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Black hole spectroscopy with gravitational waves is an important tool to measure the mass and
spin of astrophysical black holes and to test their Kerr nature. Next-generation ground- and space-
based detectors will observe binary black hole mergers with large signal-to-noise ratios and perform
spectroscopy routinely. It was recently shown that small perturbations due, e.g., to environmental
effects (the “flea”) to the effective potential governing gravitational-wave generation and propagation
in black hole exteriors (the “elephant”) can lead to arbitrarily large changes in the black hole’s
quasinormal spectrum, including the fundamental mode, which is expected to dominate the observed
signal. This raises an important question: is the black hole spectroscopy program robust against
perturbations? We clarify the physical behavior of time-domain signals under small perturbations in
the potential, and we show that changes in the amplitude of the fundamental mode in the prompt
ringdown signal are parametrically small. This implies that the fundamental quasinormal mode
extracted from the observable time-domain signal is stable against small perturbations. The stability
of overtones deserves further investigation.

I. INTRODUCTION

Recent progress in gravitational-wave astronomy [1, 2]
and very long baseline interferometry [3] puts black holes
(BHs) at the center of an intense observational program to
constrain or detect signatures of new physics beyond gen-
eral relativity (GR) [4–10]. In particular, BH spectroscopy
is expected to play a pivotal role in this program [11–14].
The late-time gravitational-wave signal produced by a
binary merger (the so-called “ringdown” [15, 16]) is de-
scribed by a superposition of damped exponentials with
complex frequencies, known as the quasinormal modes
(QNMs) of the system, whose detection can be used to
test the predictions of GR. This is only possible if the
QNMs are spectrally stable, otherwise small environmen-
tal perturbations could produce large deviations in the
QNM spectrum and hide any hypothetical signatures of
new physics.
Recent work analyzing spectral stability through cal-

culations of the pseudospectrum [17–20] confirmed early
predictions that the QNM spectrum should, in fact, be
spectrally unstable under small perturbations [21]. In
particular, the fundamental QNM frequency can have cor-
rections of order one when a tiny perturbation is added
to the potential [22]. Physical perturbations of the po-
tential can have various origins, including nonlinear ef-
fects within vacuum GR [23–30], ordinary matter [31–33],
dark matter [34], or modifications of Einstein’s theory of

gravity [35, 36]. In this paper we address an important
question: could this instability affect our ability to do BH
spectroscopy with gravitational-wave observations? The
key point here is that the instability refers to calculations
of the spectrum in the frequency domain, which can be
misleading. The time- and frequency-domain problems
are simply related by a Fourier transformation, and hence
completely equivalent. In the frequency domain analysis,
however, one usually focuses on the spectrum of the rele-
vant operator, which only describes the late-time response.
Therefore, to observe the equivalence it may be necessary
to observe the system for a very long time and with very
high precision. For small perturbations, the observation
times and signal-to-noise ratios required to establish this
equivalence are probably beyond current observational
capabilities. This was already shown in the context of
piecewise approximations to the potential [21, 37], environ-
mental perturbations [33] and horizonless exotic compact
objects (ECO) [10]. In ECOs, the BH horizon is substi-
tuted by a (partially or totally) reflecting surface. The
spacetime geometry is not modified outside this surface,
and it is usually assumed that the dynamics of the pertur-
bations is unchanged with respect to the BH case. The
QNM spectrum obtained by imposing reflective boundary
conditions at the ECO surface is very different from the
spectrum of a BH. However, by causality, the time-domain
response of a BH and an ECO is exactly the same for
the time necessary for the perturbation to propagate to
the surface of the ECO and then be reflected back [38]
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(see e.g. [39, 40], where this is understood through an
expansion of the Green’s function in terms of echoes).
Frequency-domain studies also pointed out that ECOs
would have low-frequency oscillation modes, which could
be excited by orbiting bodies [41–43], but a time-domain
analysis of these systems shows that the timescale to
excite the resonances is typically much longer than the
gravitational-wave evolution timescale [44].
The goal of this paper is to investigate whether the

instability of the fundamental QNM obtained in [22] trans-
lates into an instability of the mode as observed (either
theoretically or in actual experiments) in a time-domain
analysis. In Sec. II we introduce our parametrization of
the perturbations of the potential. In Sec. III we describe
our numerical codes, and in Sec. IV we give the main
results of our analysis. In Sec. V we present some conclud-
ing remarks and directions for future work. Throughout
the paper we set G = c = 1.

II. PERTURBATIONS OF THE POTENTIAL

We will study a modified version of the wave-like equa-
tions that govern gravitational perturbations around non-
rotating BHs in GR [45, 46], which have the general form1

∂2Ψ
∂r2
∗
− ∂2Ψ

∂t2
− VΨ = 0 , (1)

where Ψ is a complex “master function”, the tortoise co-
ordinate r∗ is defined in terms of the usual Schwarzschild
areal coordinate r by dr/dr∗ = 1− 1/r, and V = V (r) is
a radial potential given by

V = V0 + εVbump , (2)

Here and below we measure lengths in units of the
Schwarzschild radius (i.e., we set 2M = 1). We denote
by V0 the unperturbed potential for the odd parity (or
Regge-Wheeler [45], V0 = VRW) and even parity (or Zer-
illi [46, 47], V0 = VZ) perturbations, while the second
term εVbump represents a small (ε� 1) perturbation or
“bump.” Equations (1)-(2) arise naturally when describing
families of different background spacetimes parametrized
by some small quantity ε. In this context, ε could stand,
for example, for the BH charge, in which case the pro-
cedure to reduce the relevant perturbation equations to
the form above is outlined in Ref. [35]. Alternatively, an
O(ε) modification of general relativity may also result in
an O(ε) perturbation of the potential, provided that the
speed limit of gravitational waves is unchanged.

1 More in general, we could include a source term that depends
on what is causing the perturbation. We have also performed a
study of the nonhomogeneous equation and found no qualitative
differences. For clarity and simplicity of presentation, in this
work we focus exclusively on the homogeneous equation.

We will mostly focus on the odd-parity case with an-
gular number l = 2, and thus the unperturbed potential
is [45]

VRW = 3
(

1− 1
r

)[
2
r2 −

1
r3

]
. (3)

Following Ref. [22], we will assume that the bump is
localized around some radius r∗ = a and that it goes
to zero faster than VRW as r∗ → ∞. We will study for
concreteness a Gaussian bump of the form

Vbump = exp
[
− (r∗ − a)2

2σ2

]
. (4)

Some example potentials are shown in Fig. 1. The specific
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FIG. 1. The unperturbed (ε = 0) and perturbed potentials
used in this study. The Regge-Wheeler potential VRW with
l = 2 is shown in black, while two perturbative bumps εVbump
with ε = 0.1 are shown in blue (for the case of a = 10) and
orange (a = 30). The unperturbed potential has a peak close
to the light ring, at r ' 1.5.

form of the bump in Eq. (4) is chosen as a simple illus-
trative example. However, we have considered different
types of perturbation, such as (i) a bump which is concave
rather than convex, corresponding to negative ε, and (ii)
a bump which decays as r−3 at large distances and which
is exactly zero for small r, mimicking a perturbation due
to a thin shell of matter. The qualitative behavior of
the time-domain signal is the same in all these different
cases, so we will not report the results here. In fact, the
only relevant aspect of the perturbation is that it intro-
duces a second small peak. When this is not the case
(e.g., when a is very small) the analysis of Refs. [22, 48]
confirms that the instability is not present. Note that the
isospectrality of the Zerilli and Regge-Wheeler potentials
is broken even if we use the same perturbative bump in
both equations [35, 36] (although in realistic astrophysical
scenarios the odd- and even-parity perturbative “bumps”
are not expected to be the same).



3

III. NUMERICAL FRAMEWORK

A. Time domain

Let us start by numerically solving the axial-type ver-
sion of Eq. (1) in the time domain. We prescribe initial
data corresponding to a localized Gaussian pulse

Ψ(t = 0, r) = 0 , (5a)
∂Ψ
∂t

(t = 0, r) = exp
[
− (r∗ − 5)2

2

]
. (5b)

where again all dimensionful quantities are given in units
of the BH’s Schwarzschild radius (2M = 1).

We have performed the numerical integration with sev-
eral independent codes. The first code employs a hyper-
boloidal compactification [49, 50]. The gauge freedom in
GR allows us to switch from the original (t, r∗) coordi-
nates to a set of hyperboloidal compactified coordinates
(τ, ρ) defined by the relations

r∗ = ρ

Ω(ρ) , τ = t− ρ

Ω(ρ) − ρ , (6)

Ω = 1−
(
ρ−R∗
S −R∗

)4
Θ (ρ−R∗) . (7)

This transformation maps the infinite domain of the radial
tortoise coordinate to a compactified domain, where the
outer boundary is located at ρ = S and corresponds to the
null infinity I+. Here R∗ is a transition radius between
an interior domain, where ρ = r∗, and the hyperboloidal
layer that approaches I+. After prescribing initial data
for Ψ, Eq. (1) is evolved in time using a two-step Lax-
Wendroff algorithm with second-order finite differences.
For a complete description of this numerical code, we
refer the reader to Refs. [48, 50–53]. The other codes
that we have implemented to cross-check results directly
solve Eq. (1) on a uniformly spaced r∗-domain without
any change of coordinates. The dynamical variables are
integrated in time t using either the fourth-order Runge–
Kutta method or the iterated Crank-Nicolson method
with two iterations. One of these codes was previously
used in Refs. [54, 55].

At late times, the time-domain signal decays as a linear
combination of exponentially damped sinusoids, whose
frequencies and damping times can be extracted by fitting
the waveform with the N -mode template

Ψ(t) = Re
N−1∑
n=0

Ane
−i(ωnt−φn) (8)

=
N−1∑
n=0

Ane
ωnIt cos(ωnRt− φn) , (9)

where the index n labels the different modes we find by fit-
ting and it does not necessarily coincide with the overtone
number. Each mode is characterized by four parameters:
an amplitude An, a phase φn, and the real and imaginary

parts of the QNM frequency ωn = ωnR + iωnI . In Sec. IV
we will find that several QNMs could have similar decay
times, and hence comparable amplitudes. In this situa-
tion, a good fit of the waveform requires a relatively large
number of modes N . The largest number of modes we
will look for is N = 8, corresponding to 8 × 4 = 32 fit-
ting parameters. We found that the NonLinearModelFit
function provided by Mathematica works well for this
high-dimensional nonlinear fitting problem. We have ver-
ified the quality of the fits by using toy models and by
cross-checking with other fitting methods, and we checked
that the fit residues are small when the fitted frequencies
converge well.

B. Frequency domain: the characteristic QNMs

The eigenfrequencies ωn of Eq. (8) can be computed
directly from Eq. (1) with a Laplace transform, i.e., by
solving the equation

∂2Ψ
∂r2
∗

+
(
ω2 − V

)
Ψ = 0 . (10)

The QNM frequencies ωn correspond to the poles of the
Green’s function of Eq. (10) with the appropriate bound-
ary conditions of ingoing waves at r∗ = −∞, and outgoing
waves at r∗ = +∞. The frequencies can be found by a
shooting method [56]: we starting from each of the two
boundaries and numerically integrate inwards or outwards
iteratively searching for the roots of the Wronskian, i.e.,
the values of ω for which the two solutions match smoothly
in an intermediate region.
We have performed such a direct-integration analysis

using a modification of the Mathematica notebook used
in Ref. [57] and available online [58].

IV. RESULTS

The fundamental mode of the Regge-Wheeler equation
is unstable if the perturbative bump is sufficiently large or
if it is located sufficiently far away [22]. By definition, we
will say that “destabilization” occurs when a quantity that
characterizes the BH’s response (e.g., the QNM frequency
or the waveform amplitude) changes by an amount much
larger than the magnitude of the perturbation. Ref. [22]
investigated the spectral instability of the fundamental
mode. Here we will show that while the fundamental
mode is indeed spectrally unstable, the change in the
time-domain waveform amplitude is of the same order
as the size of the perturbation. In this sense, the time-
domain waveform itself is stable under perturbations.
Furthermore, the observed QNM frequency is also stable
in the sense defined above. This is because, as we will see,
the early part of the waveform is not significantly affected
by the perturbation.
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FIG. 2. Top panels: Absolute value of the time-domain waveform arising from the scattering of the Gaussian pulse of Eq. (5) for
“bumps” with different amplitudes ε, located at two selected distances a from the main peak. The bump width σ in Eq. (4)
is fixed at σ = 0.5. “Echoes” are apparent when the bumps are located at large distances (a = 30). The dotted and dashed
vertical grey lines correspond to t− tmax = a and 2a, and they illustrate how the delay between echoes is related to the size of
the “cavity” between the two maxima in the perturbed potential. Bottom panels: Absolute value of the difference between the
waveforms shown in the top panels and the unperturbed clean waveform without a bump (ε = 0).

0 100 200 300 400 500 600 700 800 900

t− tmax

10−11

10−9

10−7

10−5

10−3

10−1

|Ψ
|

a = 30 ε = 0

ε = 0.1

FIG. 3. Time-domain waveform for a = 30 and ε = 0.1 over
a longer time span (up to t − tmax = 900): the waveform
transitions to a damped sinusoid corresponding to the new
fundamental mode at late times. For comparison, the blue
dashed line shows the expected decay time of the new fun-
damental mode, which corresponds to the bottom blue cross
with smallest |ωnI | in the top panel of Fig. 6 below.

A. Stability of the prompt ringdown signal and the
destabilization mechanism

In Fig. 2 we show the waveform generated by the scat-
tering of Gaussian pulses. We define tmax to be the time
at which |Ψ| is at its maximum value, and we only show
the waveform from tmax on-wards. For the “clean” case

in the absence of a perturbing bump (i.e., for ε = 0)
we see a familiar exponentially decaying ringdown wave-
form followed by a power-law tail. Bumps with small
values of ε cause correspondingly small modifications in
the waveform at early times. As seen in the lower panels
of Fig. 2, at times before the first echo (t − tmax . a),
the absolute value of these modifications scales with ε: in
other words, bumps in the potential of amplitude ε induce
changes in the gravitational-wave signal that are also of
order ε. This is one of our main results. The prompt
BH ringdown signal close to the peak of the waveform
observed by gravitational-wave detectors is affected by a
small environmental disturbance, but the modification in
the prompt ringdown is not expected to be observable at
the signal-to-noise ratios achievable by current detectors,
consistently with previous claims [10, 33].
Figure 2 also illustrates how the fundamental mode

destabilization is realized in the time domain [22]. When
a perturbatively small bump is added to the potential, the
frequency content of the waveform at late times is, indeed,
drastically different from the ε = 0 case. The late-time
waveform is well-described by a superposition of QNMs
which are very different from (and longer-lived than) the
fundamental mode of the BH spacetime in the absence
of perturbations. This is most evident in the waveform
with ε = 0.1, which is shown over a longer time interval
in Fig. 3: at late times the waveform decays with a QNM
frequency which has lower frequency and longer damping
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time than the fundamental QNM of the Schwarzschild
spacetime. For smaller values of ε the waveform amplitude
is modified by a smaller amount, and this difference in
the late-time behavior is partially masked by the familiar
Price power-law tail observable in the unperturbed (black
dashed) waveform.

In general, when we add a large bump in the potential
the QNMs have a longer damping time, and hence they
survive longer before “diving below the tail.” When the
perturbative bump is located far away from the original
potential peak (see e.g. the green and orange lines for
a = 30 in the right panels of Fig. 2), we first observe lower
amplitude copies (echoes) of the original pulse, which
eventually give way to a different ringdown signal, char-
acterized by frequencies and damping times which are
different from the ε = 0 case. This behavior is easily
interpreted. For large a, there is a clear separation of
timescales between the ringdown pulse produced at the
photonsphere (the peak of the ε = 0 potential) and the
light travel time characterizing the “cavity” located be-
tween the photonsphere and the bump. Thus, what we
have is a pulse bouncing back and forth within the cavity
and gradually losing its high-frequency component, which
tunnels out more easily. This produces a sequence of
echoes repeating at a characteristic frequency defined by
the cavity size and damped on a timescale defined by the
transmission coefficient of the small peak, as shown in
Fig. 2 (see also Refs. [5, 10, 38, 59] for a very similar be-
havior when the bump is arbitrarily close to the horizon).
These two scales determine the QNM spectrum of the
bumpy potential, which can be nonperturbatively differ-
ent from the ε = 0 case. A simple rule of thumb for the
echoes to be visible is that the prompt ringdown lifetime
∼ 9
√

3M (allowing for three e-folding times) should be
smaller than the travel time within the cavity ∼ 2a [5, 10],
and therefore we should require a & 4 (in units 2M = 1).
Note that, however, the amplitude of the echoes and of
the induced QNM ringing is proportional to ε.
Let us stress once more how destabilization affects

the signal. The QNM frequencies can be destabilized,
i.e. their relative variation can be much larger than ε
when a perturbative bump is included in the potential.
However the change in the amplitude of the waveform is
still proportional to ε for the early ringdown, as shown in
the bottom panels of Fig. 2. In this sense, the waveform
changes by an amount proportional to the size of the
bump: although the QNM frequencies are destabilized, an
arbitrarily small bump will not alter the prompt ringdown
waveform by a significant amount.

Our results can be interpreted in terms of the shape
of the perturbed potential shown in Fig. 1. If Vbump
is localized close to the peak of V0 = VRW the QNM
frequencies should change, because the bump effectively
changes the shape of the original potential. If instead
Vbump is localized far away from the peak of V0, the QNM
frequencies should also be different, because they depend
on the behavior of the potential in the entire radial domain.
Nevertheless, in this regime we would expect that the

early-time waveform should be characterized by the QNM
frequencies of the unperturbed potential, because the
bump is too far away to modify the unperturbed BH
spectrum (see also the discussion in Ref. [10] for bumps
located “behind” the peak). In this regime one can think
of the prompt ringdown as being excited at the light
ring and propagating outwards, but this wave train must
tunnel out of the bump to reach asymptotic observers.
The reflection coefficient for tunneling depends on the
frequency, but is O(ε) for all frequencies, and therefore it
can modify the prompt ringdown wave train (excited at
the light ring) only by a small factor O(ε).

While the relative modification |Ψ−Ψclean|/|Ψ| of the
early ringdown scales as ε, we observe larger changes in
the waveform during the echo-dominated phase. Even-
tually the power-law tail dominates at late times, and
the relative modification scales as ε again. The larger
order-of-magnitude modification can be attributed to the
echoing ringdown waves. The amplitude of the n-th echo
is larger than the prompt ringdown (the “0-th” echo) sig-
nal roughly by a factor ε̃n, where ε̃ ∼ εe2a|ω0I |. This is
because a bounce in the cavity between the two bumps
occurs on a time scale of order 2a, during which the wave
in the cavity does not decay but the 0-th signal keeps
decaying as e−|ωI |t, and each reflection at the ε-bump
reduces the amplitude of the wave in the cavity by a
factor ∼ ε. Then, the modification of the waveform dur-
ing the echo phase at a given t (> 2a) is not of order ε,
but rather of order ε̃n, with n ∼ t/(2a). At even later
times the power-law tail dominates the waveform, and
the modification to the waveform is again of order ε. This
can be understood as follows. One can imagine placing
a very wide bump from which it is very hard to tun-
nel out, so the fluctuation would be effectively confined.
Then the relative modification in the waveform (with
respect to vacuum) would diverge, since vacuum fields
obey radiative boundary conditions. The same type of
argument indicates that sufficiently low-frequency signals
would be affected in a similar way, since they “tunnel
out” poorly, and tunneling is exponentially sensitive to
the barrier’s height. Now, the power-law tail is formally
a zero-frequency signal, so its modification does not scale
as ε̃n (like the tunneling echo waves) but rather as ε.

B. Comparison between QNM frequencies and the
time-domain signal

We now wish to compare the QNM frequencies ob-
tained by frequency-domain calculations (see Sec. III B)
with those found by fitting the time-domain wave-
form with damped sinusoids using Mathematica’s
NonLinearModelFit function, as described in Sec. IIIA.
In this subsection we will compare the theoretical predic-
tions in the time and in the frequency domain, while in
the next subsection we will comment on the observational
implications of these findings.
When fitting the time-domain waveform, we are inter-
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FIG. 4. The section of the waveform we used for damped-
sinusoid fitting. The waveform shown here refers to a = 30,
ε = 0.01, but the same fitting procedure applies in general to
the other waveforms (with fitting ranges adjusted accordingly).
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FIG. 5. Comparison between the QNM frequencies obtained
directly with the shooting method (crosses) and those by fitting
the full time-domain waveform (dots). The black cross refer
to the unperturbed clean fundamental mode. Different dots
with the same color corresponds to fits with different starting
times: the darker the dot, the later the starting time. The
starting times are t − tmax = 10, 15, 20, 25, 30M (cf. Fig. 4).
The orange dots visible at the top are due to a high-damping
mode present above the plotting range.

ested in two different regimes:

1) We would like to understand whether the spectral
instability affects the prompt ringdown radiation
emitted by astrophysical BHs, which is typically
louder and more easily detectable by gravitational-
wave interferometers.

2) Even if the prompt ringdown is not affected, it is still
theoretically interesting to understand whether the
late-time waveform is characterized by the trapped-
mode spectrum, i.e. by modes trapped in the cavity
between the two peaks of the potential (see Fig. 1).

We will start by investigating the late-time waveform.
In Fig. 4 we highlight the two different portions of the

waveform used to recover the QNM frequencies by our
fitting procedure. First of all, we discard times such
that t− tmax . 5 as they are contaminated by the direct
propagation of the initial wavepacket.
The trapped modes due to the potential bump shown

(e.g.) in Figs. 5 and 6 where found by using the “full” fit-
ting range (shaded in blue in Fig. 4), i.e., we only discard
the portion of the waveform which is significantly contam-
inated by the power-law tail. To understand whether the
destabilized QNM spectrum affects the prompt ringdown
(as in Fig. 7 below), we only fit the “early” part of the
waveform (shaded in green in Fig. 4), where echoes do not
affect the signal. In each of these two fitting regimes (that
is, within either the green or the blue shaded regions) we
vary the starting time of the fit to make sure that the
QNM spectrum recovered is insensitive to small changes
in the fitting range. The frequencies computed using dif-
ferent starting times are shown as dots of different shades
in Figs. 5–7: the darker the dot, the later the starting time.
In all plots, crosses refer to the QNM frequencies found
by the shooting method in the frequency domain. In par-
ticular, the black cross refers to the fundamental QNM of
the unperturbed potential (ε = 0), while the unperturbed
overtone QNMs are above the plotting range.
Consider first a bump located relatively close to the

original potential peak (a = 10, Fig. 5). Different colors
refer to QNM frequencies obtained for different values
of ε from the time-domain (dots) and frequency-domain
calculations (crosses). The frequencies extracted from
time-domain fits cannot be expected to be arbitrarily
accurate, because the waveform is contaminated by the
direct propagation of the initial data, the power-law tail,
and numerical noise, but they are still in very good agree-
ment with the frequency-domain calculation for all the
values of ε that we considered.

If the bump is farther away (say at a = 30, Fig. 6) the
destabilization of the QNM frequencies is more evident.
As shown in Fig. 2, at early times the waveform consists
of a clean ringdown signal, but after one clear echo it
transitions to a combination of “new” QNMs associated
with the cavity, until their amplitude becomes so small
that they are masked by the late-time power-law tail. We
include this intermediate transition regime in our fit by
using the “full” fitting range as labelled in Fig. 4. The
ε = 0.1 is somewhat special because the decay time of
the trapped QNMs is longer, so the waveform displays a
clear transition to a new exponential decay dominated by
a single trapped QNM before “sinking” below the power-
law tail at very late times (see Fig. 3). Given the large
number of fitting parameters, it is quite remarkable that
we can recover all of the slowest decaying QNMs as long
as ε & 0.01, as shown in the top panel of Fig. 6.
The time-domain fit is more difficult when ε = 0.001.

In fact, the fits can only confidently detect a mode close to
the clean fundamental mode of the unperturbed potential.
This is because the QNMs have a very short decay time
for such small ε, and the waveform does not have time to
transition to the “new” trapped QNM spectrum before
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FIG. 6. Top panel: same as Fig. 5, but with a = 30. For
ε = 0.001, the full time-domain fits could only confidently de-
tect a mode close to the fundamental mode of the unperturbed
potential. This is because the ringdown wave amplitude be-
comes smaller than the late-time tail before we can clearly
see the trapped modes. Bottom panel: we reconsider the
troublesome case where ε = 0.001, but we now subtract the
unperturbed clean waveform from the actual waveform before
fitting (i.e., we use the green curve in the bottom right panel
of Fig. 2 for the fit). The QNM frequencies obtained by time-
domain fitting do not converge precisely, but the structure of
the QNM mode spectrum extracted from the residual wave-
form is in good agreement with the expected trapped QNM
spectrum, especially for the real part. For both panels, as
before, the starting times are t− tmax = 10, 15, 20, 25, 30M .

decaying below the power-law tail. Therefore the fitting
algorithm can only pick up the clean mode, which is
excited promptly at the light ring and is clearly observable
at early times. To remove the contribution of the tail, in
the bottom panel of Fig. 6 we subtract the clean (ε = 0)
waveform from the signal and we repeat the fit using the
green curve in the bottom-right panel of Fig. 2, which as
we can see contains more QNM oscillation periods that
were previously hidden below the late-time power-law
tail. The fitted modes do not converge as in the cases
with ε ≥ 0.01, but their general structure is now in good
agreement with the trapped QNM spectrum computed in
the frequency domain.

C. Comparison between QNM frequencies and the
prompt time-domain ringdown

In realistic astrophysical scenarios, we would expect ε
to be small. For example, the impact of matter effects
on the potential for axial perturbations [15, 22, 48] is
equivalent to adding a bump of amplitude εVbump ∼ ρ,
where ρ is the matter density. If we express density in
units of the BH mass, i.e.

ρM2 = 1.6× 10−18 ρ

ρwater

M2

M2
�
, (11)

it is clear that ε should be small in most astrophysical
scenarios. Moreover, as the signal-to-noise ratio of the
ringdown in current detectors is relatively small [60–63]
and the signal decays exponentially, only the prompt ring-
down would be expected to be observationally relevant.
For these reasons, in Fig. 7 we show again the QNM

frequencies computed in the frequency domain and those
recovered by fitting the waveform. This time however we
restrict the fit to the prompt ringdown only, cutting the
waveform at the beginning of the first echo. This portion
of the waveform is well fitted by a single damped sinusoid,
with the value of the frequency more or less converging to
the location of the clean fundamental mode rather than
the actual QNM frequencies present in the full signal.
This is reassuring: the prompt ringdown signal is not
appreciably affected by the perturbative bump. In other
words, we should not expect the trapped QNMs to be
observable in most astrophysically realistic scenarios.

V. DISCUSSION

The main message of this paper is that spectral instabil-
ity results obtained in the frequency domain should not be
used naively in the interpretation of time-domain signals.
In particular, the spectral instability of the fundamental
QNM does not imply an instability of the “physical” fun-
damental QNM that dominates the prompt ringdown in
the time-domain waveform.
For small values of ε and small separations of the per-

turbative bump a, prompt ringdown corrections relative
to the fundamental QNM of the unperturbed potential
are O(ε). For larger values of a the fundamental QNM
is destabilized, as predicted by the frequency-domain
analysis. However, if we restrict attention to the early
phase of the ringdown (the only part that would be mea-
surable in gravitational-wave observations at currently
achievable signal-to-noise ratios), we would detect only
the fundamental QNM of the unperturbed potential with
corrections of O(ε). At later times, the waveform displays
echoes whose amplitude is suppressed by the O(ε) reflec-
tion coefficient of the bump. The first ringdown wave
train is well described by the fundamental mode of the
clean potential (modulo small corrections), whereas the
“true” QNM spectrum only characterizes the system at
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FIG. 7. Same as Fig. 5, but for a = 30, and we only fit the first train of the initial ringdown without echoes. The starting times
are t− tmax = 10, 11, 12, . . . , 20,M . All the dots obtained using the fitting method now cluster around the clean fundamental
mode of the unperturbed potential. The zoom-in in the right panel shows that a perturbation of order ε can induce systematic
errors (approximately of order ε) in the measurement of the fundamental mode’s frequency and damping time.

late time. For small enough values of ε, the amplitude
is so suppressed that the “true” fundamental QNM can
be hidden by the polynomial late-time tail, or even by
nonlinear corrections to the Regge-Wheeler (or Zerilli)
equation. The frequency-domain instability is more effec-
tive for large values of a [22]. In the time domain, this
means that we need to wait longer before the signal can
be approximated by a damped sinusoid. In fact, for larger
values of a the number of distinguishable echoes increases.

In a mathematical sense, the frequency- and time-
domain analyses are equivalent only if we have access
to the full signal (i.e., to all values of the frequency, or to
the waveforms at all times). This is practically unachiev-
able in experiments. Our work shows that access to the
late-time waveform is crucial to recover the full frequency-
domain QNM spectrum in the time-domain signal. Even
then, the “new” frequencies associated with the cavity will
be observable only if the amplitude of the perturbations
is large enough to overcome the power-law tail. There-
fore, all calculations of QNM frequencies using modified
potentials and/or modified boundary conditions should
be complemented by time-domain studies to verify that
these modifications affect the prompt ringdown, which is
observationally accessible to interferometric detectors.

One last crucial remark is that this work only addressed
the spectral instability of the fundamental QNM. Spectral
instabilities in the overtones due to short wavelength-(UV)
perturbations could affect the time-domain signal even
at early times, and they may be detectable [18]. The
perturbative bumps considered in this work can more
easily destabilize the higher overtones that would then
be replaced by trapped-mode frequencies, and the time-
domain waveform at late times would then contain modes
from the “new” (destabilized) spectrum as long as they
are not dominated in amplitude by the power-law tail.

Our main finding here is that the dominant mode of
the prompt ringdown is very close in frequency to the
fundamental mode of the unperturbed potential. How-
ever, our current fitting procedure does not allow us to
conclude that higher overtones would also remain close
to their unperturbed values. While we do not see any
reason to expect that the instability of the rest of the
spectrum behaves differently, the detection of overtones
from the time-domain signal is not as straightforward as
the detection of the fundamental mode [61, 64]. In fact,
the extraction of overtone frequencies by fitting numerical
relativity waveforms (or even time evolution of the Regge-
Wheeler and Zerilli equations) is nontrivial and often
inaccurate. Any conclusions on the observational stability
of higher overtones require a more careful investigation
that we will address in future work.
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