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We present validation tests of emulator-based halo model method for cosmological parameter
inference, assuming hypothetical measurements of the projected correlation function of galaxies,
wp(R), and the galaxy-galaxy weak lensing, ∆Σ(R), from the spectroscopic SDSS galaxies and the
Hyper Suprime-Cam Year1 (HSC-Y1) galaxies. To do this, we use Dark Emulator developed
in Nishimichi et al. based on an ensemble of N -body simulations, which is an emulation pack-
age enabling a fast, accurate computation of halo clustering quantities (halo mass function, halo
auto-correlation and halo-matter cross-correlation) for flat-geometry cold dark matter cosmologies.
Adopting the halo occupation distribution, the emulator allows us to obtain model predictions of ∆Σ
and wp for the SDSS-like galaxies at a few CPU seconds for an input set of parameters. We present
performance and validation of the method by carrying out Markov Chain Monte Carlo analyses of
the mock signals measured from a variety of mock catalogs that mimic the SDSS and HSC-Y1 galax-
ies. We show that the halo model method can recover the underlying true cosmological parameters
to within the 68% credible interval, except for the mocks including the assembly bias effect (although
we consider the unrealistically-large amplitude of assembly bias effect). Even for the assembly bias
mock, we demonstrate that the cosmological parameters can be recovered if the analysis is restricted
to scales R & 10 h−1Mpc (i.e., if the information on the average mass of halos hosting SDSS galaxies
inherent in the 1-halo term of ∆Σ is not included). We also show that, by using a single population
of source galaxies to infer the relative strengths of ∆Σ for multiple lens samples at different redshifts,
the joint probes method allows for self-calibration of photometric redshift errors and multiplicative
shear bias. Thus we conclude that the emulator-based halo model method can be safely applied
to the HSC-Y1 dataset, achieving a precision of σ(S8) ' 0.04 after marginalization over nuisance
parameters such as the galaxy-halo connection parameters and the photo-z error parameter, and
our method is complementary to methods based on perturbation theory.

I. INTRODUCTION

Wide-area imaging galaxy surveys offer exciting op-
portunities to address the fundamental questions in cos-
mology such as the nature of dark matter and the origin
of cosmic acceleration [1]. The current-generation imag-
ing surveys such as the Subaru Hyper Suprime-Cam [2]
[HSC 3–5], the Dark Energy Survey [6] [DES 7], and the
Kilo-Degree Survey [KiDS 8] have succeeded in using ac-
curate measurements of weak gravitational lensing effects
to obtain tight constraints on cosmological parameters.
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Interestingly, the cosmological model inferred from these
large-scale structure probes show the so-called σ8- or S8-
tension [e.g. 4, 9] compared with cosmological models
inferred from the Planck cosmic microwave background
(CMB) measurement [10], perhaps indicating a signature
beyond the standard cosmological model, i.e. the flat-
geometry ΛCDM model [e.g. 9]. Upcoming galaxy sur-
veys such as the Subaru Prime Focus Spectrograph [11]
[12], the Dark Energy Spectrograph Instrument [13], the
VRO Legacy Survey of Space and Time [14], the ESA
Euclid [15] and the NASA Roman Space Telescope [16]
[17] are expected to deliver a decisive conclusion on the
possible tension and also revolutionize our understanding
of the Universe.

Main challenges of large-scale structure probes lie in
uncertainty in galaxy bias, which refers to unknown re-
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lation between the distributions of matter and galaxies
in large-scale structure [18, 19]. Since physical processes
inherent in formation and evolution of galaxies are still
difficult to accurately model from the first principles, we
need both observational and theoretical approaches to
tackle the galaxy bias uncertainty in order for us to ob-
tain “unbiased” and “precise” estimation of the under-
lying cosmological parameters from large-scale structure
observables.

For observational approach, joint probes cosmology of-
fers a promising way to mitigate the impact of galaxy
bias uncertainty on cosmology inference [7, 8, 20–26].
In particular, galaxy-galaxy weak lensing, obtained by
cross-correlating positions of foreground (lens) galaxies
with shapes of background galaxies, can be used to in-
fer the average mass distribution around lens galaxies.
A combination of galaxy-galaxy weak lensing with auto-
correlation function of the same sample of galaxies as the
lens galaxies can be used to observationally disentangle
the galaxy bias and the correlation function of the under-
lying matter distribution from the measured clustering
signal of galaxies.

On theory side, there are mainly two empirical ap-
proaches to tackle the galaxy bias uncertainty. First
one is a model based on perturbation theory (PT) of
large-scale structure [27, 28]. As long as only the large-
scale information of clustering observables in the linear or
quasi-nonlinear regime is used and nuisance parameters
to model galaxy bias are introduced, such a PT-based
method is expected to serve as an “accurate” theoreti-
cal template of galaxy clustering [26, 29–31]. Accuracy
here refers to the fact that a PT model can reproduce
the observed clustering correlation of galaxies by varying
the bias parameters, down to a certain scale still in the
quasi-nonlinear regime, where PT is valid. An advantage
of this method is that the model can be used for any type
of galaxies, because PT is formulated based on properties
of gravity and primordial fluctuations [32] and the free
bias parameters absorb large-scale clustering properties
of galaxies irrespective of galaxy types. A price to pay is
that the method breaks down at scales below a certain
nonlinear scale, and cannot be used to extract cosmolog-
ical information from the small-scale clustering signals,
which generally carry higher signal-to-noise ratios than
in the large scales. A further refined method that sep-
arates short-scale physics such as bias from large-scale
cosmological information of interest, so-called Effective
Field Theory of Large Scale Structure (EFTofLSS) [33],
has been emerging as a method that can be applicable
to small scales, although an application to galaxy-galaxy
lensing and clustering measurements has yet to be made.

An alternative theoretical method is the halo model
approach [34–37]. Halos are places where galaxies likely
form, and clustering properties of halos are relatively
well understood, on both analytical approach and N -
body simulations [38]. Then an empirical model such as
the halo occupation distribution (HOD) method [39, 40]
can be used to connect halos to galaxies. An advan-

tage of this method is that it would allow one to use the
small-scale information in cosmology inference, thereby
yielding tighter constraints on cosmological parameters.
However, a danger is that, if the model is not sufficiently
accurate nor flexible enough to capture the complicated
galaxy-scale physics, the method might lead to a signifi-
cant bias in cosmological parameters, more than the sta-
tistical credible interval. A worst-case scenario is that
one might claim a wrong cosmology, e.g. a time-varying
dark energy model, from a given dataset due to the in-
accurate theoretical templates.

Hence, the purpose of this paper is to assess perfor-
mance and limitation of the halo model method for cos-
mology inference. To do this, we use the Dark Emula-
tor developed in Nishimichi et al. [41], which enables a
fast, accurate computation of halo clustering quantities
(halo mass function, halo auto-correlation function and
halo-matter cross-correlation) for an input set of cosmo-
logical parameters within flat-geometry wCDM frame-
work with adiabatic Gaussian initial conditions. The
Dark Emulator is particularly useful for our halo model
approach, as it enables accurate predictions for the clus-
tering quantities well into the non-linear regime and
thereby allows us to make robust use of the cosmolog-
ical information from small scales. We combine Dark
Emulator with the HOD model to make model pre-
dictions of the projected correlation functions of galax-
ies, wp(R) and the galaxy-galaxy weak lensing, ∆Σ(R),
that mimic those measured from the spectroscopic SDSS
DR11 galaxies [42] and the HSC Year1 (HSC-Y1) galaxies
[43]. More precisely, we consider mock galaxies of LOWZ
and CMASS galaxies in the redshift range 0.15 . z . 0.7
for the spectroscopic galaxies in the wp measurement and
for the lens sample in ∆Σ, and then consider mock galax-
ies of the deep HSC-Y1 data for the background galaxy
sample in ∆Σ. We use a variety of mock catalogs for the
SDSS galaxies to assess performance and limitation of the
halo model method for cosmology inference, including a
mock where we implement an extreme version of galaxy
assembly bias [44]. Here we quantify the performance by
studying whether the halo model method can recover the
cosmological parameters employed in the mock catalogs,
after marginalization over the galaxy-halo connection pa-
rameters – hereafter we will often refer to this exercise
as cosmology challenges. Moreover, following Oguri and
Takada [21], we assess the ability of our method to per-
form self-calibration of photometric redshift errors and
multiplicative bias error for the joint probes cosmology.
Those errors are among the most important, systematic
errors for weak lensing cosmology, and we show below
that the method allows for an accurate self-calibration of
the errors, i.e. a robust estimation of cosmological pa-
rameters mitigating the impact of the systematic errors.
This paper gives a validation of the halo model method-
ology for cosmology inference that we are planning to
carry out with the actual SDSS and HSC datasets [45].
The results of this paper are also compared to those of
the companion paper, Sugiyama et al. [26], which used a
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perturbation theory inspired method and was validated
against the same mock catalogs.

The structure of this paper is as follows. In Section II
we briefly review the halo model for wp and ∆Σ and dis-
cuss the methodology of how cosmological parameters
can be estimated from the clustering observables. In
Section III we describe details of N -body simulations,
the halo catalogs, the mock catalogs of SDSS and HSC
galaxies, and Dark Emulator. In Section IV we de-
scribe our strategy for assessing performance and limi-
tation of the halo model method, i.e. cosmology chal-
lenges done from the comparison of the halo model with
the mock signals. In Section V, we show the main re-
sults of this paper. Section VI is devoted to conclusion
and discussion. Throughout this paper, unless otherwise
stated, we employ the flat-geometry Planck cosmology
[46] as a target cosmology for cosmology challenges and
as a fiducial cosmology when we compute cosmological
dependences of observables. The model is characterized
by Ωm = 0.3156 (the present-day matter density param-
eter), h = 0.672 and σ8 = 0.831, respectively, and we
adopt the units of c = 1 for the speed of light.

II. THEORY

In this paper we focus on two observables that are ob-
tained from imaging and spectroscopic data of galaxies
in the overlapping regions of the sky. One is the galaxy-
galaxy weak lensing that can be measured by stacking
shapes of background galaxies around a sample of fore-
ground lensing galaxies. Here we assume that the back-
ground galaxy sample is taken from the Subaru HSC im-
ages, while the foreground lensing galaxies are from the
SDSS spectroscopic galaxies. The other is the projected
correlation function of the spectroscopic galaxies that are
from the same population of galaxies used as lens (fore-
ground) galaxies in the galaxy-galaxy weak lensing.

A. Observables: galaxy-galaxy weak lensing and
projected auto-correlation function

Galaxy-galaxy weak lensing [24, 47] probes the aver-
aged excess surface mass density profile, ∆Σ, around the
lensing (foreground) galaxies that is given in terms of the
surface mass density profile, Σgm(R), as

∆Σ(R; zl) = 〈Σgm〉(< R)− Σgm(R)

= Σcr(zl, zs) γ+(R)|R=χl∆θ
, (1)

where γ+ is the average tangential shear of background
galaxies in the circular annulus of projected centric ra-
dius R from the foreground galaxies, and χl is the comov-
ing angular diameter distance to each foreground galaxy.
Note that background galaxy shapes are averaged over
all the pairs of foreground-background galaxies in the
same projected separation R, not the angular separation

∆θ, even when the lensing galaxies have a redshift dis-
tribution. 〈Σgm〉(< R) is the average surface mass den-
sity within a circular aperture of radius R, defined as

〈Σgm〉(< R) ≡ 1/(πR2)
∫ R

0
2πR′dR′ Σgm(R′). Σcr is the

critical surface mass density that describes a lensing ef-
ficiency for pairs of foreground/background galaxies as a
function of their redshifts, and is defined as

Σcr(zl, zs) ≡
χs(zs)

4πGχls(zl, zs)χl(zl)(1 + zl)
, (2)

where χs and χls are the comoving angular diameter
distances to each source galaxy and between source and
lens galaxies in each pair, respectively. The factor (1+zl)
is due to our use of the comoving coordinates. In practice
we need to take into account the redshift distributions
of lens and source galaxies that are straightforward to
include, e.g. following the method in Ref. [24].

The surface mass density profile around lensing galax-
ies, Σgm(R), is given in terms of the three-dimensional
galaxy-matter cross-correlation function as

Σgm(R; zl) = ρ̄m0

∫ ∞
−∞

dπ ξgm

(√
π2 +R2; zl

)
(3)

where ρ̄m0 is the mean mass density today, ξgm(r) is the
three-dimensional cross-correlation function between the
galaxies and matter, and π is the separation along the
line-of-sight direction, and R is the projected separation
perpendicular to the line-of-sight direction. Here we ig-
nored the contribution from the background mean mass
density because it is not relevant for weak lensing observ-
ables [compared to Eq. 3 in Ref. 26]. Fourier-transformed
counterpart of ξgm(r) is the galaxy-matter cross power
spectrum, Pgm(k), defined as

ξgm(r; zl) ≡
∫ ∞

0

k2dk

2π2
Pgm(k; zl)j0(kr), (4)

where j0(x) is the zero-th order spherical Bessel function.
Hereafter we omit the redshift of the lensing galaxies, zl,
in the argument of the correlation functions for nota-
tional simplicity. Throughout this paper we assume a
distant observer approximation for computations of pro-
jected correlation functions. In other words, we ignore
the effects of curved sky for definitions of separations
along or perpendicular to the line-of-sight direction. The
excess surface mass density profile is given in terms of
the galaxy-matter cross power spectrum as

∆Σgm(R) ≡ 〈Σgm〉(< R)− Σgm(R)

= ρ̄m0

∫ ∞
0

k2dk

2π2
Pgm(k)J2(kR), (5)

where J2(x) is the 2nd-order Bessel function.
To obtain the theoretical template of ∆Σ(R) for a given

cosmological model within the flat ΛCDM framework, we
use Dark Emulator, developed in Ref. [41], that en-
ables accurate and fast computations of halo statistical
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quantities; the halo mass function, the halo-matter cross-
correlation function and the halo-auto correlation func-
tion as a function of redshift, halo masses, and separa-
tions for an input cosmological model. As demonstrated
in Ref. [41], the emulator outputs the predictions to bet-
ter than a few percent in the fractional amplitude over
scales of separations we are interested in.

However, the emulator does not take into account the
effects of baryonic physics, and this is a limitation we
should keep in mind. Nevertheless we do not think this
limitation causes a catastrophic failure of our approach
due to the following reasons. The baryonic physics is lo-
cal in the sense that it affects the matter distribution at
scales smaller than a maximum scale, denoted as R∗. For
example, even if we consider a violent effect of the AGN
feedbacks, it would affect the mass distribution around
halos up to a few Mpc at maximum. As nicely discussed
in Refs. [48, 49], we can safely consider that the bary-
onic effect causes a “redistribution” of matter at r . R∗
around galaxies, and does not alter the mass distribution
at r & R∗ (r is the three-dimensional radius from the cen-
ter of galaxy). In other words, even in the presence of
the baryonic physics, the mass conservation at r . R∗
holds. Keeping this in mind, we can say that Dark Em-
ulator, as designed, can accurately model the matter
distribution at r & R∗ around the host halos of galaxies,
and also satisfies the mass conservation to within r ' R∗,
even though Dark Emulator ceases to accurately pre-
dict the mass profile at r . R∗.

Based on the above consideration, we can rewrite the
lensing profile (Eq. 5) as

∆Σ(R) = 〈Σgm〉(< R)− Σgm(R)

=
M(< R∗)

πR2
+

2

R2

∫ R

R∗

R′dR′ Σgm(R′)− Σgm(R).

(6)

In the second line on the r.h.s., we used the relation

M(< R∗) ≡
∫ R∗

0
2πR′dR′ Σgm(R′), where M(< R∗) is

the mass interior of a circular aperture of radius R∗. The
second term is the contribution over the range of [R∗, R]
to the average mass density. As long as we focus on the
lensing profiles at R ≥ R∗, Dark Emulator can accu-
rately predict the lensing profile, including the interior
mass at the aperture of R ' R∗. On the other hand, we
need to introduce various nuisance parameters to model
the lensing “profile” at R ≤ R∗, if the information is in-
cluded, and then marginalize over the parameters when
estimating the interior mass M(< R∗) and performing
cosmology inference.

Another clustering observable we use is the projected
auto-correlation function for spectroscopic galaxy sam-
ple that is the same sample used as lens (foreground)
galaxies in the galaxy-galaxy weak lensing measurement.
The projected correlation function is defined by a line-of-
sight projection of the three-dimensional auto-correlation

function of galaxies, ξgg(r), as

wp(R) ≡ 2

∫ πmax

0

dΠ ξgg

(√
R2 + Π2

)
, (7)

where πmax is the length of the line-of-sight projection.
Note that the projected correlation function has the unit
of [h−1Mpc]. Throughout this paper, unless explicitly
stated, we employ πmax = 100 h−1Mpc as our default
choice. Also notice that ξgg(r) is given in terms of the
auto-power spectrum of the galaxy number density field,
Pgg, as

ξgg(r) =

∫ ∞
0

k2dk

2π2
Pgg(k)j0(kr). (8)

The projected correlation function is not sensitive to the
redshift-space distortion (RSD) effect due to peculiar ve-
locities of galaxies, if a sufficiently large projection length
(πmax) is taken [see Fig. 6 in Ref. 50]. The RSD effect it-
self is a useful cosmological probe, but its use requires an
accurate modeling [44, 51, 52], which is not straightfor-
ward. Hence, the projected correlation function makes it
somewhat easier to compare with theory in a cosmolog-
ical analysis. In the following, we ignore the RSD effect
in most cases of our cosmology challenges, but will sepa-
rately discuss the impact of the RSD effect in parameter
estimation.,

B. Theoretical template: Dark Emulator
implementation of halo model

In this section we describe details of the halo model
implementation to make model predictions for the ob-
servables ∆Σ(R) and wp(R). As can be found around
Eqs. (5) and (7), we need the real-space cross-power spec-
trum of galaxies and matter Pgm(k; z), and the real-space
auto-power spectrum of galaxies, Pgg(k; z), as a function
of cosmological models to compute the observables.

1. Halo Occupation Distribution

In the halo model we assume that all matter is asso-
ciated with halos, and the correlation function of matter
is given by the contributions from pairs of matter in the
same halo and those in two different halos, which are
referred to as the 1- and 2-halo terms, respectively. To
connect halos to galaxies in a given sample, we employ
the halo occupation distribution [HOD 35, 37, 39]. The
HOD model gives the mean number of central and satel-
lite galaxies in halos of mass M as

〈N〉(M) = 〈Nc〉(M) + 〈Ns〉(M), (9)

where 〈 〉(M) denotes the average of a quantity for halos
of mass M .
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We employ the mean HOD for central galaxies, given
as

〈Nc〉(M) =
1

2

[
1 + erf

(
logM − logMmin

σlogM

)]
, (10)

where erf(x) is the error function and Mmin and σlogM

are model parameters.

For the mean HOD of satellite galaxies, we employ the
following form:

〈Ns〉(M) ≡ 〈Nc〉(M)λs(M) = 〈Nc〉(M)

(
M − κMmin

M1

)α
,

(11)

where κ,M1 and α are model parameters, and we have in-
troduced the notation λs(M) = [(M−κMmin)/M1]α. For
our default prescription we assume that satellite galaxies
reside only in a halo that already hosts a central galaxy.
This means Nc = 1 for such halos. Then we assume
that the number of satellite galaxies in halos of mass
M follows the Poisson distribution with mean λs(M);
Prob(Ns) = (λs)

Ns exp(−λs)/Ns! for halos that host a
central galaxy inside, and Prob(Ns) = δKNs,0

for halos that

do not host a central galaxy, where δKij is the Kronecker
delta function. Under these assumptions, the mean num-
ber of galaxy pairs living in the same halo with mass M ,
which is relevant for the 1-halo term, can be computed
as

〈N(N − 1)〉 = 〈Nc〉 〈N(N − 1)〉|Nc=1

+ (1− 〈Nc〉) 〈N(N − 1)〉|Nc=0

= 〈Nc〉 [〈(Nc +Ns)(Nc +Ns − 1)〉]Nc=1

= 〈Nc〉
[〈
N2

s

〉
+ 〈Ns〉

]
= 〈Nc〉

[
2λs + λ2

s

]
. (12)

where we have used the fact N = 0 for halos which have
no central galaxy for our default prescription.

We have 5 model parameters, {Mmin, σlogM , κ,M1, α},
to characterize the central and satellite HODs in total for
each galaxy sample for a given cosmological model.

Once the HOD model is given, the mean number den-
sity of galaxies in a sample is given as

n̄g =

∫
dM

dnh

dM
[〈Nc〉(M) + 〈Ns〉(M)] , (13)

where dnh/dM is the halo mass function which gives the
mean number density of halos in the mass range [M,M+
dM ]. In the following we use “blue” fonts to denote a
quantity that can be supplied by Dark Emulator. In
the above case we use Dark Emulator to compute the
halo mass function for wCDM cosmology, while we input
the HOD model, as described, to compute the galaxy
number density.
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FIG. 1. Break down of different contributions to the galaxy
weak lensing profile (∆Σ(R); upper panel) and the projected
correlation function of galaxies (wp; lower) for the SDSS
LOWZ-like galaxies at z = 0.251, which are computed using
Dark Emulator and our model ingredients of the galaxy-
halo connection for the Planck cosmology. For illustrative
purpose we multiply each observable by R so that their dy-
namic range (y-axis) becomes narrower. Upper panel: The
dashed line shows a contribution arising from the cross-
correlation of central galaxies with the surrounding matter
distribution, while the dot-dashed line denotes a contribution
from the cross-correlation of satellite galaxies with matter.
For comparison, we also show how a possible off-centering
of central galaxies affects the lensing profile, although we do
not include this effect in the theoretical templates. Here, as
a working example, we consider the off-centering parameters
poff = 0.3 and Roff = 0.4 irrespective of halo mass, where poff

models a fraction of off-centered central galaxies in halos of
mass M , while R is the off-centering radius relative to the
scale radius of NFW profile of halos. The upper solid lines
is the total power. Lower: The similar break down of differ-
ent contributions to the projected correlation function of the
galaxies, for the same model in the upper panel.

2. Galaxy-galaxy weak lensing profile

As we described above, the galaxy-galaxy weak lensing
arises from the cross-correlation of (spectroscopic) lens-
ing galaxies with the surrounding matter distribution in
large-scale structure, ξgm(r; zl). Hence we need to model
ξgm(r) as a function of the parameters of galaxy-halo
connection and cosmological parameters.

Since the Fourier space gives a somewhat simpler form
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of the expression, we mainly write down the power spec-
trum that is the Fourier-transformed counterpart of the
two-point correlation function, here ξgm. Under the halo
model approach, the cross-power spectrum of galaxies
and matter is given as

Pgm(k) =
1

n̄g

∫
dM

dnh

dM
[〈Nc〉(M) + 〈Ns〉(M)ũs(k;M, z)]

× Phm(k), (14)

where Phm(k) is the halo-matter cross-power spectrum
that can be computed by Dark Emulator as a func-
tion of cosmological model within wCDM cosmologies.
The quantity ũs(k;M) is the Fourier transform of the
averaged radial profile of satellite galaxies in host ha-
los of M at redshift z, which we need to specify. Note
that all the quantities in the above equation are evalu-
ated at the lens redshift zl, but we omit to denote in
the argument of each function for notational simplicity.
Dark Emulator was built to calibrate the halo-matter
cross-correlation by measuring the averaged mass profile
around halos with mass M in N -body simulation outputs
[41]. By construction, the halo-matter cross-correlation
satisfies the mass conservation around halos. We also
note that Dark Emulator already includes both the
1- and 2-halo term contributions in Phm, which corre-
spond to the cross-correlations of halos with matter in
the same halo and the surrounding matter outside the
halo, respectively.

More exactly speaking, Dark Emulator outputs
ξhm(r;M) for an input set of parameters (halo mass, sep-
aration and cosmological parameters) that is the Fourier
transform of Phm(k;M). In order to obtain ξgm or ∆Σ
for the assumed model we extensively use the publicly-
available FFTLog[53] code to perform the Hankel trans-
forms when going back and forth between real- and
Fourier-space (see Eqs. 4 and 5).

For the radial profile of satellite galaxies, we as-
sume that satellite galaxies follow a Navarro-Frenk-White
(NFW) profile [54] that is an approximated model of the
averaged dark matter profile in halos. To compute the
NFW profile as a function of halo mass, redshift and cos-
mological model, we need to specify the scaling relation
of mass concentration with halo mass in the halo mat-
ter profile. For this we employ the fitting formula given
in Ref. [55]; more exactly, we use the publicly-available
python code, “Colossus”[56] [57], to compute the con-
centration parameter for a given set of parameters (halo
mass, redshift and cosmological parameters).

As for the default model of the galaxy-halo connection,
we consider neither the off-centering effect nor the incom-
pleteness effect of galaxies, where the latter describes a
possibility that some fraction of even very massive ha-
los might not host a SDSS-like galaxy due to an incom-
plete selection after the specific color and magnitude cuts

[25, for details of the model]. Rather than introduc-
ing additional nuisance parameters to model these ef-
fects, we employ a minimum halo model as our baseline
model. However, we use different types of mock cata-
logs of SDSS-like galaxies including the off-centering ef-
fects and the incompleteness effect, and then will use the
mock catalogs to validate and assess the performance of
the baseline method. If our baseline model can recover
the underlying cosmological parameters, we claim that
the method is validated. If the method shows any failure
to recover the cosmological parameters, we will start to
introduce more parameters. However, if the cosmological
constraints turn to be sensitive to such details of a treat-
ment of galaxies inside the halo, this is a sign of the failure
or limitation of the halo model based method, because
such a small-scale distribution of galaxies is very diffi-
cult to accurately model due to complexities of physical
processes inherent in formation and evolution of galax-
ies. Hence, rather than including such model parameters,
we employ the minimum halo model to assess its perfor-
mance.

The upper panel of Fig. 1 shows how different terms of
Pgm contributes to the ∆Σ profile for the SDSS-like galax-
ies at z = 0.251 as we will describe in more detail. Even
though satellite galaxies tend to reside in massive halos,
all the curves have a similar shape (R-dependence) in
large R bins, R & 10 h−1Mpc, for a fixed cosmology. All
the small-scale physics involved in the galaxy-halo con-
nection affects ∆Σ at R . 10 h−1Mpc. Note that, due
to the non-local nature of ∆Σ, the small-scale physics af-
fects ∆Σ up to relatively large scales, compared to a virial
radius of massive halos. Also importantly, the integrated
lensing signal up to a few Mpc scales gives an estimate of
the average halo mass, which has a close tie to the large-
scale amplitudes of ∆Σ and wp via the scaling relation of
halo bias with halo mass (see below). For comparison,
the figure also shows the impact of off-centering effects
of central galaxies on ∆Σ, assuming that some fraction of
central galaxies might be off-set from the true halo cen-
ter as a result of the assembly history of galaxies in their
host halos [58, 59].

3. Projected correlation function of galaxies

To model wp we need to model the real-space corre-
lation function of galaxies, ξgg, or the Fourier transform
Pgg for an input set of parameters. The auto-power spec-
trum of galaxies in a sample is decomposed into the two
contributions, the 1- and 2-halo terms, and those are
given within the halo model framework as

Pgg(k) ≡ P 1h
gg (k) + P 2h

gg (k) (15)

with
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P 1h
gg (k) =

1

n̄2
g

∫
dM

dnh

dM
〈Nc〉(M)

[
2λs(M)ũs(k;M) + λs(M)2ũs(k;M)2

]
,

P 2h
gg (k) =

1

n̄2
g

[∫
dM

dnh

dM
〈Nc〉(M) {1 + λs(M)ũs(k;M)}

]
×
[∫

dM ′
dnh

dM ′
〈Nc〉(M ′) {1 + λs(M

′)ũs(k;M ′)}
]
Phh(k;M,M ′), (16)

where Phh(k;M,M ′) is the power spectrum between two
halo samples with masses M and M ′. Dark Emula-
tor outputs the real-space correlation function of halos,
ξhh(r;M,M ′), that is the Fourier transform of Phh. Simi-
larly to the case of ∆Σ, we use the FFTLog code to perform
the Fourier transform to obtain the prediction of ξgg(r)
(see Eq. 8) and then perform the line-of-sight integral to
obtain the prediction of wp(R) (see Eq. 7). We note that,
strictly speaking, our standard halo model implementa-
tion of the 1-halo term behaves as a shot noise like term
of k0(= const.) at the limit of k → 0, and this gives a
subtle violation of the mass and momentum conservation
[32]. One could modify the halo model at very small k to
enforce the conservation laws, as done in Ref. [60], but we
found that our treatment, practically, gives a sufficiently
accurate model prediction over scales of separations that
we are interested in, for the SDSS-like galaxies [51] [also
see 61, for the similar discussion]. As given by Eq. (7),
we employ πmax = 100 h−1Mpc, as our default choice to
integrate ξgg(r =

√
R2 + π2) to obtain the model predic-

tion for wp(R).

The lower panel of Fig. 1 shows different contributions
in the projected correlation function wp for the Planck
cosmology, assuming the same model as in the upper
panel. As can be found from Eq. (16), the 1-halo term
arises from the central-satellite and satellite-satellite cor-
relations, while the 2-halo term is from the correlations
of central-central, central-satellite and satellite-satellite
galaxies in different halos, respectively. The figure clearly
shows that all the contributions to the 1-halo term are
confined to small scales, at R . a few Mpc, a virial ra-
dius of massive halos, reflecting the local nature of wp

in contrast to ∆Σ. All the different contributions to the
2-halo term have a similar shape (R-dependence); the
different terms differ from each other only by a mul-
tiplicative factor for a fixed cosmology. This means
that the shape of the 2-halo term is not sensitive to de-
tails of the galaxy-halo connection. The features around
R ' 90 h−1Mpc are the BAO features, which appear at
smaller scales than the BAO scale of 100 h−1Mpc in the
three-dimensional correlation function, due to the line-
of-sight projection. However, we note that we will not
include the BAO information in the parameter estima-
tion in the following; we will use the wp information up
to R ' 30 h−1Mpc as our default choice.

C. Joint probes cosmology: a mitigation method of
galaxy bias uncertainty

For convenience of our discussion let us define the
cross-correlation coefficient function for halo correlation
function:

rhm(r) ≡ ξhm(r)

[ξhh(r)ξmm(r)]1/2
. (17)

As shown in Fig. 31 of Ref. [41], Dark Emulator pre-
dicts rhm ' 1 on r & 10 h−1Mpc, the scale greater
than a typical size of massive halos, and rhm is close
to unity within 5% or so even at the intermediate scales
a few Mpc < r . 10 h−1Mpc. As stressed in our com-
panion paper [26], the real-space observables have an ad-
vantage that all variants due to the galaxy-halo connec-
tion are confined to small scales, r . 10 h−1Mpc, and the
cross-correlation function on large scales satisfy rhm ' 1
[also see 62, for the similar discussion]. This is not nec-
essarily true in Fourier space, because the variations on
small scales become extended in Fourier space due to the
nature of Fourier transform. The simplest example is the
shot noise; the shot noise affects the real-space correla-
tions at zero separation, while it behaves like a white
noise and affects the power spectrum over all scales (k
bins).

It is also constructive to discuss an asymptotic be-
havior of the halo correlation functions, ξgm and ξgg, on
large scales. At scales much greater than the nonlinear
scale, r � R∗, the galaxy-matter cross correlation has an
asymptotic behavior given as

ξgm(r) −−−−→
r�R∗

1

n̄g

∫
dM

dnh

dM
〈Ng〉(M)ξhm(r;M)

' beffξmm(r), (18)

where we have used ũs(k;M) → 1 for k � 1/R∗, and
we defined the effective bias parameter, at a sufficiently
large separation satisfying r � R∗, as

beff ≡
1

n̄gξmm(r)

∫
dM

dnh

dM
〈Ng〉 ξhm(r;M). (19)

In addition, as can be found from Eq. (3), ∆Σ, which has
a dimension of [hM�Mpc−2], has an additional depen-
dence on ρ̄m0

∆Σ ∝ ρ̄m0ξgm ∝ Ωmbeffξmm. (20)
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FIG. 2. Dependences of ∆Σ and wp on cosmological parame-
ters, σ8 (blue lines) and Ωm (red), computed using the Dark
Emulator based halo model. Here we consider the HOD
parameters for the LOWZ sample at z = 0.251. Here we
consider fractional changes of σ2

8 (not σ8) or Ωm by ±5 % or
±10 %, respectively, where the other parameters are fixed to
their fiducial values. The solid and dashed, respective lines
show the fractional changes in ∆Σ or wp relative to that for
the fiducial model when σ2

8 or Ωm is changed to a positive or
negative side from its fiducial value. The error bars around
unity denote 1σ statistical errors that are computed from the
diagonal terms of the covariance matrix expected for the SDSS
and HSC-Y1 data, although the neighboring bins are highly
correlated with each other.

Note that the dependence of h is not relevant because
all the quantities are measured in units where the depen-
dence of h is factorized out.

Similarly the auto-correlation function of galaxies is
found to have an asymptotic behavior at the limit of large
scales, r � R∗, as

ξgg(r) −−−−→
r�R∗

1

n̄2
g

[∫
dM

dnh

dM
〈Ng〉(M)

]
×
[∫

dM ′
dnh

dM ′
〈Ng〉(M ′)

]
ξhh(r;M,M ′)

' b2effξmm(r). (21)

This is not an exact relation, but we found that the
relation rgg ≡ ξgm/[ξggξmm]1/2 ' 1 holds for scales of
r � R∗, as shown in Fig. 32 of Ref. [41]. Thus the com-

bination of ξgm and ξgg, which are inferred from ∆Σ and
wp, respectively, can be used to infer the underlying mat-
ter correlation function ξmm, and in turn we can use it
to extract cosmological information. Furthermore, as im-
plied from Eq. (6), an amplitude of ∆Σ at scales around
a transition scale between the 1- and 2-halo terms gives
an estimate of the average mass of halos hosting galaxies:

∆Σgm(R)|R'a few Mpc → M̄h (22)

In turn this can put a strong constraint on the halo bias,
beff , via the scaling relation of halo bias with halo mass
(or the dependence of ξhm and ξhh amplitudes on halo
mass). Hence, combining the small- and large-scale infor-
mation of ∆Σ with wp helps break degeneracies between
cosmological parameters and the galaxy bias, and then
gives useful constraints on cosmological parameters. This
is the basic picture of how the joint probes cosmology
using ∆Σ and wp can constrain cosmological parameters.
However, if the scaling relation of the large-scale galaxy
bias amplitude with the average halo mass is broken, this
method does not work. This would be the case for the
assembly bias effect, where the galaxy bias depends on
secondary parameter(s) related to the assembly history
of host halos, in addition to halo mass.

In Fig. 2, we study how ∆Σ and wp depend on the
cosmological parameters, Ωm and σ8, because large-scale
structure probes are most sensitive to these parameters.
Here we consider the expected signals of ∆Σ and wp for
the SDSS LOWZ-like galaxies at z = 0.251 (as we will
describe in detail in Section III B) which are computed
using Dark Emulator based on the halo model. We
note that, due to the non-local nature of ∆Σ, the lensing
profile at a particular scale, say R0, is sensitive to the
matter-galaxy cross-correlation at r ∼ R0/2. Note that
we employ Rcut = 2 and 3 h−1Mpc for the scale cuts of
∆Σ and wp as our default choice, respectively, and will
use the information of ∆Σ and wp at scales greater than
the scale cuts for the cosmology challenges.

Let us first consider the dependence of σ8. There are
two competing effects in the change of our target observ-
ables originating from that of σ8 for models with a fixed
Ωm. First, an increase of σ8 boosts the amplitude of
ξmm by definition. Second, it leads to a decrease of halo
bias (beff) for massive halos hosting SDSS-like galaxies
(∼ 1013h−1M�), because a model with higher σ8 leads
to more evolved large-scale structure at an observed red-
shift, thus the abundance of massive halos gets increased
at the redshift, and such halos become less biased trac-
ers, resulting in a lowered bias amplitude compared to
that for the fiducial model. For ∆Σ, the first effect is
more significant; an increase of σ8 leads to an increase of
the amplitude of ∆Σ over all the scales we consider. For
wp, these competing effects almost cancel out on large
scales, R & a few Mpc in the 2-halo term, and the in-
crease of σ8 does not largely change the amplitude on
the large scales. Nevertheless we should emphasize that
the change of σ8 causes a scale-dependent modification
in these observables, especially wp, in contrast to the lin-
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FIG. 3. Dependence of ∆Σ and wp on changes to HOD parameters can be seen in the top and the bottom panels, respectively.
Here the fiducial HOD parameters are chosen to resemble the SDSS LOWZ-like galaxy sample at z = 0.251 for the Planck
cosmology. When one HOD parameter is changed, the other parameters are fixed to their fiducial values. Solid line shows the
result for an increase (positive-side change) of each HOD parameter from its fiducial value, while dashed line is the result for
the decrease. From light- to dark-color lines show the results for the fractional change of each HOD parameter by ±20 % and
±40 %, respectively. The left panel shows the dependences of the central HOD parameters, Mmin and σlogM , while the right
panel shows the results for the satellite HOD parameters, M1, κ and α. The error bars are the same in the previous figure.

ear theory that predicts a constant (scale-independent)
shift in the ratio at these large scales (also see Figure 6
in [26] for the similar discussion). We checked that the
scale-dependent changes are from a combination of the
effects of σ8 changes on matter clustering (ξmm) and the
halo bias function (see Fig. 19 in Appendix A). These
effects are automatically built in the Dark Emulator
predictions. Also note that the positive- and negative-
side changes of σ8 cause an asymmetric change in wp at
large scales. On the other hand, the 1-halo term ampli-
tude of wp is boosted because the increase of σ8 leads to
the increased abundance of massive halos, more satellite
galaxies reside in such halos, and their correlations add.
Thus the change of σ8 leads to characteristic modifica-
tions of the amplitude and scale dependence in ∆Σ and
wp. The notable features around R ∼ 90 h−1Mpc are
due to the effect on BAO features [63], but this is not
relevant for our results because we use the information
of ∆Σ and wp on scales up to 30 h−1Mpc for the fidu-
cial choice, so do not include the BAO information in
parameter estimation.

Next we discuss the results for the change of Ωm, for
a fixed σ8. First, an increase of Ωm leads to a faster
evolution of clustering growth for models with a fixed σ8

(the fixed normalization today), so leads to the smaller
amplitude of ξmm at this redshift (z = 0.251). However,
recalling that ∆Σ ∝ Ωm 〈γ+〉 ∼ Ωmδrevfourrmm, an in-
crease of Ωm leads to higher amplitudes in ∆Σ due to
the prefactor, while it leads to smaller amplitudes in wp.
In addition, the change of Ωm causes a scale-dependent
modification in both ∆Σ and wp.

In Fig. 3 we study how a change in each of the HOD
parameters alters ∆Σ and wp for the Planck cosmology.
Here we employ the same HOD parameters for the LOWZ
galaxies as in Fig. 2, and vary only one HOD parameter
for each result, where other parameters are fixed to their
fiducial values. The figure shows that, when each of the
central HOD parameters is varied, it causes a significant
change over all the scales including both the 1- and 2-
halo terms, because the change in the parameter leads
to a change in the mean halo mass. More precisely, an
increase in Mmin or a decrease in σlogM leads to an in-
crease in the mean halo mass, leading to the increased
amplitudes in ∆Σ and wp. The fractional changes in ∆Σ
and wp at large separations in the 2-halo term regime
are roughly given as δwp/wp ' 2δ∆Σ/∆Σ, reflecting the
facts ξgg ' b2effξmm and ξgm ' beffξmm at the large scale
limit as we discussed above. In addition, it is clear that
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the 1-halo term amplitude of ∆Σ is sensitive to the cen-
tral HOD parameters, physically to the mean mass of
halos hosting the galaxies in a sample. Hence, combining
the 2-halo term amplitudes of ∆Σ and wp allows one to
break degeneracies between the bias parameter and other
parameters, and then adding the 1-halo term informa-
tion of ∆Σ can constrain the HOD parameters and then
tighten the determination of the large-scale bias. The
satellite HOD parameters change the relative contribu-
tion of massive halos to ∆Σ and wp as satellite galaxies
preferentially reside in massive halos. In particular, the
parameter M1, which determines the amplitude of the
satellite HOD, causes a decent change in the large-scale
amplitudes of ∆Σ and wp. The effects of other parame-
ters are relatively mild.

Comparing Figs. 2 and 3 manifests that the cosmo-
logical parameters and the HOD parameters lead to dif-
ferent changes in ∆Σ and wp. Hence combining these
observables in the 1- and 2-halo term regimes allows for
an efficient determination of the cosmological parame-
ters, by breaking the parameter degeneracies. These fig-
ures nicely illustrate the complementarity of ∆Σ and wp,
which is the main focus of this paper.

D. Observational effects: geometrical cosmology
dependence, photo-z, multiplicative shear bias, and

RSD

In this section we discuss the four observational effects,
i.e. the geometrical dependence of the observables on
cosmology, photometric redshift errors of source galaxies,
multiplicative shear bias, and redshift-space distortion
effect. When comparing the measured signals with the
model templates, we need to include these effects in the
model templates, and here we describe how to do this.

1. Geometrical cosmology dependence

The observables we consider in this paper are ∆Σ(R)
and wp(R), which are different from other possible
choices of the lensing and clustering observables such as
γ+(θ) and wp(θ). Measurements of ∆Σ and wp require
an observer to assume a reference cosmology to perform
a correction of the lensing efficiency Σcr(zl, zs) (see Eq. 1)
as well as the conversion of angular scales (θ) and redshift
differences to the projected separation (R) and radial sep-
aration (π). However, the assumed cosmology generally
differs from the true underlying cosmology, and this de-
pendence needs to be taken into account. We use the
method in Ref. [64] to include this effect.

For a flat-geometry ΛCDM model, the relevant param-
eter is only Ωm (or Ωde that is the density parameter of
dark energy), because it affects the angular and radial
distances (the lensing efficiency also depends on the com-
bination of angular diameter distances and the overall
factor of Ωm). Note that the dependence on h is taken

out from the observables because all the quantities are
measured in units of h−1Mpc or hM� Mpc−2 for wp and
∆Σ, respectively. The Ωm dependences of ∆Σ and wp

through this effect turn out to be very small, but add a
slight sensitivity of Ωm in the theoretical templates.

2. Photometric redshift errors

Photometric redshift errors of source galaxies are one
of the most serious systematic errors in the weak lens-
ing measurements. An accuracy of photometric redshifts
(hereafter often simply photo-z), delivered from a set of
broad-band filters (grizy in the HSC data), is limited,
and can never be perfect, compared to spectroscopic red-
shifts, although the photo-z accuracies are calibrated us-
ing the COSMOS catalog [65]. For lens redshift we as-
sume spectroscopic redshifts as we will focus on the spec-
troscopic SDSS-like galaxies. Here we discuss how we can
treat a possible uncertainty of source redshifts in the ob-
servable ∆Σ. In this paper we use the method proposed
in Oguri and Takada [21]. In this method we use a “sin-
gle” population of source galaxies, selected based on the
photo-z, and then use the relative strengths of ∆Σ for
multiple lens samples at different redshifts to calibrate
the photo-z uncertainty of source galaxies in a statistical
sense.

In the presence of a redshift distribution of source
galaxies, an estimator of ∆Σ(R) from the measured el-
lipticity component of each source galaxy is given, e.g.
by Eq. (11) in Ref. [24], as

∆̂Σ(R) =
1

2R

∑
l,s wls

[〈
Σ−1

cr

〉
ls

]−1
els+∑

l,s wls
(23)

where R is the “responsivity” that is needed to con-
vert the measured galaxy ellipticity, defined in terms of
(a2−b2)/(a2 +b2) (a, b is the major, minor axes when the
galaxy shape is approximated by an ellipse), to the lens-
ing shear, defined in terms of (a− b)/(a+ b) [23, 43, 66];
es+ is the tangential ellipticity component of the s-th
source galaxy with respect to the l-th lensing galaxy; wls

is the weight (see below). The summation
∑

l,s runs over
all pairs of source and lens galaxies that are in a given
bin of projected separation, R = χ(zl)∆θ. The measured
lensing signal is for the effective redshift of lens galaxies,
z̄l.

In a case that we have only the posterior distribution
of photometric redshift for each source galaxy, the “ef-
fective” lensing efficiency needs to be estimated as

〈
Σ−1

cr

〉
ls
≡
∫ ∞

0

dzs Σ−1
cr (zl, zs)p(zs), (24)

where p(zs) is the posterior distribution of redshift for the
s-th source galaxy that satisfies the normalization condi-
tion

∫∞
0

dzs p(zs) = 1. Note that we set Σ−1
cr (zl, zs) = 0

when zs < zl. We employ the weight wls, motivated by
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the inverse-variance weight, to have a higher signal-to-
noise ratio for the weak lensing measurement [67–69]:

wls =

[〈
Σ−1

cr

〉
(l,s)

]2
e2

rms + σ2
e

(25)

where erms is the rms intrinsic ellipticity per component
and σe is the measurement error of ellipticity for the s-th
source galaxy.

Thus, in an estimator of ∆Σ, the quantities
〈
Σ−1

cr

〉
ls

and wls depend on photometric redshifts of source galax-
ies via p(zs) for individual source galaxies. If the esti-
mated redshift distribution of source galaxies is system-
atically offset from the underlying true distribution, the
measured ∆Σ has a systematic bias (offset) from the true
one (even if the assumed cosmological model for the ∆Σ
estimation is the true cosmology). Following the method
in Refs. [21, 70], we take into account the systematic off-
set by introducing additional nuisance parameter, ∆zph,
to shift the posterior distribution of source redshift for
all source galaxies as

p(zs) −→ p(zs + ∆zph). (26)

The above method is a statistical method to correct for a
possible residual difference between the true redshift dis-
tribution of source galaxy and the assumed distribution.
Hence the parameter ∆zph is designed to model a change
in
〈
Σ−1

cr

〉
due to the difference, and does not necessarily

model a change in the mean and/or shape of source red-
shift distribution. This can be found from the following
simple example. Consider the case that the lens galaxies
are at a single redshift of zl = 0.5 and the photo-z poste-
rior is approximated by a Gaussian with mean zs = 1.3
and σ(zs) = 0.1. Then we compute the effective source
redshift zs,eff that provides the same Σ−1

cr as the average
〈Σ−1

cr 〉ls. However, if the true photo-z posterior distribu-
tion is given by the Gaussian distribution with the same
mean, but wider width σ(zs) = 0.2, we find the effective
redshift is changed by ∆zs,eff = −0.025, which is smaller
than the prior width σ(∆zph) = 0.04 or 0.1, used in our
cosmology analysis. Thus even if the shift in Eq. (26) can-
not model a change in the width or shape of the photo-z
posterior distribution, the effect can be safely captured
by a change in

〈
Σ−1

cr

〉
, therefore the parameter ∆zph, as

long as the change is covered by the prior width of ∆zph.
With this shift in the photo-z posterior, we can re-

peat the computations of
〈
Σ−1

cr

〉
ls

and wls for the pairs
of source and lens galaxies in actual SDSS and HSC-Y1
datasets. We found that the lensing profile after shifting
the source redshift distribution is well approximated by
the following multiplicative form as

∆̂Σ(R; z̄l,∆zph) ' fph(R; z̄l,∆zph)∆̂Σ(R; z̄l,∆zph = 0),
(27)

where fph(R; z̄l,∆zph) is the multiplicative factor to
model the effect of systematic photo-z error, and z̄l is the

mean of lens redshifts. Here we stress, by notation “̂”,
that the above correction is made for the measured ∆Σ.
By using a single population of source galaxies, we notice
that the shift ∆zph leads to changes in the amplitudes of
∆Σ for each of the multiple lens samples (LOWZ and
the two subsamples of CMASS, divided into two redshift
bins) depending on the lens redshift (z̄l). Conversely, we
can use the relative variations in the ∆Σ amplitudes at
different lens redshifts to calibrate out ∆zph, simultane-
ously with cosmological parameter estimation. This is a
self-calibration method of photo-z errors as proposed in
Oguri and Takada [21]. In the above equation, we explic-
itly include the R-dependence in the calibration factor,
which could arise because the shift could change relative
contributions of different lens-source pairs to the lens-
ing efficiency

〈
Σ−1

cr

〉
ls

. However, the R-dependence, al-
beit very weak, appears only for the highest-redshift lens
sample (CMASS2 in our sample, as we will define later).

For our method, we multiply the inverse of the calibra-
tion factor in Eq. (27) with the theoretical template of
∆Σ, rather than correcting for the measurement, for an
assumed ∆zph:

∆Σ(R)→ ∆Σ(R)/fph(R; ∆zph). (28)

We then include ∆zph as additional nuisance parameter
when carrying out the parameter inference. This is bet-
ter because we will use the same covariance matrix in
our parameter inference, which allows for apple-to-apple
comparison of the performance for different setups (be-
cause this method does not change the error bars of ∆Σ
in each R bin).

3. Multiplicative shear errors

An accurate weak lensing measurement requires an
exquisite, accurate characterization of individual galaxy
shapes. This is not straightforward [43], and an imper-
fect shape measurement leaves a residual systematic er-
ror in the weak lensing measurements. Systematic errors
in shape measurements are usually modeled by “multi-
plicative” and “additive” biases in the measured galaxy
ellipticities, given as γ → (1+m)γ+c, where m and c are
the multiplicative and additive bias parameters, respec-
tively [71]. Since the spatial positions of lensing galaxies
on the sky are considered random with respect to the po-
sitions of source galaxies, the galaxy-galaxy weak lensing
is not affected by the additive bias [43]. Hence, in the
presence of the multiplicative shear bias, we modify the
theoretical template as

∆Σ(R) −→ (1 +m)∆Σ(R;m = 0). (29)

By working on the single sample of source galaxies, we
can employ the single m parameter for all the lensing pro-
files at multiple lens redshifts. This is another advantage
of the method of Ref. [21]. This is a good approxima-
tion as long as source galaxies are well separated from
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lens redshifts; this is the case as long as we can ignore a
contamination of source galaxies into lens redshifts due
to photo-z errors. To make this method work, in actual
data, we will employ a conservative cut of source galaxy
redshifts to ensure that source galaxies are well separated
from lens redshifts [45].

4. Redshift-space distortion

To model the projected correlation function of galaxies,
we ignored the redshift-space distortion (RSD) effect that
is caused by peculiar velocities of galaxies. For our de-
fault choice of the projected length, πmax = 100 h−1Mpc,
however, the RSD effect is not negligible. We follow
the method proposed in Ref. [50]. We employ the lin-
ear Kaiser formula [72] to model the RSD effect. We
follow Eqs. (51)-(54) in Ref. [50] to model the redshift-
space two-point correlation function of galaxies using the
Kaiser RSD β factor, given by β ≡ (1/beff)d lnD/d ln a,
where beff is the effective linear bias for a sample of galax-
ies (see Eq. 19) and D is the linear growth factor. Then
we modify the theoretical template of wp as

wp(R)→ fRSD(R, πmax)wp(R;β = 0), (30)

where fRSD(R, πmax) is the correction multiplicative fac-
tor to account for the RSD effect. This factor depends
on the projected separation R and the projection length
πmax for an assumed cosmology. For our default choice
of πmax = 100 h−1Mpc, the linear Kaiser factor is a good
approximation to model the RSD effect on wp [also see
26].

III. N-BODY SIMULATIONS, DARK
EMULATOR, AND MOCK CATALOGS OF HSC

AND SDSS-LIKE GALAXIES

In this paper we use two types of mock catalogs
of SDSS- and HSC-like galaxies. First, we use high-
resolution N -body simulations, with periodic boundary
conditions, and the halo catalogs to generate the mock
catalogs of SDSS galaxies. We then measure ∆Σ and wp

from the mock catalogs to define the mock signals that
we use in cosmology challenges. Second, we also use the
mock catalogs of SDSS- and HSC-like galaxies built in
the light-cone simulations, including the simulated lens-
ing signals on the HSC-like source galaxies, and use those
catalogs to estimate the covariance matrix of the observ-
ables. These mocks are the same as those used in our
companion paper, Sugiyama et al. [26]. In this section,
we describe details of N -body simulations and the mock
catalogs.

TABLE I. The value of each cosmological parameter for
the fiducial Planck cosmology which we use in the follow-
ing cosmology challenges (we will study whether the method
can recover the true values within the credible interval).
The column, labeled as “supporting range”, gives the sup-
porting range of each parameter in Dark Emulator that
outputs the halo clustering quantities for a flat-geometry
wCDM model specified by a set of 6 cosmological parame-
ters {Ωde, ln

(
1010As

)
, ωb, ωc, ns, w} each of which should be

in the supporting range. Here σ8 and S8 ≡ σ8(Ωm/0.3)0.5 are
derived parameters, and the values in table are those for the
fiducial Planck cosmology.

Parameters fiducial value supporting range [min,max]
Ωde 0.6844 [0.54752, 0.82128]
ln
(
1010As

)
3.094 [2.4752, 3.7128]

ωb 0.02225 [0.0211375, 0.0233625]
ωc 0.1198 [0.10782, 0.13178]
ns 0.9645 [0.916275, 1.012725]
w −1 [−1.2,−0.8]
σ8 0.831 derived
S8 0.852 derived

A. N-body simulations and Dark Emulator

In this paper we extensively use Dark Emulator de-
veloped in Nishimichi et al. [41], which is a software pack-
age enabling fast, accurate computations of halo clus-
tering quantities for a given cosmological model. Here
we will briefly review Dark Emulator. They con-
structed an ensemble of cosmological of N -body simu-
lations, each of which was performed with 20483 parti-
cles for a box with 1 or 2 Gpc/h on a side length, for
101 cosmological models within the flat wCDM cosmolo-
gies. The wCDM cosmology is parametrized by 6 cosmo-
logical parameters, p = {ωb, ωc,Ωde, ln

(
1010As

)
, ns, w},

where ωb(≡ Ωbh
2) and ωc(≡ Ωch

2) are the physical den-
sity parameters of baryon and CDM, respectively, h is
the Hubble parameter, Ωde ≡ 1 − (ωb + ωc + ων)/h2 is
the density parameter of dark energy for a flat-geometry
universe, As and ns are the amplitude and tilt param-
eters of the primordial curvature power spectrum nor-
malized at kpivot = 0.05 Mpc−1, and w is the equa-
tion of state parameter for dark energy, respectively. For
the N -body simulations, they included the neutrino ef-
fect fixing the neutrino density parameter ων ≡ Ωνh

2 to
0.00064 corresponding to 0.06 eV for the total mass of
three neutrino species. They included the effect of mas-
sive neutrinos only in the initial linear power spectrum
[see 41, for details]. To carry out “cosmology challenges”
in the following, we employ the fiducial Planck cosmology
that is characterized by the parameter values in Table I.
We use the N -body simulation realizations of 1 h−1Gpc
box size for the fiducial Planck cosmology to construct
the mock catalogs for SDSS-like galaxies. The mass of
simulation particle for the fiducial Planck simulations is
m = 1.02 × 1010 h−1M�. In the following we use halos
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with mass greater than 1012 h−1M�, corresponding to
about 100 simulation particles.

For each N -body simulation realization (each redshift
output) for a given cosmological model, they constructed
a catalog of halos using Rockstar [73] that identifies
halos and subhalos based on clustering of N -body par-
ticles in phase space (position and velocity space). The
spherical overdensity mass, with respect to the halo cen-
ter that is defined from the maximum mass density,
M ≡ M200m = (4π/3)R3

200m × (200ρ̄m0), is used for def-
inition of halo mass, where R200m is the spherical halo
boundary radius within which the mean mass density is
200 times ρ̄m0. By combining the outputs of N -body
simulations and the halo catalogs at multiple redshifts in
the range z = [0, 1.48], they built an emulator, named as
Dark Emulator, which enables fast and accurate com-
putations of the halo mass function, halo-matter cross-
correlation, and halo auto-correlation as a function of
halo masses, redshift, separations and cosmological mod-
els. It was shown that Dark Emulator achieves a suf-
ficient accuracy for these statistical quantities for halos
of 1013M�, which is a typical mass of host halos of SDSS
galaxies, compared to the statistical measurement errors
of ∆Σ and wp expected from the HSC and SDSS data,
as shown in Fig. 31 of the paper. In summary, Dark
Emulator outputs

• dnh

dM (M ; z,p): the halo mass function for halos in
the mass range [M,M + dM ] at redshift z

• ξhm(r;M, z,p): the halo-matter cross-correlation
function for a sample of halos in the mass range
[M,M + dM ] at redshift z

• ξhh(r;M,M ′, z,p): the halo-halo auto-correlation
function for two samples of halos with masses
[M,M + dM ] and [M ′,M ′ + dM ′] at redshift z

for an input set of parameters, halo mass M (and M ′ for
the correlation function of two halo samples), redshift z,
and cosmological parameters p. In addition, the Dark
Emulator package outputs auxiliary quantities, based
on emulation, such as the linear halo bias (the large-scale
limit of the halo bias), the linear mass power spectrum,
the linear rms mass fluctuations of halo mass scale M
(σLm(M)), and σ8. The supporting range of each of cos-
mological parameters for Dark Emulator is given in
Table I. These ranges are sufficiently broad, e.g. to cover
the range of cosmological constraints from the current
state-of-the-art large-scale structure probe such as the
Subaru HSC cosmic shear results [4, 5]. In this paper
we will use Dark Emulator to perform MCMC analy-
ses of cosmological parameters by comparing the model
templates of ∆Σ and wp with the mock signals expected
from the SDSS and HSC data.

TABLE II. Specifications of the mock galaxy catalogs that
resemble the LOWZ and CMASS galaxies for the spectro-
scopic SDSS DR11 data. For the CMASS sample we consider
two subsamples divided into two redshift ranges. We give the
redshift range and the comoving volume for each sample, as-
suming 8300 deg2 for the area coverage. The column denoted
as “representative redshift” is a representative redshift of each
sample which we assume to represent the clustering observ-
ables for each sample (i.e. ignore redshift dependences of the
observables within the redshift bin). The lower columns, be-
low double lines, denote the HOD parameters used to build
the mock catalogs of each sample from N -body simulations
for the Planck cosmology. Note that Mmin and M1 are in
units of h−1M�.

LOWZ CMASS1 CMASS2
redshift range [0.15, 0.35] [0.47, 0.55] [0.55, 0.70]
representative redshift 0.251 0.484 0.617
volume [(h−1Gpc)3] 0.67 0.81 2.00

HOD parameters fiducial values
logMmin 13.62 13.94 14.19
σlogM 0.6915 0.7919 0.8860
κ 0.51 0.60 0.066
logM1 14.42 14.46 14.85
α 0.9168 1.192 0.9826

B. Mock catalogs for the SDSS-like galaxies for the
mock signals of ∆Σ and wp

1. Mock catalogs of SDSS LOWZ- and CMASS-like galaxies

We use the N -body simulation realizations and the
halo catalogs for the Planck cosmology to build mock cat-
alogs of galaxies that resemble spectroscopic galaxies in
the SDSS-III BOSS DR11 sample [74]. We consider three
galaxy samples in three redshift bins: “LOWZ” galaxies
in the redshift range z = [0.15, 0.30] and two subsample
of “CMASS” galaxies that are obtained from subdivision
of CMASS galaxies into two redshift bins, z = [0.47, 0.55]
and z = [0.55, 0.70]. Here we consider luminosity-limited
samples rather than flux-limited samples for these galax-
ies [see 45, for details] [also see 24, for the similar discus-
sion on the stellar-mass limited sample]. The luminosity-
limited sample is considered as a nearly volume-limited
sample in each redshift bin, and we expect that proper-
ties of galaxies do not strongly evolve within the redshift
bin, which is desired because we ignore the redshift evo-
lution of clustering observables within the redshift bin for
each sample. Table II summarizes characteristics of each
galaxy sample.

To build the mock catalogs for each galaxy sample,
we first perform a fitting of the HOD model predictions
to the projected correlation function wp that is actually
measured from the SDSS data for each sample, assuming
the Planck cosmology model, and then estimate the HOD
parameters for the best-fit model. Note, however, that
we here use the analytical halo model method used in
More et al. [25], and did not use the weak lensing profile
to further constrain the HOD parameters. The fiducial
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HOD model is the same as that described in Section II B.
Table II gives the best-fit HOD parameters for each sam-
ple.

We use the outputs of N -body simulations at z =
0.251, 0.484 and 0.617 as representative redshifts of the
galaxy samples to build the mock catalogs. We then
populate galaxies into halos of each realization for the
Planck cosmology, using the best-fit HOD parameters in
Table II [also see 44, 51, for details of the method]. For
our default mocks, we assume the NFW profile for the
radial distribution of satellite galaxies. The default mock
is the same as the default HOD model used in the the-
oretical template (see Section II B), so we will use the
default mock to perform a sanity check of whether we
can recover the true cosmological parameters, i.e. the
parameter values of Planck cosmology, in the parameter
estimation by comparing model templates with the mock
signals measured from the default mocks. In the default
mocks, we neither include the off-centering effect of cen-
tral galaxies, an incompleteness effect of central galaxies,
nor the redshift-space distortion effect. For other mocks,
we include these effects one by one, and then study the
impact of each effect on parameter estimation.

2. Mock signals of ∆Σ and wp

We generate the mock signals of ∆Σ and wp for the
SDSS-like galaxies, by measuring those clustering observ-
ables from each of the mock catalog realizations for the
Planck cosmology as we described in the preceding sec-
tion. In doing this, we take an advantage of the periodic
boundary conditions in each mock, which allows for a fast
computation of the clustering quantities using the FFT
algorithm. In addition, the measured clustering quanti-
ties are not affected by the window function thanks to
the periodic boundary conditions. We here describe de-
tails of the measurement method of ∆Σ and wp from each
mock catalog [44, 51].

For ∆Σ, we first project the matter (N -body) parti-
cles and galaxies along one axis of N -body cubic box
assuming that the axis is along the line-of-sight direc-
tion, and assign the matter particles and galaxies to the
46, 3322 two-dimensional grids using the Nearest Grid
Point (NGP) interpolation kernel. We then Fourier
transform the matter and galaxy density fields and take a

product of the two, Re
[
δ̃2D
g (k⊥)δ̃2D

m (−k⊥)
]
, where k⊥ is

the two-dimensional wavevector. We perform the inverse
2D Fourier transform to obtain

ξ2D
gm(R) =

∫
d2k⊥
(2π)2

eik⊥·R Re
[
δ̃2D
g (k⊥)δ̃2D

m (−k⊥)
]
,

(31)

where R is the two-dimensional separation vector per-
pendicular to the projection direction. We perform the
azimuthal angle average in an annulus of each radial bin
and then obtain the two-dimensional galaxy-matter cross
correlation function, ξ2D

gm(R).

We compute the projected surface mass density profile
around galaxies from ξ2D

gm(R), according to Eq. (3), as

Σgm(R) ' ρ̄m0ξ
2D
gm(R). (32)

The above surface mass density differs from Eq. (3) by a
constant additive term (spatially-homogeneous term), as
this is okay because such a constant term is irrelevant to
the weak lensing shear or the excess surface mass density
profile. To achieve higher spatial resolution, we mea-
sure Σgm(R) using the folding method of the FFT box
[75]. Following the method described in Refs. [76, 77],
we perform multiple measurements in which we fold the
box different times (we denote the folding times as nfold).
We have six measurements of nfold = {0, 1, 2, 3, 4, 5} for
each catalog, while the grid number 46, 3322 is kept un-
changed at each FFT step. It means that we have mea-
surements which have finer resolutions by up to a factor
of 25 = 32. We then combine the Σgm(R) signals ob-
tained by stitching the six measurements between the
five boundary scales {0.125, 0.25, 0.5, 0.1, 0.2}h−1 Mpc.
Then we compute the excess surface mass density profile,
∆Σ(R) from Σ(R), according to Eq. (1). In each mea-
surement, to achieve better statistics we perform three
measurements using the projection along x-, y- or z-axis
directions, and use the average of the three results as the
measured signal of ∆Σ for the realization.

For wp, we first assign the mock galaxies to the 10243

three-dimensional FFT grids using the NGP kernel. We
then Fourier transform the number density field, and take
its square amplitudes |δ̃g(k)|2 for each wavevector k. By
performing the inverse Fourier transform, we obtain the
estimate of the correlation function at each spatial sepa-
ration r = (R, π),

ξgg(r) =

∫
d3k

(2π)3
eik·r

∣∣∣δ̃g(k)
∣∣∣2 . (33)

Then we estimate the projected correlation function,
wp(R), from the azimuthal angle average in the circular
annulus of each radial bin R and the line-of-sight projec-
tion over π = [0, πmax], according to Eq. (7).

We use 19 and 22 independent realizations that are
built using the different seeds of the initial conditions
for ∆Σ and wp, respectively [41] [78]. We then measure
the average mock signals of ∆Σ and wp for each of the
galaxy samples (Table II). These correspond to 19 and
22 (h−1Gpc)3 volumes, respectively, that are larger than
the volume of any of the three redshift slices in Table II
by at least a factor of 11. Recalling that the overlapping
area of HSC-Y1 data and SDSS is only about 140 sq.
deg., compared to the SDSS area coverage of 8,300 sq.
deg., the effective volume for the ∆Σ measurement of
each sample is smaller than that of wp by a factor of 60.
Hence the simulation volume used for the mock signal
of ∆Σ is larger than that of the ∆Σ measurement by at
least a factor of 650. Thus by using the mock signals for
the larger volumes in cosmology challenges, we can min-
imize any unwanted bias in estimated parameters due to
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FIG. 4. Mock signals of ∆Σ and wp for the SDSS LOWZ, CMASS1 and CMASS2 galaxies at the representative redshifts,
z = 0.251, 0.484 and 0.617, respectively. The signals are computed from the mock catalogs of the galaxies that are constructed
by applying the HOD model (Table II) to halo catalogs in high-resolution N -body simulations (see text for details). The
error bars in each bin denote the statistical errors expected from the SDSS DR11 data (8,300 sq. deg.) and the HSC-Y1 data
(140 sq. deg.), which are the square root of the diagonal components of each covariance matrix that is estimated from the mock
catalogs of HSC and SDSS galaxies in the light-cone simulations. Here we multiply R by ∆Σ(R) and wp(R) for illustrative
purpose.

sample variance. In this way we can evaluate the per-
formance of each method, i.e. the ability to recover the
true cosmological parameters, without being affected by
the sample variance.

The data points in each panel of Fig. 4 show the mock
signals of ∆Σ and wp for each of the LOWZ, CMASS1
and CMASS2 samples (see Table II) for the Planck cos-
mology. The error bars in each bin are the statistical
errors expected for the SDSS and HSC-Y1 surveys as we
will explain below. The figure shows that a sufficient
number of the realizations of the mock catalogs lead to
well-converged, smooth signals in each bin, and the sta-
tistical scatters appear to be negligible. This allows us
to robustly evaluate the performance of the method for
cosmological parameter estimation.

C. Light-cone mock catalogs of HSC- and
SDSS-like galaxies for estimating the covariance

As we described in Section II A, ∆Σ is independent of
source redshift, and depends only on the galaxy-matter
cross correlation at lens redshift. Based on this fact, we
construct the best-available, accurate mock signal for ∆Σ
from the mock catalogs of SDSS-like galaxies as we de-
scribed above. However, the lensing effects on the same
population of source galaxies by foreground structures at

TABLE III. The cumulative signal-to-noise (S/N) ratios of
∆Σ, wp and the joint measurements for the LOWZ, CMASS1
and CMASS2 samples, which are estimated using the mock
signals and the covariance matrices. Here we define the “cu-
mulative” S/N over the ranges of R/[h−1 Mpc] = [3, 30] and
[2, 30] for ∆Σ and wp, respectively, which are our baseline
choices of the radial range (see text for details). For the “to-
tal” S/N of ∆Σ we take into account the cross-covariances
between ∆Σ’s of different galaxy samples. We assume that
the wp-signals for the three samples are independent from
each other, and ignore the cross-covariances between ∆Σ and
wp.

LOWZ CMASS1 CMASS2 total
∆Σ 8.64 8.86 8.48 14.7
wp 32.9 32.1 30.4 54.7

joint (∆Σ + wp) 34.0 33.3 31.6 56.6

different redshifts, from the redshifts of SDSS galaxies,
– cosmic shear causes statistical scatters in the observed
galaxy ellipticitiies. We need to properly take into ac-
count these effects. In this subsection, we describe the
mock catalogs of HSC- and SDSS-like galaxies that are
built in the light-cone simulations, and then use the mock
catalogs to model the covariance matrices of ∆Σ and wp.

To construct the mock catalogs in a light-cone volume,
we use the full-sky, light-cone simulations generated in
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Takahashi et al. [79]. The light-cone simulation consists
of multiple spherical shells with an observer being at the
center of the sphere, and each spherical shell contains the
lensing fields and the halo distribution, where the lensing
fields at the representative redshift of the shell can be
used to simulate the lensing distortion effect on a galaxy
at the position by foreground structure if the galaxy is
located within the shell. The halo distribution in each
shell reflects a realization of halos in large-scale structure
at the redshift corresponding to the radius of the shell
(the distance from an observer to the shell). In this paper
we use 108 realizations of the full-sky simulations.

As described in Appendix B in detail, we populate
HSC- and SDSS-like galaxies in the full-sky, light-cone
simulation. For the HSC galaxies, we use the actual
HSC shape catalog [43], used for the HSC-Y1 weak lens-
ing measurements [4], and populate each galaxy into the
corresponding shell in the light-cone simulation accord-
ing to its angular position (RA and dec) and photometric
redshift (best-fit photo-z). Then we simulate the lensing
signal on each galaxy using the lensing information of
light-cone simulation. Thus the mock HSC catalog in-
cludes properties of actual data (the angular positions
and the distributions of ellipticities and photo-z’s) as
well as the geometry and masks of the HSC footprints.
Since the HSC-Y1 data still has a small area coverage
(140 sq.deg.), we identify 21 footprints of the HSC-Y1
data in each of the all-sky, light-cone simulation realiza-
tions [80, 81]. We thus generate 2,268 mock catalogs of
the HSC data in total.

For the SDSS galaxies, we populate galaxies into halos
in the light-cone simulation based on the HOD method.
We built mock catalogs for each of the three SDSS-like
galaxies (LOWZ, CMASS1, and CMASS2) in their corre-
sponding redshift ranges in the assigned survey regions of
the SDSS DR11 survey footprints. Given the large sur-
vey area of SDSS data (about 8,000 sq. deg.), we identify
only one SDSS region in each realization of the light-cone
simulations, and thus build 108 mock catalogs for each
of the SDSS galaxies in total.

Each of our mock catalog realizations in the light-cone
volume not only contains the angular and redshift (ra-
dial) distributions of HSC and SDSS galaxies, but also
contains the lensing effects on each source galaxy by the
SDSS galaxies and other foreground structures at differ-
ent redshifts from the SDSS redshift. We then perform
measurements of ∆Σ and wp from each realization using
the same analysis pipelines that are used in the actual
measurements of the real HSC and SDSS data. Finally
we estimate the covariance for the galaxy-galaxy weak
lensing ∆Σ and galaxy-galaxy clustering wp for each of
the SDSS LOWZ, CMASS1 and CMASS2 galaxies, from
the scatters among the 2,268 measurements. The covari-
ance matrices of ∆Σ for the different galaxy samples at
different lens redshifts have cross-covariance components
because the measurements use the same source galaxies
and are affected by weak lensing due to the same fore-
ground structure (cosmic shear) in each light-cone sim-

ulation realization. Our covariance properly takes into
account the cross-covariance.

The error bars in each bin in Fig. 4 are estimated from
the covariance matrices we described above. The figure
shows that the HSC-Y1 data allows for a significant de-
tection of the lensing signals at each bin. Table III gives
the cumulative signal-to-noise (S/N) ratios expected for
measurements of ∆Σ and wp from the HSC-Y1 and SDSS
data and the joint measurements. Here, as for our de-
fault choice of the range of separation scales, we adopt
3 ≤ R/[h−1Mpc] ≤ 30 for ∆Σ and 2 ≤ R/[h−1Mpc] ≤ 30
for wp, respectively. The table gives the cumulative S/N
integrated over the separation ranges properly taking into
account the covariance and the cross-covariance matrices.
It is clear that wp has a grater S/N value than ∆Σ does
by a factor of 4, because of the much wider area coverage
of SDSS data compared to the HSC-Y1 data by a factor
of 60. Nevertheless, we will show later that combining
∆Σ and wp is crucial to lift parameter degeneracies and
obtain useful cosmological constraints.

In the following, we do not include the cosmology de-
pendence of the covariance matrix, motivated by the dis-
cussion in [82]. Hence the differences in the performance
of different setups/methods that we will show below are
purely from the differences in the model or setups.

IV. METHODOLOGY FOR COSMOLOGY
CHALLENGES

The purpose of this paper is to study whether the halo
model based method can recover the true cosmological
parameters from a hypothetical parameter inference, i.e.
comparing the theoretical templates with the mock sig-
nals, taking into account the error covariance in the like-
lihood analysis. Here we describe our methodology to
perform cosmology challenges. We employ different se-
tups of the analysis method to quantify the impact of
various effects on cosmological parameter estimation, and
describe each setup and its purpose.

A. Parameter estimation method

We assume that the likelihood of the mock signals
given the model parameters follows a multivariate Gaus-
sian distribution:

lnL(d|θ) = −1

2

∑
i,j

[di − ti(θ)] (C−1)ij [dj − tj(θ)]

+ const., (34)

where d is the mock data vector, t is the model vector
computed from the theoretical template as a function
of the model parameters (θ), C−1 is the inverse of the
covariance matrix, and the summation runs over the in-
dices, i, j, corresponding to the dimension of the data
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TABLE IV. Prior range of each model parameter. In cos-
mology challenges of parameter estimation, we consider two
cosmological parameters, Ωde, and ln

(
1010As

)
, and consider

5 HOD parameters for each of the LOWZ, CMASS1 and
CMASS2 samples. Hence we have 17 model parameters in
total for the baseline method. For an extended method, we
also include the nuisance parameters to model the effects of
photo-z errors (∆zph) and the multiplicative shear bias (mγ)
for which we employ the Gaussian prior with width given in
the number in the table.

Parameters prior range [min,max]
Ωde [0.54752, 0.82128]
ln
(
1010As

)
[2.4752, 3.7128]

logMmin [12.0,14.5]
σ2

logM [0.01,1.0]
logM1 [12.0,16.0]
κ [0.01,3.0]
α [0.5,3.0]
∆zph Gauss: 0.04 or 0.1
mγ Gauss: 0.01

vector. In our baseline analysis we use, as the data vec-
tor, ∆Σ(R) given in 9 radial bins, logarithmically-evenly
spaced over 3 ≤ R/[h−1Mpc] ≤ 30, and wp(R) in 16 ra-
dial bins over 2 ≤ R/[h−1Mpc] ≤ 30, respectively, for
each galaxy sample [83]. Thus we use 75 data points
in total (3 × (9 + 16) = 75). Note that, for our default
analysis, we do not include the abundance information of
galaxies (n̄g) in parameter inference. Even if we employ
a weak prior on the abundance (e.g., 50% of the number
density), the following results remain almost unchanged,
but will come back to a question of whether a mild use
of the abundance information can improve the parameter
estimation.

For the model parameters (θ) in Eq. (34), we consider
the two cosmological parameters, Ωde and ln

(
1010As

)
,

and 5 HOD parameters for each of the LOWZ, CMASS1,
and CMASS2 samples (Table II). Hence we have 17 pa-
rameters (2 + 3 × 5 = 17) in total. Since the clustering
observables are primarily sensitive to the amplitude pa-
rameters Ωde and As for the flat ΛCDM cosmology, we
consider only the two parameters, and fix other cosmolog-
ical parameters to their values of the Planck cosmology
in parameter inference. Hence the degrees of freedom for
the fiducial analysis is Ndof = Nd −Np = 75 − 17 = 58.
If we include further nuisance parameters to model the
photo-z errors and/or the shear multiplicative bias, we
include up to 19 parameters (i.e. 1 or 2 additional pa-
rameters). For a given set of the model parameters, we
can compute the model vector t at each radial bin.

We then perform parameter estimation based on the
Bayesian inference:

P(θ|d) ∝ L(d|θ)Π(θ), (35)

where P(θ|d) is the posterior distribution of θ and Π(θ)
is the prior distribution. Throughout this paper we em-
ploy a flat prior on each model parameter as given in

Table IV. We checked that the priors of the cosmologi-
cal parameters are wide enough, and the following results
for the posterior distribution are not affected by the prior
range.

We draw samples from the posterior distribution of pa-
rameters, given the mock signals, with the help of nested
sampling as implemented in the publicly available pack-
age Multinest (Multi-Modal Nested Sampler) [84] to-
gether with the package Monte Python [85] to sample
the posterior distribution of the parameters. In the fol-
lowing we mainly focus on the posterior distributions of
Ωm, σ8 and S8 ≡ σ8(Ωm/0.3)0.5. These are derived pa-
rameters from the cosmological parameters we use (Ωde,
ln
(
1010As

)
), and we employ the definition of S8 follow-

ing Hikage et al. [4] so that the forecast of S8 estimation
from our method is compared to the previous results.

In this paper we adopt the mode of the marginal-
ized 1D or 2D posterior distribution to infer the central
value(s) of the parameter(s), and the highest density in-
terval of the marginalized posterior to infer the credible
interval of the parameter(s). We often report the best-fit
parameters that correspond to a model at the maximum
likelihood in a multi-dimensional parameter space. As
stressed in [26] [also see 86], a point estimate of param-
eter is not useful, because it is sensitive to the degree of
degeneracies between parameters. For example, even if
we consider an ideal case that the input signals are from
the model predictions, the central value of a parameter,
estimated from the mode of the marginalized posterior
distribution, does not necessarily recover the true value
as a result of marginalization of the parameters, if the
target parameter is highly degenerate with other param-
eters. Rather a more useful quantity is the credible in-
terval. Hence in the following we will mainly focus on
the credible interval, and evaluate each method/setup to
study whether the true value of the cosmological param-
eters are recovered to within the 68% credible interval.
We are not interested in an accuracy of recovery of the
HOD parameters, and we will not pay much attention to
the HOD parameters.

B. Validation strategy against analysis setups:
scale cuts, parameter degeneracies, observational

effects and RSD

An advantage of the emulator based halo model is that
Dark Emulator gives an accurate prediction of the
halo correlation functions (ξhm and ξhh) including all the
nonlinear effects down to small scales (nonlinear clus-
tering, nonlinear bias, and the halo exclusion effect) and
their dependences on cosmological models within wCDM
framework. To evaluate the performance of the emulator
based method, we study various setups as summarized in
Table V.

One question we want to address in this paper is; which
scale cuts for ∆Σ and wp are adequate in parameter esti-
mation? Since ∆Σ and wp have higher signal-to-noise ra-
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TABLE V. A summary of the analysis setups.

setup scale cut sample parameters Note
[h−1Mpc]

baseline (2, 3) (Ωm, σ8)+HOD (17 paras.) fiducial mock (Rmax = 30 h−1Mpc)
+RSD (2,3) – include RSD effect in the fiducial mock
scale cuts (0.5, 0.75) – –

(1, 1.5) – –
(8, 12) – –

Rmax = 70 h−1Mpc (2,3) – use up to Rmax = 70 h−1Mpc
∆Σ alone (2,3) – –
wp alone (2,3) – –
Ωm-goem. (2,3) – via (Σcr, R)
photo-z error (∆zph) (2,3) +∆zph only in model
shear-m (∆mγ) (2,3) + ∆mγ only in model
Ωm,geom+∆zph+∆mγ (2,3) + (Ωm,geom,∆zph,∆mγ) only in model
full HSC (2,3) – use 0.1× Cov∆Σ mimicking the full HSC data

tios at smaller scales, we want to include the information
of ∆Σ and wp down to smaller scales in the nonlinear 1-
halo term regime. However, such smaller scales are more
affected by nonlinear physics, especially galaxy physics,
so it would be difficult to accurately model the cluster-
ing signals on very small scales. Including such small-
scale information might cause a bias in the estimated
cosmological parameters. We should avoid such a failure
situation as much as possible. To estimate appropriate
scale cuts, we will study the performance of the method
adopting different scale cuts of (0.5, 0.75), (1,1.5), (2, 3)
or (8,12) (in units of h−1Mpc) for wp and ∆Σ, respec-
tively, where (2, 3) is our fiducial choice unless explicitly
stated. For all the cases we adopt Rmax = 30 h−1Mpc
for the maximum scale up to which we include the in-
formation of ∆Σ and wp for parameter estimation. Thus
we do not include the BAO information for all the anal-
yses. To study the impact of the maximum scale, we
also study the setup for Rmax = 70 h−1Mpc, fixing other
parameters to those in the fiducial setups.

For the setups labeled as “∆Σ alone” and “wp alone”,
we study the parameter constraints if using either of ∆Σ
or wp alone. Comparing this result with the baseline
method manifests complementarity of ∆Σ and wp in the
cosmological parameter estimation.

To study the impact of the observational effects on
parameter estimation, we include the geometrical depen-
dence of Ωm and introduce additional parameter to model
the photo-z error and/or multiplicative shear bias, as dis-
cussed in Sections II D 1–II D 3.

For the setup labeled as “RSD”, we study the impact
of RSD effect. In the theoretical template we model the
RSD effect using the linear RSD model. Then we com-
pare the theoretical template with the mock catalog in-
cluding the full RSD effects, and then assess whether the
theoretical model is still applicable to a realistic setup,
without any significant bias or degradation in the esti-
mated parameter.

Finally, we show a forecast of how the anticipated full
HSC dataset covering 1400 sq. deg., about factor of 10
larger area than the HSC-Y1 data, can improve the cos-
mological constraints. To do this forecast, we simply
scales the covariance of ∆Σ by the area factor between
the HSC-Y1 and full datasets.

C. Validation strategy against uncertainties in
galaxy-halo connection

The HOD model is an empirical prescription of the
galaxy-halo connection. Our expectation is that we could
recover the underlying cosmological parameters as long
as a sufficient number of galaxy-halo connection parame-
ters are introduced and then the effects are marginalized
over when estimating cosmological parameters. To as-
sess the “robustness” of our emulator based halo model
against uncertainties in galaxy-halo connection, we use a
wide variety of mock galaxy catalogs to study whether
the baseline method can recover the true cosmological
parameters for the different catalogs, as summarized in
Table VI.

Fig. 5 compares the mock signals of ∆Σ and wp for
different mocks relative to those of the fiducial mock.
Here all the mocks, except for the “cent-incomp.” and
“FoF-halo” mocks, are built using the same HOD as
that of the fiducial mocks, but using different ways of
populating galaxies into individual halos, as described
below. The variety in the target observables for a fixed
HOD is possible, because the HOD only specifies the av-
erage number of galaxies per halo in each mass bin, but
there are many different ways to populate galaxies into
halos leading to different spatial distributions (cluster-
ing properties) of galaxies, even for the same HOD. The
different mock catalogs lead to modifications in the am-
plitudes and scale-dependences of ∆Σ and wp in a com-
plex way, compared to the fiducial mock. One of the
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TABLE VI. A summary of the mock catalogs we use in this paper to assess “robustness” of the baseline method against
variations in galaxy-halo connection. All the mock catalogs, except for “cent-imcomp.” and “FoF-halo” catalogs, have the
same HOD in average sense, but leads to modifications in ∆Σ and wp in their amplitudes and scale-dependences. The column
“satellite gals.” denotes a model of the spatial distribution of satellite galaxies in the host halo. In the columns of ∆Σ and wp,
“X” or “–” denote whether they are modified from the fiducial mock or not, respectively.

Model HOD satellite gals. ∆Σ wp description
fiducial fid. NFW – – fiducial model
RSD fid. NFW – X include the RSD effect in w
sat-mod fid. NFW X X populate satellites irrespectively of centrals
sat-DM fid. DM part. X X populate satellites according to N -body particles
sat-sub fid. subhalos X X populate satellites according to subhalos
off-cent1 fid. NFW X X all centrals off-centered, with Gaussian profile
off-cent2 fid. NFW X X a fraction (0.34) of “off-centered” centrals, assuming Gaussian profile
off-cent3 fid. NFW X X similar to “off-cent1”, but with NFW profile
off-cent4 fid. NFW X X similar to “off-cent2”, but with NFW profile
cent-incomp. 〈Nc〉 mod. NFW X X include an “incomplete” selection of centrals
FoF-halo mod. FoF halos X X use FoF halos to populate galaxies
assembly-b-ext fid. NFW X X populate galaxies according to concentrations of host halos
assembly-b fid. NFW X X similar to “assembly-b-ext”, but introduce scatters
baryon fid. NFW X – mimic the baryonic effect of Illustris on the halo mass profile

most important systematic effects is the assembly bias
effect, and we also use the mock catalogs, labeled as
“assembly-b-ext” and “assembly-b”, to test the per-
formance of our method against the assembly bias effect.

In the following we describe details of each mock.
Readers, who are interested in the results, can skip this
section and directly go to Section V.

1. Satellite galaxies

Even if the HOD model is fixed, there are several ways
of populating satellites in halos in each simulation real-
ization. To study the impact of variations in the distri-
bution of satellite galaxies, we construct several mocks,
for the same HOD as that of the fiducial mock.

The “sat-mod” mock is a slight modification from the
fiducial mock. In this mock we populate satellite galax-
ies in halos irrespective of whether each halo already
hosts a central galaxy. In this mock there are halos
which host only satellite galaxy(ies) inside, without a
central galaxy. Here we assume that the radial distri-
bution of satellite galaxies follows the NFW profile as in
the fiducial mock.

For the “sat-DM” mock, we populate satellite
galaxy(ies) in each host halo by randomly assigning each
satellite to dark matter particles in the halo, in contrast
to the NFW profile.

For the “sat-subhalo” mock, we populate satellite
galaxy(ies) in each host halo by randomly assigning each
satellite to subhalo(s) in the host halo, which are taken
from the Rockstar output.

2. Off-centering effects of “central” galaxies

For the fiducial mocks, we assume that “central”
galaxies are located at the center (the highest mass den-
sity) of each host halo. However, a central galaxy in a
host halo can be “off-centered” as a result of merger or ac-
cretion in a hierarchical structure formation [58, 59]. To
mimic this possible effect, we generate mock catalogs in-
cluding the off-centering effects of central galaxy in each
halo. Note here that we mean, by “central” galaxies,
galaxies that are populated into halos according to the
central HOD, and the central galaxies can be off-centered
from the true halo center. More physically speaking, a
galaxy which resides in the most massive subhalo can be
considered as a central galaxy, but the galaxy can be off-
centered due to the physical effects we discussed above.

We generate four kinds of mock catalogs including the
off-centering effects, following the method in Kobayashi
et al. [51] [also see 21]. The off-cent1 mock is de-
signed to include the maximum possible amount of off-
centering effect, where we assume that all central galax-
ies are off-centered from the true halo center of each host
halo. We assume that the average radial profile of off-
centered galaxies with respect to the halo center follows
a Gaussian profile with width Roff = 2.2, i.e. given by
p̃off(k) ∝ exp

[
−k2(Roffrs)

2/2
]

for the radial profile in
Fourier space, where Roff is a parameter to characterize
the typical off-centering radius relative to the scale radius
(rs) of the NFW profile. When we populate a central
galaxy in each halo, we randomly draw an off-centering
radius from the Gaussian profile, and then place the
galaxy into the spherical shell of the off-centering radius
in the host halo (with randomly choosing the angular po-
sition for the azimuthal angles). Then we populate satel-
lite galaxies in the same way as that for the fiducial
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FIG. 5. The mock signals of ∆Σ and wp relative to those for the fiducial mock, for each of variants of the mock catalogs in
Table VI. The error bars are the same as Fig. 2.

mock.
For the “off-cent2” mock, we assume that a frac-

tion of central galaxies are off-centered. Following the
implication found in More et al. [25] [58] for the SDSS
galaxies, we assume qoff = 0.34 of the central galaxies are
off-centered, while the remaining galaxies (1−qoff = 0.66)
are at the halo center. We then populate satellite galaxies
in the same way as that for the fiducial mock.

The “off-cent3” mock is very similar to the
off-cent1 mock, but we populate the off-centered “cen-
tral” galaxies into halos assuming that the off-centered
galaxies follow the NFW profile of the host halo, similarly
to satellite galaxies.

The “off-cent4” mock is very similar to the
off-cent2 mock, but we populate the off-centered galax-
ies assuming the NFW profile as in off-cent3 mock.

3. FoF halos

Dark matter halos are neither uniquely-defined ob-
jects nor have a clear boundary with the surrounding
structure. In this paper we use those identified by the
Rockstar algorithm with the spherical-oversensity (SO)
masses in each simulation realizations as our default
choice (see Section III A). For the “FoF halo” mock,
we use halos that are identified by the friends-of-friends
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FIG. 6. The ratio of the halo mass function of FoF halos to
that of SO halos in each mass bin. The data points show the
results at three redshifts z = 0.251, 0.484 and 0.617, corre-
sponding to the representative redshifts of LOWZ, CMASS1
and CMASS2, respectively. The data point in each bin is the
the mean of the ratios among 19 realizations of 1 (h−1Gpc)-
size box simulations, and the error bar is the error on the mean
among 19 realizations, which is computed from the scatters
among 19 realizations, divided by

√
19.
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(FoF) method with linking length bFoF = 0.2, in simula-
tion realizations. The FoF halos do not necessarily have
a one-to-one correspondence to the fiducial halos. The
mass of each FoF halo is different from the SO mass even
if the corresponding halos are identified, because their
boundaries are different. Fig. 6 compares the mass func-
tion of halos measured using the SO halo mass definition
or the FoF definition from the same N -body simulation
realization, at three redshifts corresponding to those for
LOWZ, CMASS1, and CMASS2, respectively. The fig-
ure shows a sizable difference in the halo mass functions
over the range of mass scales we consider.

To generate the “FoF-halo” mock we treat the FoF
halo mass of individual halos, as the mass argument for
the mean HOD functions, and then populate galaxies in
FoF halos using the same HOD method as that for the
fiducial mock.

4. Assembly bias effect

The “assembly bias” effect refers to the fact that the
clustering amplitudes of galaxies or halos at large scales
depends on a secondary parameter other than the halo
mass, especially depending on the assembly history of
galaxies/halos [87–89]. The assembly bias is one of the
most important physical effects causing a violation of the
simple halo model picture which assumes that clustering
properties of halos are determined solely by halo mass.
To study whether or not cosmology inference based on
our method is robust against the assembly bias effect,
we use the mocks generated following the method in
Kobayashi et al. [44]. This is one of the most important
tests we address in this paper.

The “assembly-b-ext” mock is intended to study the
worst case scenario for the assembly bias effect. To make
this mock, we first, for each halo, calculate the fraction of
mass enclosed within a sphere of 50% of the halo radius
R200 to the whole halo mass M200. We denote this inner
mass fraction as fin. We use this quantity as a proxy
of the halo concentration, i.e., the higher fin means the
higher concentration. Then we make a ranked list of
halos in which we sort the halo by ascending order of fin,
in each narrow bin of halo masses. We populate central
galaxies, according to the central HOD, into halos from
the top of the list (from the lowest-concentration halo)
in each mass bin. We then populate satellite galaxies in
halos that already host central galaxies using the satellite
HOD. For the mock generated in this way, we can have
a maximum effect of the assembly bias in the large-scale
clustering amplitudes for all the three galaxy samples. As
can be found from Fig. 5, wp(R) has larger amplitudes
at large separations, by up to a factor of 1.6 than that of
wp in the fiducial mock, which is quite substantial.

For the mock assembly-b, we introduce a scatter to
fin of each halo:

log10 f
scatter
in = log10 fin + ε. (36)
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FIG. 7. We use the method in Schneider and Teyssier [48] to
model the baryonic effect on the galaxy-galaxy weak lensing
profile, ∆Σ, where the mass conservation around halos hosting
galaxies is explicitly imposed. We tune the model parameters
to reproduce the baryonic effect that is seen in the Illus-
tris hydrosimulation [18]. Shown is the ratio of ∆Σ for the
matched host halos of SDSS-like galaxies in the simulations
with and without the baryonic effect, which is taken from
Fig. 12 in Leauthaud et al. [90]. Our method nicely capture
the baryonic effect, but we note that this would be a worst
case of the baryonic effect, because the Illustris (not Illus-
trisTNG) employed the too large baryonic effect (especially
AGN feedback).

We assign a random scatter, ε, to each halo drawn from
a zero-mean Gaussian distribution with σ, where σ is
a parameter to control the amount of the scatter. We
adopt σ = 0.1 to generate the assembly-b mock for all
the three galaxy samples, which still leads to a significant
boost in the clustering amplitudes in wp by up to a factor
of 1.3 (therefore about halved strength compared to the
assembly-b-ext mock) than that of wp in the fiducial
mock. This might be more realistic for host halos of the
SDSS galaxies (∼ 1013 h−1M�), although the assembly
bias effect has not been detected at a high significance
from the real data. Note that the mean HOD is not
modified from the fiducial mocks with these procedures.

5. Baryonic effect

The baryonic effects inherent in galaxy forma-
tion/evolution, which we are missing in our N -body sim-
ulations, are another important physical systematic ef-
fect, and we need to quantify their impact on the param-
eter inference in our cosmology challenges. Although the
baryonic effects are still difficult to accurately model from
the first principles, one should keep in mind some con-
servation properties in the distribution of galaxies. First,
massive galaxies like the SDSS LOWZ/CMASS galaxies
are likely to form at the same peaks of primordial den-
sity fluctuations even in the presence of baryonic physics.
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Hence the distribution of massive galaxies relative to the
total matter distribution, i.e. the bias function, is not
largely changed by baryonic physics [19, 91]. On the
other hand, the baryonic physics causes a redistribution
of matter around each galaxy, e.g. due to various effects
such as dissipative contraction and supernova/AGN feed-
backs. For this reason, the radial profile of matter distri-
bution around a galaxy would likely be modified.

We follow the method in Schneider and Teyssier [48]
[also see 49] to include baryonic effects to the mock sig-
nals. The notable feature of this model is that the model
explicitly imposes the mass conservation around halos,
and models the baryonic effects as a redistribution of the
surrounding matter around each halo (more exactly the
halo profile). We tuned the model parameters so that the
model prediction reproduces the baryonic effect on the
lensing profile, ∆Σ, in the original Illustris hydrosim-
ulation [18] that implemented too large baryonic effect
than implied by observations, as explicitly demonstrated
in Fig. 7. Hence the baryon mocks are considered as a
worst case of the baryonic effect on the weak lensing pro-
file. For wp, we use the mock signal for the fiducial
mocks; that is, we do not include a possible effect of the
baryonic physics on the distribution of galaxies in the
host halo.

D. Cross-correlation coefficients in the mocks

All the mock catalogs we use in this paper have a
property that the cross-correlation coefficient, rcc(r) ≡
ξgm/[ξggξmm]1/2 ' 1 at the limit of large scales, greater
than the size of massive halos, say at & 10 h−1Mpc,
as shown in Fig. 8. This property is expected if galaxy
physics is confined to local, small scales, and because
the clustering amplitudes at larger scales than the scale
of galaxy physics are governed by gravity alone (and
properties of primordial fluctuations) and then behave
as a linear biasing relation to the underlying matter
distribution at the large scales. Encouragingly this is
confirmed recently by using the hydrodynamical simu-
lation IllustrisTNG in Ref. [62], where various galaxy
samples, which are selected based on host halos and
the various environment parameters, display rcc ' 1 at
r & 10 h−1Mpc. The Dark Emulator outputs also pre-
dict r ≡ ξhm/[ξhhξmm]1/2 ' 1 for halo correlation func-
tions at scales greater than the size of halos. However,
even for the scales where rcc ' 1, this does not mean
that the linear theory serves as an accurate theoretical
template [26]. It is important to include the nonlinear
clustering, the nonlinear halo bias and the halo exclusion
effect in the theoretical template.

We also note that rcc can be greater than unity;
rcc ≥ 1, which occurs in the 1-halo term regime where
the sub-Poisson nature 〈Ng(Ng − 1)〉 6= 〈Ng〉2 becomes
important due to a finite number statistics of galaxies in
the same host halo [25, 34, 37].

V. RESULTS

In this section we show the main results of this pa-
per, which are assessment and validation of the emulator
based halo model method for cosmology inference. Here
we mean by “validation” whether the method can re-
cover the true cosmological parameters, Ωm0, σ8 and S8,
to within 68% credible intervals, after marginalization
over the HOD parameters (galaxy-halo connection pa-
rameters). Note that we will not focus on the accuracy
of recovering the HOD parameters.

A. Validation of the baseline method,
complementarity of ∆Σ and wp, and tests with

different scale cuts

First we perform a sanity check; we study whether
our baseline method (see Table V) can recover the true
cosmological parameters when comparing the theoreti-
cal templates to the mock signals measured from the
fiducial mock that is based on the same HOD model
used in the theoretical template. Different model pa-
rameters affect the observables in a complex way, so it
is not obvious whether the baseline method can recover
the true cosmological parameters, after projecting the
posterior distribution in a multi-dimensional parameter
space onto a sub-space including the cosmological param-
eters. In fact, as discussed in Refs. [26, 86], the modes
of the marginalized posterior distribution of cosmological
parameters could be biased from the true values, if the
parameters suffer from severe degeneracies.

Fig. 9 shows the results. Here we employ Rcut = 2 and
3 h−1Mpc for the scale cuts for wp and ∆Σ above which
we include the clustering and lensing information in pa-
rameter inference (see Table V). The figure nicely shows
that the lensing and clustering information are comple-
mentary to each other, and combining the two lifts the
parameter degeneracies. Thus Fig. 9 gives a validation
of the baseline method; the baseline method can recover
the cosmological parameters if properties of the galaxy
clustering for SDSS-like galaxies are close to the fiducial
HOD model we employed. The baseline method achieves
a precision of σ(S8) ' 0.035 for the SDSS and HSC-Y1
data. In the following we show mainly the results for
the joint probes combining the information of ∆Σ and
wp. For completeness of our discussion, in Fig. 22 we
show the posterior distribution of the parameters includ-
ing all the HOD parameters for the CMASS1-like galaxy
sample.

What is the impact of HOD parameters on cosmolog-
ical parameter estimation? To answer this question, in
Fig. 10 we show the results when fixing the HOD param-
eters to their fiducial values. It is clear that the HOD
parameters cause significant degradations in the cosmo-
logical parameters; for example, the marginalized error
of Ωm is enlarged by a factor of 3 when including the
HOD parameters. However, this is a price one has to
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pay to obtain robust constraints on cosmological param-
eters when including the small-scale information. If one
uses a more aggressive method, e.g. by using a less flexi-
ble model of galaxy-halo connection (such as fixing some
HOD parameters), one could suffer from severe biases in
cosmological parameters.

Our results might also be compared to a more conser-
vative approach, e.g. a method using only the clustering
observables at large scales, i.e. not including the small-
scale information. In Fig. 11 we compare the results from
the halo model method, studied in this paper, with those
from the perturbation theory (PT) based method studied
in Sugiyama et al. [26]. They employed the “minimal”-
bias model using the fully nonlinear matter power spec-
trum and the linear bias parameter (b1); ξgm = b1ξ

NL
mm

and ξgg = b21ξ
NL
mm, where the halofit model is used to

model the nonlinear ξNL
mm. It was shown that, as long

as the conservative scale cuts Rcut = 12 and 8 h−1Mpc
for ∆Σ and wp are employed and the bias parameter is
treated as a free parameter, the minimal bias method
passes all the validation tests against a variety of the
mock catalogs including the assembly bias mock. Hence,
the results for the minimal bias method can be considered
as conservative, yet robust parameter constraints that
can be extracted from the SDSS and HSC-Y1 data. The
figure clearly shows that including the small-scale infor-
mation and the halo bias information can improve cosmo-
logical constraints compared to the conservative method.
In particular, the halo model based method gives a factor
of 2 or 3 improvement in the marginalized error of σ8 or
S8, respectively, compared to that for the minimal bias
method. Thus the halo model method has a potential
to obtain the improved cosmological constraints, if the
model is flexible enough to describe variations in galaxy
clustering at small scales down to a few Mpc, which we
will test later.

In Fig. 12 we give a summary of the performance
for different setups. The second to the fourth row, ly-
ing between the horizontal dashed lines, show the re-
sults when using the different scale cuts, (R∆Σ

cut, R
wp

cut) =

(0.5, 0.75), (1.0, 1.5) or (8, 12) h−1Mpc, instead of (2, 3)
as our fiducial choice. For the fiducial mocks, these
smaller scale cuts apparently recover the cosmological
parameters; the true value of each parameter is within
the 68% credible interval. However, a closer look also
reveals that the size of the credible interval is not signif-
icantly improved by including the smaller information.
We also checked that, when applying the smaller scale
cuts to other mock catalogs rather than the fiducial
mocks, those lead to a larger bias in the cosmological
parameters compared to the baseline method. Hence,
with these results, we conclude that the fiducial scale
cuts of (2, 3) h−1Mpc are reasonable. On the other hand,
the row labeled as “Rmax = 70 h−1Mpc” shows the re-
sults when including the information of ∆Σ and wp up
to Rmax ' 70 h−1Mpc instead of our default choice
Rmax = 30 h−1Mpc. Note that this maximum scale is
still below the BAO scales, and we do not include the
BAO information. It is clear that the larger-scale infor-
mation does not improve the cosmological parameter es-
timation, and 30 h−1Mpc seems sufficient for the signal-
to-noise level expected for the HSC-SDSS analysis.

B. Comparison with analytic halo model

In Fig. 13, we compare the results for our baseline
method with those obtained by comparing the model pre-
dictions of analytical halo model [92] in More et al. [25]
with the mock signals from the fiducial mocks. The
analytical halo model was constructed by calibrating the
standard halo model [34] with N -body simulation results
available at that time, e.g. to include the halo exclusion
effect and the nonlinear halo bias effect [see Ref. 50, for
details]. For example, the analytical halo model uses the
fitting formula of halo bias developed in Ref. [93, 94],
but several recent studies point out an inaccuracy in the
fitting formula, up to 5% in the bias amplitude [see the
bottom panel of Fig. 22 in Ref. 41] [also see Refs. 95–
97]. For the analytical halo model, we did not include
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FIG. 9. Marginalized posterior distribution in each 2D sub-space of the parameters, obtained from the projected correlation
function information alone (wp; orange-color contours), the lensing information alone (∆Σ; blue) and the joint constraints
(green), respectively. The inner and outer contours show the 68 % and 95 % credible regions, respectively. We adopt the
baseline setup for which we employ Rcut = 2 and 3 h−1Mpc for the scales cuts of wp and ∆Σ, respectively. For the mock
signals, we use the signals measured from the fiducial mocks which are generated using the same HOD model as those in the
theoretical templates. Here we include 17 model parameters in the parameter inference: 2 cosmological parameters (Ωm and
σ8) plus 5 HOD parameters for each of the 3 galaxy samples (LOWZ, CMASS1 and CMASS2). Here we show, as an example,
the results for the central HOD parameters for the CMASS1 sample at z = 0.484, i.e. Mmin and σlogM . The vertical and
horizontal dashed lines denote the input parameter value used in the mock catalog.

the off-centering effect or incompleteness effect as in our
baseline method.

The figure shows sizable differences in all the cosmo-
logical parameters between our emulator based method
and the analytical halo model. The 1D posterior dis-
tribution shows that the analytical halo model cannot

recover the true values of σ8 and S8 to within the 68%
credible interval. In addition, the degeneracy directions
in the projected two parameter subspace are quite differ-
ent. Figuring out the cause of the difference is beyond
the scope of this paper, but here at least we would like
to stress that the emulator-based halo model displays a
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better performance.

C. The impacts of observational effects: the
geometrical correction, photo-z errors, shear

multiplicative bias and RSD

As discussed in Section II D, various observational ef-
fects could affect the cosmological inference from the
measured ∆Σ and wp. For the results discussed up to
the preceding subsections, we ignored these effects, and
in this section we study the impact of these effects.

The rows with labels starting from “Ωm-geom.” to
“+RSD” in Fig. 12 show the results when including each
or all of these observational effects. First let us discuss
the results for “+RSD”. For this test we use the mock cat-
alogs where we use the fiducial HOD to populate galaxies
into the simulation realizations and include the RSD ef-
fects due to the peculiar velocities of individual galaxies
[44, 51]. Then we perform the cosmology inference by
comparing the theoretical templates, including the linear
Kaiser effect (Section II D 4), with the mock signals. The
figure shows that the linear Kaiser model can properly
take into account the RSD effect for our fiducial pro-
jection length (πmax = 100 h−1Mpc), and there is no
degradation in the parameter estimation. This is similar
to the result in Sugiyama et al. [26]. Although the RSD
effect itself carries the dependence on Ωm (more exactly
via the growth rate), it leads to only slight improvement
in Ωm.
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FIG. 11. Similar to Fig. 9, but the figure compares the
marginalized posterior distributions obtained from the HOD
based method, studied in this paper, and the perturbation
theory (PT) inspired method in Sugiyama et al. [26]. Here
we apply both the methods to the same fiducial mock sig-
nals. For the PT method, we model the matter-galaxy cross-
correlation (ξgm) and the galaxy auto-correlation (ξgg) by the
nonlinear matter auto-correlation multiplied by a linear bias
parameter: ξgm = b1ξ

NL
mm and ξgg = b21ξ

NL
mm. We then treat b1

as a free parameter in the parameter inference, and employ
the scale cuts of Rcut = 12 and 8 h−1Mpc for ∆Σ and wp,
respectively, compared to Rcut = 3 and 2 h−1Mpc for the
halo model based method. The green contours are the same
as those in Fig. 9.

Now we discuss the results for “Ωm-geom.”, which
refers to the fact that a reference cosmology needs to
be assumed to measure ∆Σ(R) and wp(R) from direct
observables, and the assumed cosmology generally dif-
fers from the underlying true cosmology. Exactly speak-
ing, for a flat-geometry ΛCDM model, we have to “re-
measure” ∆Σ(R) and wp(R) every time Ωm is varied in
parameter estimation. This might be time-consuming,
and indeed More [64] showed that this conversion can
be safely done by a multiplicative factor taking into ac-
count the geometrical dependence, which we employ in
this paper. Fig. 12 shows that including the Ωm geo-
metrical dependence does not cause a bias in the cosmo-
logical parameters. However, a closer look shows that
including this dependence slightly enlarges the credible
interval. This happens as follows. If we assume a slightly
larger value of Ωm, it leads to the smaller amplitude in
the model prediction of wp (recall that the current con-
straint is mainly from the wp information). However,
when assuming such a model with increased Ωm in the
measurements, it leads to the smaller amplitudes in the
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FIG. 12. Summary of the estimation of each cosmological parameter, Ωm, σ8 or S8(≡ σ8Ω0.5
m ), for the different setups in

Table V. The blue dot in each row denotes the mode of the marginalized posterior distribution of each parameter, and the error
bar denotes the 68% credible interval, which is computed from the highest density interval of the marginalized 1D posterior
distribution. The vertical red line denotes the true value used in the mock catalog, and the shaded region denotes the 68%
credible interval for the baseline setup for comparison.
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FIG. 13. Similar to Fig. 9, but the plot shows the results for
the baseline method with those obtained by using the analytic
halo model in More et al. [25]. Here we used the same scale
cuts, Rcut = 2 and 3 h−1Mpc, for wp and ∆Σ, respectively,
for both methods.

measured wp as shown in Fig. 2. Thus the dependences
of Ωm are compensated to some extent in the model and
the measurement. This is the reason that the credible
interval of Ωm is slightly degraded.

Next we discuss the impacts of photo-z errors and the
multiplicative shear bias, which are among the most im-
portant systematic errors in the weak lensing measure-
ments. As discussed in Sections II D 2 and II D 3, we in-
troduce nuisance parameters, denoted as ∆zph and ∆mγ ,
to model these effects. To do this we employ the parame-
ters to model the systematic effects that could be present
for the actual HSC data. For a sample of source galax-
ies, we assume that source galaxies are selected based
on their photo-z’s satisfying a conservative cut that the
photo-z posterior distribution of individual galaxies sat-
isfies

∫∞
0.75

dz p(z) ≥ 0.99 [98, 99], where the lower cutoff
of the integration, z = 0.75, is well above the redshifts of
CMASS galaxies (the maximum redshift cut of CMASS
galaxies is 0.7 as shown in Table II). After using the re-
weighting method in [4] to infer the intrinsic redshift dis-
tribution of source galaxies, we compute the average of
the lensing critical surface density over the source dis-
tribution,

〈
Σ−1

cr

〉
, that is used in the ∆Σ measurement

for each sample of lensing galaxies (LOWZ, CMASS1
and CMASS2). Then, by shifting the posterior distri-
bution of all the source galaxies by the same amount,
∆zph, we repeat the same calculation of

〈
Σ−1

cr

〉
to esti-

mate a shift in the ∆Σ signal. After computing these
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quantities for multiple values of ∆zph, we include ∆zph

to compute the shift in ∆Σ from an interpolation of the
pre-computed values of

〈
Σ−1

cr

〉
. In this paper we study

the impact of photo-z errors on parameter estimation by
adopting the Gaussian prior with width σ(∆zph) = 0.04
or 0.1. Here σ(zph) = 0.04 corresponds to the quoted
errors of photo-z estimation for the source galaxies, es-
timated using the same method in [4]. We also adopt a
very conservative prior of σ(∆zph) = 0.1, which is about
a factor of 2.5 larger than the quoted errors. Fig. 12
shows that the cosmological parameters remain almost
unchanged by the photo-z errors. Thus, as claimed in
Oguri and Takada [21], a self-calibration of the photo-z
errors seems to work very well, by using the single sample
of source galaxies and utilizing the dependence of lensing
efficiency on lens redshifts.

For a multiplicative shear bias, ∆mγ , we employ the
Gaussian prior σ∆mγ = 0.01 as recommended based on
dedicated image simulations of HSC galaxies in Mandel-
baum et al. [43, 100]. Fig. 12 shows that the multiplica-
tive shear bias does not either affect the cosmological
parameters. Thus, the method of Oguri and Takada
[21] allows us to self-calibrate both the photo-z errors
and the multiplicative bias errors. The row denoted as
“Ωm +∆zph +∆mγ” shows the results including all these
three effects. The results are not so different from the
baseline method ignoring these effects. Hence we con-
clude that these observational effects are not a severe
source of systematic errors causing a sizable bias in the
cosmological parameters.

When including these observational effects, the base-
line method can achieve a precision of σ(S8) ' 0.042.

D. Tests and validations against uncertainties in
galaxy-halo connection

In this section, to assess the performance of the halo
model method against uncertainties in the galaxy-halo
connection, we perform the parameter inference against
various mock catalogs (Table VI). Note that we here
employ the fiducial HOD model (5 parameters model),
which does not include the off-centering effect, the in-
completeness effect, the baryonic effect nor the assembly
bias effect. Here we address whether the fiducial halo
model can recover the true cosmological parameters to
within the credible intervals after marginalizing over the
HOD parameters. Even if we use a weak prior on the
number density of galaxies (the abundance), e.g. 50% or
5% of the number density, the following results remain
almost unchanged.

Fig. 14 gives a summary of the results. The figure
shows that, except for the assembly bias mocks (and the
extreme off-centering mock, off-cent1, for Ωm0 and σ8),
the halo model method with the baseline setup recov-
ers the input cosmological parameters to within the 68%
credible interval. We should also note that S8 is better
recovered compared to Ωm0 or σ8. This is an encourag-

ing result, because S8 is close to the primary parameter
combination that determines the amplitudes of wp and
∆Σ. We below discuss the results for some variants of
the mocks in more detail.

Figs. 15 and 16 show the marginalized distributions of
the cosmological parameters for the off-cent, FoF-halo
and cent-incomp. mocks (see Table VI). For most cases
except for the off-cent1 mock, where all the central
galaxies are off-centered, the halo model method recov-
ers the true cosmological parameters within 68% credible
interval. As shown in Fig. 5, the off-cent1 mock gives
smaller amplitudes in ∆Σ at scales around the scale cut
(Rcut = 3 h−1Mpc), but does not change the wp ampli-
tude at scales greater than the scale cut (R = 2 h−1Mpc).
The smaller lensing amplitude leads to an underestima-
tion in the average mass of host halos. Since smaller-mass
halos give a smaller bias amplitude for a fixed cosmology,
this would lead to a lower σ8 to reproduce the amplitude
of wp in the mock signal (see Fig. 2). This explains a neg-
ative bias in σ8 for the off-cent1 mock. We confirmed
that, if we employ the larger scale cut for ∆Σ, the bias
in σ8 is mitigated. For the FoF-halo mock, our method
nicely recovers S8, although we find sizable biases in Ωm0

and σ8.

In Fig. 17, we show the results for the baryon,
assembly-b and assembly-b-ext mocks. The figure
shows that the assembly bias mocks lead to biases in
the cosmological parameters, greater than the credible
interval. Thus the assembly bias is indeed the most dan-
gerous systematic effect, which violates the scaling rela-
tion of halo bias with halo mass. However, we note that,
in this paper, the result is considered as the worst-case
scenario, because we include the maximum possible ef-
fect of the assembly bias in the assembly-b-ext mock,
where we populate galaxies into halos assuming a fully
deterministic assignment of centrals in ascending order of
halo concentration: we populate galaxies from the lowest
concentration halos in each mass bin. The impact of the
assembly bias for more realistic galaxies, even if exists
for SDSS galaxies, would be much smaller than what is
shown in this paper. Nevertheless, this possible impact
of the assembly bias needs to be kept in mind.

To tackle the possibility that the actual galaxy sample
is suffering from the assembly bias effect, we here propose
a practical solution to assess its impact or mitigate it in
parameter estimation. In Fig. 18, we show the results
when using different scale cuts, (4, 6) or (8, 12) h−1Mpc,
for wp and ∆Σ, instead of our fiducial choice (2, 3). Note
that (8, 12) is the choice of the minimal bias method in
Sugiyama et al. [26] (also see Figs. 11 and 14). The figure
clearly shows that the posterior distribution systemati-
cally moves with varying the scale cuts, and then the
choice of (8, 12) recovers the true cosmological parame-
ters. In this case, the method does not use the 1-halo
term signal of ∆Σ, and tries to fit the mock signals by
the model templates, where rcc ' 1 is satisfied. Thus,
if we observe a similar systematic shift in the parame-
ter constraints with varying the scale cuts, it could be
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FIG. 14. A summary of the performance of the baseline method against different mock catalogs. The circle shows the mode of
the marginalized posterior distribution of each cosmological parameter, and the the error bar denotes the 68% credible interval.
The vertical solid line denotes the true value of each parameter. The shaded region denotes the 68% credible interval for the
fiducial mock, for comparison. The columns labeled as “assembly-b: (8,12)” and “assembly-b-ext: (8,12)” show the results
when the larger scale cuts of (8, 12) h−1Mpc are employed for wp and ∆Σ.

a bias due to assembly bias. Although such a shift can
be caused by other observational effects, observing this
signature means that we need to investigate the origin of
the shift before unblinding an analysis.

VI. DISCUSSION AND CONCLUSION

In this paper we have in detail studied the performance
of the halo model based method for cosmological param-
eter estimation. We used Dark Emulator to model the
halo clustering quantities (halo mass function, halo auto-
correlation function and halo-matter cross correlation),
where the emulator includes, by design, all non-trivial ef-
fects such as nonlinear clustering, nonlinear halo bias and
halo exclusion effect that are otherwise difficult to analyt-
ically model. We combined Dark Emulator with the
HOD method to model clustering observables of galaxies
for which we consider the projected correlation function,
wp(R), and the galaxy-galaxy weak lensing ∆Σ(R) in this
paper. Then we validate the emulator-based halo model
method by studying whether to recover the cosmologi-
cal parameters from MCMC analyses by comparing the
model predictions with the mock signals for the spectro-

scopic SDSS galaxies and the HSC-Y1 galaxies.
The main results of this paper are summarized as fol-

lows.

• Our method using Dark Emulator allows for
computations of wp and ∆Σ at a few CPU sec-
onds for each model, which is equivalent to a fac-
tor of million reduction in computation time com-
pared to the standard method (run N -body simula-
tions, populate galaxies in halos, and then measure
the galaxy clustering observables from the mocks).
With this emulator, we can perform the MCMC
analysis in practice.

• Changes in the cosmological parameters cause char-
acteristic changes in the amplitudes and scale-
dependences of wp and ∆Σ via a combination of
various effects: nonlinear clustering, nonlinear halo
bias and halo exclusion effect (Fig. 2).

• We showed that the halo model based method can
recover the underlying cosmological parameters, es-
pecially S8 = σ8Ω0.5

m0, after marginalization over
the galaxy-halo connection (HOD) parameters, for
a variety of mock catalogs except for the mocks
including an extreme effect of assembly bias, for
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0.3 0.4

Ωm

0.8

0.9

S
8

0.7

0.8

0.9

1.0

σ
8

0.8 1.0

σ8

0.8 0.9

S8

baseline

FoF-halo

cent-incomp.

FIG. 16. Similar to the previous figure, but shown is the
result for the FoF and cent-incomp. mocks.
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FIG. 17. Similar to the previous figure, but shown is the
marginalized posterior distributions for the baryon mocks and
the assembly bias mocks (assembly-b and assembly-b-ext).
Here the assembly-b-ext is the worst (extreme) effect of as-
sembly bias, where the large-scale amplitude of wp is modified
by a factor of 1.6 (see Fig. 4). In the assembly-b mock, the
boost in the amplitude is halved, which is still larger than
what is expected for an actual data, even if exists.

the nominal choices of scale cuts, (R
wp

cut, R
∆Σ
cut) =

(2, 3) h−1Mpc (Figs. 12 and 14). The baseline
method can achieve a precision of σ(S8) ' 0.035–
0.042 for the SDSS and HSC-Y1 datasets. This
method allows for tight constraints on the cosmo-
logical parameter, because the small-scale informa-
tion of ∆Σ(R) at scales, 3 ≤ R/[h−1Mpc] . 10, can
be used to infer the average mass of host halos of
the SDSS galaxies, yielding useful information on
the galaxy bias that is sensitive to the large-scale
amplitudes of wp and ∆Σ.

• The halo model method suffers from sizable biases
in the cosmological parameters if the SDSS galaxies
have a significant assembly bias (although we con-
sider the extreme mocks including the maximum
amount of the assembly bias effect in this paper)
(Figs. 14 and 17). Even if this is the case, we
showed that the cosmological parameters can be
recovered if employing sufficiently large scales cuts
of Rcut & 10 h−1Mpc, where the cross-correlation
coefficient rcc(r) ≡ ξgm(r)/[ξgg(r)ξmm(r)]1/2 ' 1
(Fig. 18). This is equivalent to the case that we
do not include the small-scale lensing information
in the cosmological parameter estimation. However
the price to pay is that the statistical accuracy of
cosmological parameter determination is degraded,
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FIG. 18. Similar to the previous figure, but we here study
how biases in the cosmological parameters can be mitigated
by using the different scale cuts, (4, 6) or (8, 12) h−1Mpc for
wp and ∆Σ, respectively, instead of the baseline setup (2, 3).
The true cosmological parameters are recovered if using the
large-scale cuts such as (8, 12); that is, if we do not include
the 1-halo term contribution.

leading to σ(S8) ' 0.07 (see Fig. 14). Thus in
practice we should monitor whether the cosmolog-
ical parameters have a systematic shift with differ-

ent scale cuts, as a test of the assembly bias effect
inherent in actual data (Fig. 17).

• We used the method using a single population of
source galaxies to measure the galaxy-galaxy weak
lensing for multiple lens galaxies at different red-
shifts (LOWZ, CMASS1 and CMASS2) over the
range of redshifts, z = [0.15, 0.7]. This method al-
lows for self-calibration of the photometric redshift
errors and the multiplicative shear bias (Fig. 12).

Hence we conclude that we can safely apply the halo
model based method to actual SDSS and HSC-Y1 data.
The cosmological constraints from actual observational
data are presented in a companion paper [45].
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D. Mudd, J. Muir, A. Möller, E. Neilsen, R. C. Nichol,
B. Nord, P. Nugent, R. L. C. Ogando, A. Palmese,
J. Peacock, H. V. Peiris, J. Peoples, W. J. Percival,
D. Petravick, A. A. Plazas, A. Porredon, J. Prat, A. Pu-
jol, M. M. Rau, A. Refregier, P. M. Ricker, N. Roe,
R. P. Rollins, A. K. Romer, A. Roodman, R. Rosen-
feld, A. J. Ross, E. Rozo, E. S. Rykoff, M. Sako,
A. I. Salvador, S. Samuroff, C. Sánchez, E. Sanchez,
B. Santiago, V. Scarpine, R. Schindler, D. Scolnic,
L. F. Secco, S. Serrano, I. Sevilla-Noarbe, E. Shel-
don, R. C. Smith, M. Smith, J. Smith, M. Soares-
Santos, F. Sobreira, E. Suchyta, G. Tarle, D. Thomas,
M. A. Troxel, D. L. Tucker, B. E. Tucker, S. A. Ud-
din, T. N. Varga, P. Vielzeuf, V. Vikram, A. K. Vi-
vas, A. R. Walker, M. Wang, R. H. Wechsler, J. Weller,
W. Wester, R. C. Wolf, B. Yanny, F. Yuan, A. Zen-
teno, B. Zhang, Y. Zhang, J. Zuntz, and Dark Energy
Survey Collaboration, Phys. Rev. D 98, 043526 (2018),

arXiv:1708.01530 [astro-ph.CO].
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B. A. Reid, S. A. Rodŕıguez-Torres, N. A. Roe, A. J.
Ross, N. P. Ross, G. Rossi, J. A. Rubiño-Mart́ın,
S. Saito, S. Salazar-Albornoz, L. Samushia, A. G.
Sánchez, S. Satpathy, D. J. Schlegel, D. P. Schneider,
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Z. Zhai, and G.-B. Zhao, Mon. Not. Roy. Astron. Soc.
470, 2617 (2017), arXiv:1607.03155 [astro-ph.CO].

[43] R. Mandelbaum, H. Miyatake, T. Hamana, M. Oguri,
M. Simet, R. Armstrong, J. Bosch, R. Murata,
F. Lanusse, A. Leauthaud, J. Coupon, S. More,
M. Takada, S. Miyazaki, J. S. Speagle, M. Shirasaki,
C. Sifón, S. Huang, A. J. Nishizawa, E. Medezinski,
Y. Okura, N. Okabe, N. Czakon, R. Takahashi, W. R.
Coulton, C. Hikage, Y. Komiyama, R. H. Lupton, M. A.
Strauss, M. Tanaka, and Y. Utsumi, PASJ 70, S25
(2018), arXiv:1705.06745 [astro-ph.CO].

[44] Y. Kobayashi, T. Nishimichi, M. Takada, and
R. Takahashi, Phys. Rev. D 101, 023510 (2020),
arXiv:1907.08515 [astro-ph.CO].

[45] H. Miyatake, S. Sugiyama, M. Takada, T. Nishimichi,
M. Shirasaki, Y. Kobayashi, R. Mandelbaum, S. More,
M. Oguri, K. Osato, Y. Park, R. Takahashi, J. Coupon,
C. Hikage, B.-C. Hsieh, A. Leauthaud, X. Li, W. Luo,
R. H. Lupton, S. Miyazaki, H. Murayama, A. J.
Nishizawa, P. A. Price, M. Simet, J. S. Speagle,
M. A. Strauss, M. Tanaka, and N. Yoshida, arXiv
e-prints , arXiv:2111.02419 (2021), arXiv:2111.02419
[astro-ph.CO].

[46] Planck Collaboration, P. A. R. Ade, N. Aghanim,
M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi,
A. J. Banday, R. B. Barreiro, J. G. Bartlett, and
et al., Astronomy & Astrophysics 594, A13 (2016),
arXiv:1502.01589.

[47] R. Mandelbaum, U. Seljak, G. Kauffmann, C. M. Hi-
rata, and J. Brinkmann, Mon. Not. Roy. Astron. Soc.
368, 715 (2006), arXiv:astro-ph/0511164.

[48] A. Schneider and R. Teyssier, JCAP 2015, 049 (2015),
arXiv:1510.06034 [astro-ph.CO].

[49] A. Schneider, R. Teyssier, J. Stadel, N. E. Chisari,
A. M. C. Le Brun, A. Amara, and A. Refregier, JCAP
2019, 020 (2019), arXiv:1810.08629 [astro-ph.CO].

[50] F. C. van den Bosch, S. More, M. Cacciato, H. Mo, and
X. Yang, Mon. Not. Roy. Astron. Soc. 430, 725 (2013),
arXiv:1206.6890 [astro-ph.CO].

[51] Y. Kobayashi, T. Nishimichi, M. Takada, R. Taka-
hashi, and K. Osato, Phys. Rev. D 102, 063504 (2020),
arXiv:2005.06122 [astro-ph.CO].

[52] Y. Kobayashi, T. Nishimichi, M. Takada, and
H. Miyatake, Phys. Rev. D 105, 083517 (2022),
arXiv:2110.06969 [astro-ph.CO].

[53] https://jila.colorado.edu/~ajsh/FFTLog/index.

html.
[54] J. F. Navarro, C. S. Frenk, and S. D. M. White, Astro-

phys. J. 490, 493 (1997), arXiv:astro-ph/9611107.
[55] B. Diemer and A. V. Kravtsov, Astrophys. J. 799, 108

(2015), arXiv:1407.4730 [astro-ph.CO].
[56] https://bdiemer.bitbucket.io/colossus/.
[57] B. Diemer, Astrophys. J. Suppl. 239, 35 (2018),

arXiv:1712.04512 [astro-ph.CO].
[58] C. Hikage, R. Mandelbaum, M. Takada, and D. N.

Spergel, Mon. Not. Roy. Astron. Soc. 435, 2345 (2013),
arXiv:1211.1009 [astro-ph.CO].

[59] S. Masaki, C. Hikage, M. Takada, D. N. Spergel, and
N. Sugiyama, Mon. Not. Roy. Astron. Soc. 433, 3506
(2013), arXiv:1211.7077 [astro-ph.CO].

[60] I. Mohammed and U. Seljak, Mon. Not. Roy. As-
tron. Soc. 445, 3382 (2014), arXiv:1407.0060.

[61] O. H. E. Philcox, D. N. Spergel, and F. Villaescusa-
Navarro, Phys. Rev. D 101, 123520 (2020),
arXiv:2004.09515 [astro-ph.CO].

[62] B. Hadzhiyska, S. Bose, D. Eisenstein, and
L. Hernquist, arXiv e-prints , arXiv:2008.04913 (2020),
arXiv:2008.04913 [astro-ph.CO].

[63] Due to the line-of-sight projection, the BAO features,
which are around 100 h−1Mpc in the three-dimensional
correlation function, appear at shorter projected sepa-
ration.

[64] S. More, Astrophys. J. Lett. 777, L26 (2013),
arXiv:1309.2943 [astro-ph.CO].

[65] M. Tanaka, J. Coupon, B.-C. Hsieh, S. Mineo, A. J.
Nishizawa, J. Speagle, H. Furusawa, S. Miyazaki, and
H. Murayama, PASJ 70, S9 (2018), arXiv:1704.05988
[astro-ph.GA].

[66] G. M. Bernstein and M. Jarvis, Astron. J. 123, 583
(2002), astro-ph/0107431.

[67] E. S. Sheldon, D. E. Johnston, J. A. Frieman, R. Scran-
ton, T. A. McKay, A. J. Connolly, T. Budavári, I. Ze-
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Appendix A: Cosmological dependence of the 2-halo
term of galaxy correlation functions

The cosmological information in the joint probes cos-
mology using ∆Σ and wp lies in the 2-halo terms of ∆Σ
and wp. In particular, an advantage in the use of Dark
Emulator is that it includes all the nonlinear effects
such as the nonlinear matter clustering, the nonlinear
halo bias and the halo exclusion effect that are very dif-
ficult to accurately calibrate unless N -body simulations
are employed as done in Dark Emulator. In this ap-
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FIG. 19. Fractional changes in the 2-halo term of the three-
dimensional galaxy-galaxy correlation function relative to
that for the fiducial model, when varying either of σ8 or Ωm0.
Note that other model parameters keep fixed to their fiducial
values. The middle panel shows the fractional change for the
ratio ξgg,2h/ξmm, because the ratio becomes scale-independent
if the linear theory holds, which predicts ξgg = b2ξmm with a
scale-independent coefficient b. The lower panel shows the re-
sult for the two-point correlation function of central galaxies
that includes only the two-halo term by definition. The dif-
ferent lines show the results when ±5% and ±10% changes in
σ2

8 and Ωm0, and the solid or dashed lines correspond to the
results when increasing or decreasing the parameter by the
amount from the fiducial value. Here we consider the HOD
for LOWZ-like galaxies at z = 0.25.
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pendix, we study how these nonlinear effects cause scale-
dependent variations in the 2-halo term by changes in
the cosmological parameters.

Fig. 19 shows how a change in σ8 or Ωm0 causes a
scale-dependent change in the 2-halo term of the three-
dimensional correlation function, ξgg,2h, while other pa-
rameters including the HOD parameters are kept to their
fiducial values. Note that we use Dark Emulator to
compute these results, and we here focus on the galaxy
auto-correlation function because most of the cosmologi-
cal information for the SDSS and HSC datasets are from
wp that is obtained from the projection of ξgg. First,
for comparison, the upper panel shows the change in the
matter correlation function, ξmm, relative to that for the
fiducial model (Planck cosmology). The figure shows that
a change in σ8 causes a fairly sale-independent change in
ξmm at scales r . 70 h−1Mpc which we consider through-
out this paper. On the other hand, a change in Ωm0

causes a scale-dependent change in ξmm.
The middle panel shows the fractional change in

ξgg,2h/ξmm relative to the ratio for the fiducial model.
Note that we here consider the fiducial model of HOD for
LOWZ-like galaxies at z = 0.25. The reason we consider
this ratio is that, if ξgg follows the linear theory predic-
tion as given by ξgg = b2ξmm with a scale-independent
coefficient b, the change becomes scale-independent for
the change in the cosmological parameters. Here, for the
sake of clarity, we consider only the 2-halo term of ξgg us-
ing Eq. (16). The figure shows that a change in σ8 causes
a scale-dependent change in the ratio, which should arises
from the scale-dependent change in the halo bias and the
halo exclusion effect by the change in σ8. The change in
Ωm0 is also found to cause a scale-dependent change in
the ratio, again via the dependence of halo bias on Ωm0.
Thus Dark Emulator includes these complex depen-
dences of ξgg on the cosmological parameters. For further
comparison, the lower panel shows the results for ξgg,cc,
i.e the two-point correlation function of central galaxies,
which includes only the 2-halo term by definition. The
results appear to be similar to those in the middle panel.

Thus Dark Emulator includes these complex depen-
dences of the galaxy-galaxy correlation function on the
cosmological parameters (σ8 and Ωm0). These depen-
dences are difficult to accurately calibrate analytically
e.g. by the perturbation theory, and the accurate cali-
bration requires the use of N -body simulations as done
in the development of Dark Emulator. These complex
cosmological dependences of ξgg are an advantage of our
method.

Appendix B: Covariance estimation based on mock
catalogs

In this appendix, we describe the estimation of statisti-
cal uncertainties in the galaxy-galaxy weak lensing profile
(∆Σ) by using a set of synthetic observational datasets,
i.e. the covariance matrix.

A robust estimation of the covariance matrix is one
of the most important subjects in modern cosmology in
practice [e.g., see Refs. 101–105]. In this paper, we use a
set of numerical simulations in Ref. [79] to construct real-
istic mock catalogs of galaxy shapes as well as the tracers
of large-scale structures. We then adopt the same analy-
sis pipeline to measure ∆Σ from the mock catalogs as we
do for actual measurements. Our mock measurements
of the lensing signals have 2,268 realizations in total, al-
lowing us to evaluate the covariance matrix of ∆Σ for
the SDSS-like galaxies at multiple redshifts in a rigorous
way. In the following, we describe how to produce mock
catalogs from the simulations incorporated with observa-
tional data and show the validation of our mock lensing
analyses.

1. Massive production of mock catalogs

Full-sky simulations of lensing and halos

We first briefly introduce the full-sky ray-tracing sim-
ulations and the halo catalogs in the line-cone simulation
realization, developed in Ref. [79] (The full-sky simula-
tion data are freely available from [106]). The full-sky
simulations are based on a set of N -body simulations
with 20483 particles in cosmological volumes. Ref. [79]
adopted the standard ΛCDM cosmology with the follow-
ing cosmological parameters: the CDM density param-
eter Ωcdm = 0.233, the baryon density Ωb = 0.046, the
matter density Ωm = Ωcdm + Ωb = 0.279, the cosmologi-
cal constant ΩΛ = 0.721, the Hubble parameter h = 0.7,
the amplitude of density fluctuations σ8 = 0.82, and the
spectral index ns = 0.97. Note that the cosmological
model in the simulation is consistent with the WMAP 9
year cosmology [107].

Full-sky weak gravitational lensing simulations have
been performed with the standard multiple lens-plane al-
gorithm [108–110]. In this simulation, one can take into
account the light-ray deflection on the celestial sphere
by using the projected matter density field given in the
format of spherical shell (see the similar approach for
Ref. [111]). The simulations used the projected matter
fields in 38 shells in total, each of which was computed
by projecting N -body simulation realization over a radial
width of 150h−1Mpc, in order to make the light-cone
simulation covering a cosmological volume up to z = 5.3.
As a result, the lensing simulations consist of the shear
field at each of 38 different source redshifts with angular
resolution of 0.43 arcmin. Each simulation data is given
in the HEALPix format [112]. The radial depth be-
tween nearest source redshifts is set to be 150h−1Mpc in
comoving distance, corresponding to the redshift interval
of 0.05− 0.1 for z <∼ 1.

In each output of the N -body simulation, Ref. [79]
identified dark matter halos using the Rockstar algo-
rithm [73]. In the following, we define the halo mass
by using the spherical overdensity criterion: M200m =
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200ρ̄m0(4π/3)R3
200m. Individual halos in N -body boxes

are assigned to the pixels in the celestial sphere with the
HEALPix software. It should be noted that the N -body
simulations allow us to resolve dark matter halos with
masses greater than a few times 1012 h−1M� with more
than 50 N -body particles at redshifts z < 0.7, which is
a typical redshift range of massive galaxies in the SDSS
BOSS survey.

Shapes of background galaxies

For shapes of background galaxies, we use the mock
catalogs produced in Ref. [81]. The mocks are specific
to cosmological analyses with the Subaru HSC-Y1 shape
catalog [113] by taking into account various observational
effects as the survey footprints, inhomogeneous angular
distribution of source galaxies, statistical uncertainties in
photometric redshift estimate, variations in the lensing
weight, and the statistical noise in galaxy shape mea-
surements including both intrinsic shapes and the mea-
surement errors. We produced 2,268 mock catalogs from
108 full-sky ray-tracing simulations of gravitational lens-
ing in Ref. [79] by using a similar approach developed in
Refs. [80, 114]. We properly incorporated with the sim-
ulated lensing shear and the observed galaxy shape on
an object-by-object basis, enabling the mock to share ex-
actly the same information of angular positions, redshifts,
the lensing weights and the shear responsivity with the
real catalog. The further details are found in Ref. [81].
The mock shape catalogs are publicly available at [115].

Mock catalogs of lensing galaxies, SDSS-like galaxies

For the foreground galaxies to be used in the galaxy-
galaxy lensing analysis, we produce the mock galaxy
catalogs assuming the HOD method as summarized in
Section III B. As in the mock galaxy shape catalogs,
we first extract 2,268 realizations of the HSC-Y1 sur-
vey windows from 108 full-sky halo catalogs in Ref. [79].
We then populate galaxies into halos using the fiducial
HOD method whose parameters are chosen to mimic
LOWZ and CMASS galaxies in the redshift range of
0.15 < z < 0.35, 0.43 < z < 0.55, and 0.55 < z < 0.70,
but spanning the entire SDSS BOSS footprint. The HOD
method is used to populate mock LOWZ and CMASS
galaxies in halos of each of the light-cone simulation re-
alization.

Besides, we include the redshift-space distortion effects
in mock LOWZ and CMASS galaxies. Along the line of
sight of each host halo, we set the radial velocity of the
central galaxy to be the same as one of its host halo,
while we assign the random velocities to the satellites by
following a Gaussian distribution with width given by the
virial velocity dispersion.

FIG. 20. Comparison of the diagonal components in the co-
variance matrices for the galaxy-galaxy lensing signals. From
top to bottom, we show the variances of the lensing signals at
three different redshift bins (the lower panel corresponds to
the case at the higher redshift). The points represent the sim-
ulation results based on 2,268 realizations, while the solid lines
stand for the Gaussian predictions developed in Ref. [69]. In
each panel, the dashed line shows the variance in the absence
of shape noises, highlighting the contribution from uncorre-
lated large-scale structures along a line of the sight. Note that
we define ∆Σ in units of hM� pc−2 in this figure. Hence, the
unit in each vertical axis is given by Mpc (M� pc−2).

2. Validation of our covariance estimation

In this section, we validate the performance of our
covariance estimation with the mock measurements of
galaxy-galaxy lensing signals. For comparison, we pre-
dict the Gaussian covariances of the lensing signals by
a halo-model framework developed in Ref. [69]. In this
framework, we can properly take into account the weight
function related to the conversion between the lensing
shear and the excess surface mass density in the covari-
ance matrix. It would be worth noting that the covari-
ance model has been extensively validated with a set of
numerical simulations for a variety of the weight func-
tions in the lensing analysis (see Ref. [69] for details).

Fig. 20 shows the comparison of the variance of the
lensing signal in each of three redshift bins with the sim-
ulation results and their Gaussian predictions. In each
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FIG. 21. Comparisons of the off-diagonal elements in the covariance matrices with the simulation results and their Gaussian
predictions. The left panels show the cross correlation coefficient in the covariance at the medium redshift bin (in the redshift
range of 0.43 < z < 0.55) as a function of radii. In the left, the points show the simulation results, while the lines are for
the Gaussian predictions. Each small panel in the left represents the scale dependence of the cross correlation coefficient.
In the right, we show the cross correlation coefficients in the full covariance across three redshift bins. The lower triangular
panels show the simulation results, while the upper one displays the difference between the simulation results and the Gaussian
predictions. In the right, we use the labels of “LOWZ”, ”CMASS1” and “CMASS2” from the lowest to the highest redshift
bins. Note that we limit the length scales to be in the range of R > 10h−1Mpc in the right panels to focus on the sample
covariance. The diagonal elements in the right is set to 1 by construction.

panel, the simulation results are shown in the colored
points, while the solid and dashed lines represent the
Gaussian covariances with and without the shape noise,
respectively. The figure clearly shows that the sample
variance caused by the line-of-sight large scale structures
dominates the mock variance, and the shot noise is dom-
inant at the length scale less than 10h−1Mpc.

We then study the off-diagonal elements of the mock
covariance matrices. The left panels in Fig. 21 summa-
rize the comparison of the cross correlation coefficient in
the covariance for the lensing signals at the lens redshift
0.43 < z < 0.55. This figure shows that our simple Gaus-
sian prediction provides a reasonable agreement with the
off-diagonal elements of the mock covariance, indicating
the super-sample covariance (SSC) [116] is not impor-
tant to our galaxy-galaxy lensing analyses. The SSC is
expected to arise from the four-point correlation among
super- and sub-survey modes [116, 117], and the recent
simulations have shown that the SSC in the halo-matter
cross correlation becomes important only at 1h−1Mpc
[118]. At the scale of R ∼ 1h−1Mpc, the statistical un-
certainties in our lensing analyses are mostly determined
by the shot noise terms.

The right panel of Fig. 21 shows the cross correlation
coefficient of the mock covariance matrix across three
redshift bins. The lower triangular panel shows the sim-
ulation results, while the upper panels represent the dif-
ference between the simulation results and the Gaussian
predictions. We find the large cross correlation coeffi-
cients in the radius range of R > 10h−1Mpc with a level
of ∼ 0.5 at most for single redshifts and the cross covari-
ance between two different redshifts is less prominent.
Our Gaussian covariance is in good agreement with the
simulation results, allowing to explain the mock covari-
ance with a 20%-level accuracy.

Appendix C: Posterior distribution of parameters in
a full-dimension parameter space

For comprehensiveness of our discussion, in Fig. 22 we
show the posterior distribution for all the parameters in-
cluding all the HOD parameters for the CMASS1-like
galaxies. The results for the LOWZ- and CMASS2-like
galaxies at different redshifts are similar to this plot.
Even if we use the joint information of wp and ∆Σ, each
of the HOD parameters is not well constrained, but the
cosmological parameters are recovered.
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