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A novel structure-preserving algorithm for general relativity in vacuum is derived from a lattice
gauge theoretic discretization of the tetradic Palatini action. The resulting model of discrete gravity
is demonstrated to preserve local Lorentz invariance and symplectic structure.

I. INTRODUCTION

Since at least the 1990s, structure-preserving algo-
rithms [1] have flourished in computational physics, hav-
ing found wide adoption in subfields as diverse as orbital
mechanics [2–5], geophysics [6, 7] and plasma physics [8–
16]. Such algorithms are generally derived from a La-
grangian or Hamiltonian formalism and use discretiza-
tions that preserve the symplectic structure, topology,
gauge symmetry, and conservation laws of their underly-
ing physical systems. This preservation of mathematical
structure can substantially improve the accuracy and fi-
delity of numerical simulations.
Structure-preserving discretizations of general relativ-

ity (GR) arguably have an even longer history. The most
widely explored such approach was introduced in 1961:
Regge calculus [17] is a discrete variational approxima-
tion of GR that encodes spacetime data on a simplicial
mesh. In four spacetime dimensions, Regge calculus ele-
gantly approximates the Einstein-Hilbert action by a sum
over areas Ah and deficit angles δh, such that

SRegge =
∑

h

Ahδh
Ah→0−−−−→ SEH =

1

2

∫

d4x
√−gR (1)

in the continuum limit. Here, h labels each 2-simplex
(i.e. triangle) of the simplicial complex, and δh de-
scribes the failure of the 4-simplices adjoining h—i.e.
{σ4 | σ4 ⊃ h}—to tesselate their embedding in flat R

4

spacetime [18].
Since the 1970s, Regge calculus has not only been ac-

tively employed as the basis of many studies in quan-
tum gravity (e.g. [19–26]), but also as an algorithmic
approach to classical numerical relativity (e.g. [27–35]).
Despite its success as a numerical tool, however, most
studies in numerical relativity continue to depend upon
standard finite difference methods. Two reasons cited for
this include the need to develop (i) a description of mat-
ter in Regge calculus, as well as (ii) a better understand-
ing of its relationship to standard methods in numerical
relativity [36, 37].
In particular, because the degrees of freedom of Regge

calculus are quite distinct from those of continuum GR,
it can be challenging to initialize a Regge calculus sim-
ulation with known GR initial conditions, or to test

whether a particular simulation using Regge calculus re-
covers a known GR solution. Although various physical
solutions have indeed been thoroughly and successfully
benchmarked with Regge calculus [38, 39], it would seem
that any given simulation generally requires a bespoke
understanding of the map between discrete and contin-
uum degrees of freedom.

It is also worth emphasizing that, despite Regge calcu-
lus being a variational method, it nonetheless forfeits—
in its complete, nonperturbative formulation—the local
gauge symmetry of GR [23]. While local gauge symme-
try is maintained in a Regge calculus description of flat
spacetime—and even in a linearized Regge calculus of
curved spacetimes [40]—this structural feature of GR is
at best only partially preserved overall.

In this paper, an alternative variational approach to
simulating general relativity is developed that amelio-
rates some of these limitations. Our effort employs fa-
miliar tools of lattice gauge theory [41] to construct a
structure-preserving discretization of the tetradic Pala-
tini action [42]. Using a Poincaré group-valued connec-
tion derived from Cartan geometry, we describe a novel
variational algorithm for numerical relativity that exactly
preserves Lorentz gauge symmetry. We further show the
algorithm is (multi)symplectic, with a symplectic struc-
ture analogous to continuum GR.

The approach we take is closely related to Poincaré
gauge theoretic studies of lattice quantum gravity by
Menotti, et al. [43, 44]. To our knowledge, however, the
classical physics of these methods, including their equa-
tions of motion, for example, have not previously been
explored, nor have they been extended to define an algo-
rithm for numerical relativity. Moreover, our construc-
tion is general to simplicial and cubical discretizations of
spacetime, and we develop a streamlined construction of
the aforementioned Poincaré connection.

The remainder of this paper is organized as follows:
Section II briefly reviews the tetradic Palatini action
and its origins in Cartan geometry; Section III derives
a discretization of this action in a manner that pre-
serves Lorentz gauge invariance; Section IV derives the
discrete, classical equations of motion that comprise the
algorithm; and Section V describes its symplectic struc-
ture. Finally, Section VI summarizes and concludes.
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II. THE TETRADIC PALATINI ACTION IN

CONTINUOUS SPACETIME

Let us first review the tetradic Palatini action in the
continuum. We consider a four-dimensional Lorentzian
spacetime with connection, denoted (M, g,Γ), and em-
ploy the following index conventions:

(i) spacetime coordinate indices {µ, ν, . . . } are raised
and lowered by gµν , the metric on M ;

(ii) internal Lorentz indices {A,B, . . . } are raised and
lowered by ηAB, the Minkowski metric; and

(iii) any other indices {a, b, . . .} will be specified as
needed.

In a coordinate basis {∂µ}, the affine connection Γ has
components Γσ

µν = dxσ(∇∂µ
∂ν).

Up to local Lorentz gauge, the metric g uniquely deter-
mines a tetrad field e on M , a vector-valued 1-form with
components eA = eAµdx

µ ∈ Γ(T ∗M) defined to satisfy

gµν = eAµ ηABe
B
ν . (2)

Since gµν is non-degenerate, eAµ (p) defines ∀ p ∈ M
an isomorphism between the tangent space TpM and
the ‘internal Lorentz space’ at p. As a result, any
vector field X ∈ Γ(TM) can be equally well described
in terms of the Lorentz frame {∂A = eµA∂µ} such that
X = XA∂A = Xµ∂µ. (Here, e

µ
Ae

A
ν = δµν defines a matrix

inverse.) In general, {∂A} is a non-coordinate basis (since
the commutator [∂A, ∂B] need not vanish) and is dual to
{eA}.
Parallel transport may be defined in the Lorentz

frame by the 1-form spin connection ω, with components
ωA

B = ωA
µBdx

µ ∈ Γ(T ∗M), such that

∇µX
A = ∂µX

A + ωA
µBX

B. (3)

Since the Lorentz frame arises, ultimately, as a change
of basis, the spin connection components have a definite
relation to Γσ

µν . In particular, ωA
µB = eA(∇∂µ

∂B), which
can be more suggestively expanded as

∇µe
A
ν = ∂µe

A
ν + ωA

µBe
B
ν − Γσ

µνe
A
σ = 0. (4)

The name ‘Lorentz frame’ can be justified by requiring
ηAB to be invariant under parallel transport—

0 = ∇µηAB = ∂µηAB − ωC
µAηCB − ωC

µBηAC

= −(ωµBA + ωµAB).
(5)

Due to its resulting antisymmetry, ω is defined by this
condition as an so(3, 1)-valued 1-form. Studying Eqs. (4)
and (5), we also see that the metric compatibility of Γ
follows immediately from this η-compatibility of ω.
In Einstein GR, Γ is assumed to be not only metric-

compatible but torsion-free, such that Γσ
[µν] = 0. The

resulting Levi-Civita connection ΓLC is then uniquely de-
termined by g. Thus, as a further consequence of vanish-
ing torsion, by Eqs. (2) and (4) the metric g also uniquely
determines—up to Lorentz gauge—the R

4 and so(3, 1)-
valued 1-forms e and ω, respectively, on M .
Conversely, the metric g and the connection ΓLC can be

uniquely recovered from the fields e and ω on a torsion-
free manifold. (More precisely, g can be canonically re-
covered up to an overall constant factor.) There is an
equivalence, therefore, between a Lorentzian manifold
(M, g,ΓLC) and its torsion-free Cartan geometric coun-
terpart (M, e, ω) [45]. Let us describe the origin of this
nomenclature.
The 1-forms e and ω are more economically regarded

as components of the Cartan connection A = Aµdx
µ on

M , defined by

A =

[

ω e
0 0

]

∈ Γ(p⊗ T ∗M). (6)

Here, p = so(3, 1)⋉ R
4 ⊂ gl5(R) denotes the Lie algebra

of the Poincaré group, so that A is a p-valued 1-form
on M .1 Following the previous discussion, a torsion-free
Lorentzian manifold can be equivalently defined by its
metric g or p-valued Cartan connection A, and solving for
the dynamics of A similarly determines dynamics for g.
In what follows, we therefore regard the tetradic Palatini
action as a dynamical theory of the Cartan connection A
on M .
To that end, we first recall the curvature 2-form of the

Cartan connection, defined as

F = dA+A ∧ A =

[

dω + ω ∧ ω De

0 0

]

=

[

R T

0 0

]

, (7)

where De = de+ ω ∧ e denotes the exterior covariant
derivative of e. In components,

RA
Bµν = ∂µω

A
νB − ∂νω

A
µB + ωA

µCω
C
νB − ωA

νCω
C
µB (8)

denotes the Lorentz curvature RA
B ∈ Γ(∧2T ∗M), while

TA
µν = (DeA)µν = ∂µe

A
ν − ∂νe

A
µ + ωA

µBe
B
ν − ωA

νBe
B
µ (9)

denotes the torsion TA ∈ Γ(∧2T ∗M). As previously
noted, torsion is assumed to vanish, TA = 0, a priori in
Einstein GR. In the tetradic Palatini theory, however,
torsion does not vanish by assumption, but rather as a
dynamical consequence of the action varied in vacuum,
as we presently demonstrate.

1 A p-valued Cartan connection A is formally defined on an
SO(3, 1)-principal bundle P over M such that A : TpP → p is an
isomorphism ∀ p ∈ P . The pair (P,A) defines a Cartan geome-

try [45]. In physical applications, however, A is conventionally
defined by its pullback to M and its overlying bundle is elided.
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The 4-form Lagrangian LPal ∈ Γ(∧4T ∗M) of the
tetradic Palatini action SPal =

∫

M
LPal is defined in terms

of the tetrad e and spin connection ω by [42]

LPal = ǫABCD

(

eA ∧ eB ∧RCD
)

. (10)

It should be noted that Eq. (10) is often called the
Einstein-Cartan-Sciama-Kibble (ECSK) action [46, 47].
However, because ECSK theory prioritizes the role of tor-
sion in gravity, whereas we will pursue only the torsion-
less vacuum equations of Einstein-Cartan gravity, we pre-
fer the nomenclature tetradic Palatini action. We note
that the Lorentz invariance of LPal follows directly from
the SO(3, 1) invariance of the Levi-Civita symbol ǫABCD,
that is,

(ǫABCD)′ = ǫEFGHΛE
AΛ

F
BΛ

G
CΛ

H
D = ǫABCDdet[Λ]

(11)

where det[Λ] = 1.
Unlike the fields (g,ΓLC) of the Einstein-Hilbert ac-

tion, (e, ω) are taken to be independent in Eq. (10), and
varied accordingly. The variation of each field yields the
respective equations of motion [48]

(δe) : 0 = ǫABCDe
B ∧RCD

(δω) : 0 = ǫABCDD(eA ∧ eB).
(12)

Here, we note that D(eA ∧ eB) = DeA ∧ eB − eA ∧DeB.
Taking RCD = 1

2R
CD
GHeG ∧ eH and TA = 1

2T
A
GHeG ∧ eH ,

(well-defined expansions for eA nondegenerate), it is
readily established that the former relation (δe) of
Eq. (12) yields Einstein’s vacuum field equations while
(δω) yields a zero torsion condition. In particular, since
ǫABCDeA ∧ eG ∧ eH ∧ eI = δGHI

BCDevol for a volume form
vol and e = det[eAµ ], the wedge product (δe) ∧ eI gives

0 = −1

2
RCD

GHδGHI
ACD = 2RHI

HA −RGH
GHδIA, (13)

which, using Eq. (4), can be demonstrated equivalent
to Einstein’s vacuum equations, 0 = 2Rµν −Rgµν . Like-
wise, (δω) ∧ eI gives

0 = −δGHI
ACDT

A
GH = 2

(

TA
CAδ

I
D + TA

ADδIC − T I
CD

)

. (14)

Tracing over Eq. (14) with δDI in four dimensions leaves
0 = TA

CA. By Eq. (14), therefore, T I
CD = 0 in all compo-

nents, and torsion vanishes as desired.
Thus, despite making fewer initial assumptions, the

tetradic Palatini action nevertheless recovers the equa-
tions of motion of GR in vacuum; the dynamics of the
Cartan connection indeed recover those of GR.
Before concluding our discussion of continuous space-

time, the following will be useful for the next section,
which discretizes SPal. Evaluated on a 4-tuple of vector
fields—X = (X1, X2, X3, X4), Xa ∈ Γ(TM)—the 4-form
LPal of Eq. (10) yields

LPal(X) =
1

2
ǫABCD(eAµ e

B
ν R

CD
στ )ǫabcdXµ

aX
ν
b X

σ
c X

τ
d

=
1

2
ǫABCD(eAµ e

B
ν R

CD
στ )ǫµνστdet[X],

(15)

where the function det[X] is the matrix determinant of
the 4-tuple, expressed in the coordinate basis induced by
{xµ} and evaluated pointwise over M .

III. THE DISCRETE ACTION

We now discretize the tetradic Palatini action of the
previous section by methodically mapping its continuum
degrees of freedom to their discrete counterparts on a
lattice. Our formalism will be general to orientable sim-
plicial and cubical discretizations and we take care to
preserve the theory’s Lorentz invariance.
To proceed, we first choose a coordinate chart on the

continuum spacetime manifoldM , and construct a lattice
(simplicial or cubical) on its coordinate space in R

4. As
such, the lattice inherits the Euclidean geometry of the
coordinate space (such as straight edges and flat faces),
but this ‘lattice geometry’ will play no role in our de-
scription of spacetime. Topological features of M must
be retained in the construction of the lattice, including
via possible identifications of its edges or faces. In such
a case, the lattice should be regarded as only locally em-
bedded in coordinate space while being globally homeo-
morphic to the target spacetime manifold. Such a con-
struction is standard in the triangulation of manifolds
(see e.g. [49]).
To establish notation for lattice degrees of freedom,

we denote the set of lattice k-cells by Σk = {σk}, such
that an arbitrary oriented k-cell will be denoted σk, or
will otherwise be specified by an ordered label of its
vertices. σij ∈ Σ1, for example, denotes an edge ori-
ented from vertex σi ∈ Σ0 to vertex σj ∈ Σ0. We define
Ni(σ

k) = {j 6= i | σij ⊂ σk} as the set of labels of neigh-
boring vertices in the cell σk that share an edge with
basepoint σi. In both simplicial and cubical discretiza-
tions in four dimensions, for example, #Ni(σ

4) = 4 if
σi ⊂ σ4 and 0 otherwise. We denote the permutation set
of these neighboring vertex labels as Πi(σ

4) = S[Ni(σ
4)].

As described in Section II, the geometric information of
M is encoded in its Cartan connection—the fields eAµ (x)

and ωA
µB(x)—which may be regarded as defined on coor-

dinate space. A natural first (provisional) approximation
of the tetradic Palatini action, as it appears in Eq. (15),
therefore follows by mapping these fields to the lattice,
such that

SPal =
∑

σ4∈Σ4

∫

σ4

LPal(x)d
4x

≈
∑

σ4∈Σ4

σi∈σ4

(−1)|π|Vf

2nv

ǫµνστ ǫABCD

(

eAµ e
B
ν R

CD
στ

)∣

∣

∣

σi

det[Vσi
]

(16)

where LPal(x) denotes LPal on coordinate space. The
second line approximates the integral over σ4 by averag-
ing the value of its integrand, as expressed in Eq. (15),
at each of its vertices. More specifically:
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• nv denotes the number of vertices in σ4 over which
the integrand is averaged. nv = 5 on a simplicial
lattice and nv = 16 on a cubical lattice.

• Vσi
= (Vi1, Vi2, Vi3, Vi4) is a 4-tuple of ‘edge vec-

tors’ emanating from vertex σi. These point in the
directions of neighboring vertices in σ4, with mag-
nitudes set by the edges’ coordinate lengths.

• (−1)|π| accounts for the relative orientation be-
tween the 4-tuple Vσi

and the cell σ4, whose orien-
tation is inherited from M . This factor is expressed
in terms of a permutation π to be defined more con-
cretely below.

• The volume factor Vf corrects for the fact that
det[Vσi

] implicitly evaluates LPal not on σ4, but
on a (hyper-) parallelapiped specified by Vσi

. On a
cubical lattice, these volumes coincide and Vf = 1,
but on a simplicial lattice, det[Vσi

] overcounts the
volume of σ4 by the ratio of a normalized hyper-
cube to one of its corners, such that Vf = 1/4!.

This approximation of
∫

σ4 by the average of ver-
tex evaluations is, in effect, a second order accurate
multi-dimensional trapezoid rule (see [50] and references
therein).
Eq. (16) instructively approximates the continuum ac-

tion, but it is insufficient to determine dynamics for a
discrete theory. In particular, Eq. (16) discretely sam-
ples degrees of freedom that are manifestly defined in the
continuum—e.g. ∂ω. (If this continuous derivative were
avoided by regarding R itself as a Lie-algebra-valued de-
gree of freedom, rather than ω, the resulting action would
not recover the equations of motion of Einstein GR.) To
reformulate Eq. (16) with bona fide discrete degrees of
freedom, we now proceed hewing more closely to the un-
derlying differential geometry of the tetradic Palatini ac-
tion.
In particular, the study of structure-preserving dis-

cretizations (such as discrete exterior calculus (DEC) [51]
and finite element exterior calculus (FEEC) [52, 53]) has
demonstrated the importance of preserving the degrees of
discrete differential forms. Therefore, rather than sam-
pling continuum fields at vertices, as we do in Eq. (16), we
will instead map 1-forms to data associated with edges,
and 2-forms to data associated with faces.
However, an additional challenge we must overcome is

the gauge-dependent character of the fields we are model-
ing, which thwarts conventional approaches such as DEC
and FEEC. The preservation of Lorentz invariance in our
theory will require that we express discrete fields in a def-
inite (if arbitrary) Lorentz gauge, which is associated in
a continuum theory to each point of spacetime, and in
a discrete theory to each vertex. This pointwise gauge
selection is in tension with the desire to characterize dif-
ferential forms over edges and faces of finite extent. For
example, a scalar-valued 1-form is conventionally approx-
imated on an edge by its integral over that edge. Here,
such an integral involves a continuum of different gauge

choices in spacetime that prevent the simple summation
of fields defined at disparate points.
A resolution to this tension is naturally found in the

holonomy of a connection. The path-ordered integral of a
1-form connection produces the means to parallel trans-
port between different gauge choices. It is an object that
can be naturally associated with an edge, and which by
construction accounts for a difference in gauge between
two vertices. In this sense, the Cartan connection—which
retains the geometric data of a Lorentzian manifold—
provides a natural approach to a structure-preserving dis-
cretization of GR.
To map the Cartan connection A on M to holonomies

on the discrete lattice in coordinate space, we associate
to each edge σij the following path-ordered integral:

Uij = P
{

exp

∫

σij

A

}

= P
{

exp

∫

σij

[

ω e

0 0

]}

=

[

Λij ℓij

0 1

]

.

(17)

This is a standard construction of lattice gauge theory
[41]. Uij constitutes the Poincaré group-valued holon-
omy associated with edge σij , expressed in the repre-
sentation SO(3, 1)⋉ R

4 ⊂ GL5(R) and characterized by
Lorentz and translation group elements, Λij ∈ SO(3, 1)
and ℓij ∈ R

4, respectively.
We denote the (A,B)th component of the Lorentz con-

nection along edge σij by ΛA
ijB , and the Ath component

of the corresponding translation connection by ℓAij . We
also adopt a notation for a Lorentz holonomy with an
arbitrary number of edges. In particular, for the holon-
omy comprised of (n− 1) connections between the ver-
tices σi1 , . . . , σin , we write

ΛA
i1···inB =

(

Λi1i2Λi2i3 · · ·Λin−1in

)A

B

= ΛA
i1i2C

ΛC
i2i3D

· · ·ΛE
in−1inB

(18)

where intermediate Lorentz indices {C,D, . . . , E} are all
contracted. Here, we have implicitly defined the holon-
omy to act from the right, and note that the matrix
multiplication of holonomies effects the concatenation of
path-ordered integrals, as defined in Eq.(17).
Uij is seen to ‘mediate’ between Lorentz gauges at σi

and σj , as desired. In particular, given an arbitrary
Lorentz gauge transformation defined at each vertex, say

{

gi = g(σi) ∈ SO(3, 1) ∀ σi ∈ Σ0
}

, (19)

the gauge transformation of Uij readily follows from
Eq. (17), such that

U ′
ij =

[

gi 0

0 1

]−1

Uij

[

gj 0

0 1

]

=

[

g−1
i Λijgj g−1

i ℓij

0 1

]

.

(20)

From this calculation, we note that ℓij can be regarded as
if ‘based at’ σi. By examining Eq. (17), the holonomy Uji
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is also readily calculated to be Uji = U−1
ij . In particular,

Λji = (Λij)
−1 and ℓji = −Λjiℓij . (21)

We must consider holonomies on closed paths as well.
For example, given a loop (∂σ2)i = σiσj · · ·σkσi around
a single face σ2 with basepoint σi, we define

[

Ωijk Θijk

0 1

]

= P
{

exp

∮

(∂σ2)i

A

}

. (22)

Note, when a holonomy is comprised of the connections
along the edges of a single face σ2 ∈ Σ2 (i.e. when it is a
“minimal” nontrivial loop), we use the symbol Ω for its
Lorentz holonomy rather than Λ as in Eq. (18), and we
suppress some of its indices. This notation is general to
the simplicial and cubical setting, such that, for example,

Simplicial: ΩAB
ijk =

(

ΛijΛjkΛki

)A

C
ηCB

Cubical: ΩAB
ijk =

(

ΛijΛji′Λi′kΛki

)A

C
ηCB. (23)

Here, i′ labels the vertex diagonal to i on the appropri-
ate face of a cubical lattice; in a more typical notation,

(i, j, i′, k) = (n,n+ â,n+ â+ b̂,n+ b̂). Ω thereby char-
acterizes Lorentz curvature over a face σ2, while Θ char-
acterizes the corresponding torsion.
To see how these holonomies can be substituted for the

fields of Eq. (16), let us examine their continuous limit.
We Taylor expand around σi to find [41]

Λij ≈ 1 + ωij(σi)∆ + ωij(σi)
2∆

2

2
+O(∆3)

ℓij ≈ eij(σi)∆ + ωij(σi)eij(σi)
∆2

2
+O(∆3)

Ωijk − Ωikj ≈ 2AfRijk(σi)∆
2 +O(∆3).

(24)

Here, ωij(σi) denotes the component of the continuum
Lorentz connection along the lattice edge σij , evaluated
at σi. eij(σi) is defined analogously. Rijk(σi) denotes
the component of the continuum Lorentz curvature at σi

corresponding to edge vectors σij and σik. ∆ denotes the
length of σij and σik in coordinate space (in this expan-
sion we assume these to be equal for simplicity, though
they need not be in general), and ω, e, and R are im-
plicitly expressed in the corresponding coordinate basis.
The area factor Af is analogous to Vf in Eq. (16)—it cor-
rects for the implicit overcounting of area in the simplicial
setting on the parallelogram formed by σij and σik. In
particular, Af = 1 on a cubical lattice and Af = 1/2 on
a simplicial lattice. It is further worth noting that the
difference Ω− Ω−1 in Eq. (24) is, in fact, so(3, 1)-valued,
since (Ω− Ω−1)T η = η(Ω−1 − Ω) ∀ Ω ∈ SO(3, 1).
With the expansions of Eq. (24) in mind, it is now

straightforward to reconstruct a discrete tetradic Pala-
tini action using edge holonomies, such that Eq. (16) is

recovered to least order in the continuum limit. In partic-
ular, we define the following action summed over lattice
hypercells {σ4} = Σ4:

S =
∑

σ4∈Σ4

L(σ4)

L(σ4) =
∑

σi⊂σ4

π∈Πi(σ
4)

(−1)|π|

2ρfnv

ǫABCD

(

ℓAiπ(1)ℓ
B
iπ(2)Ω

CD
iπ(3)π(4)

)

.

(25)

With factors Vf and Af as defined above, the quantity
ρf = Vf/Af satisfies ρf = 1 (ρf = 12) for cubical (sim-
plicial) lattices. Note, we need not explicitly antisym-
metrize Ω and Ω−1 because the Levi-Civita symbol does
this for us. This cancels the factor of 2 appearing in
Eq. (24). The sum over permutations π replaces ǫµνστ in
Eq. (16) and the corresponding summation of spacetime
indices. In particular, as first introduced in Eq. (16),
π ∈ Πi(σ

4) is now explicitly defined as a permutation of
vertices neighboring σi in σ4. We define the parity |π|
to correct for any disagreement between the overall ori-
entation of coordinate space and the orientation of edge
vectors in σ4, emanating from σi and ordered by π.
It is worth emphasizing the following important fea-

tures of this discrete action:

• The discrete Lagrangian L(σ4) is locally Lorentz
invariant. Under an arbitrary gauge transformation
{gi ∈ SO(3, 1)}σi∈Σ0 using Eq. (20) we find

(

ǫABCDℓAiπ(1)ℓ
B
iπ(2)Ω

CD
iπ(3)π(4)

)′

= ǫABCD

(

g−1
i ℓiπ(1)

)A(
g−1
i ℓiπ(2)

)B(
g−1
i Ωiπ(3)π(4)gi

)CD

= ǫABCDℓAiπ(1)ℓ
B
iπ(2)Ω

CD
iπ(3)π(4).

(26)

The last equality above follows from the Lorentz
group relation (gi)

E
F η

FD = (g−1
i )DF η

FE and the
SO(3, 1)-invariance of the Levi-Civita symbol.

• The Poincaré holonomies Uij = (Λij , ℓij) are not
to be confused with the Poincaré symmetry group
of Minkowski spacetime. There is a gauge sym-
metry transformation that acts on our Poincaré
holonomies, but the gauge group is Lorentz, not
Poincaré. Such ‘internal’ or ‘vertical’ (e.g. Lorentz)
gauge groups are typical in Cartan geometries, de-
spite their connections’ ‘external’ or ‘horizontal’
(e.g. translation) components [45]. Even as the
internal Lorentz gauge symmetry of our theory
transforms the tetrad, it leaves spacetime geometry
(i.e. the metric) completely unaffected—regardless
of what (global) symmetries the geometry may or
may not possess. By contrast, the Poincaré symme-
try group of Minkowski spacetime is comprised of
global transformations of the spacetime. It is a sub-
group of the full diffeomorphism group that leaves
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the Minkwoski metric invariant. (I.e., the metric
is invariant only if it happens to be Minkowski).
This distinction means, in particular, that our use
of Poincaré holonomies should not be taken to im-
ply that we are describing Minkowski spacetime.
Indeed, our theory is capable of describing any (dis-
crete) spacetime.

IV. THE DISCRETE EQUATIONS OF MOTION

We now compute equations of motion (EOM) by vary-
ing the discrete action with respect to the connection.
To compactify notation, when an element of the permu-
tation π appears in an index, it will hereafter be denoted
only by a corresponding underlined number, for example,
1 = π(1). As usual in a first-order formalism, we assume
Λij and ℓij to be independent. Varying the action with
respect to ℓAij , and applying the expression for Uji from
Eq. (21) where appropriate, we find

0 =
∂S

ℓAij
=

∑

σ4⊃σij

[

∑

π∈Πi(σ
4)

π(1)=j

(−1)|π|

ρfnv

ǫABCDℓBi2Ω
CD
i34

−
∑

π∈Πj(σ
4)

π(1)=i

(−1)|π|

ρfnv

ǫEBCDΛ
E
jiAℓ

B
j2Ω

CD
j34

]

.

(27)

The first sum of Eq. (27) arises from terms with base-
point i and the second from terms with basepoint j. We
note that although frames are permuted at distinct base-
points in these two lines, their parities are understood
to be induced by a global orientation and are therefore
mutually consistent. Eq. (27) is counterpart to (δe) of
Eq. (12), and constitutes a discrete reformulation of Ein-
stein’s vacuum equations.

In particular, we may examine the continuum limit
of Eq. (27) on a cubical lattice coordinatized by {xµ}
with regular lattice spacing ∆. Expanding each degree
of freedom near σi as in Eq. (24) and taking edge vectors
along coordinate directions (e.g. σij ‖ ∂µ), we find at
leading order O(∆3),

0 = ǫµνστ ǫABCDe
B
ν R

CD
στ

—mirroring (δe) of Eq. (12).

We now derive the the Lorentz connection EOM,
exercising caution to ensure that the variation of Λij

is constrained to the SO(3, 1) manifold. In particu-
lar, ΛT ηΛ = η implies (Λ−1δΛ)T η + η(Λ−1δΛ) = 0, so
that Λ−1δΛ ∈ so(3, 1) for a variation δΛ. We can im-
pose this constraint by taking a variation that satisfies
(Λ−1δΛ)AB = (Λ−1δΛ)[AB], but is otherwise arbitrary.

To that end, we consider as an example the variation

of ΩAB
i34 =

(

Λi3Λ34Λ4i

)AB
in the simplicial setting with

respect to the Lorentz connection on the edge σi3:

δΩAB
i34 =

(

ΛA
i3CΛ

C
3iD

)

δΛD
i3EΛ

E
34FΛ

FB
4i

= ΛA
i3CΛ

B
i43E

(

Λ
[C|
3iDδΛ

D|E]
i3

)

= ΛA
i3[C|Ω

B
i43FΛ

F
i3|E]

(

Λ
[C|
3iDδΛ

D|E]
i3

)

.

The term in parentheses on the first line is a conveniently
chosen form of δAD—the Kronecker delta. The second
line follows from the notation of Eq. (18), the identity
(Λ−1)AB = ΛBA, and from asserting the antisymmetry
of the variation (Λ−1δΛ)[CE]. The third line follows af-
ter inserting another Kronecker delta to form a closed
loop holonomy. (In general, when Ω based at σi is var-
ied with respect to its Lorentz connection along σjk, the
result can be expressed in terms of Ω or Ω−1 along with
two antisymmetrized Lorentz transformations that effect
a parallel transport from σi to σk.)

To further facilitate the variation of the action, we in-
troduce a couple concise notations. For brevity, we de-
note

a|π| =
(−1)|π|

ρfnv

and also define

Pk12
CD = ǫABCDℓ

A
k1ℓ

B
k2.

P is antisymmetric both in its Lorentz indices and ver-
tex permutation indices. It can be roughly regarded
as a (non-idempotent) projection that annihilates any
ℓ ∈ span{ℓk1, ℓk2}.
Continuing in this way, we vary S with respect to

(ΛjiδΛij)
[MN ] to find, in the simplicial case:

0 =
∂Ssimplicial

(ΛjiδΛij)[MN ]

=
∑

σ4⊃σij

[

∑

π∈Πi(σ
4)

π(3)=j

a|π|
(

P i12
CDΩD

i4jE

)

ΛE
ij[M|Λ

C
ij|N ]

+
∑

k∈σ4

k 6=i,j

∑

π∈Πk(σ
4)

π(3)=i
π(4)=j

a|π|
(

Pk12
CDΩD

kijE

)

ΛE
kj[M|Λ

C
kj|N ]

+
∑

π∈Πj(σ
4)

π(4)=i

a|π|
(

Pj12
CDΩD

j3iE

)

δE[M|δ
C
|N ]

]

.

(28)

The first line of Eq. (28) arises from terms with basepoint
i, the middle line from terms with basepoint k 6= i, j in σ4

and the last from terms with basepoint j. The Lorentz



7

EOM for a cubical discretization follows similarly:

0 =
∂Scubic

(ΛjiδΛij)[MN ]

=
∑

σ4⊃σij

[

∑

π∈Πi(σ
4)

π(3)=j

a|π|
(

P i12
CDΩD

i4jE

)

ΛE
ij[M|Λ

C
ij|N ]

+
∑

k∈σ4

k 6=i,j

∑

π∈Πk(σ
4)

π(3)=i

k′=j

a|π|
(

Pk12
CDΩD

k4iE

)

ΛE
kij[M|Λ

C
kij|N ]

+
∑

k∈σ4

k 6=i,j

∑

π∈Πk(σ
4)

π(4)=j

k′=i

a|π|
(

Pk12
CDΩD

k3jE

)

ΛE
kj[M|Λ

C
kj|N ]

+
∑

π∈Πj(σ
4)

π(4)=i

a|π|
(

Pj12
CDΩD

j3iE

)

δE[M|δ
C
|N ]

]

.

(29)

Eqs. (28-29) enforce discrete zero-torsion conditions
analogous to (δω) of Eq. (12). Again employing the or-
dering of Eq. (24) on a cubical lattice, it is readily com-
puted that the least nontrivial contribution to Eq. (29) is
O(∆3) and arises from its second and third lines alone,
with ΩD

E = δDE . This leading order expression is given
by

0 = ǫµναβǫABNM

[

∂ν
(

eAαe
B
β

)

+ ωA
νIe

I
αe

B
β + ωB

νJe
A
αe

J
β

]

,

mirroring (δω) of Eq. (12).
Eqs. (27-29) define the desired algorithm for vacuum

numerical relativity. However, while these equations suf-
fice to compute simulation steps in the bulk, the evo-
lution of boundary connections—including connections
along both spacelike and timelike boundaries—still re-
quires some explanation. In particular, even if initial
and boundary connections are known a priori, Eqs. (27-
29) involve data from holonomies that generally extend
outside of the boundary wall, and are therefore under-
specified on the boundary.
The strategy we adopt [54] to derive equations of mo-

tion for boundary connections, therefore, is to extend all
spacelike and timelike boundary surfaces outward from
the bulk, creating a narrow ‘double wall’ of some fiducial
thickness ǫ around the simulation domain. This double
wall is then populated with cells of width ǫ, such that
connections between an inner wall vertex σiin and an
outer wall vertex σiout will have Λiiniout ∼ 1 +O(ǫ) and
ℓiiniout ∼ O(ǫ). The connections lying along the outer
wall itself are chosen to copy the initial or boundary con-
ditions of the inner wall. Then, equations of motion for
the inner wall connections can be derived as usual from
Eqs. (27-29), as they now behave as connections in the
bulk. Finally, we take ǫ → 0 in the resulting equations of
motion for the (inner wall) boundary connections.
It is worth noting that not all boundary and initial con-

ditions will satisfy the discrete equations of motion. Just

as boundary constraints must be satisfied in the contin-
uum theory, care must be taken to ensure that Eqs. (27-
29) are satisfied on the initial surfaces of the discrete
theory.

V. SYMPLECTIC STRUCTURE OF THE

DISCRETE ACTION

Variational integrators for field theories have a natu-
ral multisymplectic structure (see e.g. Refs. [55, 56] and
references therein), generalizing the ordinary symplectic
structure possessed by variational integrators in particle
mechanics [57]. Here we review the proof that variational
integrators are naturally (multi)symplectic, thereby con-
firming the multisymplectic structure of Eqs. (27-29).
In a variational integrator for particle mechanics, the

action evaluated on a temporal cell [ti, ti+1] provides a
generating function for a canonical (symplectic) trans-
formation across the cell [57]. Specifically, the discrete
action Si for cell i is a generating function for the canon-
ical transformation (qi, pi) → (qi+1, pi+1), where qi, qi+1

are the particle coordinates at the left and right end of
the cell respectively, pi = −∂Si

∂qi
, and pi+1 = ∂Si

∂qi+1
. The

equations of motion (e.g. ∂Si−1

∂qi
+ ∂Si

∂qi
= 0) guarantee

that the momentum at a point is identical whether using
the left or right cell to define it. In this way the symplec-
tic transformations inside the cells are glued consistently
across cells to produce a global symplectic evolution.
In field theory, the situation is slightly different. A field

φ has a multimomentum πµ (one for each dimension of
space-time) [58], which in the case of a scalar field can
be recast as a 3-form π = πµd3xµ = 1

3! ǫµαβγπ
µ dxα ∧

dxβ ∧ dxγ . For any spacetime region R, we then have
the boundary fields φ(σ), π(σ) living on Σ = ∂R, where
π(σ) = π

∣

∣

Σ
can be regarded as a pseudo-scalar field.

The action evaluated over R, S(R), is a generating func-

tion for a submanifold
{(

φ(σ), π(σ) = δS(R)
δφ

)}

in this

“boundary phase space”. One may regard S(R) (im-
precisely) as a generating function for a canonical trans-
formation between any two parts of the boundary. In
the case when the boundary of R consists of two discon-
nected pieces corresponding to two different times, S(R)
is the generating function for a canonical transformation
between those times.
In the discrete setting, we take R = σd, a hypercell

of maximum dimension in our lattice (d is the space-
time dimension). The boundary phase space no longer
consists of fields, but of pairs

(

φi, πi(σ
d)
)

for each vertex

σi ⊂ σd. The discrete action over σd, L(σd), is a generat-
ing function for a manifold in the boundary phase space:
{(

φi, πi(σ
d) = ∂L(σd)

∂φi

)}

, in agreement with the contin-

uum multisymplectic structure discussed above. Note
that in this case, the momentum at a vertex is not unique,
but rather depends on the hypercell σd used to com-
pute it (the same holds true in the continuum: the mo-
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mentum depends on both the location and the bound-
ary used to define it). The equations of motion (e.g.
∑

σd⊃σi

∂L(σd)
∂φi

= 0) do not guarantee a unique momen-

tum at each vertex, but rather that the sum of momenta
defined for each region/boundary containing that vertex
vanishes. This guarantees the integrator will be symplec-
tic when stepping in time.
To see this, let vertex σi be associated with time t0

and define σd
+ = {σd ⊃ σi with t > t0} and σd

− = {σd ⊃
σi with t < t0}. Then if π+

i = −∑

σd∈σd
+

πi(σ
d) (the mi-

nus sign takes care of the orientation for convenience) and
π−
i =

∑

σd∈σd
−

πi(σ
d), we get the usual gluing of symplec-

tic transformations under time-stepping: π−
i = π+

i . Fur-
thermore, this will hold true no matter how we choose to
define our time and associated time-stepping (i.e. if there
are multiple ways to perform time-stepping in our cellu-
lar complex, each of them will be guaranteed to result
in symplectic evolution). This argument neglects sub-
tleties that may arise at boundaries or when the number
of vertices changes between time slices. To resolve these,
a more global perspective is necessary, following for ex-
ample the presentation in [59–61].
In the case of gravity in four dimensions, we are us-

ing 1-form fields rather than scalar fields, so the mul-
timomentum is more naturally a 2-form. Additionally,
our two primary fields (e and ω) are conjugate to each
other (in the sense that the multimomentum of ω is a
function of e, while the multimomentum of e vanishes,
leaving behind an (e, ω) phase space). All of this is cap-
tured by the discrete Eqs. (27-29). The boundary phase
space of a cell σ4 consists of pairs (ℓAij ,Λ

A
ijB) for each

edge σij ⊂ σ4 (rather than for each vertex, as in the case
of a scalar field). The discrete action L(σ4) is a gener-
ating function, which defines momenta conjugate to ℓAij
and ΛA

ijB as the bracketed summands of Eqs. (27) and

Eqs. (28-29), respectively. The momentum conjugate to
Λ is a function of ℓ, while the initialization of the algo-
rithm (see the end of Sec. IV) ensures the vanishing of
the momentum conjugate to ℓ on the inner wall of the
double wall boundary (i.e. torsion is made to vanish by
construction in the ǫ-width cells making up the double
wall). The symplectic structure of the time-stepping then
ensures the momentum conjugate to ℓ vanishes for the
entire complex. In this way the discrete multisymplectic
structure of our gravitational integrator reproduces the
continuous multisymplectic structure of GR.

VI. CONCLUSION

We have presented a new numerical scheme for gen-
eral relativity, detailed in Eqs. (27) and (28)-(29). This

scheme preserves both the (multi)symplectic structure
and local Lorentz invariance of the tetrad formulation of
GR. Furthermore, its discrete variables have a clear re-
lationship with their continuum counterparts. As such,
this scheme holds promise as an integrator for numerical
relativity (its structure preservation maintains exact con-
servation laws and bounded errors in simulation) and for
studying the classical limits of certain quantum gravity
theories (such as loop quantum gravity, spin foams, etc.).
In these roles, the scheme’s symplectic structure promises
an improvement over non-symplectic finite-difference and
spectral methods, while its natural association with con-
tinuum variables makes it a more viable alternative to
other symplectic approaches to discrete gravity (most no-
tably Regge calculus). In future work, implementations
of this algorithm will be needed to demonstrate its prac-
tical utility. Furthermore, like Regge calculus, further
study is required to incorporate matter into our approach
(though the way forward seems clearer).

It may also be of interest to explore the potential union
between the algorithm defined here and other structure-
preserving discretizations suitable for numerical relativ-
ity. For example, it may be useful to explore the rela-
tionship between our holonomy-centric approach and the
recently developed technique of group-equivariant inter-
polation in symmetric spaces [62, 63]. It may also be
useful to compare our effort with finite element cochain
complexes suitable for applications in numerical relativ-
ity [64]. In this way, the algorithm we have introduced
can be an advantageous starting point for explorations
into structure-preserving discrete gravity theories.
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