf )
N∏

n=0
F22n(Mf , χf ), (31)

to the harmonic h22. The filter FN is a function of
remnant mass Mf and spin χf . It also depends on how
many (l = 2,m = 2) overtones we want to remove. We
want to emphasize that our rational filter leads to a time
shift, and in Sec. III we undid it by aligning early inspiral
waveforms. However, in this case we find the alignment
can pull some non-ringdown signals into the regime that
we are interested in (t > t0) and make our analyses fail.

To avoid this, here we do not perform this alignment.
A caveat of this compromise is that the time shift itself
can reduce the RSS, even though it is a subdominant
effect. In this paper, we ignore the contribution due to
this time shift, and leave more self-contained studies for
future work.

In Fig. 14, we vary the value of χf with different choices
of N and t0 while keeping Mf fixed at the true value.
When t0 is large (∼ 50Mf ), we see the true value χtrue

f =
0.692 leads to the smallest RSS (namely the ringdown
is mostly removed) regardless of the value of N . This is
because in the regime of t & 50Mf , the signal is dominated
by the fundamental mode ω220, and removing ω220 alone is
enough to reduce the RSS down to roughly the numerical
noise level. However, if we push t0 to an early time, failing
to filter out enough modes will result in incorrect values of
χf when RSS achieves its local minimum — the value χf

is degenerate with the choice of t0. Especially, in the first
panel of Fig. 14, we see that the ringdown RSS depends
monotonically on χf when t0 = 0 and N = 0; but the
local minimum of the RSS does converge to the true value
of χf after we include enough overtones. If we continue
to go to an earlier regime, such as t0 = −10Mf in Fig. 15,
we can see that the inferred spin is biased even when
enough overtones are included, because of the presence
of non-ringdown signals (e.g., late inspiral and merger).
On the other hand, we also investigate the effect of Mf .
We find that varying the value of Mf (with χf fixed to
the true value) leads to a similar impact on the ringdown
RSS, and the results are summarized in Appendix C.

Our results shown in Figs. 14 and 21 are closely related
to Fig. 7 of Ref. [88], in which the authors show how the
mismatch varies with deviations from GR and the start
time of analyses. Similarly, our results indicate that the
residual RSS depends strongly on the choice of (Mf , χf ).
In our case, a 2% change in χf can result in around two
orders of magnitude change in the RSS, when t0 and N
are fixed to their “true” values.

After studying the effects of Mf and χf separately, in
Fig. 16 we provide contours of RSS with varying them
together. To avoid redundancy, we set t0 to 0 and focus
on two cases: N = 2 and N = 7, respectively. If we
restrict ourselves to the region near the true remnant
properties (Figs. 16a and 16b), the N = 2 one leads
to biases in extracting Mf and χf , whereas the latter
one can recover the remnant properties (marked with a
cross) accurately. In addition, we notice that the effects
ofMf and χf are partially degenerated — their difference
∼Mf−χf is more constrained than their sum ∼Mf +χf .
This is consistent with Figs. 10 and 11 of Ref. [101]. On
the other hand, if we explore a larger parameter space
(zoom out), we find there is a second local minimum in
Fig. 16c. To explore the reason, in Fig. 17 we compare
two filtered waveforms with χf and Mf chosen at their
true values (red curve) and at the second local minimum
(black curve), respectively. Recall that the amplitudes of
adjacent overtones are out of phase, e.g., Refs. [101] and
[176], they contribute destructively to the final ringdown
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Figure 14. The ringdown RSS of the filtered waveform as a function of χf . The SXS:BBH:0305 waveform is used. The six
panels correspond to different choices of the start time, i.e., t0 in Eq. (30). In each panel, different colors indicate the results
from removing different numbers of overtones. When t0 is large (∼ 50Mf ), the true value of the spin χtrue

f = 0.692 leads to the
smallest RSS no matter how many overtones are removed. However, if we push t0 to an early time, enough overtones need to be
removed to obtain the true value. On the other hand, the RSS depends strongly on χf : a 2% change in χf can result in around
two orders of magnitude change in the RSS, when t0 and N are fixed to their true values.
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Figure 15. Continuation of Fig. 14, except that the onset of
the ringdown window t0 is set to −10Mf .

waveform. Removing some overtones can increase the
value of the filtered waveform at an early stage. On
the contrary, when χf and Mf are at the second local
minimum, even though the corresponding QNMs are not
removed, the amplitude of the filtered waveform is reduced
by around one order of magnitude. As a result, both cases
lead to comparable RSS.

So far, we take (Mf , χf ) as two independent variables.
The QNM frequencies are obtained by assuming Kerr BHs
with GR gravity. In Fig. 18, we relax this assumption
and use the real and imaginary parts of a QNM as two
independent variables. Here we restrict ourselves to the
fundamental mode alone for simplicity, and take t0 =
50Mf . We find the qualitative feature remains the same —
there is a second local minimum, and the reason is exactly
the same as that of Fig. 16c.
Our discussions indicate that the filter could serve as

a new tool to infer the remnant properties from actual
detection data, and we refer the interested reader to our
follow-up work [154] for more discussions.

VI. CONCLUSION

We have proposed two types of frequency-domain filters
that are able to remove QNM(s) from ringdown signals.
Our new method serves as a complementary tool to previ-
ous studies where the ringdown was analyzed in terms of
time-domain fitting (e.g., Ref. [101]) — it allows visualiz-
ing the existence of subdominant modes without the risk
of overfitting. By applying our filter to the waveform of
SXS:BBH:0305, we find the spherical-spheroidal mixing
mode ω320 in harmonic h22, the presence of ω220 in h21
due to the gravitational recoil, and second-order effects
in h44, h54 and h55 due to the quadratic coupling h2

22 and
h22h33. We also find the existence of retrograde modes

in waveform SXS:BBH:1936. Our filter leads to an un-
physical flipped ringdown prior to the start time of the
real ringdown. Consequently, the late-inspiral and merger
signals are contaminated.
Although the rational filter in Eq. (17) is constructed

purely empirically, the full filter FD
lm in Eq. (22) reflects

the nature of the BH, and the filtered waveform corre-
sponds to the image wave on the past horizon (Fig. 4).
Furthermore, in spite of the unstable nature of QNM
spectra [165, 166], we find that the filter FD

lm is stable
in the time domain under the perturbations of the BH
potential, in the sense that the original response remains
unmodified, while the major correction appears as peri-
odic echoes well-separated from the original BH response.
The time interval and amplitude of the echoes depend
linearly on the parameters of the perturbation.

Additionally, the rational filter takes the mass and spin
of the remnant BH as free parameters. The residual
ringdown RSS depends strongly on the choice of these
two parameters. The true remnant properties could be
recovered accurately from the ringdown of h22 as long as
one consider a proper number of overtones and the start
time of the analysis.

In this paper, we demonstrate that this new approach
is powerful in ringdown analyses and outline a few appli-
cations. Future studies could be focused on:
(i) Nonlinearity due to the quadratic couplings. We

focused exclusively on a few harmonics of SXS:BBH:0305,
and exhibited the existence of second-order effects only
qualitatively. A more systematic study [158] is needed to
investigate quadratic couplings in other BBH systems. We
also refer the interested reader to Ref. [159] for relevant
discussions.
(ii) Second-order effects in the multipole moments of

dynamical horizons. Although Refs. [110, 111] have shown
that the multipole moments might be consistent with the
superposition of linear QNMs soon after the formation
of the common horizon, it is expected that a majority of
nonlinearities are swallowed by horizons [89], which in
turn should leave imprints on dynamical horizons. It is
interesting to study these cases by applying our filters.
(iii) The stability of the two filters. In this work, we

considered the stability of the full filter under a simple
scenario: the perturbation arising only through a reflec-
tive boundary condition at the ECO surface that is very
close to the would-be horizon. More sophisticated per-
turbations, e.g., the ones in Ref. [165, 166], could be
investigated. In addition, it might also be interesting to
study the (in)stability of the rational filter. This requires
high-precision calculations of QNMs of the new system.
The goal of this trend is to answer: How to distinguish
a BH from its mimicker via our filters? And how do the
filters reflect the nature of the system?
(iv) Inferring remnant properties from real observa-

tional data. Here we restricted ourselves to a particular
harmonic h22 and found that the remnant properties could
be recovered accurately. A possible avenue for future work
is to investigate the impact of our filters on the strain
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Figure 16. Contours of RSS with varying Mf and χf . To avoid redundancy, we set t0 to 0 and choose N = 2 (left panels)
and N = 7 (right panels). In the top row, we explore the parameter space near the true remnant properties, whereas in the
bottom row we investigate a larger area. The true remnant mass and spin are marked with a cross. The effects of Mf and χf

are degenerate — their difference is more constrained than their sum. In addition, we find there is a second local minimum in
Fig. 16c.

that is emitted toward a single angular direction. More
importantly, one could apply our filter to real BBH events
[154] and see whether we could place a tighter constraint
on the remnant mass, spin, and also the no-hair theorem
[52].

(v) Other filters. In this work, we have studied two
related filters. One undesired feature of the rational filter
is that it leads to a backward time-shift, which makes
it difficult to define the start time of the ringdown in

the filtered waveform8. The full filter does not have this
problem but is more computationally expensive to obtain.
Therefore it might be interesting to look for other new
filters with better properties.

8 We show that the choice of the start time has a large impact on
inferring remnant properties.
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Figure 17. An explanation for the second local minimum in
Fig. 16c. The blue dashed line corresponds to the original
harmonic h22 of SXS:BBH:0305. Using the true remnant
properties, the corresponding QNMs are removed (red curve).
However, it has a larger amplitude at around 0. This is because
adjacent overtones contribute destructively to the original
waveform. Fewer QNMs reduce this cancellation and lead
to a larger amplitude. On the contrary, using the remnant
properties at the second local minimum (black curve), the
amplitude of the original waveform diminishes even though
the corresponding QNMs are not filtered away. As a result,
two systems lead to similar RSS.
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Appendix A: The up-mode solution of an ECO

Near the ECO surface, Chen et al. [177] proposed a
physical boundary condition via a family of zero-angular-
momentum fiducial observers (FIDOs). The tidal tensor
field within the rest frame of the FIDOs is given by [180]

Eij = ha
i h

c
jCabcdU

bUd, (A1a)

where Cabcd is the Weyl tensor, U b is the four-velocity of
the FIDOs, and ha

i = δa
i +UaUi is the projection operator.

Chen et al. argues that the tidal response of the ECO,
namely the reflection of incident GWs, is proportional to
the transverse component of the tidal field:

Etransverse ∼ −
∆

4r2ψ0 −
r2

∆ψ∗4 , (A1b)

where ψ0 and ψ4 are the Weyl scalars. The coefficient
depends on the nature of the ECO, such as the reflectiv-
ity R in Eq. (24). By adopting this type of boundary
condition, Xin et al. [181] shows that the ratio between
the reflective wave and the incident wave reads 9 [Eq. (56)
of [181]]:

Reflective wave
Incident wave = (−1)l+m+1

4 RDlm

Clm
, (A1c)

9 The additional factor (−1)l is due to the assumption that the
system is invariant under reflection across the x-y plane [182].
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with

Dlm = 64(2r+)4ik(k2 + 4ε2)
(
−ik +

√
1− χ2

r+

)
,

(A1d)
|Clm|2 = (Q2 + 4χωm− 4χ2ω2)
× [(Q− 2)2 + 36χωm− 36χ2ω2] + 144ω2(1− χ2)
+ (2Q− 1)(96χ2ω2 − 48χωm), (A1e)
Im Clm = 12ω, (A1f)
Q = λ+ s(s+ 1) = λ+ 2, (A1g)

ε =
√

1− χ2

4r+
, (A1h)

k = ω −mΩ+, (A1i)

where λ is the eigenvalue of spin-weighted spheroidal
harmonics and Ω+ = χ/(2r+) is the horizon frequency.
As shown in Fig. 11, if we consider a GW emerging

from the horizon with a unity amplitude (ignoring any
r∗ dependent coefficient), it will bounce back and forth
within the cavity formed by the ECO surface and the BH
potential. In particular, the observer at infinity will see a
main transmissive wave with amplitude 1/Dout

lm , followed
by a series of echoes. Using the boundary condition in
Eq. (A1c), it is straightforward to obtain the amplitude
of the nth echo:

1
Dout

lm

[
(−1)l+m+1

4 RDlm

Clm

Din
lm

Dout
lm

]n

. (A2)

By summing them together, we obtain the total transmis-
sive amplitude:

∑
n

1
Dout

lm

[
(−1)l+m+1

4 RDlm

Clm

Din
lm

Dout
lm

]n

= 1
Dout

lm

1
1− (−1)l+m+1

4 RDlm

Clm

Din
lm

Dout
lm

. (A3)

The inverse of the total amplitude corresponds to D̃out
lm

in Eq. (25).

Appendix B: FD ECO
22 for a spinning ECO

Figures 19 and 20 show the filter FD ECO
22 in the time

and frequency domain. The spin of the ECO is χf =
0.692. It has the same qualitative features as that of the
nonspinning ECO (Fig. 12).

Appendix C: Mf and RSS

In Fig. 21, we plot the ringdown RSS of the filtered
waveform as a function of the remnant mass Mf , using
waveform SXS:BBH:0305.
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Figure 19. Same as Fig. 12, but for a spinning ECO with χf = 0.692.
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Figure 20. Same as Fig. 13, but for a spinning ECO with χf = 0.692.
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Figure 21. Same as Fig. 14, but with varying Mf and fixed χf .
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