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We present high-fidelity cosmology results from a blinded joint analysis of galaxy-galaxy weak lens-
ing (∆Σ) and projected galaxy clustering (wp) measured from the Hyper Suprime-Cam Year-1
(HSC-Y1) data and spectroscopic Sloan Digital Sky Survey (SDSS) galaxy catalogs in the redshift
range 0.15 < z < 0.7. We define luminosity-limited samples of SDSS galaxies to serve as the
tracers of wp in three spectroscopic redshift bins, and as the lens samples for ∆Σ. For the ∆Σ
measurements, we select a single sample of 4 million source galaxies over 140 deg2 from HSC-Y1
with photometric redshifts (photo-z) greater than 0.75, enabling a better handle of photo-z errors
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by comparing the ∆Σ amplitudes for the three lens redshift bins. The deep, high-quality HSC-Y1
data enable significant detections of the ∆Σ signals, with integrated signal-to-noise ratio S/N ∼ 15
in the range 3 ≤ R/[h−1Mpc] ≤ 30 for the three lens samples, despite the small area coverage. For
cosmological parameter inference, we use an input galaxy-halo connection model built on the Dark

Emulator package (which uses an ensemble set of high-resolution N -body simulations and enables
fast, accurate computation of the clustering observables) with a halo occupation distribution that
includes nuisance parameters to marginalize over modeling uncertainties. We model the ∆Σ and
wp measurements on scales from R ' 3 and 2h−1Mpc, respectively, up to 30h−1Mpc (therefore
excluding the BAO information) assuming a flat ΛCDM cosmology, marginalizing over about 20
nuisance parameters and demonstrating the robustness of our results to them. With various tests
using mock catalogs described in Miyatake et al. [1], we show that any bias in the clustering ampli-
tude S8 ≡ σ8(Ωm/0.3)0.5 due to uncertainties in the galaxy-halo connection is less than ∼ 50% of
the statistical uncertainty of S8, unless the assembly bias effect is unexpectedly large. Our best-fit
models have S8 = 0.795+0.049

−0.042 (mode and 68% credible interval) for the flat ΛCDM model; we find

tighter constraints on the quantity S8(α = 0.17) ≡ σ8(Ωm/0.3)0.17 = 0.745+0.039
−0.031.

I. INTRODUCTION

Wide-area imaging galaxy surveys offer exciting oppor-
tunities to address fundamental questions in cosmology
such as the nature of dark matter and the origin of cos-
mic acceleration [2]. Current-generation imaging surveys
such as the Subaru Hyper Suprime-Cam [139] [HSC 3–
5], the Dark Energy Survey [140] [DES 6–11], and the
Kilo-Degree Survey [141] [KiDS 12, 13] have used accu-
rate measurements of weak gravitational lensing effects
to obtain tight constraints on cosmological parameters.
Intriguingly, the cosmological models inferred from these
large-scale structure probes consistently (albeit at low
significance) exhibit a lower value of σ8 or S8, which char-
acterizes the clustering amplitude in the late universe
[e.g. 4, 14], than do cosmological models inferred from
the Planck cosmic microwave background (CMB) mea-
surement [15], hinting at the possibility of new physics
beyond the standard cosmological model, i.e. the flat
ΛCDM model with adiabatic, Gaussian initial conditions
[e.g. 14].

The main challenge of large-scale structure probes lies
in the uncertainty in galaxy bias; that is, the unknown
relation between the distributions of matter and galax-
ies [16, 17]. Since the physical processes inherent in the
formation and evolution of galaxies are still difficult to ac-
curately model from first principles, we need both obser-
vational and theoretical approaches to tackle the galaxy
bias uncertainty in order for us to obtain “unbiased”
and “precise” inference of the underlying cosmological
parameters from large-scale structure observables. On
scales large enough to be described by linear perturba-
tion theory, galaxy bias is expected to have a simple form
[18], however, there is considerable statistical power to be
gained by exploiting the information in the mildly non-
linear regime [e.g. 1, 19, 20].

Combining multiple observational probes offers a
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promising way to mitigate the impact of galaxy bias un-
certainty on cosmology inference [6, 12, 19–25]. In par-
ticular, galaxy-galaxy weak lensing, obtained by cross-
correlating the positions of foreground (lens) galaxies
with shapes of background galaxies, can be used to in-
fer the average mass distribution around lens galaxies.
Combining the galaxy-galaxy weak lensing with the auto-
correlation function of galaxies in the same sample as the
lens galaxies can be used to observationally disentangle
the galaxy bias and the correlation function of the un-
derlying matter distribution.

The halo model prescription of large-scale structure
[26–29] is a useful theoretical method to make model pre-
dictions of galaxy clustering quantities. Halos are loca-
tions where galaxies likely form, and the clustering prop-
erties of halos are relatively well understood, both from
analytical approaches and N -body simulations [30]. An
empirical model such as the halo occupation distribution
(HOD) method [31, 32] can be used to connect galaxies
to halos. An advantage of this method is that it allows
one to use small-scale information in cosmology inference,
thereby yielding tighter constraints on cosmological pa-
rameters [see e.g., 24, 33–36]. However, if the model is
not sufficiently accurate nor flexible enough to capture
the complicated galaxy-scale physics or marginalize over
uncertainties in the galaxy-halo connection, the method
might lead to a significant bias in cosmological parame-
ters, more than the statistical credible interval [see e.g.,
37–40]. A worst-case scenario is that one might claim a
wrong cosmology, e.g. a time-varying dark energy model,
from a given dataset due to inaccurate theoretical tem-
plates.

In this paper we estimate cosmological parameters by
comparing halo model predictions to the clustering ob-
servables, galaxy-galaxy weak lensing and the projected
auto-correlation function of galaxies, measured from the
Subaru HSC Year 1 datasets [hereafter HSC-Y1; 3] and
the spectroscopic LOWZ and CMASS galaxy samples of
the Sloan Digital Sky Survey (SDSS; York et al. [41]). In
this paper we use luminosity-limited, rather than flux-
limited, samples of LOWZ and CMASS [42] galaxies be-
cause those samples are nearly volume-limited in each
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of the redshift bins we use, and display weaker redshift
evolution of the clustering properties in each bin than
do the flux-limited samples, allowing us to use redshift-
independent model predictions in the parameter infer-
ence [23, 24]. In addition, the luminosity-limited samples
allow us to rather straightforwardly model the magnifi-
cation bias effect on the galaxy-galaxy weak lensing mea-
surement [43]. For the source sample of HSC-Y1 galaxies
used in the galaxy-galaxy weak lensing measurement, we
employ a single sample of source galaxies for the three
lens samples of LOWZ and CMASS galaxies, following
the method described in Oguri and Takada [21]. This
method allows for a calibration of photo-z errors by com-
paring the relative strengths of the galaxy-galaxy weak
lensing at different lens redshifts for the same source sam-
ple. This calibration allows us to mitigate photo-z errors,
one of the most important systematic effects in weak lens-
ing cosmology.

On the modeling side, we use the publicly available
code Dark Emulator developed in Nishimichi et al. [44],
which enables fast, accurate computations of halo cluster-
ing quantities (the halo mass function, the halo-matter
cross-correlation function and the halo auto-correlation
function) as a function of redshift, separation and halo
mass(es) for an input model within the flat wCDM cos-
mology framework. This emulator is flexible in the sense
that we can combine it with a user-specified prescription
of the galaxy-halo connection, the HOD prescription used
in this paper, to make model predictions of galaxy-galaxy
weak lensing and galaxy auto-correlation function for a
target sample of galaxies for an input cosmological model
[1]. With this emulator, we can perform cosmology in-
ference in a multi-dimensional parameter space, which is
equivalent to comparing the measured signals with model
predictions from mock catalogs of galaxies in N -body
simulations. In doing this, we include a sufficient num-
ber of nuisance parameters to account for uncertainties
in the galaxy-halo connection and other observational ef-
fects, and then estimate cosmological parameters after
marginalizing over the nuisance parameters.

We perform the cosmology analysis in a blind manner
to avoid confirmation biases affecting our results. Af-
ter unblinding, we compare our results with those from
other cosmological experiments such as other weak lens-
ing surveys and Planck. We aim to address the question
of whether the cosmological parameters, especially S8 or
σ8 inferred from our joint probes analysis, are consistent
with those of the Planck cosmology. Note that our com-
panion paper [45] performs a cosmology analysis limited
to large scales using a theoretical template motivated by
the perturbation theory, which is complementary to our
analysis.

This paper is organized as follows. In Section II, we
briefly describe the HSC first-year shear catalog and the
spectroscopic SDSS galaxy catalog that are used in the
galaxy-galaxy weak lensing and galaxy clustering mea-
surements. In Section III, we describe the measurements
of our clustering observables. In Section IV, we describe

our analysis method: the theoretical templates based on
the halo model and the likelihood analysis. In Section V
we describe our strategy for the blind cosmology analy-
sis. In Section VI we show the main results of this paper:
our cosmological constraints and their robustness to dif-
ferent systematics. Finally we give our conclusions in
Section VII. We include seven appendices giving techni-
cal details of our model and tests of systematic effects.

Throughout this paper, unless stated otherwise, we
quote the central value of a parameter from the mode
value of parameter that has the highest probability for
the marginalized 1-d posterior probability density func-
tion in the chain: P(pmode) = maximum. We quote the
68% credible interval(s) for parameter(s) from the high-
est density interval of parameter(s) [142] satisfying

∫

p∈P>P68

dp P(p) = 0.68, (1)

where P(p) is the 1-d or 2-d marginalized posterior dis-
tribution. The 95% credible interval is similarly defined.

II. DATA

A. HSC-Y1 data: source galaxies for galaxy-galaxy
weak lensing

HSC is a wide-field prime focus camera on the 8.2m
Subaru Telescope [46–49]. The HSC Subaru Strategic
Program (HSC SSP) survey started in 2014, and is us-
ing 330 Subaru nights to conduct a five-band (grizy)
wide-area imaging survey [3]. The combination of HSC’s
wide field-of-view (1.77 deg2), superb image quality (typ-
ically 0.6′′ seeing FWHM in i band), and large photon-
collecting power makes it one of the most powerful in-
struments for weak lensing measurements. The HSC SSP
survey consists of three layers; Wide, Deep, and Ultra-
deep. The Wide layer, which is designed for weak lens-
ing cosmology, plans to cover about 1,200 deg2 of the
sky with a 5σ depth of i ∼ 26 (2′′ aperture for a point
source). Since the i-band images are used for galaxy
shape measurements in weak lensing analyses, they are
preferentially taken under good seeing conditions.

In this paper, we use the HSC first-year (hereafter
HSC-Y1) galaxy shape and photo-z catalogs [50, 51] con-
structed from about 90 nights of HSC Wide data taken
between March 2014 and April 2016 [143]. Both catalogs
are based on the object catalog produced by the data
reduction pipeline [52]. In the following subsections, we
describe details of the shape and photo-z catalogs.

1. HSC-Y1 galaxy shape catalog

We apply a number of cuts to construct the shape cat-
alog of HSC galaxies [see 50, for details]. For instance,
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we restrict our analysis to survey regions with approxi-
mately full depth in all five filters (the “full-depth full-
color”, or FDFC region), to ensure the homogeneity of
the galaxy sample. We also adopt a cmodel magnitude
cut of i < 24.5 [see 52, for the definition of cmodel mag-
nitude], which is conservative given the depth of the HSC
Wide layer. We apply the “Sirius” star mask to remove
regions affected by bright stars [53]. We remove galaxies
located in disconnected regions and regions where PSF
modeling fails. The resulting HSC-Y1 shear catalog has
more than 12 million galaxies, covering 136.9 deg2 spread
over six distinct fields: XMM, GAMA09H, WIDE12H,
GAMA15H, HECTOMAP, and VVDS [see Fig. 1 in Ref.
50]. The HSC Wide survey footprint overlaps fully with
the SDSS sky coverage. Mandelbaum et al. [50] and
Oguri et al. [54] carried out various null tests to show
that the shear catalog satisfies the requirements of HSC-
Y1 science for both cosmic shear and galaxy-galaxy weak
lensing analyses [144]. In Appendix B, we give further
null tests that are specific for cosmology analysis with the
galaxy-galaxy lensing measurements based on the HSC-
Y1 and SDSS datasets.

The shape catalog includes the following quantities
relevant to our weak lensing analysis. The shape cat-
alog has the PSF-corrected galaxy ellipticity (e1, e2) =
(e cos 2φ, e sin 2φ), where φ is the position angle. Since
the ellipticity is defined in terms of distortion, i.e., e =
(a2 − b2)/(a2 + b2), where a or b is the major or mi-
nor axis, one needs to apply the appropriate responsivity
factor when estimating weak lensing shear from galaxy
shapes (see Section III A 1 for details). The shape cat-
alog contains, for each galaxy, an estimate of the rms
intrinsic ellipticity per component erms, from which the
ellipticity measurement noise is already subtracted, and
contains the calibration factors derived from the im-
age simulations [51]. The calibration factors consist of
the shear multiplicative bias m and the additive bias
(c1, c2) which relate a measured shape to a true shape
as γmeas,i = (1 + m)γtrue,i + ci. The shape catalog also
contains the inverse-variance weight ws which takes into
account the intrinsic shape and measurement noise.

2. Source galaxy catalog for galaxy-galaxy weak lensing

Thanks to the depth of the HSC-Y1 data, we can define
a secure sample of source galaxies behind lens galaxies,
for galaxy-galaxy weak lensing measurements. In this
paper we select three distinct samples of lens galaxies
from the database of spectroscopic SDSS galaxies up to
z = 0.7. To select background galaxies, we use photomet-
ric redshift (hereafter photo-z) estimates of each HSC
galaxy. Multiple photo-z catalogs using different algo-
rithms are available [see 55, for details]. For our fiducial
analysis, we use the MLZ method [56] as for our fiducial
catalog; in Section VI A we will discuss how the choice
of different photo-z algorithms affects the cosmological
results.
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FIG. 1: Upper panel: The LOWZ and CMASS galaxy sam-
ples in the plane of redshift and absolute magnitude. In this
study we use the three samples denoted by the black boxes:
the LOWZ sample in the redshift range z ∈ [0.15, 0.35] with
absolute magnitudes M < −21.5, the “CMASS1” sample in
z ∈ [0.43, 0.55] with M < −21.9, and the “CMASS2” sample
in z ∈ [0.55, 0.70] with M < −22.2. The figure includes only
5% of the galaxies to avoid crowding. Lower panel: The solid
(dashed) lines show the redshift dependence of the comoving
number density of galaxies in each of our galaxy samples (the
parent LOWZ and CMASS sample), obtained assuming the
Planck cosmology.

In this paper, following the method in Oguri and
Takada [21], we use a single sample of source galaxies
for the galaxy-galaxy weak lensing measurements for all
three samples of lens galaxies in different redshift bins
(see below). This method enables us to mitigate the im-
pact of photo-z uncertainties on cosmological constraints,
as we will explicitly demonstrate later. We define a sam-
ple of background galaxies by requiring that the posterior
that the galaxy has redshift less than 0.75 be less than
1% [57–59]:

∫ 7

zl,max+0.05

dzs Pi(zs) ≥ 0.99, (2)

where Pi(zs) is the posterior distribution of photo-z
estimation for the i-th HSC galaxy. Note that we
use a lower bound of zs = 0.75, comfortably larger
than the upper bound of the SDSS lens galaxy sam-
ple, zl,max = 0.7. With this cut, the sample includes
4,308,983 HSC galaxies over about 140 deg2, correspond-
ing to a net number density of n̄s ' 8.74 arcmin−2 and a
weighted number density (defined in Chang et al. 60) of
n̄s ' 7.95 arcmin−2. The mean redshift of the sample is
〈zs〉 ' 1.34.

B. SDSS spectroscopic galaxy catalog for lens
galaxies: LOWZ and CMASS

To trace the large-scale structure, we use the large-
scale structure sample compiled in Data Release 11
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(DR11) [145] [42] of the SDSS-III (Baryon Oscillation
Spectroscopic Survey) project [61]. The SDSS-III is a
spectroscopic follow up of galaxies and quasars selected
from the imaging data obtained by the SDSS-I/II [41]
covering about 11, 000 deg2 [62] using the dedicated 2.5m
SDSS Telescope [63]. Imaging data obtained in five pho-
tometric bands (ugriz) in the SDSS I/II surveys [64–
66] were augmented with an additional 3,000 deg2 of
imaging data by the SDSS-III BOSS project [61, 67–69].
These data were processed by a series of image process-
ing pipelines [70–72] and corrected for Galactic extinc-
tion [73] to obtain a reliable photometric catalog which
serves as an input to select targets for spectroscopy [61].
Targets are assigned to tiles using an adaptive tiling al-
gorithm designed to maximize the number of targets that
can be successfully observed [74]. The resulting spectra
were processed by an automated pipeline to perform red-
shift determination and spectral classification [75]. The
BOSS large-scale structure (LSS) samples are selected
using algorithms focused on galaxies in different red-
shifts: 0.15 < z < 0.35 (LOWZ) and 0.43 < z < 0.7
(CMASS). In addition to the galaxies targeted by the
BOSS project, we also use galaxies which pass the target
selection but have already been observed as part of the
SDSS-I/II project (legacy galaxies). These legacy galax-
ies are subsampled in each sector so that they obey the
same completeness as that of the LOWZ/CMASS sam-
ples in their respective redshift ranges [76].

To perform measurements of the clustering and lens-
ing signals, we create various subsamples, cutting on red-
shift and absolute magnitude, of the parent LSS catalog
provided with DR11. To estimate the i-band absolute
magnitudes for individual SDSS galaxies, we employ the
method in Wake et al. [77] to make k-corrections (using
“passive plus star-forming galaxies” in Wake et al. [77]
constructed using templates from the stellar population
synthesis model in Bruzual and Charlot [78]) of individ-
ual galaxies based on cmodel photometry. We k-correct
the photometry LOWZ galaxies to a redshift of 0.20 and
that of CMASS galaxies to a redshift of 0.55.

We use three galaxy subsamples in three redshift bins:
“LOWZ” galaxies in the redshift range z = [0.15, 0.35]
and two subsample of “CMASS” galaxies, hereafter
called “CMASS1” and “CMASS2”, respectively, which
are obtained from subdivision of CMASS galaxies into
two redshift bins, z = [0.43, 0.55] and z = [0.55, 0.70], re-
spectively. As shown in Fig. 1, we define each of the sub-
samples by selecting galaxies having the absolute magni-
tudes Mi − 5 log h < −21.5, −21.9 and −22.2 for the
LOWZ, CMASS1 and CMASS2 samples, respectively.
The comoving number densities for the Planck cosmology
n̄g/[10−4 (h−1Mpc)−3] ' 1.8, 0.74 and 0.45, respectively,
which are a few times smaller than those of the entire
parent (color-cut and flux-limited) LOWZ and CMASS
samples. As shown in Fig. 1, the number density de-
pends only weakly on redshift within each sample. The
CMASS1 sample does show a somewhat stronger redshift
dependence, but we will show later that our cosmological

constraints remain almost unchanged when we exclude
the CMASS1 sample from the cosmological analysis.

In Appendix B, we quantify the sensitivity of our lens-
ing analysis to the choice of k-correction method we use.
We find that the differences are smaller than the statis-
tical uncertainties.

The SDSS DR11 large-scale structure catalogs [76] pro-
vide weights to account for various systematic effects, in-
cluding (i) the inverse correlation between the number
density of galaxies and that of stars [79] and issues re-
lated to seeing (w∗), (ii) fiber collided galaxies that do
not have a spectroscopic redshift, and (iii) systematic
failures to obtain the spectroscopic redshifts of galaxies,
respectively.

The last two weights correct for the full LOWZ and
CMASS sample, not the absolute-magnitude-limited sub-
samples we use here, and thus are not applicable for our
purposes. Instead we assign the redshift of the nearest
neighbor to all fiber collided or redshift-failure galaxies,
and compute their absolute magnitudes and include or
exclude them depending upon our selection criteria. In
summary, in our clustering analysis, we set the weights
to wl = w∗ if the galaxies satisfy our absolute mag-
nitude threshold criteria given below [also see Ref. 23,
for a similar treatment for a stellar-mass selected sam-
ple]. Detailed tests on mock galaxy catalogs of the use
of nearest neighbor redshifts can be found in Guo et al.
[80]; they demonstrated the nearest-neighbor correction
achieves sub-percent accuracy in the projected galaxy
auto-correlation function for scales used in this paper.

For simplicity, throughout this paper we ignore red-
shift evolution of the clustering observables within the
redshift bin of each sample, as is usually done in galaxy
clustering analyses. The volume-limited samples should
have weaker redshift evolution than does a flux-limited
sample, because the volume limited sample would tend
to reside in host halos of similar masses over the redshift
range of the bin. In fact, Miyatake et al. [23] verified that
both the lensing and clustering signals of volume-limited
samples, defined in the range 0.43 < z < 0.59, have weak
redshift dependence. In addition the luminosity-limited
sample allows a simpler treatment of the magnification
bias effect on the galaxy-galaxy weak lensing than does
the flux-limited sample, as we will describe below.

III. MEASUREMENTS

In this paper we use the galaxy-galaxy weak lensing
∆Σ(R) and the projected correlation function wp(R) as
clustering observables. This section describes details of
the measurement methods of these two quantities.

A. Galaxy-galaxy weak lensing: ∆Σ(R)

Cross-correlating the positions of spectroscopic galax-
ies (spectroscopic SDSS galaxies in our study) with
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shapes of background galaxies (HSC galaxies) enables
us to probe the averaged mass distribution around lens
galaxies – galaxy-galaxy weak lensing [81]. Throughout
this paper we use the average excess surface mass den-
sity profile, ∆Σ(R), as the galaxy-galaxy weak lensing
observable, where ∆Σ has dimensions of [hM� pc−2] and
is given as a function of the projected comoving separa-
tion R with units of [h−1Mpc]. An alternative choice of
the weak lensing observable is the tangential shear profile
γ+(θ) (a dimensionless quantity) as a function of angu-
lar separation θ. As shown in Shirasaki and Takada [82],
∆Σ(R) is typically measured with higher signal-to-noise
ratio than is γ+, because it upweights source galaxies

at higher redshifts that therefore have higher lensing effi-
ciency for a given lens sample. In this section we describe
the measurement method of galaxy-galaxy weak lensing
and show the signal-to-noise ratio of the measurements
from the HSC-Y1 dataset.

1. Galaxy-galaxy weak lensing estimator

An estimator of ∆Σ(Ri) for the i-th radial bin Ri is
given [e.g. see 23] by

∆̂Σ(Ri) =

∑
ls∈Ri

wls

〈
Σ−1

cr

〉−1

ls
[et,ls/2R(Ri)− ct,ls]

[1 +Ksel(Ri)] [1 +K(Ri)]
∑

ls∈Ri
wls

∣∣∣∣∣
Ri=χ(zl)∆θls

− (signal around random points)Ri
, (3)

where the summation “ls” runs over all lens-source pairs
that lie in the i-th radial bin Ri ≡ χ(zl)∆θls; χ(zl) is
the comoving angular diameter distance to the l-th SDSS
lens galaxy at the spectroscopic redshift zl, and ∆θls is
the angular separation between lens and source in each
pair; et,ls is the “tangential component” of ellipticity of
the s-th HSC source galaxy [146]; ct,ls is the additive
shear calibration factor given in the HSC shape catalog
[51]; 〈Σ−1

cr 〉ls is the average of the inverse critical surface
mass density given by the lensing efficiency averaged over
the photo-z posterior distribution function of each source
galaxy, Ps(zs), behind the l-th lens galaxy:

〈
Σ−1

cr

〉
ls

=

∫∞
0

dzsPs(zs)Σ
−1
cr (zl, zs)∫∞

0
dzs Ps(zs)

, (4)

with

Σcr(zl, zs) ≡
χ(zs)

4πGχls(zl, zs)χ(zl)(1 + zl)
. (5)

Here χls(zl, zs) is the angular comoving distance between
lens and source, given as χls = χ(zs) − χ(zl) for a flat-
geometry universe assumed throughout this paper. Note
that the factor (1 + zl) arises from our use of comoving
coordinates in the projected separation. Also note that
we set Σ−1

cr = 0 when zs < zl in Eq. (4). The factor
“wls” in Eq. (3) denotes the “weight” for which we em-
ploy an inverse-variance weighting that is nearly optimal
in the shape-noise-dominated regime, following Mandel-
baum et al. [20] [also see Ref. 82]:

wls = wlws

〈
Σ−1

cr

〉2
ls
, (6)

where wl and ws are the weights given in the BOSS cat-
alog and the HSC shape catalog, respectively (see Sec-
tion II B for details).

To compute 〈Σ−1
cr 〉 (Eq. 4), we use the photo-z poste-

rior distribution of individual galaxies, Ps(zs). Since the
posterior distribution of source galaxies, even after aver-
aging, differs from the underlying true redshift distribu-
tion, there is a bias in the estimation of 〈Σ−1

cr 〉 [83]. As
we will discuss below, to quantify this possible bias, we
also use the “re-weighting” method in Hikage et al. [4] to
estimate the intrinsic redshift distribution for the source
sample, by matching the populations of the COSMOS 30-
band photo-z sample [84, 85] to that of our background
galaxy sample in the color space, because the COSMOS
30-band photo-z’s are much more accurate than ours.

The shear responsivity R(R) in Eq. (3), which ac-
counts for conversion of “distortion” ([a2 − b2]/[a2 + b2])
to “shear” ([a− b]/[a+ b]) [86], is given by

R(Ri) = 1−
∑

ls∈Ri
wlse

2
rms,s∑

ls∈Ri
wls

, (7)

where erms,s is the rms intrinsic ellipticity of the s-th
source per component. The factor [1 +K(Ri)] is the
multiplicative shear calibration factor that is given in the
HSC shape catalog, defined as

1 +K(Ri) = 1 +

∑
ls∈Ri

wlsms∑
ls∈Ri

wls
, (8)

where ms is the multiplicative calibration factor for the
s-th source galaxy that is estimated per object using the
simulations of HSC images [51]. This calibration factor
not only accounts for both noise bias [e.g., 86–88] and
model bias [89, 90], but also the effect of image blending
expected in HSC including the impact of unrecognized
blends to some degree.

We also need to correct for the effect of selection bias,
because our sample of source galaxies is based on the spe-
cific photo-z cuts (Eq. 2) in addition to the fiducial cuts
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FIG. 2: Left panel: The differential number counts of galaxies as a function of absolute magnitude, integrated over redshift, for
each of the LOWZ, CMASS1 and CMASS2 subsamples (see Fig. 1). The vertical line for each sample denotes the magnitude
cut that is used to define the sample in the clustering analysis. Right panel: The number counts for subsamples of galaxies
divided based on the different color cuts for the CMASS2 sample.
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FIG. 3: Upper panels: The galaxy-galaxy weak lensing signals, R×∆Σ(R), measured by combining spectroscopic SDSS galaxies
and HSC-Y1 galaxies for lens and source galaxy samples, respectively. Here we consider the LOWZ, CMASS1 and CMASS2 lens
samples in the redshift range, z = [0.15, 0.35], [0.43, 0.55] and [0.55, 0.70], respectively, and we employ a single source population
from the HSC-Y1 shape catalog (see text for details). The error bars at each bin are computed from the diagonal components
of the covariance matrix. The regions which are not grayed out display the range of separations, 3 ≤ R/[h−1Mpc] ≤ 30,
which we use for our baseline cosmology analysis. The legend denotes the cumulative signal-to-noise ratio (S/N) over the
range 3 ≤ R/[h−1Mpc] ≤ 30. The total S/N over the three samples is given in the upper right corner, taking into account
the cross-covariances. The colored band and line over the fitting range of separations in each panel denote the 68% credible
interval and mode of the posterior distribution of the model predictions in each separation bin, obtained from the Bayesian
cosmology inference. The black line in each panel denotes the model prediction at maximum a posteriori (MAP). Lower panels:
Similarly, the results for the projected correlation function, R×wp(R). The region which is not grayed out displays the range
of separations, 2 ≤ R/[h−1Mpc] ≤ 30, which we use for our cosmology analysis. Note that we employed Ωm,fid = 0.279 in the
measurements of ∆Σ(R) and wp(R), which is needed for computations of R and

〈
Σ−1

cr

〉
.
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used for the source catalog in the cosmic shear analysis
[4, 5]. The factor [1+Ksel(R)]−1 corrects for the selection
bias. We follow the method described in Section 5.6.2 of
Mandelbaum et al. [51] to compute the correction factor
for the source galaxy sample in each separation bin R. In
this method, we include the selection bias effect by modi-
fying the multiplicative bias factor ms, by computing the
probability of galaxies in the sample at the edge of the
resolution factor cut, where the resolution factor is given
by the ratio of the PSF size to the observed size of the
galaxy. We have confirmed that this selection bias effect
is very small. Furthermore, in the cosmological inference,
we will introduce a nuisance parameter ∆mγ (see below)
to model any residual systematic error in the shear cali-
bration and study its impact on the cosmological results.

Finally, the second term on the right-hand side of
Eq. (3) denotes the signal around the random points,
which is measured by replacing lens galaxies with ran-
dom points. We need to subtract this random signal to
correct for observational systematic effects such as resid-
ual systematics in shape measurements due to an imper-
fect correction of optical distortions across the field-of-
view. The number of random points is 20 times larger
than that of lens galaxies, where the random catalogs are
generated mimicking the redshift distribution of galax-
ies in the LOWZ, CMASS1 or CMASS2 sample. We
found that the signal around random points starts to de-
viate from zero at R >∼ 15h−1Mpc, but the deviations are
still smaller than the statistical uncertainties, as shown
in Fig. 18 in Appendix B.

As can be found from Eq. (3), the estimation of ∆Σ(R)
involves conversion of the observed angular separation
between source and lens, ∆θ, to the comoving separa-
tion R and the multiplicative factor of 〈Σ−1

cr 〉−1
ls . To do

these, we need to assume a “fiducial” cosmology, which
generally differs from the underlying true cosmology. For
the flat ΛCDM model which we use throughout this pa-
per, the only relevant free parameter is Ωm (because we
use units such as h−1Mpc and hM� pc−2 in which the
h dependence is made explicit, we are insensitive to the
value of h). In this paper we use the method in More
[91] to take into account the geometrical dependence
of Ωm in the computations of 〈Σ−1

cr 〉ls and R (also see
Miyatake et al. [1]). Throughout this paper we employ
Ωm,fid = 0.279 for the fiducial cosmology in the measure-
ments of ∆Σ(R) and wp(R).

The large-scale structure which lies between us and
the lens galaxies causes distortions of the shapes of the
background source galaxy sample. It also modulates the
number densities of both the source and lens galaxies
due to lensing magnification [43, 92]. This complicates
the interpretation of the galaxy-galaxy lensing signal. As
shown in Unruh et al. [43], the effect of the magnification
of the source galaxy sample is small and can be neglected.
However, the correlated effect of the magnification of the
lens sample, and the associated imprints on the shapes of
the source galaxies can be a significant source of system-
atic error [43]. The number density fluctuations of lens
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over Rmin < R < 30h−1Mpc, where we vary the minimum
separation Rmin. Note the reversed x axis in this plot. We
fix the maximum separation to 30h−1Mpc. We use the same
binning of separations as in Fig. 3. The lines show the results
for each of the LOWZ, CMASS1, and CMASS2 samples, and
the bold line shows the total S/N obtained by combining the
∆Σ measurements for all the samples.
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FIG. 5: Similarly to Fig. 4, the cumulative signal-to-noise
ratio of wp(R) integrated over Rmin ≤ R ≤ 30 h−1Mpc as a
function of Rmin.

galaxies caused by the magnification is given by

δmag
g (χl, χlθ) ≡ N −N0

N0

= µαmag−1 − 1

' 2(αmag − 1)κ(χl, χlθ), (9)

where κ is the lensing convergence, i.e. the projected
mass density field up to zl, in the direction θ, and we
have assumed the weak lensing regime, |κ| � 1. Here we
approximate the intrinsic number counts of lens galaxies
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by a power law with respect to magnitudes, and the slope
of galaxy counts around a given magnitude cut αmag is
defined as

αmag ≡ −
d logN(> flim)

d log flim
, (10)

for which we use the flux corresponding to the absolute
magnitude cut, flim ∝ 10−0.4Mab,lim . The same fore-
ground large-scale structure causes a weak lensing dis-
tortion of the HSC source galaxies. In turn the mag-
nification bias causes an additive contamination to the
standard galaxy-galaxy weak lensing as described below.

Fig. 2 displays the number counts of galaxies in the
LOWZ, CMASS1 and CMASS2 samples. The estimated
slope around the magnitude cut is αmag ' 2.26 ± 0.03,
3.56 ± 0.04 or 3.73 ± 0.04 for the LOWZ, CMASS1 or
CMASS2 sample, respectively, where the 1σ error is esti-
mated assuming the Poisson errors in the number counts
in each magnitude bin around the magnitude cut. For
the cosmological inference, we use the estimated αmag

for the central value and employ a Gaussian prior with
width given by σ(αmag) = 0.5. We use a significantly
larger width than the estimated error on these slopes to
be conservative and in order to take into account vari-
ations in the slope for different color-cuts of galaxies in
the parent SDSS samples in each redshift bin (see the
right panel of Fig. 2). We find that even with such
wide Gaussian priors, the estimated cosmological param-
eters do not change significantly from the results obtained
by fixing αmag to the central value. We comment that
our luminosity-limited samples are better suited for a
treatment of the magnification bias than are the parent
LOWZ and CMASS galaxy samples. The parent LOWZ
and CMASS galaxies are selected by the color-dependent
flux cuts [61, 93]. Hence the magnification bias cannot
be characterized by a single slope of the number counts
in the original sample, and one would have to carefully
estimate the effect using the effective slope as done in
Ref. [92].

Our use of conservative cuts based on the photo-z
posterior distribution of the source galaxies also miti-
gates any contamination of intrinsic alignments of source
galaxies to the galaxy-galaxy weak lensing measured that
could occur if some of the source galaxies were at the
same redshift as the lens galaxies and therefore are phys-
ically associated with the same large-scale structure in
which the lens galaxies reside [e.g., 94]. As we show in
Appendix B, we do not see any excess clustering of source
galaxies around our lenses. Therefore we do not explicitly
model intrinsic alignments in this paper.

We use mock catalogs of HSC- and SDSS-like galaxies
to determine the covariance matrix of statistical errors
for the ∆Σ measurement, as described in Appendix B of
Miyatake et al. [1]. In Appendix A we briefly describe
the details of the mock catalogs and our method for the
covariance calibration. The correlation matrix is shown
in the right panel of Fig. 15, which shows significant off-
diagonal components at R >∼ 10h−1Mpc. The covariance

matrix includes cross-correlation between the ∆Σ(R) sig-
nals of different lens galaxies, which arise from the shape
noise of the same source galaxies and the cosmic shear
due to the shared foreground large-scale structures. In
addition, our companion paper [45] derived an additional
contribution to the covariance matrix arising from the
magnification bias. While this contribution does not sig-
nificantly affect the cosmological parameter estimation,
we include it for completeness.

In Fig. 3 we show the measured signals of ∆Σ(R)
for each of the LOWZ, CMASS1 and CMASS2 sam-
ples, respectively. We define the radial bins by dividing
0.05 < R/[h−1Mpc] < 80 into 30 evenly-spaced logarith-
mic bins. The region which is not grayed out displays
the range of R bins which we use for our cosmological
analysis: 3 ≤ R/[h−1Mpc] ≤ 30. To be more precise, the
smallest bin in this range includes the lens-source pairs
in the separation range 3.27 ≤ R/[h−1Mpc] ≤ 4.18, while
the largest bin is in the range 23.4 ≤ R/[h−1Mpc] ≤ 29.9.
As is clear from the figure, the HSC-Y1 data yields a
significant detection of ∆Σ over this full range of separa-
tions.

To quantify the significance of the lensing measure-
ments, we can define the cumulative signal-to-noise ratio
(S/N) as

(
S

N

)2

≡
∑

3≤Ri,Rj≤30

∆Σ(Ri)[C
−1
∆Σ,sub]ij∆Σ(Rj), (11)

where C∆Σ,sub is a sub-matrix of the full covariance
matrix including only the elements in the R range ∈
[3, 30] h−1Mpc and (C∆Σ,sub)−1 is its inverse. The legend
of Fig. 3 shows the S/N values for each of the LOWZ,
CMASS1 and CMASS2 samples, and the total S/N de-
notes the total S/N value combining the three samples
taking into account the cross-covariances. Even though
it covers only 140 deg2, the HSC-Y1 data give a sig-
nificant detection of the weak lensing signal, with total
S/N ' 15.4. These S/N values are consistent with those
we obtained from the mock catalogs for the Planck-like
cosmology [see Table III of Ref. 1].

Fig. 4 shows the S/N values as a function of the min-
imum separation Rmin over which the sum in Eq. (11)
extends.

2. A model for the residual systematic photo-z errors: ∆zph

In Appendix B we show the results for various system-
atics tests such as the B-mode signal and the “boost”
factor. The boost factor might arise from contamina-
tion by galaxies physically associated with lens galaxies
to the source galaxy sample due to imperfect determina-
tion of photo-z. In brief, we did not find any evidence
for such residual systematic effects in our ∆Σ measure-
ments, reflecting the high quality of the HSC-Y1 data
and the appropriateness of our source galaxy cuts. In
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our cosmological analysis, we introduce nuisance param-
eters ∆zph (described in this subsection) and ∆mγ (the
following subsection) to model possible residual system-
atic errors in the photo-z determination and multiplica-
tive shear calibration, and treat those parameters as free
parameters in the cosmology inference. Hence, even if
we have residual unknown systematic effects in the weak
lensing measurements, these nuisance parameters largely
absorb the impact of these systematics on the cosmolog-
ical constraints.

Following the method in Huterer et al. [95] [also see
Ref. 1], we model the systematic error in the mean source
redshift by shifting the posterior distribution of each
source galaxy by the same amount ∆zph; that is,

Ps(zs) −→ Ps(zs + ∆zph). (12)

We then use the shifted distribution to compute the av-
eraged lensing efficiency

〈
Σ−1

cr

〉
ls

and the weight wls for
the source-lens pairs using the actual HSC-Y1 and SDSS
catalogs (Eqs. 4 and 6) and then determine the lensing
signal as before using Eq. (3). We find that the lensing
signal after this shift is well approximated by the follow-
ing multiplicative form:

∆̂Σ
(il)

(R; ∆zph) ' f (il)
ph (∆zph)∆̂Σ

(il)
(R; ∆zph = 0), (13)

where f
(il)
ph (∆zph) is the multiplicative factor to model

the effect of systematic photo-z error and il is an index
denoting the three lens samples, “LOWZ”, “CMASS1”
and “CMASS2”. Note that we properly take into account

the dependence of f
(il)
ph (∆zph) on the assumed cosmology,

Ωm for a flat ΛCDM model, in parameter inference, using
the similar method to that described in Section III A. We
find that the shift ∆zph leads to different changes in the
amplitudes of ∆Σ for the different lens samples (LOWZ,
CMASS1, and CMASS2) depending on the lens redshift.
Because we have used a single population of source galax-
ies, we can use the differences in the ∆Σ amplitudes at
different lens redshifts to determine ∆zph, simultaneously
with cosmological parameter estimation. That is, we are
carrying out a self-calibration of the average photo-z er-
ror using the method proposed by Oguri and Takada [21].
We will show below that this method indeed enables a
self-calibration of the photo-z uncertainty to the level al-
lowed by the current statistical errors.

The nuisance parameter for photo-z systematics we
employ is only the mean shift of Ps(zs). To check if
this parametrization is adequate, we perform the follow-
ing test using the reweighted COSMOS 30-band photo-z
(see Section III A 1). The COSMOS 30-band photo-z’s
have a much lower outlier rate and higher precision than
do our photo-z’s because of the wide wavelength coverage
and deeper photometry. We compute the possible bias in
〈Σ−1

cr 〉 due to the use of Ps(zs) using the method given by
Eq. (11) in Miyatake et al. [59] [also see Ref. 96, for the
original discussion of this method]. Specifically, we com-
pute the ratio between 〈Σ−1

cr 〉 based on the reweighted

TABLE I: Differences in the galaxy-galaxy lensing signals
computed using the different photo-z catalogs, compared to
the lensing signal with the fiducial photo-z catalog (MLZ). We
use the same method (Eq. 2) to select source galaxies for
each of the different photo-z catalogs, and compute ∆Σ with
the same binning scheme as the fiducial measurement. We
then subtract the fiducial signal, computed the covariance of
the difference signal (for details of the covariance calculation,
see Appendix B), and average over 3 ≤ R/[h−1Mpc] ≤ 30
with inverse-variance weighting, for each of the lens samples
(LOWZ, CMASS1 and CMASS2). The resulting average and
standard deviation is shown in each case.

photo-z LOWZ CMASS1 CMASS2
method
demp −0.054± 0.037 −0.011± 0.029 −0.034± 0.029
ephor ab −0.051± 0.038 0.057± 0.036 0.142± 0.060
frankenz −0.004± 0.025 0.002± 0.030 0.003± 0.033
mizuki −0.047± 0.024 −0.055± 0.013 −0.045± 0.013
nnpz −0.054± 0.033 −0.020± 0.047 0.067± 0.055

COSMOS photo-z and that based on our Ps(zs). We
find that, for the entire lens sample and our source galaxy
sample, the ratio is 1.005 (that is, the fractional change
is only 0.5%). As described in Section IV B, we em-
ploy a Gaussian prior for ∆zph with σ(∆zph)=0.1 in our
baseline setup. We confirmed that 〈Σ−1

cr 〉 is changed by
∼ −4% (∼ +5%) for ∆zph = −0.1 (∆zph = 0.1), which is
larger than the difference between the reweighted COS-
MOS photo-z and Ps(zs) of our source galaxies. We thus
conclude that our parametrization of photo-z systematics
and its prior effectively absorbs all other photo-z system-
atics. In what follows, we will also employ an even wider
prior of σ(∆zph) = 0.2 to study the ability of our method
to self-calibrate possible unknown photo-z errors in the
current HSC-Y1 data.

In our method, we follow Eq. 13 and divide by the
photo-z error factor for an assumed ∆zph:

∆Σmodel(R)→ ∆Σmodel(R)

f
(il)
ph (∆zph)

, (14)

for each of the LOWZ, CMASS1 and CMASS2 samples.
We do this rather than redoing the weak lensing mea-
surement incorporating the photo-z bias. Because we
are not changing the data vector, we can use the same
covariance matrix in the cosmology inference. As a fi-
nal sanity check, we also study the impact of different
photo-z methods on the cosmological results. Table I
gives the weighted average of differences in ∆Σ(R) be-
tween the measurements with the different photo-z meth-
ods and those with the fiducial photo-z method. Note
that we repeat the cut of Eq. (2) to define the source
galaxy sample for each catalog, so the source samples
are different for different photo-z catalogs. The lensing
signals changes between photo-z algorithms are different
between the LOWZ, CMASS1, and CMASS2 samples,
some of which show 2-3σ differences. We will explicitly
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study to what extent the cosmological results are changed
by using the different photo-z methods in Section VI A
and Appendix G.

3. A model for the residual shear calibration factor: ∆mγ

An accurate weak lensing measurement requires an
unbiased measurement of the shapes of an ensemble of
galaxies used to measure the shear. This is not straight-
forward [51], and an imperfect shape measurement leads
to a residual systematic error in the ∆Σ measurements.
To model the impact of a residual systematic error in
the shear calibration, we introduce a nuisance parame-
ter, ∆mγ , and then shift the theoretical template as

∆Σmodel(R)→ (1 + ∆mγ)∆Σmodel(R; ∆mγ = 0). (15)

We vary ∆mγ with a Gaussian prior in the parameter
inference (see Section IV B for details). Since we use
a single population of source galaxies, we can use the
same parameter ∆mγ for the lensing signals of all three
lens samples (LOWZ, CMASS1, and CMASS2), follow-
ing Oguri and Takada [21]. This is a good approximation
as long as the source galaxies are well separated from or
physically independent of the lens galaxies. Thus the
effect of ∆mγ does not depend on the lens redshift, al-
lowing us to distinguish systematic effects of ∆zph and
∆mγ from one another. That is, in principle, we can
make a self-calibration of both ∆zph and ∆mγ . One of
the most pernicious systematic effects in shape measure-
ments for deep imaging such as HSC-Y1 is blending ef-
fects in the source galaxies. However, this systematic can
be absorbed by the nuisance parameter ∆mγ because any
blending effect affects the galaxy-galaxy weak lensing for
the three lens samples in the same way.

As described above, because we treat the effects of sys-
tematic errors (∆zph and ∆mγ) as multiplicative func-
tions, we can include both effects jointly by multiplying
the multiplicative functions in the cosmology analysis.

B. Galaxy-galaxy clustering: wp(R)

As another clustering observable, we use the projected
correlation function, denoted as wp(R), measured for
each of the lens galaxy samples: LOWZ, CMASS1 and
CMASS2. Here we describe how we measure wp(R).

First, we measure the three-dimensional galaxy-galaxy
correlation function using the Landy and Szalay [97] es-
timator:

ξ̂gg(R,Π) =
DD − 2DR + RR

RR
, (16)

where R and Π are the projected separation and line-of-
sight separation between galaxy pairs, respectively, and
DD, DR, and RR are the counts of galaxy pairs, galaxy-
random pairs, and random pairs in a given separation bin

of (R,Π). Note that the notation “R” is used to denote
random points, which should not be confused with the
responsivity R in Eq. (7). Throughout this paper we as-
sume the distant observer approximation to estimate the
separations (R,Π) from the observed redshifts and angu-
lar positions (RA, Dec) of galaxies or randoms for each
pair. We then project the three dimensional correlation
function to the projected correlation function as

ŵp(R) = 2

∫ Πmax

0

dΠ ξ̂gg(R,Π), (17)

where we choose the fiducial value of Πmax =
100 h−1Mpc for the projection length. The projected
correlation function minimizes the effect of redshift-space
distortions (RSD), which makes the modeling somewhat
easier. However the RSD effect may not be negligi-
ble for large projected separations, and we include the
RSD effect in the theoretical model predictions using
the method in van den Bosch et al. [35] [also see Ref.
1]. When calculating the integral we adopt a binning of
∆Π = 1 h−1Mpc. We employ 30 bins logarithmically
evenly spaced over 0.5 ≤ R/[h−1Mpc] ≤ 80. For the
cosmology analysis below, we use 16 bins in the range of
2 ≤ R/[h−1Mpc] ≤ 30 as our fiducial choice.

As in the ∆Σ measurement, the conversion of angular
separation and redshift difference between paired galaxies
to the three-dimensional separation (R,Π) requires the
use of a reference cosmology, which will in general differ
from the true cosmology. We use the method in Ref. [91]
to correct for the conversion with varying Ωm for the flat
ΛCDM cosmology.

We estimate the covariance matrix of wp(R) using the
jackknife method of the actual SDSS data for each of the
LOWZ, CMASS1 and CMASS2 samples. We utilize 192
jackknife regions of the SDSS survey footprint [see 23, for
details], measure wp(R) from each jackknife region and
then estimate the covariance matrix from the measured
wp(R) from all the jackknife realizations.

In the bottom panels of Fig. 3 we show the measured
signals of wp(R) for the LOWZ, CMASS1 and CMASS2
samples. The unshaded region displays the range of sep-
arations, 2 ≤ R/[h−1Mpc] ≤ 30 (16 bins), which we use
for our fiducial cosmological analysis.

Fig. 5 shows the cumulative S/N in wp(R) integrated
over Rmin ≤ R ≤ 30 h−1Mpc, as a function of Rmin, sim-
ilarly to Fig. 4. The SDSS samples cover ∼ 8000 deg2,
and wp(R) is measured with high significance. The S/N
values over the fitting range, 2 ≤ R/[h−1Mpc] ≤ 30, are
consistent with those we found from the mock catalogs
for the Planck-like cosmology [see Table III in Ref. 1].
Nevertheless, as we will show below, analyzing ∆Σ(R)
and wp(R) jointly is essential to break degeneracies be-
tween galaxy bias uncertainties and cosmological param-
eters and therefore to obtain stringent constraints on cos-
mological parameters [1, 24, 34]. Either ∆Σ(R) or wp(R)
alone suffers from severe parameter degeneracies.
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TABLE II: The set of 6 cosmological parameters used in
our analysis, which specify a model within the flat-geometry
ΛCDM framework. For an input ΛCDM model, Dark

Emulator outputs the halo clustering quantities (see text for
details). The column labeled “parameters” lists 6 cosmo-
logical parameters. The column labeled “supported range”
denotes the range of parameters that is supported by Dark

Emulator.

parameters supported range [min,max]
Ωde [0.54752, 0.82128]
ln(1010As) [2.4752, 3.7128]
ωb [0.0211375, 0.0233625]
ωc [0.10782, 0.13178]
ns [0.916275, 1.012725]

IV. ANALYSIS METHOD

In this section, we describe theoretical templates to
model the clustering observables, ∆Σ(R) and wp(R), that
we use for our cosmological analysis. Details and valida-
tion of the theory using mock galaxy catalogs are given
in Miyatake et al. [1]. Both of the clustering observ-
ables, ∆Σ(R) and wp(R), depend only on the clustering
properties of the SDSS galaxies and not on those of HSC
galaxies used as the source galaxy sample in the ∆Σ mea-
surements. Thus, the theoretical templates are designed
to model the clustering properties of the SDSS galaxies.

A. Model

1. Dark Emulator

In this paper we extensively use the publicly-available
code, Dark Emulator [147], developed in Nishimichi
et al. [44]. Dark Emulator is a software package en-
abling fast, accurate computations of halo clustering
quantities for an input flat wCDM cosmological model.
They constructed an ensemble set of cosmological N -
body simulations, each of which was performed with
20483 particles for a box with length 1 or 2 Gpc/h
on a side, for 101 flat wCDM cosmological models.
The wCDM cosmology is parametrized by 6 parameters,
p = {ωb, ωc,Ωde, ln(1010As), ns, wde}, where ωb(≡ Ωbh

2)
and ωc(≡ Ωch

2) are the physical density parameters of
baryons and CDM, respectively, h is the Hubble pa-
rameter, Ωde ≡ 1 − (ωb + ωc + ων)/h2 is the density
parameter of dark energy for a flat-geometry universe,
As and ns are the amplitude and tilt parameters of
the primordial curvature power spectrum normalized at
kpivot = 0.05 Mpc−1, and wde is the equation of state
parameter for dark energy. In the following we focus on
flat ΛCDM cosmological models with wde = −1.

For the N -body simulations, they included the neu-
trino mass effect fixing the neutrino density parameter
ων ≡ Ωνh

2 to 0.00064, corresponding to 0.06 eV for

the total mass of three neutrino species that is the lower
bound of the normal mass hierarchy as in Esteban et al.
[98]. They included the effect of massive neutrinos in an
approximate manner only through the present-day linear
matter transfer function, which was then scaled to the
initial redshift of the simulations using the linear growth
factor computed without neutrinos in setting up the ini-
tial conditions. The subsequent nonlinear growth was fol-
lowed consistently in an N -body simulation, ignoring the
neutrino effects [see 44, for details]. Since we focus on the
σ8 parameter [148], i.e., the present-day normalization
of the linear matter power spectrum instead of the am-
plitude of the primordial fluctuations, this approximate
treatment has little impact on our primary constraints
from the HSC-Y1 and SDSS data.

The particle mass for the fiducial Planck cosmology is
m = 1.02 × 1010 h−1M� for the higher resolution sim-
ulations used as the basis for Dark Emulator. The em-
ulator uses halos with mass greater than 1012 h−1M�,
corresponding to about 100 simulation particles.

For each N -body simulation realization (each redshift
output) for a given cosmological model, they constructed
a catalog of halos using Rockstar [99], which identi-
fies halos and subhalos based on clustering of N -body
particles in phase space (position and velocity space).
Then they constructed the catalog of central halos in
each output. In this step, halo mass is defined using the
spherical overdensity with respect to the halo center (de-
fined as the position with the maximum mass density):
M ≡ M200m = (4π/3)R3

200m × (200ρ̄m0), where R200m

is the spherical halo boundary radius within which the
mean mass density is 200 times ρ̄m0. By combining the
outputs of N -body simulations and the halo catalogs at
multiple redshifts in the range z = [0, 1.48], they built
an emulator, dubbed Dark Emulator, which enables fast
and accurate computations of the halo mass function,
halo-matter cross-correlation, and halo auto-correlation
as a function of halo mass, redshift, spatial separation
and cosmological model.

For host halos of SDSS LOWZ and CMASS galax-
ies, which have a minimum (typical) mass of M200m ∼
1012M� (1013M�), Dark Emulator was shown to achieve
sufficient accuracy for these observable quantities com-
pared to the statistical measurement errors of ∆Σ and
wp expected from the HSC-Y1 and SDSS data, as shown
in Fig. 31 of Ref. [44]. In summary, Dark Emulator out-
puts the following quantities:

• dnh

dM (M ; z,p): the halo mass function for halos in
the mass range [M,M + dM ],

• ξhm(r;M, z,p): the halo-matter cross-correlation
function for a sample of halos in the mass range
[M,M + dM ], and

• ξhh(r;M,M ′, z,p): the halo-halo auto-correlation
function for two samples of halos with masses
[M,M + dM ] and [M ′,M ′ + dM ′]
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for an input set of parameters, halo mass M (and M ′ for
the cross-correlation function between two halo samples),
redshift z, and cosmological parameters p.

In addition, Dark Emulator outputs ancillary quanti-
ties, such as the linear halo bias (the large-scale limit
of the halo bias), the Tinker model of the linear halo
bias [100] (see below), the linear matter power spectrum,
the linear rms mass fluctuations of halo mass scale M
(σLm(M)), and σ8.

The supported range of each cosmological parameter
for Dark Emulator is given in Table II. These ranges are
sufficiently broad that they cover the range of cosmolog-
ical constraints from current state-of-the-art large-scale
structure probes such as the Subaru HSC cosmic shear
results [4, 5]. Since σ8 and Ωm are primary parameters to
which large-scale structure probes are sensitive, we also
quote the supported ranges of these derived parameters:
0.55 . σ8 . 1.2 and 0.17 . Ωm . 0.45, as shown in
Fig. 2 of Nishimichi et al. [44]. In this paper we use Dark
Emulator to perform cosmological parameter inference in
a multi-dimensional parameter space by comparing the
model templates of ∆Σ and wp with the signals measured
from the SDSS and HSC-Y1 data.

A Bayesian parameter inference method might sam-
ple some models that are outside the supported range of
ΛCDM models in Dark Emulator. In this case, we make
the following, simple extrapolation of the model predic-
tions:

ξhm(r;p/∈)→ bTinker(p/∈)

bTinker(pedge)

ξLmm(r;p/∈)

ξLmm(r;pedge)
ξDE
hm (r;pedge),

ξhh(r;p/∈)→
(

bTinker(p/∈)

bTinker(pedge)

)2

× ξLmm(r;p/∈)

ξLmm(r;pedge)
ξDE
hh (r;pedge),

(18)

where p/∈ is a set of 6 cosmological parameters that
are outside the supported range (Table II), pedge is a
set of parameters at the edge of the supported range,
bTinker(p/∈) and bTinker(pedge) are the linear bias param-
eters at models of p/∈ and pedge that are computed based
on the fitting formula of Tinker et al. [100], ξLmm is the
linear-theory prediction for the matter two-point corre-
lation function at the respective model, and ξDE

hh and
ξDE
hm are the Dark Emulator outputs at the edge model.

Here we use CLASS [101, 102] to compute the linear-
theory matter correlation, ξLmm(r), for models outside
the supported range. We define pedge by replacing only
the parameter(s) outside the supported range with their
value(s) at the edge of the supported range, while keep-
ing the other parameter(s) at their input value(s). In the
above extrapolation, we simply assume that the halo-
matter cross-correlation and the halo auto-correlation
follow the linear theory predictions (ξhm ' bξmm and
ξhh ' b2ξmm), and that the ratio of ξL

hh(p/∈) and ξhh(p/∈)
can be accurately captured by a similar ratio between
ξL
hh(pedge) and ξhh(pedge). Including automated outputs

of the model predictions for models outside the supported
range is important, because we perform a blinded cos-
mological analysis of the HSC and SDSS data. If Dark
Emulator provides an error message indicating that an
outside model has been sampled, we could unintention-
ally and prematurely unblind our analysis. For the ex-
trapolation we can adopt any input value for As, but need
to adopt values in the specific ranges for ωc and Ωde as
we will explain around Table III.

After unblinding our cosmology analysis, we confirmed
that all models within the 95% credible interval of S8 in
the chains for our baseline analysis are within the emu-
lator supported range [149].

2. Galaxy-galaxy weak lensing: ∆Σ(R)

Our galaxy-galaxy weak lensing observable ∆Σ(R) de-
pends only on the clustering properties of SDSS lens
galaxies, and not on the redshifts of HSC source galaxies.
The ensemble average of the galaxy-galaxy weak lensing
estimator has two contributions:

∆Σmodel(R; zl) ' ∆Σ(R; zl) + ∆Σmag(R; zl). (19)

The first term on the right-hand side is the standard con-
tribution to the galaxy-galaxy weak lensing signal: the
excess surface mass density profile of lens galaxies. The
second term is the contribution caused by the lensing
magnification effect, which arises from correlations be-
tween shapes of source galaxies and the mass distribution
in the foreground structures of lens galaxies along the
same line-of-sight directions to source galaxies [43]. Be-
low we describe our models for each contribution within
the ΛCDM model framework. Throughout this paper,
we model the clustering observables of each SDSS galaxy
sample using the theoretical model prediction at a repre-
sentative redshift, denoted as zl: z̄l ' 0.26, 0.51 and 0.63
for the LOWZ, CMASS1 and CMASS2 samples, respec-
tively. That is, we ignore the possible redshift evolution
of the clustering observables within the redshift bin for
simplicity.

The excess surface mass density profile ∆Σ for a given
sample of lens galaxies is expressed as [e.g. 20, 103]:

∆Σ(R; zl) = ρ̄m0

∫
kdk

2π
Pgm(k; zl)J2(kR), (20)

where J2(x) is the 2nd-order Bessel function and
Pgm(k; zl) is the cross-power spectrum between galaxies
and matter at redshift zl. Hereafter we omit zl in the
argument for notational simplicity.

As described above, Dark Emulator outputs halo clus-
tering properties for an input cosmology. To obtain the
model predictions for the observable quantities for SDSS
galaxies, we need a model for the galaxy-halo connec-
tion. For this, we use the halo occupation distribution
[HOD 31, 32]. In Appendix C we describe the galaxy-
halo connection model (for more details see Miyatake
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et al. [1]). Our fiducial model for the galaxy-halo connec-
tion has five parameters for each galaxy sample (LOWZ,
CMASS1 and CMASS2): {Mmin, σlogM , κ,M1, α}. Here
Mmin and σlogM describe the central galaxy HOD, while
the other parameters are for the satellite galaxy HOD.
The parameter α is the slope of the satellite occupation
number, and is distinct from the parameter αmag used
for the slope of the number counts of lens galaxies when
modeling magnification bias.

The mean number density of galaxies is given by

n̄g =

∫
dM

dnh

dM
〈Nc〉 (M) [1 + λs(M)] , (21)

where 〈Nc〉(M) is the HOD of central galaxies, and
〈Nc〉(M)λs(M) is the HOD of satellite galaxies. Here we
use Dark Emulator to compute the halo mass function
dnh/dM

As shown in Eq. (20), we must compute Pgm for a given
set of model parameters to obtain a model prediction for
∆Σ(R). We use Dark Emulator to compute Pgm as

Pgm(k) =
1

n̄g

∫
dM

dnh

dM
〈Nc〉(M) [1 + λs(M)ũs(k;M, z)]

× Phm(k;M), (22)

where ũs(k;M) is the Fourier transform of the average
radial profile of satellite galaxies in a host halo with
mass M . Here we use Dark Emulator to compute the
halo mass function dnh/dM and the halo-matter cross
power spectrum, Phm(k;M), for an input cosmological
model. Throughout this paper, we assume that satel-
lite galaxies follow a Navarro-Frenk-White (NFW) pro-
file [104]. To compute the NFW profile as a function of
halo mass and redshift for a given cosmological model,
we use the halo mass-concentration relation computed
using the publicly-available code Colossus [150] [105].
For our fiducial model, we do not consider the effect of
off-centered “central” galaxies or the “incompleteness” of
central galaxies [103, 106], where the incompleteness ef-
fect models a possibility that some massive halos might
not host a central galaxy in the sample due to color and
magnitude cuts. For an extended cosmological analy-
sis, we include parameters to model the off-centering and
incompleteness effects to study their impact on the in-
ferred cosmological parameters, following Miyatake et al.
[1]. In order to compute ∆Σ for each model, we use the
publicly-available FFTLog [107] code to perform the Han-
kel transforms in Eq. (20).

We model the second term in Eq. (19) using the non-
linear matter power spectrum [43]:

∆Σmag(R) ' 2(αmag − 1)
3

2
H0Ωm

∫ zl

0

dz H0

H(z)

(1 + z)2

1 + zl

×
∫

dzs Ps(zs)
χ2(χl − χ)(χs − χ)

χ2
l (χs − χl)

× ρ̄m0

∫
kdk

2π
PNL

mm(k; z)J2

(
k
χ

χl
R

)
, (23)

where Ps(zs) is the stacked posterior distirbution of
source galaxies and PNL

mm(k) is the nonlinear matter power
spectrum. We use halofit [108] to model PNL

mm for a
given cosmological model. Note that ∆Σmag does not de-
pend on galaxy bias. The above expression includes the
redshift distribution of source galaxies, but we treat the
lens galaxies as all being at their mean redshift for sim-
plicity. As we will show below, ∆Σmag leads to about
1%, 7% and 10% contributions to the ∆Σmodel for the
LOWZ, CMASS1 and CMASS2 samples, respectively, for
the Planck cosmology [109]. Including the ∆Σmag contri-
bution in the theoretical template adds some cosmologi-
cal information. In our analysis we treat the magnitude
slope αmag as a nuisance parameter, with a Gaussian
prior with width σ(αmag) = 0.5 around the central value
taken from the measurement value (see Fig. 2). On the
other hand, using the mock signals, we checked that, if
the magnification bias is ignored in the model template,
it could cause ∼ 0.1–0.2σ bias in S8 .

Exactly speaking we have to use the intrinsic redshift
distribution of source galaxies to compute the model pre-
diction of Eq. (23). We checked that the model prediction
is changed only by up to ∼5% in the amplitude even if
using the intrinsic redshift distribution estimated by the
reweighting method based on the COSMOS photo-z cata-
log (see Section III A) and including the weights of source
and lens galaxies as done in Eq. (6). This inaccuracy is
safely absorbed by the prior range of σ(αmag) = 0.5 in the
parameter inference, because ±1σ changes in αmag from
its central value lead to ±20–40% fractional chaneges in
the magnification bias (Eq. 23) for the three lens samples.
Dark Emulator allows us to compute the model pre-

dictions, ∆Σmodel(R), for an input model in a few CPU
seconds. This is fast enough to enable cosmological pa-
rameter inference in a high-dimensional parameter space
(25 parameters for our baseline setup). In Miyatake et al.
[1], they validated that this fiducial model template has
sufficient accuracy to recover the input S8 to within 0.5σ
through a suite of tests using mock signals with varying
galaxy properties, such as different HOD implementa-
tions, different satellite distributions within halos, cen-
tral galaxies with off-centering effect (except for extreme
cases), central galaxies with incompleteness effect, and
baryonic effects on the matter distribution.

3. Projected auto-correlation function: wp(R)

As shown in Eq. (17), we must first compute the
three-dimensional correlation function of galaxies for a
given set of the model parameters to obtain the model
templates for wp(R). The three-dimensional correlation
function ξgg is given as

ξgg(r; zl) =

∫ ∞

0

k2dk

2π2
Pgg(k; zl)j0(kr), (24)

where j0(x) is the zero-th order spherical Bessel func-
tion, and Pgg(k) is the auto-power spectrum of galaxies.
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Once the power spectrum Pgg(k) is given for an input of
model parameters, we can compute the model prediction
of wp(R) according to Eq. (17).

In the halo model, Pgg can be divided into two contri-
butions, i.e., the 1- and 2-halo terms, as

Pgg(k) = P 1h
gg (k) + P 2h

gg (k), (25)

where the 1-halo term describes correlations between
galaxies within the same host halo, and the 2-halo term
describes correlations between galaxies residing in differ-
ent halos. In our method, we compute the auto-power
spectrum as

P 1h
gg (k) =

1

n̄2
g

∫
dM

dnh

dM
〈Nc〉(M)

[
2λs(M)ũs(k;M) + λs(M)2ũs(k;M)2

]
,

P 2h
gg (k) =

1

n̄2
g

[∫
dM

dnh

dM
〈Nc〉(M) {1 + λs(M)ũs(k;M)}

]

×
[∫

dM ′
dnh

dM ′
〈Nc〉(M ′) {1 + λs(M

′)ũs(k;M ′)}
]
Phh(k;M,M ′). (26)

Here we use Dark Emulator to compute dnh/dM and
Phh(k;M,M ′), the power spectrum between halos with
masses M and M ′ for an input cosmological model. Note
that in our fiducial model we assume that satellite galax-
ies reside in halos that host a central galaxy in our sam-
ple. In Miyatake et al. [1], they confirmed that fitting
the model to mock observables computed for the case
that satellite galaxies are populated in halos irrespective
of whether the halos host central galaxies in the sam-
ple resulted in a negligible shift in S8, for our baseline
analysis setup (see below).

Then we project the computed ξgg(r) over Π =
[0, πmax] to obtain wp(R) for each input model, where
we employ πmax = 100h−1Mpc as used in the measure-
ment. We include the residual RSD effect in the wp(R)
prediction using the method in van den Bosch et al. [35]
for each input cosmological model [also see Ref. 1, for
details].

For each input model, Dark Emulator allows us to
compute the model prediction wp(R) in ∼ 30 CPU sec-
onds.

B. Parameter estimation method

We assume that the likelihood of the data compared
to the model predictions follows a multivariate Gaussian
distribution:

lnL(d|θ) = −1

2

∑

i,j

[di − ti(θ)]C−1
ij [dj − tj(θ)] , (27)

where d is the data vector, t is the model prediction for
the data vector given the model parameters (θ), C−1 is
the inverse of the covariance matrix, and the summation
runs over indices corresponding to the dimension of the
data vector. In our baseline analysis, the data vector
consists of ∆Σ(R) in 9 logarithmically-spaced radial bins

within 3 ≤ R/[h−1Mpc] ≤ 30, and wp(R) in 16 radial
bins within 2 ≤ R/[h−1Mpc] ≤ 30, for each galaxy sam-
ple. We therefore use 75(= 3 × (9 + 16)) data points in
total. When we use the data vector in a more limited
range of separations, we take the submatrix of the full
covariance matrix corresponding to that range of separa-
tions, and then invert the matrix to obtain the inverse of
the covariance matrix, [Csub]−1. We also note that our
analysis does not include the observed galaxy abundance,
n̄g.

For the model parameters in our baseline analysis, we
include 5 cosmological parameters given by θcosmo =
{Ωde, ln(1010As), ωb, ωc, ns} for the flat ΛCDM frame-
work and 5 HOD parameters for each of the LOWZ,
CMASS1, and CMASS2 samples. For ωb, we employ
a Gaussian prior with a mean and width inferred from
Big Bang nucleosynthesis (BBN) experiments [15, 110–
112]. For ns, we employ a Gaussian prior inferred from
the Planck 2018 “TT,EE,TE+lowE” constraints [15]:
ns = 0.9649 ± (3 × 0.0042), where we employ the Gaus-
sian width three times wider than the 1σ uncertainty
(0.0042) of the Planck constraint. We employ these pri-
ors since the clustering observables ∆Σ and wp are not
sensitive to ωb and ns. For Ωde and ωc, we adopt broad,
flat priors in the ranges that correspond to about ±30σ
and ±15σ, respectively, compared to the 1σ error of the
Planck constraints for flat ΛCDM model. These ranges
correspond to the supported range of the extrapolation
of Dark Emulator (for details see Section IV A 1). Since
there is no limitation on ln (1010As) in the extrapolation,
we employ a broad and uninformative flat prior.

In addition we include αmag(zi) to model a possible
uncertainty in the magnitude slope of the number counts
in modeling the magnification for each lens sample: we
use the measured value of αmag for the central value (see
Section III A 1 and Fig. 2) and employ a Gaussian prior
with a width of σ(αmag) = 0.5. This is a conservative
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TABLE III: Model parameters and priors used in our cosmo-
logical inference. The label “flat” denotes a flat prior with
the range given, while “Gauss(µ, σ)” is a Gaussian prior with
mean µ and width σ. The parameters above the horizontal
double lines are the parameters used in our fiducial analysis:
5 cosmological parameters, 5 HOD parameters for each of the
LOWZ, CMASS1 and CMASS2 samples, 2 nuisance param-
eters to model residual photo-z and multiplicative shear bi-
ases, and 3 parameters (αmag) to model the magnitude slope
of the galaxy number counts that characterizes the magnifi-
cation bias effect on ∆Σ for each of the LOWZ, CMASS1 and
CMASS2 samples: 25 = 5+3×5+2+3 in total. The param-
eters below the double lines are used in the extended models.

Parameter Prior
Cosmological parameters
Ωde flat(0.4594, 0.9094)

ln(1010As) flat(1, 5)
ωb Gauss(0.02268, 0.00038)
ωc flat(0.0998, 0.1398)
ns Gauss(0.9649, 0.0126)

HOD parameters
logMmin(zi) flat(12.0, 14.5)
σ2

logM (zi) flat(0.01, 1.0)
logM1(zi) flat(12.0, 16.0)
κ(zi) flat(0.01, 3.0)
α(zi) flat(0.5, 3.0)

Magnification bias
αmag (LOWZ) Gauss: (2.26,0.5)
αmag (CMASS1) Gauss: (3.56,0.5)
αmag (CMASS2) Gauss: (3.73,0.5)

Photo-z/Shear errors
∆zph Gauss: (0.0, 0.1)
∆mγ Gauss: (0.0, 0.01)

Add. galaxy-halo connection paras
Off-centering parameters

poff(zi) flat(0, 1)
Roff(zi) flat(0.01, 1)

Incompleteness parameters
αincomp(zi) flat(0, 5)

logMincomp(zi) flat(12, 15.3)

choice, since the Gaussian width is much wider than the
measurement error on αmag, but we show that the re-
sults remain almost unchanged when fixing αmag to the
measured value.

Furthermore, we include nuisance parameters, ∆zph

and ∆mγ , to model residual uncertainties in the source
photo-z biases and the multiplicative shear bias. Since
we use a single population of source galaxies, we need to
adopt just one ∆zph and one ∆mγ parameter to model
the impact on the galaxy-galaxy weak lensing signals for
all three lens galaxy samples. We use a conservative
prior range on ∆zph that is wider than that used in Hik-
age et al. [4] and Hamana et al. [5]. Their prior range
was estimated from the difference between the means
of the stacked photo-z posterior distributions for differ-
ent photo-z methods and for the reweighted COSMOS

redshift distribution. Our broader prior range allows us
to marginalize over possible residual photo-z systematics
that may not be captured by the prior range employed
based on the COSMOS reweighting method. For ∆mγ ,
we employ a prior range that corresponds to about 1σ
statistical uncertainties in the shape measurement cali-
bration [51] [also see Table 6 in Ref. 4]. We will discuss
the case where the prior range of ∆mγ is broadened in
Section VI A. We have 5 nuisance parameters of the sys-
tematic effects in total: αmag(zi), ∆zph and ∆mγ . Hence
we have 25(= 5 + 3× 5 + 5) parameters in total, as sum-
marized in Table III.

We then obtain the posterior distribution of our pa-
rameters given the data by performing Bayesian infer-
ence:

P(θ|d) ∝ L(d|θ)Π(θ), (28)

where P(θ|d) is the posterior distribution of θ given
the data vector (d) and Π(θ) is the prior distribution.
Throughout this paper we focus on the marginalized pos-
terior distributions of the derived parameters, Ωm, σ8,
and S8 ≡ σ8(Ωm/0.3)0.5, where Ωm = 1 − Ωde for a flat
cosmological model. While ln (1010As) is sampled in log-
arithmic space with a flat prior, we account for the Jaco-
bian or weight to effectively produce a flat prior in linear
space of σ8 when obtaining the posterior distribution of
σ8 as a derived parameter (see Section IV A in Sugiyama
et al. [25] for a detailed discussion). However, the effect
is negligible because the Jacobian is nearly constant in
the range of the credible interval of σ8 in our constraints.

To estimate the posterior distribution of parameters
in a multi-dimensional parameter space, we use the im-
portance nested sampling algorithm implemented in the
publicly-available software package MultiNest [113–115]
and its python wrapper, PyMultiNest [? ], through the
package Monte Python [116, 117]. We set the sampling
efficiency parameter efr = 0.8 and the evidence toler-
ance factor tol = 0.5 as recommended by the develop-
ers. After extensive convergence tests as described in
Appendix D, we confirmed that the chains used in our
analysis have converged to the desired degree. In this
paper, we report the mode of the 1-dimensional or 2-
dimensional posterior distributions as the central value(s)
of parameter(s), and the highest density interval of the
marginalized posterior distribution to infer the credible
interval(s) of parameter(s) (see Eq. 1).

C. Analysis setups

To perform the cosmological parameter inference, we
must specify other aspects of the analysis setup, such
as the range of separations and combinations of observ-
ables to use. Table IV summarizes the setups used in
this paper. One important choice in the analysis relates
to the range of separations in ∆Σ(R) and wp(R) used
in the cosmological analysis, or “scale cuts”. There are
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TABLE IV: A summary of the analysis setups. The first column identifies each analysis setup. The scale cuts “(X,Y )”
denote the lower scale cuts applied to wp(R) and ∆Σ(R), meaning that we use wp and ∆Σ for X ≤ R/[h−1Mpc] ≤ 30 and
Y ≤ R/[h−1Mpc] ≤ 30, respectively, in the cosmology analysis. The column “sample parameters” lists the model parameters
used in each analysis.The setups labeled “wide shear prior” and “wide photo-z prior” were identified for study after unblinding
our cosmology results, in order to study the robustness of our cosmological parameter constraints to the adopted prior width
for photo-z biases (∆zph) or multiplicative shear biases (∆mγ).

setup scale cuts sample parameters
[h−1Mpc]

baseline (2, 3) (Ωde, ln(1010As), ωb, ωc, ns)+HOD (3×5 paras.)+mag/photo-z/shear (5 paras.)
scale cuts (4, 6) –

(8, 12) –
no LOWZ (2,3) (Ωde, ln(1010As), ωb, ωc, ns)+HOD (2×5 paras.)+mag/photo-z/shear (4 paras.)
no CMASS1 (2,3) (Ωde, ln(1010As), ωb, ωc, ns)+HOD (2×5 paras.)+mag/photo-z/shear (4 paras.)
no CMASS2 (2,3) (Ωde, ln(1010As), ωb, ωc, ns)+HOD (2×5 paras.)+mag/photo-z/shear (4 paras.)
no shear error (2,3) (Ωde, ln(1010As), ωb, ωc, ns)+HOD (3×5 paras.)+mag/photo-z (4 paras.)
no photo-z error (2,3) (Ωde, ln(1010As), ωb, ωc, ns)+HOD (3×5 paras.)+mag/shear (4 paras.)
fix mag. bias (2,3) (Ωde, ln(1010As), ωb, ωc, ns)+HOD (3×5 paras.)+photo-z/shear (2 paras.)
wide shear prior (2,3) same as the baseline analysis, with σ(∆mγ) = 0.1
wide photo-z prior (2,3) same as the baseline analysis, with σ(∆zph) = 0.2
off-cent. (2,3) (Ωde, ln(1010As), ωb, ωc, ns)+HOD w/off-centering (3×7 paras.)+photo-z/shear (5 paras.)
incomp. (2,3) (Ωde, ln(1010As), ωb, ωc, ns)+HOD w/incompleteness (3×7 paras.)+photo-z/shear (5 paras.)
diff. photo-z (2,3) same sample parameters as the baseline analysis, but lensing signal computed

with different photo-z methods (DEmP, Ephor ab, Franken-Z, Mizuki, and NNPZ)
2 cosmo (2,3) (Ωde, ln(1010As))+HOD (3×5 paras.)+mag/photo-z/shear (5 paras.)

two competing effects. To increase the statistical con-
straining power on the cosmological parameters, we want
to include information from ∆Σ(R) and wp(R) down to
smaller separations. However, the observables at such
small scales may be more strongly affected by physical
systematic effects inherent in galaxy formation/physics,
which are difficult to accurately model. As we care-
fully studied in our validation paper [1], the scale cuts
of (2, 3) h−1Mpc for wp and ∆Σ are reasonable choices
to obtain unbiased estimates of the cosmological param-
eters, with reasonably small credible intervals given the
statistical power of HSC-Y1 and SDSS. The scale cuts of
(2, 3)h−1Mpc are larger than the virial radii of massive
halos, so we do not include information from scales that
are deeply in the 1-halo term regime in our cosmology
analysis. Nevertheless we note that the galaxy-galaxy
weak lensing signal around the scale cut is sensitive to
the interior mass inside that radius, which allows us to
extract the average mass of halos hosting the SDSS galax-
ies and in turn helps constrain the large-scale bias of
SDSS galaxies via the scaling relation of halo bias with
halo mass, encoded in Dark Emulator, when combined
with the measurement of wp. To study the impact of the
scale cut choice, we also study the results for (4, 6) and
(8, 12) h−1Mpc.

If we use either ∆Σ or wp alone, the parameter infer-
ence suffers from severe degeneracies, especially between
the galaxy bias (and therefore the HOD model parame-
ters) and the cosmological parameters that encode infor-
mation about the power spectrum amplitude, as shown
in our validation paper [1] (see Fig. 9 in their paper).

Hence, in the following we show only the results of the
joint analysis of ∆Σ and wp.

As an internal consistency test, we also perform the
analyses excluding some information from the baseline
setup: excluding one of the LOWZ, CMASS1 or CMASS2
samples, or either of the residual systematic error pa-
rameters, ∆zph or ∆mγ (see Table III). We also show
the results for extended models that include the effects
of off-centered central galaxies or the incompleteness ef-
fect of central galaxies. For both extended models, we
introduce two additional model parameters, as indicated
in the rows “off-cent.” or “incomp.” in Table III.

To check for possible systematic biases arising from
photo-z estimates, we perform cosmological inference us-
ing the lensing signals computed with photo-z methods
other than the one used in the baseline analysis, referred
to as the “diff. photo-z” setup in Table IV.

In addition, after unblinding our cosmology results (see
next section), we further decided to introduce the setups
labeled “wide shear prior” and “wide photo-z prior” in
Table IV. For these, we employ significantly wider Gaus-
sian priors, σ(∆mγ) = 0.1 or σ(∆zph) = 0.2, in the pa-
rameter inference. The purpose of these additional se-
tups is to study the impact of the prior width on the
cosmological parameters and to explore the possibility of
self-calibration of these nuisance parameters.

After unblinding, we also perform an analysis with cos-
mological parameters other than (Ωm, ln(1010As)) fixed
to the Planck 2015 “TT,TE,EE+lowP” constraints [109]
to check how the parameters that are not well constrained
by our data vector affect our cosmological constraints.
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This setup is labeled “2 cosmo” in Table IV.

V. BLINDING SCHEME AND VALIDATION

To avoid confirmation bias we perform our cosmologi-
cal analysis in a blind fashion. The details of the blinding
scheme can be found in Section 3.2 of Hikage et al. [4].
We employ a two-tier blinding strategy to avoid uninten-
tional unblinding during the cosmological analysis. The
two tiers are as follows:

• Catalog level: The analysis team performs the cos-
mological analysis using three different weak lens-
ing shape catalogs. Only one is the true catalog
and the other two are fake catalogs (see below for
details). The analysis team members do not know
which is the true catalog.

• Analysis level: The analysis team does not make
plots comparing the measurements with theoreti-
cal models. When the analysis team makes plots
showing the credible intervals of cosmological pa-
rameters (i.e. the posterior distribution), the cen-
tral value(s) of parameter(s) are shifted to zero,
and only the range of the credible interval(s) can
be seen. Finally, the analysis team does not com-
pare the posterior for cosmological parameter(s) or
the model predictions with external results such as
the Planck CMB cosmology prior to unblinding.

See Section 3.2 in Hikage et al. [4] for details of how
the fake catalogs were constructed in a manner that pre-
vents accidental unblinding by the analysis team. Use of
these catalogs means that the analysis group must per-
form three analyses, but this method avoids the need for
reanalysis once the catalogs are unblinded.

Validation of the cosmological analysis method is
demonstrated in Miyatake et al. [1]. The analysis team
promised that the results would be published regardless
of the outcome, once the results are unblinded. In addi-
tion, the analysis method could not be changed or mod-
ified after unblinding. In the following we explicitly flag
results obtained after unblinding.

VI. RESULTS: COSMOLOGICAL
CONSTRAINTS

In this section we show the main results of this paper,
which are the cosmological parameters estimated from
the joint measurements of ∆Σ(R) and wp(R) in the HSC-
Y1 and SDSS datasets.

A. ΛCDM Constraints

We show the cosmological parameter constraints for
the flat ΛCDM model, which is the minimum theo-
retical framework that fairly well reproduces a broad

range of cosmological observations. In particular, we
will focus on the cosmological parameters Ωm, σ8 and
S8 ≡ σ8(Ωm/0.3)0.5, which are well-constrained by our
measurements. Fig. 6 shows the posterior distributions
for (Ωm, σ8, S8), obtained from the baseline setup in Ta-
ble IV. Our results for the cosmological constraints are

Ωm = 0.383+0.028
−0.053

σ8 = 0.718+0.044
−0.031

S8 = 0.795+0.049
−0.042. (29)

Thus the HSC-Y1 data, combined with the SDSS dataset,
can constrain S8 to about 6% fractional precision. Note
that we show the posterior distribution in the full param-
eter space in Fig. 22 in Appendix E.

We check the convergence of our nested sampling re-
sults as described in detail in Appendix D. We have con-
firmed that our run terminates at the point where the
relative posterior mass is sufficiently small, and the stan-
dard deviation of the mode values of the 1-d projected S8

posterior distributions is 0.0008 estimated from 4 inde-
pendent chains. This is about 2% of the statistical error
in S8.

The best-fit model predictions at maximum a posteri-
ori (MAP) are shown in Fig. 3, together with the mea-
sured signals for each galaxy sample. It is clear that the
best-fit model fairly well reproduces the measured sig-
nals.

Fig. 7 shows the HODs estimated for each sample.
Since we imposed a luminosity cut, the HODs reach unity
at a relatively high mass, around Mh ∼ 1014 h−1M�.
Such high-mass halos host satellite galaxies. This trend
is reflected by the high mean halo mass and low satellite
fraction given in Table VI, where the mean halo mass
and satellite fraction are defined as

〈Mh〉 =

∫
dM dnh

dM 〈Nc〉(M)M∫
dM dnh

dM 〈Nc〉(M)
. (30)

and

fsat =
1

n̄g

∫
dM

dnh

dM
〈Nc〉(M)λs(M), (31)

respectively. From the HODs in the chains, we com-
pute predictions for the abundance of each sample, which
are consistent with the measured abundances shown in
Fig. 1. However, Table VI shows that the number den-
sity of each sample is poorly constrained, only by within
a factor of 2. This reflects the fact that we did not use
abundance information and we employed broad priors for
each HOD parameter in our parameter inference. The
abundance information could add significant constrain-
ing power in principle if it is reliably used. In other
words, our cosmological constraints are purely from the
clustering information, and our constraints are consid-
ered conservative in this sense. On the other hand, the
mean halo mass for each sample is constrained to a frac-
tional precision of ∼ 10%, reflecting the fact that the
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FIG. 6: The 1-d and 2-d posterior distributions in the sub-space of S8, σ8, and Ωm for the flat ΛCDM cosmology, obtained from
our baseline analysis setup using the lensing signals with R/[h−1Mpc] = [3, 30] and clustering signals with R/[h−1Mpc] = [2, 30].
The dark (light) shaded regions show the 68% (95%) credible intervals, including marginalization over uncertainties in the
other parameters. The modes and 68% credible intervals of each parameter are shown above each panel of the 1-d posterior
distributions.

galaxy-galaxy weak lensing can constrain the mean halo
mass, as expected.

The mean halo mass and satellite fraction are gen-
erally higher and lower than other similar studies, re-
spectively. This is because our luminosity cut prefer-
entially selects galaxies residing in more massive halos,
compared to previous studies. For example, Miyatake
et al. [23] and More et al. [24] used a subsample of
CMASS galaxies in the redshift range z ∈ [0.43, 0.59]
with stellar mass cuts applied, which resulted in the
abundance n̄g ∼ 3 × 10−4 (h−1Mpc)−3. They obtained
a mean halo mass 〈Mh〉 ∼ 3 × 1013 h−1M� and satel-
lite fraction fsat ∼ 8%. In White et al. [118], they used
the full CMASS sample from the first semester of BOSS
data, and obtained 〈Mh〉 ∼ 2.7× 1013 h−1M� [151] and
fsat ∼ 10% from their projected clustering measurement.
Note that our validation tests using mock catalogs in

Miyatake et al. [1] indicated that the input HOD param-
eters are not necessarily well recovered (see Fig. 22 of
their paper), partly because our baseline analysis does
not use clustering information deeply inside the 1-halo
term, which is sensitive to the abundance and spatial dis-
tribution of satellite galaxies in host halos. Hence these
predictions for the properties of our SDSS galaxy samples
should be interpreted with caution.

The “effective” bias function for a given galaxy sam-
ple can be defined in terms of the clustering correlation
functions as

bgm(r) ≡ ξgm(r)

ξmm(r)
. (32)

Another useful quantity is the cross-correlation coeffi-
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FIG. 7: The median and the range from the 16th to the 84th percentile of the HOD in each halo mass bin for the LOWZ,
CMASS1 and CMASS2 samples. These are computed from the posterior distribution of the model predictions, 〈N〉(M), in the
chains of the baseline analysis, marginalizing over uncertainties in the cosmological parameters and other model parameters.
The solid (dashed) lines show the median for the central+satellite HOD (central HOD), and the shaded region displays the
percentile range. Note that, for this figure, Fig. 8, and Table VI, we use the median and percentile to show the range of
the model predictions in each bin, because the posterior distribution of a quantity under consideration has a non-Gaussian
distribution and its mode and highest density interval are difficult to reliably estimate (while the median and percentile are
more stable).
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FIG. 8: Upper panels: The galaxy bias, defined by bgm(r) ≡ ξgm(r)/ξmm(r). The line and shaded region denote the median
and the range from the 16th to the 84th percentile of the posterior distribution of the galaxy bias, respectively, for the LOWZ,
CMASS1 and CMASS2 samples, as obtained from the chains of the baseline analysis. The unshaded region in each panel
shows the range of separations used for the cosmological analysis. Lower panels: The cross-correlation coefficient, defined by
rgm(r) ≡ ξgm(r)/[ξgg(r)ξmm(r)]1/2. The horizontal dashed line denotes rgm(r) = 1 for comparison.
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TABLE V: Summary of cosmological constraints with each analysis setup in Table IV.

setup S8 = σ8(Ωm/0.3)0.5 σ8 Ωm

baseline 0.795+0.049
−0.042 0.718+0.044

−0.031 0.383+0.028
−0.053

scale cuts: (4, 6) 0.805+0.056
−0.050 0.770+0.065

−0.069 0.311+0.070
−0.034

scale cuts: (8, 12) 0.886+0.079
−0.077 0.873+0.093

−0.097 0.300+0.062
−0.043

w/o LOWZ 0.815+0.059
−0.052 0.753+0.047

−0.046 0.371+0.034
−0.061

w/o CMASS1 0.795+0.051
−0.051 0.716+0.049

−0.039 0.380+0.030
−0.055

w/o CMASS2 0.783+0.059
−0.047 0.716+0.045

−0.037 0.354+0.055
−0.041

w/o ∆mγ 0.794+0.050
−0.043 0.720+0.041

−0.033 0.386+0.024
−0.060

w/o ∆zph 0.807+0.044
−0.041 0.728+0.036

−0.032 0.391+0.022
−0.058

w/o ∆αmag,i 0.795+0.049
−0.044 0.720+0.041

−0.032 0.389+0.023
−0.060

σ(∆mγ) = 0.1 0.779+0.068
−0.052 0.715+0.046

−0.040 0.384+0.025
−0.062

σ(∆zph) = 0.2 0.775+0.053
−0.045 0.706+0.043

−0.034 0.383+0.026
−0.058

w/ off-cent. 0.792+0.049
−0.040 0.712+0.035

−0.031 0.389+0.026
−0.049

w/ incomp. 0.823+0.042
−0.045 0.741+0.040

−0.034 0.380+0.029
−0.048

DEmP 0.777+0.047
−0.045 0.707+0.040

−0.033 0.385+0.024
−0.061

Ephor AB 0.802+0.048
−0.044 0.718+0.036

−0.033 0.391+0.027
−0.050

Franken-Z 0.806+0.047
−0.045 0.721+0.042

−0.031 0.388+0.027
−0.052

Mizuki 0.761+0.049
−0.040 0.700+0.039

−0.035 0.378+0.024
−0.063

NNPZ 0.770+0.044
−0.046 0.696+0.034

−0.032 0.387+0.024
−0.054

2 cosmo 0.782+0.044
−0.031 0.732+0.047

−0.036 0.356+0.024
−0.039
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FIG. 9: An evaluation of the goodness-of-fit of the best-fit
model at maximum a posteriori (MAP) for the baseline anal-
ysis shown in Fig. 6. The histogram shows the distribution of
the χ2 values of the model at MAP, obtained by applying the
same baseline analysis to 30 noisy mock datasets (see text for
details). The blue line is the best-fit χ2 distribution, char-
acterized by the degrees of freedom ν = 71.1 estimated from
the χ2 values for 30 noisy mocks data. The vertical black line
denotes the χ2 value (χ2 = 82.4) at MAP for the analysis of
the HSC-Y1 and SDSS data.
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FIG. 10: Similar to Fig. 6, but this figure shows the 1-d and 2-
d posterior distributions in a subspace of S8 and two nuisance
parameters, ∆mγ and ∆zph, which model possible residual
systematic biases in the multiplicative shear calibration fac-
tor and the photometric redshifts for the HSC galaxies used
as source galaxies in the galaxy-galaxy weak lensing measure-
ments. The vertical dashed lines in the 1-d posterior distribu-
tion of ∆mγ or ∆zph denote the width of the Gaussian prior
on the parameter.

TABLE VI: The predictions for the properties of the SDSS
galaxy samples, obtained from the chains of the baseline anal-
ysis, similarly to Fig. 7. Here we give the median and the
range from the 16th to 84th percentile for the number den-
sity, the mean halo mass and the satellite fraction for each of
the LOWZ, CMASS1 and CMASS2 samples.

sample n̄g 〈Mh〉 fsat

[10−4(h−1Mpc)−3] [1013h−1M�] [%]

LOWZ 1.11+0.70
−0.56 6.59+0.85

−0.82 0.33+2.35
−0.31

CMASS1 0.59+0.65
−0.27 5.76+0.55

−0.76 0.17+1.53
−0.16

CMASS2 0.66+0.78
−0.34 4.85+0.54

−0.69 0.28+2.74
−0.27

cient function, defined as

rgm(r) ≡ ξgm(r)

[ξgg(r)ξmm(r)]
1/2

. (33)

We expect rgm(r) ' 1 on scales where gravitational ef-
fects dominate, or equivalently, on scales greater than
those affected by nonlinear physics including baryonic
physics [1, 119]. Using the chains in the cosmological
analysis, we can compute the marginalized posterior dis-
tributions of bgm(r) and rgm(r), for each galaxy sam-
ple, as shown in Fig. 8 [also see Fig. 5 in Ref. 24, for a
similar approach]. The figure shows that the large-scale
bias bgm ' 2.2, 2.6 and 2.7 for the luminosity-limited
samples of LOWZ, CMASS1 and CMASS2, respectively.
These are greater than those of the flux-limited samples,
b ' 2.15, e.g., as shown in Ref. [120], but are in good
agreement with the bias value b ' 2.5 for the stellar-
mass limited samples of CMASS galaxies at z ∼ 0.5 in
Ref. [24]. The figure also shows rgm ' 1 on scales greater
than a few Mpc for all samples, indicating that nonlinear
effects are confined to scales smaller than a few Mpc for
these SDSS galaxies [e.g. 119].

In Fig. 9, we evaluate the goodness-of-fit of the best-
fit model to the measured signals. To do so, we gener-
ate noisy data vectors using the “full” covariance matrix.
The full covariance matrix includes the elements in ra-
dial bins outside those used in our cosmology analysis and
the cross-covariance terms that describe correlated scat-
ters between the clustering observables, e.g., the galaxy-
galaxy weak lensing signals for the different lens samples.
Then we apply the same cosmology analysis to each of
the mock signals. The histogram in Fig. 9 shows the
distribution of the χ2 values of the model prediction at
MAP. We found that the χ2 values tend to exceed that
inferred from the degrees of freedom, 50 = 75−25. We as-
cribe this excess to severe parameter degeneracies; some
of our parameters, especially the HOD parameters, are
not well constrained by the observables. The histogram
can be compared to the χ2 value of the actual HSC-Y1
and BOSS analysis, denoted by the vertical solid line,
showing that the χ2 value of the real data would occur
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FIG. 11: A summary of the cosmological parameters, S8, σ8 and Ωm, obtained from each analysis setup in Table IV. Each
circle and error bar denotes the mode and 68% credible interval for one setup, marginalized over the other parameter for that
setup.

with a reasonable chance. Hence, we conclude that our
model fairly well describes the observables, given the cur-
rent statistical errors. Note that the degrees of freedom
estimated from the analysis of mock signals is much larger
than the one estimated using the Gaussian linear model
(GLM) [121], which is ν = 57.3. We have confirmed that
this discrepancy is due to the strong non-Gaussianity in
the posterior distributions of HOD parameters. We rerun
the analyses of mock signals with the HOD parameters
fixed, and re-estimated the effective degrees of freedom;
in this case, the result matches well with the effective
degrees of freedom using the GLM with the HOD pa-
rameters fixed.

We emphasize that our cosmological parameter con-
straints are obtained after marginalizing over the galaxy-
halo connection parameters and the nuisance parame-
ters ∆zph and ∆mγ . The method outlined in Oguri and
Takada [21] using a single population of source galax-
ies allows for an effective marginalization over residual
uncertainty in photo-z biases and multiplicative shear
biases. Fig. 10 shows the posterior distributions in a
sub-space of S8, ∆mγ and ∆zph. The vertical dashed
lines in the 1-d posterior distributions of ∆mγ and ∆zph

show the width of the Gaussian prior on these parame-
ters. Note that the prior width of ∆zph, σ(∆zph) = 0.1,
is much wider than the error inferred from the photo-
z method [σz̄s ' 0.04 as shown in Table 6 of Ref. 4].
We find that the peak of the 1-d posterior distribu-
tion of ∆zph is slightly shifted to −0.046 from the prior
mean (∆zph = 0), while its width slightly shrinks to
σ(∆zph) ' 0.085 from the prior width (0.1). This implies
that the nuisance parameter ∆zph is calibrated to some
degree, but the constraint is still prior-dominated. The
mode ∆zph = −0.046 corresponds to a decrease in 〈Σ−1

cr 〉
by ∼ −2%, which is the opposite direction compared to
the shift estimated using reweighted COSMOS photo-z
(+0.6%), as described in Section III A 2. However, the
small size of the latter shift and of the COSMOS field
(∼ 2 deg2) means we can draw no conclusion regarding
the difference between these shifts. As a post-unblinding
analysis, we performed an additional cosmology anal-
ysis employing an even wider prior of σ(∆zph) = 0.2
to study the impact of the prior width on our results.
We find S8 = 0.775+0.053

−0.045 and ∆zph = −0.113+0.135
−0.152

(see Fig. 26), which indicates we are entering the self-
calibration regime, because the obtained uncertainty on
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∆zph is smaller than the prior width. The central value
of S8 is shifted to a lower value by ∼ 0.5σ compared
to the baseline result (S8 = 0.795+0.049

−0.042). In summary
these results provide some reassurance that our results
are robust against residual photo-z biases, even if they
exist.

Similarly, the posterior for ∆mγ in Fig. 10 is also prior
dominated. As a post-unblinding analysis, we employed
a wider prior width of σ(∆mγ) = 0.1, which is much
wider than the shear calibration uncertainty estimated
from image simulations [51]. We find that the posterior
width of ∆mγ slightly shrinks by ∼15%, implying that
the data provides some contribution to the posterior due
to self-calibration. In this case, we find a slightly lower
value of S8 than our baseline result in Table V: S8 =
0.778+0.066

−0.053. It is interesting to note that the results with
wider priors on ∆zph and ∆mγ both prefer a slightly
lower value of S8 than the baseline result.

We also note that S8 is largely unchanged even if we
fix ∆zph = 0 or ∆mγ = 0 in the parameter inference.
When we fix ∆mγ = 0, the statistical uncertainty on S8

does not change. However, when we fix ∆zph = 0, the S8

error decreases by ∼ 7%. This disparity in behavior is
due to the difference in the prior width for these nuisance
parameters.

Table V and Fig. 11 summarize cosmological param-
eter constraints for different analysis setups in the flat
ΛCDM model (see Table IV for the definition of the anal-
ysis setups). All the results are consistent with the base-
line result, except for the result using stricter scale cuts,
(8, 12)h−1Mpc. We do not identify any signature of fail-
ure or inconsistency in our cosmology analysis, to within
the statistical uncertainties.

To study variations in the estimated S8 due to the
scale cuts, we apply the halo model method to different
realizations of the noisy mock signals where the statistical
errors in each radial bin are added to the noiseless mock
signals using the covariance matrices of ∆Σ and wp. Here
we generated the noisy mock signals for all three samples.
The generated statistical scatters in each signal include
the cross-covariances between the different samples. As
shown in Fig. 12, we found that 2 among 10 realizations
display a similar shift in S8, which is neither a significant
nor a negligible fraction.

Another possibility to explain this variation is assem-
bly bias. We provide a detailed discussion in Appendix F.
In short, we cannot arrive at a definite conclusion: the
shift in S8 that we found from the real data might be due
to the statistical scatters (sample variance) or the assem-
bly bias effect. We need more data for a more concrete
conclusion. A cosmological analysis of the redshift-space
clustering of SDSS galaxies might also help discriminate
the origin of the shift because redshift-space distortions
are less affected by the assembly bias effect [36, 137]. In
fact our result of S8 is in nice agreement with that of the
recent study [36], S8 = 0.784+0.048

−0.042, which performed the
full-shape cosmology analysis of the redshift-space power
spectrum of BOSS galaxies and also showed that the re-

sults using the redshift-space power spectrum are robust
against a possible assembly bias effect using the mocks
including the assembly bias effect.

B. Post-unblinding cosmological results

1. Comparison with other weak lensing surveys

In Fig. 13 we compare our cosmological constraints on
S8, σ8, and Ωm for the flat ΛCDM cosmology to those
from the Planck 2018 cosmology analysis [15] and from
other weak lensing surveys. For a fair comparison, we
infer the other experiment results under similar assump-
tions/setups.

For the Planck 2018 constraints, we employed the fixed
neutrino massmν,tot = 0.06 eV as in our analysis, and ran
the Planck likelihood code [152] to estimate cosmologi-
cal parameters assuming the data vector of the primary
CMB information, more specifically “TT,EE,TE+lowE”
according to the notation used in [15]. For the DES and
KiDS1000 results, we use the public chains available from
[153] and [154] to infer the constraints primarily from the
similar observables. For DES-Y1, we use the results from
joint analysis of the angular galaxy clustering (“GGC”)
and the galaxy-galaxy weak lensing (“GGL”), i.e. 2×2pt,
from Abbott et al. [6]. For KiDS1000, we use the result
from joint analysis of cosmic shear (“CS”) and GGL,
where a spectroscopic (flux-limited) SDSS galaxy sam-
ple is used for the GGC analysis. Note that the 3×2pt
result of KiDS1000 includes BAO information that can
give a tighter constraint on Ωm, so we instead use the
above result of CS×GGL. For both the DES-Y1 and
KiDS1000 analyses, the observables were angular correla-
tion functions – γT (θ) and/or w(θ) – rather than ∆Σ(R)
and wp(R).

Fig. 13 shows that our results are generally consistent
with other results to within the credible intervals. To
be more quantitative, using a tension metric proposed
by Park and Rozo [14], we find that the tension between
our result and the Planck constraint is 0.9σ, or 0.36 in
terms of probability-to-exceed. However, a closer look
reveals some interesting differences. First, if we take
Ωm ' 0.3, as inferred from the BAO measurements using
SDSS galaxies [36, 122], the intersection of the (Ωm, S8)-
posterior distributions at Ωm = 0.3 indicates a possible
tension of S8 between our result and the Planck 2018 re-
sult, similar to that reported by previous weak lensing
constraints (green, red, and purple contours). However,
the significance is weak, so we need more HSC data to
reach a definite conclusion.

Our cosmological constraints may appear weaker than
those from other surveys because of the broader S8 con-
straint. However, as shown in Fig. 13, the degener-
acy direction in the σ8-Ωm plane is different for this
analysis compared to other surveys. The S8 param-
eter was originally introduced to describe the combi-
nation of σ8 and Ωm that cosmic shear can best con-
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FIG. 12: The modes and 68% credible intervals from the cosmology analyses with different scale cuts on 10 realizations of noisy
mocks. The orange line denotes input cosmological parameters of mock signals.

strain. However, this combination is not generally op-
timal for other observables. Thus, we extract the “op-
timal” constraints for each survey by defining the pa-
rameter S8(α) = σ8(Ωm/0.3)α and varying α to find the
tightest constraint. For each survey, we find the tight-
est 68% credible interval: S8(α = 0.17) = 0.745+0.039

−0.031

for HSC-Y1, S8(α = 0.61) = 0.764+0.030
−0.030 for DES-Y1,

and S8(α = 0.58) = 0.758+0.017
−0.019 for KiDS-1000. There-

fore, our HSC-Y1 analysis has comparable constraining
power to DES-Y1. We expect the cosmological parame-
ter constraints to tighten significantly due to the larger
area coverage of subsequent HSC datasets [123] and by
further combining the cosmic shear information with the
joint-probe measurements in this paper, i.e., 3×2pt cos-
mology (see below for further discussion).

2. Comparison with different analysis methods of HSC-Y1

In Fig. 14 we compare the cosmological parameters
obtained from the different analysis methods and/or ob-
servables using the same HSC-Y1 dataset. The orange
contours, denoted by the “minimal bias” model, are from
our companion paper [45], obtained using the same sig-

nals as used in this paper, but with even more restric-
tive scale cuts, because they used a perturbation theory-
inspired model as the theoretical template to interpret
the large-scale information in the ∆Σ and wp signals.
Hence, the results of the minimal bias model can be
considered a conservative estimate of cosmological pa-
rameters. From the comparison, it is clear that inter-
preting the small-scale information using Dark Emulator
improves our ability to constrain cosmological parame-
ters, even after marginalizing over nuisance parameters.
However, there is a shift in the central values of cosmo-
logical parameters between our results and the minimal
bias method, despite using the same dataset. As dis-
cussed above, we used noisy mock data vectors to test
whether such shifts in cosmological parameter constraints
for these two methods can occur due to sample variance.
We found that 3 out of 10 noisy mock realizations exhibit
shifts in cosmological parameters similar to those found
in the real data. Hence we conclude that the difference
between the central parameter values for our method and
Sugiyama et al. [45] are likely due to sample variance.

The HSC-Y1 cosmic shear result [4], which does not
use any information from the SDSS galaxies, is consistent
with our results to within the credible intervals, but the
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FIG. 13: Similar to Fig. 6, but this figure compares our results with those from other cosmological experiments assuming a flat
ΛCDM cosmology. The blue curves (contours) are the main results of this paper, the same as those in Fig. 6. The orange curves
are from the DES-Y1 analysis using galaxy-galaxy lensing (“GGL”) and clustering signals (“GGC”) [6]. The green curves are
constraints from the KiDS1000 analysis with cosmic shear (“CS”) and GGL [12]. The red curves are the Planck 2018 results
using the primary CMB anisotropy information (“TT,TE,EE+lowE”) [15].

central values display a offset, especially in the Ωm direc-
tion. While our constraints are dominated by the SDSS
clustering information, we note that Hamana et al. [5],
in their Section 6.7, showed that apparently large scat-
ters in the central values of the cosmological parameters
between different analysis methods could occur due to
the sample variance and the use of different ranges of
scales even for cosmology inference using the same HSC-
Y1 dataset. It is interesting to note that the degeneracy
directions, e.g., in the (Ωm, S8) space, are different, and
thus a combination of these observables may yield even

tighter constraints.

VII. SUMMARY AND DISCUSSION

In this paper, we have reported cosmological con-
straints from the blinded joint analysis of galaxy-galaxy
weak lensing (∆Σ) and projected clustering correlation
function (wp) (a 2×2pt joint-probe analysis), measured
from the first year imaging galaxy catalog of the Subaru
HSC SSP survey (HSC-Y1) and the spectroscopic galaxy
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FIG. 14: Similar to Fig. 6, but compared with the results
from different observables or analysis methods, assuming a
flat ΛCDM cosmology. The blue curves (contours) are the
main result of this paper. The orange curves are the con-
straints from our companion paper [45] where the “minimal”
bias model motivated by the perturbation theory of structure
formation is used, as a theoretical template, to interpret the
large-scale information of the same signals ∆Σ and wp used
in this paper. The green curves are from the Fourier-space
cosmic shear measurements of the HSC-Y1 data [4].

catalog of SDSS-III/BOSS DR11. To perform a robust
analysis, we have defined the luminosity-limited, rather
than the flux-limited, samples from the SDSS galaxies
to serve as the tracers of wp in the three redshift bins
in the range 0.15 < z < 0.7, and as the lens samples of
∆Σ. For the ∆Σ measurements, we have opted to use a
single sample of background galaxies selected from the
weak lensing HSC source catalog with photo-z informa-
tion greater than 0.75. The HSC-Y1 dataset, despite the
relatively small area (about 140 deg2), allows for a signif-
icant detection of the galaxy-galaxy weak lensing signals
thanks to both the depth and the high imaging-quality
of the data (see Fig. 3). On the theory side, we have
employed the public code Dark Emulator to accurately
model the clustering observables down to small scales.
The validation of our cosmological analysis was demon-
strated in previous work [1].

With the above joint-probe cosmology, we are able
to obtain stringent constraints on the cosmological pa-
rameters in flat ΛCDM model, represented by S8 ≡
σ8(Ωm/0.3)0.5 = 0.795+0.049

−0.042 (Fig. 6 and Table V). An
important feature of our results is that our constraints
are robust against the possibility of residual photo-z bi-
ases in the HSC source sample – one of the main sys-

tematic effects in weak lensing cosmology. By adopting
the single sample of source galaxies, we are able to cal-
ibrate out the nuisance parameter related to a residual
photo-z bias. This is achieved by comparing the galaxy-
galaxy weak lensing amplitudes for the SDSS lens-galaxy
samples in the three spectroscopic redshift bins, following
the method described in Oguri and Takada [21]. Figs. 10
and 26 show that this method enables constraints on the
photo-z bias parameter.

Our results are generally consistent with both Planck
and other weak lensing constraints (DES and KiDS) to
within the statistical errors (Fig. 13). However, if we take
the intersection of the (Ωm, S8)-posterior distributions at
Ωm = 0.3, our result indicates a possible tension for σ8

compared to the Planck 2018 result, similarly to those
indicated by other weak lensing constraints [e.g. 4]. We
performed various tests using the different scale cuts, the
extended theoretical template, and the different combi-
nations of datasets, but did not identify any significant
signature of residual systematics in our results (Fig. 11).

There are several ways in which the constraints from
this paper could be improved. As can be seen from
Fig. 13, the degeneracy direction in the Ωm and σ8 space
for our method is different compared to that in the cosmic
shear constraint, which is usually characterized by the di-
rection of σ8(Ωm/0.3)0.5 = const that motivates the defi-
nition of S8. The degeneracy direction of our constraint is
characterized by the direction of σ8(Ωm/0.3)0.17 = const.
This means that the combination of our method (2×2pt)
together with cosmic shear would yield improved cosmo-
logical constraints. However, this would also require to
include additional nuisance parameters to model contam-
inating effects on the cosmic shear signals such as intrin-
sic alignments and baryonic effects. In this regard, it is
worth considering a 3×2pt analysis in future work.

Another promising method would be to combine the
HSC galaxy-galaxy lensing information of SDSS galaxies
with redshift-space clustering signals of the same SDSS
galaxies. In this paper, by intention, we used the “pro-
jected” clustering information of SDSS galaxies and did
not include the geometrical BAO information on large
scales. The BAO information, the Alcock-Paczyński ef-
fect, and redshift-space distortions due to peculiar veloc-
ities of galaxies are powerful probes of Ωm, σ8 and the
growth rate of large-scale structure. Recently, we devel-
oped an emulator based method to model the redshift-
space power spectrum of galaxies using an HOD model
[36, 124]. Kobayashi et al. [36] applied this method to
the redshift-space power spectrum of SDSS galaxies and
obtained stringent constraints on S8 = 0.784+0.048

−0.042. This
represents a similar precision of σ(S8) ' 0.05 to our preci-
sion of σ(S8) ' 0.05. Galaxy-galaxy weak lensing probes
the Fourier modes that are perpendicular to the line-
of-sight direction and are almost independent to those
probed by the redshift-space power spectrum [125]. Fur-
thermore, the overlap between the HSC and SDSS sur-
vey footprints is small and therefore the constraints from
HSC are almost independent from those from SDSS. The
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combination of HSC galaxy-galaxy weak lensing together
with the redshift-space power spectrum of SDSS galax-
ies would be a promising way to improve constraints
on both cosmological parameters and the galaxy-halo
connection parameters. We have developed the self-
consistent emulator-based halo model pipeline needed to
perform this joint cosmology analysis, and this is our fu-
ture work.

The HSC survey is ongoing [3] and currently has the
Year 3 shape catalog of galaxies [123] that covers an area
of about 430 deg2 which is three times larger than the
HSC-Y1 data. Hence the HSC Year 3 will enable im-
proved measurements in all weak lensing observables. In
future work, we will apply the methods developed in this
paper to the HSC Year 3 data, together with other clus-
tering observables, as described above. In addition, HSC
already covers more than 1, 000 deg2 and will be com-
pleted by the end of 2021 or 2022. The full HSC survey
will enable us to place one of the tightest cosmological
constraints, comparable to other Stage-III surveys such
as DES and KiDS.
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delbaum, M. Takada, F. Köhlinger, H. Miyatake, A. J.
Nishizawa, H. Aihara, et al., Publ. Astron. Soc. Japan
71, 43 (2019), 1809.09148.

[5] T. Hamana, M. Shirasaki, S. Miyazaki, C. Hik-
age, M. Oguri, S. More, R. Armstrong, A. Leau-
thaud, R. Mandelbaum, H. Miyatake, et al., Publ. As-
tron. Soc. Japan 72, 16 (2020), 1906.06041.

[6] T. M. C. Abbott, F. B. Abdalla, A. Alarcon, J. Aleksić,
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mengaud, É. Aubourg, S. Bailey, et al., Astrophys. J.
Suppl. 219, 12 (2015), 1501.00963.

[43] S. Unruh, P. Schneider, S. Hilbert, P. Simon, S. Martin,
and J. C. Puertas, Astronomy & Astrophysics 638, A96
(2020), 1910.06400.

[44] T. Nishimichi, M. Takada, R. Takahashi, K. Osato,
M. Shirasaki, T. Oogi, H. Miyatake, M. Oguri, R. Mu-
rata, Y. Kobayashi, et al., Astrophys. J. 884, 29 (2019),
1811.09504.

[45] S. Sugiyama, M. Takada, H. Miyatake, T. Nishimichi,
M. Shirasaki, Y. Kobayashi, S. More, R. Taka-



30

hashi, K. Osato, M. Oguri, et al., arXiv e-prints
arXiv:2111.10966 (2021), 2111.10966.

[46] S. Miyazaki, Y. Komiyama, S. Kawanomoto, Y. Doi,
H. Furusawa, T. Hamana, Y. Hayashi, H. Ikeda, Y. Ka-
mata, H. Karoji, et al., Publ. Astron. Soc. Japan 70, S1
(2018).

[47] Y. Komiyama, Y. Obuchi, H. Nakaya, Y. Kamata,
S. Kawanomoto, Y. Utsumi, S. Miyazaki, F. Uraguchi,
H. Furusawa, T. Morokuma, et al., Publ. As-
tron. Soc. Japan 70, S2 (2018).

[48] H. Furusawa, M. Koike, T. Takata, Y. Okura, H. Miy-
atake, R. H. Lupton, S. Bickerton, P. A. Price, J. Bosch,
N. Yasuda, et al., Publ. Astron. Soc. Japan 70, S3
(2018).

[49] S. Kawanomoto, F. Uraguchi, Y. Komiyama,
S. Miyazaki, H. Furusawa, F. Finet, T. Hattori,
S.-Y. Wang, N. Yasuda, and N. Suzuki, Publ. As-
tron. Soc. Japan 70, 66 (2018).

[50] R. Mandelbaum, H. Miyatake, T. Hamana, M. Oguri,
M. Simet, R. Armstrong, J. Bosch, R. Murata,
F. Lanusse, A. Leauthaud, et al., Publ. As-
tron. Soc. Japan 70, S25 (2018), 1705.06745.

[51] R. Mandelbaum, F. Lanusse, A. Leauthaud, R. Arm-
strong, M. Simet, H. Miyatake, J. E. Meyers, J. Bosch,
R. Murata, S. Miyazaki, et al., Mon. Not. Roy. As-
tron. Soc. 481, 3170 (2018), 1710.00885.

[52] J. Bosch, R. Armstrong, S. Bickerton, H. Furusawa,
H. Ikeda, M. Koike, R. Lupton, S. Mineo, P. Price,
T. Takata, et al., Publ. Astron. Soc. Japan 70, S5
(2018), 1705.06766.

[53] J. Coupon, N. Czakon, J. Bosch, Y. Komiyama,
E. Medezinski, S. Miyazaki, and M. Oguri, Publ. As-
tron. Soc. Japan 70, S7 (2018), 1705.00622.

[54] M. Oguri, S. Miyazaki, C. Hikage, R. Mandelbaum,
Y. Utsumi, H. Miyatake, M. Takada, R. Armstrong,
J. Bosch, Y. Komiyama, et al., Publ. Astron. Soc. Japan
70, S26 (2018), 1705.06792.

[55] M. Tanaka, J. Coupon, B.-C. Hsieh, S. Mineo, A. J.
Nishizawa, J. Speagle, H. Furusawa, S. Miyazaki, and
H. Murayama, Publ. Astron. Soc. Japan 70, S9 (2018),
1704.05988.

[56] M. Carrasco Kind and R. J. Brunner,
Mon. Not. Roy. Astron. Soc. 438, 3409 (2014),
1312.5753.

[57] M. Oguri, Mon. Not. Roy. Astron. Soc. 444, 147 (2014),
1407.4693.

[58] E. Medezinski, M. Oguri, A. J. Nishizawa, J. S. Spea-
gle, H. Miyatake, K. Umetsu, A. Leauthaud, R. Mu-
rata, R. Mandelbaum, C. Sifón, et al., Publ. As-
tron. Soc. Japan 70, 30 (2018), 1706.00427.

[59] H. Miyatake, N. Battaglia, M. Hilton, E. Medezinski,
A. J. Nishizawa, S. More, S. Aiola, N. Bahcall, J. R.
Bond, E. Calabrese, et al., Astrophys. J. 875, 63 (2019),
1804.05873.

[60] C. Chang, M. Jarvis, B. Jain, S. M. Kahn, D. Kirkby,
A. Connolly, S. Krughoff, E. H. Peng, and J. R. Pe-
terson, Mon. Not. Roy. Astron. Soc. 434, 2121 (2013),
1305.0793.

[61] K. S. Dawson, D. J. Schlegel, C. P. Ahn, S. F. Anderson,
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É. Aubourg, S. Bailey, E. Balbinot, et al., The Astro-
nomical J. 142, 72 (2011), 1101.1529.

[68] C. P. Ahn, R. Alexandroff, C. Allende Prieto, S. F.

Anderson, T. Anderton, B. H. Andrews, É. Aubourg,
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Appendix A: Covariance matrix

As described in Appendix B of Miyatake et al. [1] [also
see Ref. 126, 127], we construct the covariance matrix
that describes the statistical errors of the ∆Σ measure-
ment using light-cone mock catalogs of both SDSS and
HSC galaxies.

To construct these mock catalogs, we use the full-
sky, light-cone simulations from Takahashi et al. [128].
Each of the 108 light-cone realizations consists of mul-
tiple spherical shells at different radii with an observer
located at the center of the sphere. Each spherical shell
contains the lensing fields and the halo distribution. The
lensing fields at the representative redshift of each shell
can be used to simulate the lensing distortion effects on
a galaxy due to foreground structures if the galaxy is lo-
cated in the shell. The halo distribution in each shell
reflects a realization of halos at the redshift correspond-
ing to the shell.

We populate each of the light-cone simulation realiza-
tions with SDSS- and HSC-like galaxies. For HSC, we
use the HSC-Y1 source catalog and populate each HSC
galaxy into the corresponding shell in the light-cone simu-
lation according to its angular position (RA and Dec) and
photometric redshift (best-fit photo-z). After randomly
rotating each galaxy shape to erase the real weak lensing
effect, we simulate the lensing effect on each galaxy us-
ing the lensing information of the light-cone simulation.
Thus, the mock HSC catalog reproduces the angular po-
sitions, the distributions of ellipticities, and the photo-z’s
of HSC galaxies. Because the HSC-Y1 survey footprint
covers a small area, we can extract 21 HSC-Y1 realiza-
tions in each of the 108 all-sky simulations. Hence we
generate 2268 HSC mock catalogs in total.

For SDSS, we populate each of the light-cone mocks
with SDSS-like galaxies based on the HOD method.
We built mock catalogs for the LOWZ, CMASS1 and
CMASS2 samples in their corresponding redshift ranges
in each full-sky simulation. We imprint the SDSS survey
footprint onto each full-sky simulation realization.

Thus our light-cone mock catalogs contain both HSC-
and SDSS-like galaxies. We apply the same measure-
ment pipeline as used in the actual analysis to each of
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FIG. 15: Left panel: Weak lensing signal around SDSS galaxies measured with the HSC-Y1 source galaxies. The shaded region
is excluded from our fiducial cosmology analysis. The signal-to-noise ratios are computed within the scales used for our analysis.
The lensing signals for the CMASS1 and CMASS2 samples have offsets along the x-axis for illustrative purposes. Right panel:
Correlation coefficient matrix of the lensing profile (∆Σ), defined as rij ≡ Covij/[CoviiCovjj ]

1/2. The bold solid lines indicate
the different lens samples (LOWZ, CMASS1 and CMASS2). In each sub-matrix, elements inside the dashed lines denote the
scales used for our fiducial cosmology analysis: 3 ≤ R/[h−1Mpc] ≤ 30.

101 102

Rmax [h−1Mpc]

2.5

5.0

7.5

10.0

12.5

15.0

cu
m

u
la

ti
ve

S
/N

(R
>

3
[h
−

1 M
p

c]
)

Total

LOWZ

CMASS1

CMASS2

FIG. 16: Cumulative signal-to-noise ratio of the weak lens-
ing signal, integrated over 3 ≤ R/[h−1Mpc] ≤ Rmax. The
cumulative signal-to-noise ratio saturates above Rmax >
30 h−1Mpc which validates the upper limit of our scale cut.

the mock realizations and compute the covariance ma-
trices of ∆Σ(R). The covariance matrices of ∆Σ include
the cross-covariance between the different lens samples.
This arises from the shape noise of source galaxies and
from cosmic shear contamination. However, we ignore
the cross-covariance between ∆Σ and wp, because the
overlap between the HSC-Y1 and SDSS survey footprints
is small (only 140 deg2compared to 8000 deg2). The co-
variance matrix estimated in this method properly in-
cludes the super sample covariance contribution [129].

We treat shape noise in this covariance calibration as

follows. Shapes in the mock source catalog are the sum
of the intrinsic shapes of galaxies (taken from the ac-
tual shape catalog after applying a random rotation) and
lensing shear from the ray-tracing. In the mock source
catalog, the multiplicative bias is not incorporated, and
thus if we naively compute the covariance from the mock
data, there would be inconsistency between the signal
and covariance. To properly incorporate the multiplica-
tive bias, we first need to separate out the intrinsic shape
component to obtain the lensing shear component alone,
and then add the intrinsic shape component scaled by
the multiplicative bias. In practice, we compute the co-
variance as

Cov∆Σ
i,j = Cov∆Σmock

i,j − Cov
∆Σmock

rand. shape

i,j

+
Cov

∆Σdata
rand. shape

i,j

(1 +K(Ri))(1 +K(Rj))
, (A1)

where i and j are the indices of radial bins running over
all of the lens samples. The first term on the right-hand
side is the covariance from the mock data, where a mock
signal of each realization is computed following Eq. (3)
but without applying any multiplicative bias correction.
The second term is the covariance from the mock data
with randomly-rotated shapes. The third term is the co-
variance from the real data with randomly-rotated shapes
scaled by the multiplicative bias factors in the i-th and
j-th radial bins. Note that, when computing the second
and third terms, we follow Eq. (3) (without the multipli-
cation bias correction) but did not subtract the random
signal. This is because the random signal subtraction
is primarily for subtracting the lensing signal that arises
from large-scale structure but this signal no longer ex-
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FIG. 17: Correlation coefficient matrix of wp(R) for each of the LOWZ, CMASS1, and CMASS2 samples, estimated from 192
jackknife samples. In this case, the cross-covariance between the different samples vanishes, in contrast to the covariance matrix
for the lensing signals (Fig. 15).
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FIG. 18: The lensing signals measured around random points
measured in the same way as the lensing signals around the
lens galaxies (the second term in Eq. 3). Error bars denote
the standard deviation of the results for 20 realizations of ran-
dom points, where each realization contains the same number
of random points as that of lens galaxies for each sample. The
shaded yellow region denotes the statistical errors of the lens-
ing measurements, computed from the diagonal components
of the covariance matrix in Fig. 15; the statistical errors in
each R bin are connected to compute the shaded region for il-
lustrative purpose. The shaded gray region denotes the range
excluded from our baseline cosmology analysis. The unshaded
region denotes the range used in the cosmology analysis.

its in the randomized shapes [126]. Practically, ignoring
the random signal significantly reduces computing time.
Fig 15 shows the covariance matrix estimated based on
the above method.

Fig. 16 shows the cumulative signal-to-noise ratio in-
tegrated over 3 ≤ R/[h−1Mpc] ≤ Rmax, where we vary
the maximum separation Rmax as denoted in the x-axis.

The cumulative signal-to-noise ratio does not increase
above Rmax > 30 h−1Mpc, which is due to the increase
in the sample covariance at large scales due to large-scale
structure. Since the cumulative signal-to-noise ratio is a
proxy for the information content in the lensing ampli-
tudes over the range of separation, our fiducial choice of
Rmax = 30h−1Mpc in the cosmology analysis is nearly
optimal, because we focus on the cosmological parame-
ters S8, Ωm and σ8 which primarily determine the lensing
amplitude.

As described in Section III B, we use the jackknife
method to estimate the covariance matrix for the pro-
jected correlation function, wp(R), for LOWZ, CMASS1
and CMASS2. The jackknife method has the advantage
that it captures all contributions to the covariances (sur-
vey geometry, inhomogeneities. etc.). Fig. 17 shows the
results for the covariance matrix. It is clear that there is
significant cross-covariance between the wp(R) signals in
different separation bins, and therefore it is important to
properly take into account the cross-covariance.

Appendix B: Tests of lensing systematics

In this section, we describe our lensing systematic
tests.

As described in Section III A 1, we subtract the signal
around random points from the signal around lens galax-
ies to obtain an unbiased estimate of galaxy-galaxy weak
lensing [130]. We use 20 times more random points than
that of lens galaxies. Fig. 18 shows the signal around ran-
dom points measured in the same way as described in Sec-
tion III A. The error bars are estimated from 20 realiza-
tions of random points. The random signal starts to devi-
ate from zero at R >∼ 15h−1Mpc, but is still smaller than
the statistical uncertainties. This result shows that the
random point correction is not significant. Nonetheless,
we subtract the random signal from the signals around
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each of the LOWZ, CMASS1 and CMASS2 samples, measured using the 45-degree component (non-lensing components) of
source ellipticities. Error bars denote the diagonal components of the covariance matrix of the lensing profile in each R bin.
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bars from the standard deviations. The reduced chi-square values and p-values are computed using the data points and the
covariance over the range indicated by the unshaded region

lens galaxies to obtain an unbiased estimate of ∆Σ.

Galaxy-galaxy weak lensing, which arises from the
scalar gravitational potential, induces only E-mode sig-
nal or the tangential shear pattern around lensing galax-
ies on average in the weak lensing regime. On the other
hand, the 45-degree rotated component from the tangen-
tial shear, or the B-mode, should vanish if the lensing
measurement is perfect or if systematic effects are neg-
ligible in the data. We compute the B-mode signal by
replacing the tangential component of individual back-
ground galaxy shape in Eq. (3) with the 45-degree rotated
component. This is shown in the left panel of Fig. 19.
The measured B-mode signals are consistent with the
null signal to within the error bars over the range of sep-
aration bins that we use for the cosmological analysis (the
unshaded region). The p-value for a null B-mode signal
(calculated for the three lens samples within the fiducial
scale cuts) is 0.34. Hence we do not find evidence for a
residual B-mode signal for all the three measurements of
galaxy-galaxy weak lensing.

Another important systematic effect is the “boost” fac-
tor which quantifies an excess or deficiency in the num-
ber of lens and source galaxy pairs compared to that of
random point and source galaxy pairs [for details, see
20, 130]. A non-zero boost factor arises from systematic
effects. For example, if some source galaxies are actually
in the lens redshift range and are therefore physically as-
sociated with lens galaxies, due to the imperfect photo-z
estimates, then the number of lens and source pairs ap-
pears to be in excess. Or if some source galaxies are dif-
ficult to detect in the vicinity of lens galaxies on the sky
due to imperfect photometry such as a flux contamina-

tion of bright lens galaxies to background HSC galaxies,
the number of source galaxies near lenses could appear
to be in deficiency. Following [23], we define the boost
factor as

B(Ri) =

∑
ls∈Ri

wls /
∑

l wl∑
rs∈Ri

wrs /
∑

r wr
, (B1)

where “r” in the summation runs over random points.
The numerator and denominator essentially count the av-
eraged number of source galaxies around each lens galaxy
and random points, respectively. We estimate the covari-
ance of the boost factor using the mock catalogs of source
galaxies. When estimating the boost factor and the co-
variance, we limit the lens and random points within the
FDFC region; otherwise the covariance becomes too large
due to the partial use of annulus bins around galaxies
and randoms outside of the FDFC region. We show the
measured boost factor in the right panel of Fig. 19. The
measured boost displays an offset from unity, but does
not show any strong R dependence, which would be ob-
served if it was due to contaminating galaxies clustered
with the lenses. The p-value of the boost factor being
non unity (calculated for the three lens samples within
the scale cuts) is 0.56. Fig. 19 gives a misleading impres-
sion because the radial bins are highly correlated. We do
not make any correction for the boost factor in the weak
lensing signals. However, note that we will introduce nui-
sance parameters of the residual photo-z errors and the
multiplicative shear bias, which cause an overall (almost
R-independent) offset in the weak lensing signals. This
nuisance parameters can capture possible residual effect
in the boost factor if it is present.
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We also quantify how the lensing signal changes with
different photo-z estimates. Fig. 20 shows the differ-
ence between the lensing signals computed with the fidu-
cial method and one of the non-fiducial photo-z meth-
ods. The covariance of the difference signal is estimated
using difference signals measured from 256 realizations
of source catalogs with randomly-rotated shapes, as de-
tailed in Miyatake et al. [59]. The weighted mean and the
standard deviation of the difference signals are shown in
Table I. The resulting impact on the cosmological param-
eters is summarized in Table V and Fig. 11. These show
that all results are consistent with those of the fiducial
analysis to within the error bars.

Our fiducial sample is defined using the k-correction
method described in Wake et al. [77], where we k-
corrected the magnitudes of LOWZ galaxies to a redshift
of 0.20 and those of CMASS galaxies to a redshift of 0.55.
We also created a sample using the k-correction method
with kcorrect v4.3 [131] to quantify how the lensing

signals change with the different k-correction methods.
The difference in the signals is shown in Fig. 20, which
does not show any significant change in the signals.

In summary we do not find any strong evidence of
the residual systematic effects in our weak lensing mea-
surements. This reflects the high-quality of the HSC-Y1
shape catalog, at least compared to the statistical errors
of the HSC-Y1 survey volume.

Appendix C: Halo occupation distribution (HOD)

In the halo model we assume that all matter is associ-
ated with halos, and that the correlation function of mat-
ter is given by contributions from pairs of matter in the
same halo and those in two different halos. These are re-
ferred to as the 1- and 2-halo terms, respectively. We em-
ploy the halo occupation distribution [HOD 27, 29, 31].
The HOD model gives the mean number of central and
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satellite galaxies in halos of mass M as

〈N〉(M) = 〈Nc〉(M) + 〈Ns〉(M), (C1)

where 〈 〉(M) denotes the average of a quantity for halos
of mass M .

We employ the mean HOD for central galaxies, given
as

〈Nc〉(M) =
1

2

[
1 + erf

(
logM − logMmin

σlogM

)]
, (C2)

where erf(x) is the error function and Mmin and σlogM

are model parameters.
For the mean HOD of satellite galaxies, we employ the

following form:

〈Ns〉(M) ≡ 〈Nc〉(M)λs(M) = 〈Nc〉(M)

(
M − κMmin

M1

)α
,

(C3)

where κ,M1 and α are model parameters, and we have in-
troduced the notation λs(M) = [(M−κMmin)/M1]α. For
our fiducial prescription we assume that satellite galaxies
reside only in a halo that already hosts a central galaxy.

We have 5 model parameters, {Mmin, σlogM , κ,M1, α},
to characterize the central and satellite HODs for each
galaxy sample for a given cosmological model.

Appendix D: Convergence test of our nested
sampling results

In this paper, we use the multimodal nested sampling
algorithm MultiNest [113–115] for parameter inference.
We test the convergence of our nested sampling results
following Appendix 3 in Hikage et al. [4]. Fig. 21 shows
a diagnostic plot made by the publicly-available software
nestcheck [132–134]. When our nested sampling runs
terminate, the remaining posterior mass is sufficiently
small.

The standard deviations of S8, σ8, and Ωm derived
from four chains of the baseline analysis setup with dif-
ferent seeds are less than ∼ 0.1% of the central values,
which corresponds to less than ∼ 2% of the statistical
uncertainties, for S8, Ωm, and σ8.

Appendix E: Full posterior distributions of the
baseline analysis

Fig. 22 shows the 1-d and 2-d posterior distributions in
full parameter space, for the baseline analysis as shown
in Fig. 6. Some of the HOD parameters are not well
constrained by the clustering observables, as also found
in the validation tests using the mock signals in Miyatake
et al. [1].

FIG. 21: Distributions of logX, the remaining volume of a
prior after replacing a live point with the lowest likelihood
at each step, for two nested sampling runs. The upper right
panel shows the relative posterior mass at each logX value.

Appendix F: The impact of different scale cuts on
cosmological parameters

We now discuss the results for different scale cuts of
(4, 6) h−1Mpc or (8, 12) h−1Mpc for wp and ∆Σ, in-
stead of our fiducial choice of (2, 3) h−1Mpc, as shown
in Table V. The maximum scale cut is kept fixed at
30 h−1Mpc. The 2-d posterior distribution in each sub-
space of (Ωm, σ8, S8) can be found from Fig. 23. First of
all, the constraining power on S8 is reduced by a factor of
1.2 and 1.9 for the scale cuts of (4, 6) and (8, 12) h−1Mpc,
respectively. A systematic shift in the central value of S8

with the increase of the scale cuts, rather than a random
scatter, raises some concern. In the validation paper [1],
we found such a systematic trend in S8 when applying
the halo model method to the mock catalogs including
a possible assembly bias effect if SDSS galaxies are af-
fected by the effect [see Fig. 17 in 1], where mock SDSS
galaxies are preferentially populated into halos with lower
concentrations. If the assembly bias effect exists, the
large-scale clustering signals cannot be fully character-
ized by the average mass of halos hosting SDSS galaxies,
which is constrained by the small-scale signal of galaxy-
galaxy weak lensing, ∆Σ. On the other hand, the larger
scale cuts of (8, 12) h−1Mpc avoid the impact of the as-
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FIG. 22: The 1-d and 2-d posterior distribution in full parameter space for the baseline analysis.

sembly bias effect because the cut does not include the
small-scale lensing signal. In turn, if assembly bias exists
and the halo model is fitted to the signals down to small
scales, it would cause a bias in cosmological parameters,
which is basically what Miyatake et al. [1] found. Hence
the systematic trend for the different scale cuts might
indicate a hint in the assembly bias effect for the SDSS
samples [135]. However, note that Miyatake et al. [1] em-
ployed mock catalogs with unexpectedly large assembly
bias effects even though there has not been any clear de-

tection of assembly bias from real SDSS data [136]. On
the other hand, we showed that the minimal bias method
described in our companion paper [45], is robust against
assembly bias effect as long as sufficiently large scale cuts
are employed. The scale cuts of (8, 12)h−1Mpc used in
this paper (Table IV) were validated for the perturbation
theory-based method using the same mock SDSS catalogs
including the assembly bias effect. The result of S8 for
the scale cuts of (8, 12)h−1Mpc is, to within the error
bar, consistent with that of S8 when using the minimal
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FIG. 23: Similar to Fig. 6, but this figure shows the posterior
distributions of cosmological parameters obtained by using
different scale cuts of (4, 6) h−1Mpc and (8, 12) h−1Mpc for
wp and ∆Σ instead of our fiducial choice of (2, 3) h−1Mpc.

bias method.

Appendix G: Systematic tests with different analysis
setups

In this appendix, we demonstrate the robustness of the
results with regards to different analysis setups, as listed
in Table IV. These results are also summarized in Table V
and Fig. 11. In this appendix we show the results for the
1- and 2-d posteriors of the parameters for the different
setups.

Fig. 24 shows the posteriors if we remove one of the lens
samples in the parameter inference (also see Fig. 11 and
Table V). All the results for S8 are consistent with the
baseline result to within the 68% credible interval, but
the result removing the LOWZ sample displays a sizable
shift in the cosmological parameters. This might be due
to the statistical scatters of the SDSS galaxies because
our constraints are mainly from wp and the wp informa-
tion for the different samples are considered independent.
In fact, such a shift in the cosmological parameters for
the different samples were also seen from the cosmolog-
ical analysis of redshift-space galaxy clustering [e.g. see
Fig. 2 in 36, 138]. Since the shift in the parameters are
not large compared to the current statistical errors, we
leave this to our future work using a larger dataset from
the ongoing HSC survey.

One notable feature of this paper is a conservative
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FIG. 24: Similar to Fig. 6, but this figure shows the poste-
rior distributions if one of the LOWZ, CMASS1 or CMASS2
sample is not used in the parameter inference.
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FIG. 25: Similar to Fig. 6, but showing the posterior distribu-
tions if we fix any of the nuisance parameters (∆zph, ∆mγ or
αmag(zi)) to their fiducial value(s) rather than varying them
in the parameter inference.
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panels are constraints with the σ(∆zzp) = 0.2 setup. The
vertical dashed lines in the 1-d posterior distribution of ∆mγ

or ∆zph denote the width of Gaussian prior on the parameter
for the σ(∆zph) = 0.2 setup.

treatment of the nuisance parameters, i.e. the photo-z bi-
ases and the multiplicative shear biases, which are among
the most important systematic errors in weak lensing.
Throughout this paper, as a conservative approach, we
employed rather broad priors for these nuisance parame-
ters, ∆zph and ∆mγ , and derive cosmological constraints
after marginalization over the nuisance parameters. On
the other hand, most previous weak lensing based studies
employ tight priors on these parameters, typically a few
per cent in the amplitudes of ∆zph and ∆mγ . Here we
study the impact of the nuisance parameters on our re-
sults. As one extreme case, Fig. 25 shows how the cosmo-
logical constraints are changed if either of ∆zph or ∆mγ

is fixed to the central value (i.e. ∆zph = 0 or ∆mγ = 0
as implied by the fiducial photo-z code or the shear cali-
bration). The posterior distributions remain almost un-
changed, meaning that our constraints are robust against
these nuisance parameters to within the prior width. For
completeness, the figure also shows how the results are
changed if we ignore the magnification bias in the tem-
plate of ∆Σ. Again it is clear that the magnification bias
does not have a large impact on the results.

As another extreme case, we study how the broader
prior widths of ∆zph and ∆mγ change the results. In
doing this, we employ the prior width of σ(∆zph) = 0.2
or σ(∆mγ) = 0.1, compared to our fiducial choices of
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FIG. 27: Similar to Fig. 10, but with the baseline analysis and
the ∆mγ = 0.1 setup. The numbers on the top of the diagonal
panels are constraints with the σ(∆mγ) = 0.1 setup. The
vertical dashed lines in the 1-d posterior distribution of ∆mγ

or ∆zph denote the width of Gaussian prior on the parameter
for the σ(∆mγ) = 0.1 setup.

σ(∆zph) = 0.1 or σ(∆mγ) = 0.01. These widened priors
are quite conservative, and the results would be basically
equivalent to the case using these nuisance parameters as
free parameters. Figs. 27 and 26 show the results. En-
couragingly these conservative choices only moderately
enlarge the size of the credible intervals for S8, and at
the same time constrain each of the nuisance parame-
ters by the credible interval smaller than the prior width.
That is, these joint-probe cosmology method enables us
to perform, to some extent, a self-calibration of these
nuisance parameters. It is intriguing to find that both
results prefer a slightly smaller value of S8, meaning that
the HSC-Y1 and SDSS data prefer such a value or the
central values inferred from the photo-z calibration or the
shear calibration might involve unknown systematic er-
rors under the assumption of a flat ΛCDM model. This is
definitely an interesting direction to further explore with
upcoming large HSC datasets.

In Fig. 28 we show the results for the extended halo
model, where the off-centering effect or the incomplete-
ness effect for central galaxies is included. To model the
effect we need to introduce two additional model parame-
ters for each of the effects as can be found from Table IV.
The figure clearly shows that the cosmological constraints
are robust against these variants in the theoretical tem-
plates.
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FIG. 28: Similar to Fig. 6, but the posterior distributions
obtained by using the extended halo model where the off-
centering effect or the incompleteness selection for central
galaxies are further included (also see Table IV). For each
case, the two additional model parameters for each of the
LOWZ, CMASS1 and CMASS2 samples are included. For
comparison we also show the results for the baseline setup,
which are the same in Fig. 6.
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FIG. 29: Similar to Fig. 6, but this figure shows the posterior
distributions if the different photo-z catalogs, as denoted by
legend, are used to define the source galaxy sample for the
∆Σ measurement.
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FIG. 30: Similar to Fig. 6, but this figure show the posterior
distributions when only ln(1010As) and Ωde among the five
cosmological parameters are varied.

Fig. 29 shows the posterior distributions inferred from
data vectors computed with different photo-z methods.
We do not find any significant shift in the parameter
constraints.

Fig. 30 compares the posterior distributions between
the baseline analysis and the analysis with only two
cosmological parameters (Ωm, ln 1010As) varied while
other cosmological parameters fixed to the Planck 2015
“TT,TE,EE+lowP” constraints [109]. We do not find
any significant shift in S8, while the statistical uncer-
tainty shrinks by ∼ 20%.

In summary, we investigate how the cosmological con-
straints are changed for different model templates or dif-
ferent combinations of data vector, which are shown in
Table V, Fig. 11 and Figs. 24–30. All results for S8 are
consistent with the baseline result to within the 68%
credible interval. Hence we conclude that none of the
tests indicates an unknown systematic error compared
to the current statistical error, and our results, especially
the result for S8, are robust against possible residual sys-
tematic effects.
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