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Primordial trispectrum from kSZ tomography
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The kinetic Sunyaev Zel’dovich effect is a secondary CMB temperature anisotropy that provides
a powerful probe of the radial-velocity field of matter distributed across the Universe. This velocity
field is reconstructed by combining high-resolution CMB measurements with galaxy survey data, and
it provides an unbiased tracer of matter perturbations in the linear regime. In this paper, we show
how this measurement can be used to probe primordial non-Gaussianity of the local type, particularly
focusing on the trispectrum amplitude τNL, as may arise in a simple two-field inflation model that
we provide by way of illustration. Cross-correlating the velocity-field-derived matter distribution
with the biased large-scale galaxy density field allows one to measure the scale-dependent bias factor
with sample variance cancellation. We forecast that a configuration corresponding to CMB-S4 and
VRO results in a sensitivity of σfNL ≈ 0.59 and στNL ≈ 1.5. These forecasts predict improvement
factors of 10 and 195 for σfNL and στNL , respectively, over the sensitivity using VRO data alone,
without internal sample variance cancellation. Similarly, for a configuration corresponding to DESI
and SO, we forecast a sensitivity of σfNL ≈ 3.1 and στNL ≈ 69, with improvement factors of 2 and
5, respectively, over the use of the DESI data-set in isolation. We find that a high galaxy number
density and large survey volume considerably improve our ability to probe the amplitude of the
primordial trispectrum for the multi-field model considered.

I. INTRODUCTION

Detecting and constraining characteristics of the pri-
mordial Universe to understand the origin of structure
is one of the primary goals of many upcoming large-
scale structure surveys and CMB experiments [1–8]. The
most widely accepted paradigm is that of inflation [9–
11], which addresses most of the problems of the original
Big-Bang scenario and has a set of predictions that are
compatible with many current observations [12–15]. Al-
though the general predictions of the inflationary model,
such as a flat universe and largely scale-invariant set of
initial fluctuations, have been confirmed by recent obser-
vations, the specific physical processes that govern this
epoch are yet to be understood.

Comparing the predictions of various inflationary mod-
els to astrophysical observations allows one to probe the
physics of the ultra-high energy scales that are other-
wise not directly accessible to experiments. Searching
for imprints of primordial non-Gaussianity in the CMB
spectrum or on the large-scale matter distribution are
possible methods to effectively distinguish between var-
ious models of inflation and the number of degrees of
freedom governing the epoch [e.g., 16–33].

One simple, and widely studied class of such non-
Gaussianity is the local-type or fNL-parametrization, in
which one includes a quadratic term in the primordial
potential Φ = φ + fNLφ

2. In this model, both linear
and quadratic terms in the potential originate from the
same Gaussian field φ, called the inflaton. The current
best bound is fNL = −0.9 ± 5.1, coming from the latest
Planck satellite CMB analysis [34] with the growth factor
normalized to one during matter domination.
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Non-Gaussianity also naturally arises in models of in-
flation that involve more than one field. This could be
due to a coupling term across the two fields [35] or the
addition of a field with its own quadratic term [36]. This
can enhance the inflaton four-point function (or trispec-
trum) while not affecting the more widely considered
three-point function (or bispectrum) [37, 38], making the
primordial trispectrum a valuable signature of extra de-
grees of freedom in the early Universe. The amplitude
of the primordial trispectrum has also been constrained
by the Planck CMB data, with the most recent estimate
being τNL = (−5.8± 6.5)× 104 [34].

Given Silk damping of the temperature fluctuations,
there is not much room to significantly improve upon
the fNL measurements with CMB measurements alone.
However, there are a few proposed methods to further
constrain τNL using its signature in the trispectrum of the
21-cm brightness temperature [39], the halo bias [40, 41],
and 3-point correlations between two-CMB-temperature
and one-µ-spectral-distortion fluctuations [42]. The ex-
pected sensitivities for these proposals are τNL ≈ 50−100.

In the case of local non-Gaussianity, we also expect
to obtain constraints from the distribution of galaxies
on large scales, relying only on the measurement of the
galaxy power spectrum in the linear regime [43, 44]. This
constraint can be obtained using the fact that a non-
zero fNL induces a scale-dependent bias factor [36, 45],
providing a unique signal that is not mimicked by changes
in the other standard cosmological parameters. However,
reaching the predicted multi-field threshold of fNL & 1
remains difficult because of sample variance.

In this paper, we forecast the sensitivity of kSZ tomog-
raphy to both fNL and τNL, assuming that the primor-
dial non-Gaussianity is induced by two different fields
[36]. The kinetic Sunyaev Zel’dovich (kSZ) effect is the
secondary CMB temperature anisotropy induced by the
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peculiar velocity of interspersed free-electrons that scat-
ter the CMB photons [46–50]. Cross-correlating high-
resolution CMB maps with large-scale structure surveys
will allow for the measurement of this kSZ contribution
as a function of redshift, a technique termed kSZ tomog-
raphy [51–55]. This cross-correlation can be used to re-
construct the radial velocity field of free electrons in a
3-dimensional volume, from which the large scale matter
distribution can be inferred.

By comparing this kSZ-tomography-based matter per-
turbation amplitude with the amplitude of the galaxy
power spectrum, one can obtain excellent constraints on
the scale-dependent bias. Since the matter and galaxy
distributions are determined independently, the bias can
be measured on a mode-by-mode basis, thus circumvent-
ing the cosmic-variance limit that usually arises when in-
ferring fNL and τNL from the galaxy distribution data-set
in isolation [56].

We forecast the precision with which our model of pri-
mordial non-Gaussianity can be measured in two dis-
tinct scenarios: one in which only a single tracer from a
galaxy survey is considered and another in which both
the galaxy survey and the kSZ-reconstructed velocity
field are jointly measured. The forecasts that include
both the galaxy distribution and velocity field are based
on the kSZ bispectrum formalism developed in Ref. [57],
which accounts for photo-z errors and the optical-depth
degeneracy. We consider, in our forecasts, two baseline
experimental configurations: ‘baseline 1’ corresponding
to the combination of Vera Rubin Observatory (VRO)
[58] and CMB-S4 [59] and ‘baseline 2’ corresponding to
Dark Energy Spectroscopic Instrument (DESI) [60] and
Simons Observatory (SO) [1, 2]. For these forecasts, we
closely follow the method and experimental parameter
values used in Ref. [43], in which the same experimental
configurations were used to forecast survey sensitivity to
the single field fNL model of inflation.

Our forecasts find that for the configuration of VRO
and CMB-S4, σfNL

≈ 0.59 and στNL
≈ 1.5, which cor-

responds to improvement factors of 10 and 195, respec-
tively, over the use of VRO data alone. Similarly, for
the configuration of the DESI and SO, we find that
σfNL

≈ 3.1 and στNL
≈ 69, with improvement factors

of 2 and 5, respectively, compared to the forecasts made
using DESI data in isolation. We find that our forecasts
on the galaxy distribution data sets alone are compatible
with the single-tracer results of Ref. [44] when differences
in our survey parameters are taken into account.

Through the variation of experimental parameters we
also determine that changes in redshift dispersion arising
from photo-z errors, as well as increases in CMB sen-
sitivity and CMB resolution have a relatively minimal
effect on our ability to measure the non-Gaussianity. In
contrast, we find that a large survey volume, with well
measured large-scale modes, and a high galaxy number
density most prominently decrease the error with which
both fNL and τNL can be measured.

Throughout this paper, we adopt the ΛCDM Cosmol-

ogy as our fiducial model with the following parame-
ters from Planck 2018 [61]: reduced Hubble constant
h = 0.674, baryon and cold-dark-matter density param-
eters today Ωb = 0.049, and Ωcdm = 0.264 respectively,
spectral index ns = 0.965 and amplitude of the primor-
dial scalar power spectrum As = 2.2 × 10−9. In all our
equations, we work under the convention c = 1.

This paper is organised as follows. In Sec. II, we in-
troduce our scale-dependent biasing model, derived us-
ing the peak-background-split methodology for the multi-
field model of inflation presented in Ref. [36]. We also
explain how kSZ tomography can be used for sample vari-
ance cancellation. In Sec. III, we describe the experi-
mental parameters in our forecast. The forecast set up is
described in Sec. IV. Finally, the results of our analysis
and our final set of forecasts are detailed in Sec. V.

II. THEORY

Before explaining in detail how kSZ tomography can
be used in tandem with large-scale galaxy survey data,
we first introduce the τNL model of primordial non-
Gaussianity and derive the relevant power spectra rela-
tions via the peak background split formalism. Further
details on this model and its derivations can be found
in Ref. [36]. Furthermore, we address the possible ex-
tension of the results in this paper to another commonly
considered, non-Gaussian model of inflation. Finally, we
then also briefly address how the velocity field is re-
constructed, given temperature-anisotropy and galaxy-
distribution data.

A. Local non-Gaussianity in Peak Background
Split Formalism

In this paper, we consider the curvaton model for the
primordial gravitational potential in which two differ-
ent fields, the inflaton and the curvaton, contribute to
the curvature perturbation. The contribution from the
inflaton is purely Gaussian while the perturbations of
the curvaton field generate the non-Gaussianity. In this
model, therefore, the primordial potential takes the fol-
lowing form:

Φ(x) = φ(x) + ψ(x) + fNL(1 + Π)2(ψ2(x)− 〈ψ2〉). (1)

Here, φ and ψ are uncorrelated Gaussian random fields
with power spectra that are proportional to each other,
with proportionality constant Π ≡ Pφ/Pψ. For this
model, the three and four point functions take the lo-
cal form

ξ
(3)
φ (k1,k2,k3) = fNL[P1P2 + 5 perms.] (2)

+O(f3
NL),

ξ
(4)
φ (k1,k2,k3,k4) = 2

(5

6

)2

τNL[P1P2P13 (3)

+23 perms.] +O(τ2
NL),
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where we have defined Pi ≡ PΦ(ki), Pij = PΦ(|ki + kj |),
and τNL ≡ (6fNL/5)2(1 + Π). Therefore, for Π = 0, this
model reduces to the singly-parametrized fNL model.

Large-scale halo bias is usually treated under the con-
text of the peak background split formalism [62], where
one can split the density field into a long-wavelength piece
δ` and a short-wavelength piece δs as in

ρ(x) = ρ̄(1 + δ` + δs). (4)

The local Lagrangian number density of halos n(x),
at position x is dependent on the local value of the long-
wavelength perturbation δ` as well as the local small scale
power σlocal

8 (x). In the Gaussian case, since the small
scale power is a constant, the Lagrangian bias is solely
dependent on the variation in the halo number density
as a function of the large-scale matter overdensity field
[45, 63].

When non-Gaussianity is present, the analysis under
this formalism is complicated by the fact that the large-
and small-scale density fluctuations are no longer inde-
pendent. This becomes evident in the τNL model when
the long- and short-wavelength pieces of the Gaussian
potential fluctuations are separated as follows:

φ = φ` + φs, ψ = ψ` + ψs. (5)

Plugging this into Eq. (1) will show that a few of the
terms contain both short- and long-wavelength pieces.
Therefore, this scenario needs more careful handling.

We start by establishing the Fourier-space relation be-
tween the primordial potential and matter overdensity
field δ(k, z) = α(k, z)Φ(k), where the form of the Pois-
son equation based operator α(k) is given by [45]:

α(k, z) =
2k2T (k)G(z)

3ΩmH2
0

. (6)

Here, G(z) is the linear growth rate normalized such that
G(z) = 1/(1 + z) during matter domination and T (k) is
the transfer function normalized to 1 at low k. Since
this operator is usually defined in terms of its action in
Fourier space, when applied to a real-space function such
as φ(x), we use the convention

αφ(x) ≡
∫

d3k

(2π)3
α(k)eik·x

∫
d3y φ(y)e−ik·y. (7)

With this relation in hand, the contributions from
both the inflaton and the curvaton field, to the long-
wavelength piece of the matter overdensity fluctuation,
can be written as:

δ`(x) = α[φ`(x) + ψ`(x)], (8)

where the remaining terms are either much smaller
(fNLψ

2
` ) or contain short-wavelength pieces. Similarly,

within a region of given large-scale overdensity δ` and
potential [φ` + ψ`], the short-wavelength modes of the
matter overdensity field are:

δs = α[φs + ψs(1 + 2fNL(1 + Π)2ψ`)], (9)

where the white-noise term [fNL(1 + Π)2ψ2
s ], that is

spatially invariant when averaged over, has been disre-
garded, and the explicit x-dependence of the terms has
been dropped for ease of notation.

Given the above split, it is evident that the mixing
of the short- and long-wavelength pieces induces a scale
dependence on the local small-scale power of the matter
overdensity field:

σ2 = α2{〈φ2
s〉+ 〈ψ2

s〉[1 + 2fNL(1 + Π)2ψ`]
2}

= σ̄2[1 + 4fNL(1 + Π)ψ`],
(10)

where σ̄2 = α2〈ψ2
s〉(1 + Π) and we have, once again,

dropped any terms quadratic in ψ`. The above expres-
sion indicates that when there exists primordial non-
Gaussianity, the number density of halos varies not only
with the large-scale matter overdensity modes but also
with the local small-scale power. This can be accounted
for in the derivation of the Lagrangian halo bias as

δh ≡
δnh
nh

= bhδ` + βf (1 + Π)fNLψ`, (11)

where

bh ≡
∂ lnnh
∂δ`

and βf ≡ 2
∂ lnnh
∂ lnσ

= 2δc(bh − 1). (12)

Given the above form, it is straightforward to calcu-
late the matter-halo (Pmh) and halo-halo (Phh) power
spectra. Using the fact that the inflaton and curvaton
fields are uncorrelated, and that their power spectra are
proportional to each other, one can derive

Pmh(k, z) =

[
bh + βf

fNL

α(k, z)

]
Pmm(k, z), (13)

and

Phh(k, z) =

[
b2h+2bhβf

fNL

α(k, z)
+β2

f

(
5
6

)2
τNL

α2(k, z)

]
Pmm(k, z),

(14)
where Pmm(k, z) refers to the large-scale matter power
spectrum, i.e., the Fourier space variance in our large-
scale overdensity δ`. From this point on, since we will
primarily be dealing with matter overdensities on linear
scales, we will label our large-scale overdensity with δm.
On these linear scales, we will continue to use a subscript
of h when referring to the halo power spectra.

The forecasts in this paper will, therefore, focus on
calculating survey sensitivity to both fNL and τNL under
the null hypothesis (fNL = τNL = 0), using both Pmh
and Phh as parametrized above. Although the parame-
ter Π more directly provides information on whether the
primordial potential is defined by two different fields, we
choose not to explore the parameter space in terms of
[fNL,Π]. This is because Π is defined as the ratio be-
tween two power spectra and can realistically be infinite
in the absence of the curvaton field (Pψ = 0).
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Neverthless, we can still attempt to probe the degrees
of freedom during inflation using the fact that the trispec-
trum amplitude satisfies τNL ≥ (6/5)2f2

NL for multi-field
models. This relation can be used to define the parame-
ter

rNL = (5/6)2τNL − f2
NL , (15)

which can deviate away from zero in the presence of addi-
tional degrees of freedom in the early Universe, depend-
ing on the value of Π. Hence, τNL can be thought of as
a probe of the extra degrees of freedom during inflation.

B. Redshift Space Distortions

Redshift maps of galaxies distributed in a given survey
volume are distorted by their peculiar velocities along
the line of sight. When the bias relation is linear, the
redshift-distorted halo overdensity is the sum of the bi-
ased matter overdensity in real space and a correction
from the peculiar velocity of galaxies [64]

δh,RSD(x) = b1δm(x) +
∂

∂x

[u(x) · x̂
aH

]
, (16)

where u refers to the peculiar velocity of the galaxies
and x refers to the position of the observed galaxy. To
simplify the conversion to Fourier space, we use the late-
time, linearized, continuity-equation-based relation be-
tween the peculiar-velocity field and matter-overdensity
field,

u(k, z) = aHf
ik

k2
δm(k, z). (17)

Here, f refers to the linear growth rate d lnG/d ln a.
With the above relation in hand, the Fourier transform
of the redshift space linear bias relation simplifies to

δh,RSD(k) = [bh + fµ2
k]δm(k) (18)

where µk is defined to be êz · k̂, the cosine of the angle

between the line of sight and the wavevector k̂.
It is straightforward to extend this derivation to the

bias relation in Fourier space, for the τNL model of pri-
mordial non-Gaussianity. The updated form of the halo
overdensity is simply

δh,RSD(k) = [bh+fµ2
k]δm(k)+βf (1+Π)fNLψ`(k), (19)

where the same correction term is added to the origi-
nal form introduced in Eq. (11). The power spectra can
therefore be updated, under the effects of RSD, by re-
placing every instance of bh in our previously derived
halo power spectra models with bh,RSD = [bh + fµ2

k].

C. Extension to the gNL Model

In this work, we primarily focus on τNL- and fNL- type
non-Gaussianities that have a clear correspondence pre-

dicted in the case of single-field slow-roll inflation. How-
ever, the forecasts in this paper can be extended to an-
other possible model, parametrized by gNL, in which the
primordial potential takes the following form:

Φ(x) = φ(x) + gNL[φ3(x)− 3〈φ2〉φ(x)]. (20)

For this single-field model, using the peak-background-
split formalism from above, one can show that:

Pmh(k, z) =

[
bh,RSD + βg

gNL

α(k, z)

]
Pmm(k, z), (21)

Phh(k, z) =

[
bh,RSD + βg

gNL

α(k, z)

]2

Pmm(k, z) (22)

where βg = 3∂ lnnh/∂fNL. Since, the barrier cross-
ing prediction for βg does not agree well with N-body
simulations, previous forecasts on this model have used
simulation-based fit-functions for βg that are indepen-
dent of fNL under the null hypothesis (see, for example,
Ref. [44]).

When compared with the single-field fNL-cosmology
[where τNL = (6/5fNL)2], one can see that the contribu-
tion of gNL to the halo bias is the same as the contri-
bution from fNL = (βf/βg)gNL. Therefore, when only
a single population of tracers is being considered to cal-
culate Phh(k, z), the two parameters are indistinguish-
able. Since the forecasts in this paper are calculated us-
ing the cross-correlation of a single galaxy tracer with
kSZ tomography, under the null hypothesis one can use
these forecasts to obtain constraints on gNL by expressing
σgNL

= (βf/βg)σfNL
[44].

D. The kSZ Effect

The temperature fluctuation attributed to the kSZ in
the n̂ direction in the sky is given by the integral [57],

T (n̂) = −TCMBσT

∫
dχ

(1 + z)
e−τ(χ)ne(n̂, χ)n̂ · v, (23)

where TCMB is the average temperature of the CMB to-
day, σT is the Thomson Scattering cross-section, and τ is
the optical depth to the scattering electron with velocity
v at comoving distance χ, and redshift z. The fluctu-
ation is also dependent on the electron number density
ne(n̂, χ) = n̄e(χ)(1 + δe).

To use this anisotropy data and derive redshift depen-
dent information one must cross-correlate the kSZ data
set with a tracer of large-scale structure. Ref. [57] shows
that most of the varied approaches to this technique are
equivalent to using a bispectrum of the form 〈δδT 〉 to
reconstruct the radial-velocity field. In the next few sec-
tions we summarize how this bispectrum is used to derive
the expected form of the signal and noise. For a more de-
tailed derivation of the results, see Ref. [57].
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1. Bispectrum Based Estimator

According to Ref. [57], the statistic that carries the
kSZ tomography signal is a 3-point function defined as,

〈δX(k)δX(k′)T (`)〉 = B(k,k′, `)(2π)3δ3

(
k + k′ +

`

χ∗

)
,

(24)
where δX refers to the overdensity of the tracer in consid-
eration, and all terms marked with a ∗ refer to quantities
evaluated at redshift z∗. It can be shown that the kSZ is
dominant in the squeezed limit [57], in which the bispec-
trum takes the form:

B(kL, kS , `, kLr) = −K∗kLr
χ2
∗

PXv(kL)

kL
PXe(kS), (25)

where kL refers to the long-wavelength mode, kLr is its
component along the line of sight, kS refers to the short-
wavelength mode, and PXv and PXe refer to the cross-
spectra of the tracer overdensity field with the velocity
field, and the electron density perturbations, respectively.
In the above equation we have also defined,

K∗ ≡ −TCMBσT n̄e,0e
−τ(χ∗)(1 + z∗)

2, (26)

where n̄e,0 is the mean electron density today.

2. Velocity Reconstruction

As shown in Ref. [57], a quadratic estimator for the
long-wavelength velocity modes can be constructed by
summing over the pairs [δX(kS)T (`)] of short-wavelength
modes in the galaxy and CMB maps. This method is
equivalent to the optimal kSZ bispectrum estimator [57].

Given the form of B(kL, kS , `, kLr) in Eq. (25), the
signal to noise ratio S/N of the kSZ bispectrum in the
squeezed limit is

S

N
= V

∫
d3kL
(2π)3

k2
Lr

k2
L

Pgv(kL)2

P tot
gg (kL)Nvr (kL)

, (27)

where Nvr is the noise associated with radial velocity
reconstruction. This noise is modelled as

Nvr (kL, µL) =
2πχ2

∗
K2
∗

[∫
dkS

kSPge(kS)2

P tot
gg (kS) Ctot

`=kSχ∗

]−1

.

(28)
In the above two equations, we have explicitly used a sub-
script of g to label our tracer X. Therefore, Pgg(kS , µS)
refers to the small-scale galaxy-galaxy auto-power spec-
trum and Pge(kS , µS) is the small-scale galaxy-electron
power spectrum. Finally, µL refers to the angle of the
large-scale mode with respect to the line of sight, i.e.

µL = k̂L · n̂. However, it is important to note that µS
and µL are not independent of each other. The value of
µS is completely determined by kL, µL and kS since the

line of sight components of the Fourier modes kL and kS ,
are equal to each other. The total noise in our velocity
reconstruction Nvv is then Nvv = µ−2

L Nvr .
Here and below, a subscript of ‘g’ will be used to de-

note small-scale galaxy power spectra that appear in kSZ
tomography, in contrast to the subscript h that has so far
been used to label large-scale halo power spectra. While
on large scales, we will assume that a single galaxy oc-
cupies each halo, small scale galaxy power spectra will
be calculated within the halo model including the halo
occupation distribution (HOD) [65, 66]. The modelling
assumptions and parameter values used to construct the
small-scale spectra under this model can be found in Ap-
pendix A.

In our model of the velocity reconstruction noise, we
also include the effect of photo-z errors via a Gaussian
kernel of the form

W 2(k, µ) = e−k
2µ2σ2(z)/H2(z), (29)

where σ(z) is the redshift scattering of the galaxy sur-

vey in consideration. This induces a µS = k̂S · n̂ de-
pendence on the small-scale galaxy-galaxy and galaxy-
electron spectra. Further details on the noise in the
kSZ velocity reconstruction due to photo-z errors can be
found in Ref. [57].

Finally, based on the linear relation between matter
overdensities and peculiar velocities [Eq. (17)], the noise
in the reconstructed density perturbation field is

N rec
mm(kL, µ) =

k2
L

(faH)2
∗
Nvv(kL, µ). (30)

It is important to note that the noise is proportional to
the magnitude k2

L. This implies that the reconstruction
noise is lowest on largest scales, which corresponds to the
regime where cosmic variance is a dominant noise source.
Therefore, it is on these scales that we would expect this
independent probe of large-scale structure to significantly
contribute to sample variance cancellation.

III. EXPERIMENT SPECIFICATIONS

The primary set of forecasts presented in this paper
consider two next generation large-scale structure ex-
periments, DESI and VRO. VRO is an example of a
high number density galaxy survey with photometric red-
shifts. In contrast, DESI is a low number density survey
with precise, spectroscopic redshifts. Our forecasts as-
sume a cross-correlation of these data-sets with kSZ data
from CMB-S4, as well as data from a configuration simi-
lar to that of SO, to test and display the effects of sample
variance cancellation.

A. Large-Scale Structure Experiments

For our forecasts on VRO, we use the specifications for
the LSST Gold Sample as prescribed in the LSST science
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book [58]. The galaxy number density for this data-set,
per arcmin2, is given by

n(z) = n0
1

2z0

( z
z0

)2

exp(−z/z0), (31)

with z0 = 0.3 and n0 = 40 arcmin2. At z = 1, this
corresponds to a galaxy number density of approximately
ngal = 10−2 Mpc−3. The photometric redshift error for
this survey is

σz = 0.03(1 + z), (32)

which corresponds to a redshift dispersion of 0.06 at z =
1. Finally, the bias for this sample is also specified to be

b(z) = 0.95/G(z), (33)

with their growth factor normalized such that G(z =
0) = 1. This corresponds to a bias of 1.6 at a redshift of
1. For DESI, we make a single forecast assuming a galaxy
number density of ngal = 10−4 Mpc−3 with a Gaussian
halo bias of 1.6 at redshift 1, in accordance with the
specifications provided in the DESI white-paper [60].

To ensure that the small-scale power spectra generated
based on the HOD model are consistent with the speci-
fications of the experiments in consideration, we use the
following prescription. In the HOD model, the galaxy
sample is specified by imposing a particular threshold
stellar mass mthresh

? of observable galaxies. Since the re-
maining parameters defining the galaxy distribution for
Pgg and Pge are dependent on this parameter, we match
the value of mthresh

? so that the total predicted galaxy
number density matches number density expected for a
given experiment. The details on these power spectra’s
dependencies on ngal and mthresh

? can be found in Ap-
pendix A.

B. CMB Experiments

Most of our forecasts are based on the planned CMB-
S4 experiment specifications. Although the exact instru-
ment specifications are still pending, we assume an effec-
tive beam with full-width-half-maximum (FWHM) of 1.5
arcminutes and a sensitivity of 1.0 µK−arcmin, which is
one of many possible configurations. The effects of at-
mospheric noise are not included since they are expected
to be sub-dominant to the instrument and kSZ contribu-
tions at the relevant high multipoles of ` > 3000. The
final set of contributions to the CMB spectrum that en-
ters Eq. (28) can be written as

Ctot
` = CTT` + CkSZ-late-time

` +N`. (34)

Here, CTT` is the lensed CMB temperature power spec-
trum, CkSZ-late-time

` is the low redshift contribution to
kSZ and finally N` is the instrumental noise power spec-
trum of the CMB map, which is modelled as

N(`) = s2exp

[
`(`+ 1)θ2

FWHM

8 ln2

]
, (35)

where s labels the sensitivity of the instrument and
θFWHM is the resolution. We also make a forecast for
a configuration with noise and beam comparable to SO.
To make this estimate we use a beam with a resulo-
tion of 1.5 armcmin and an effective white noise level
of 5.0 µK−arcmin, matching the set up in Ref. [43].

IV. FORECAST SETUP

In this section, we briefly describe the construction of
the information matrix and the relevant systematics, fo-
cusing on the methodology used for forecasts on the cross-
correlated data-sets. We then establish the models and
parameter space over which the information matrix is
constructed.

For our forecast, the measured modes are the large-
scale modes of [v(k), δh(k)] where {v(k)} are the kSZ
velocity reconstruction modes and {δh(k)} are large-scale
halo overdensity modes. The halo-overdensity modes are
obtained from the survey data set assuming that each
halo is occupied by exactly one galaxy. Therefore, the
signal and noise matrices are

S(k, µ, z) =

(
Pvv Pvh
Pvh Phh

)
, (36)

N(k, µ, z) =

(
Nvv 0

0 Nhh

)
. (37)

The covariance matrix of our measured signal is the sum
of the above two matrices,

C(k, µ, z) = S(k, µ, z) + N(k, µ, z). (38)

The information matrix at redshift bin z∗ is, therefore,

Fab =
V

2

∫
d3k

(2π)3
Tr[C(k),aC(k)−1C(k),bC(k)−1]

=
V

2

∫
k2dk dµ

(2π)2
Tr[C(k),aC(k)−1C(k),bC(k)−1],

(39)

where we have accounted for the fact that the covariance-
matrix elements are only dependent on k and µ, with the
latter being induced by the kSZ based velocity recon-
struction and the inclusion of photo-z errors. We assume
that the integral can be performed from a lower limit
kmin ≡ π/V 1/3, restricted by the survey volume V , to an
upper limit kmax ≈ 10−1 Mpc−1.

The final models for Phh(k, µ, z) and Pvh(k, µ, z), as
they appear in the covariance matrix, are:

Pvh(k) =
bvfaH

k

[
bh,RSD + βf

fNL

α(k)

]
Pmm(k) (40)

Phh(k) =

[
b2h,RSD + 2bh,RSDβf

fNL

α(k)
+ (41)

β2
f

(
5
6

)2
τNL

α2(k)

]
Pmm(k),
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where bh,RSD = [bh + fµ2], and the explicit dependence
of some terms on z and µ have been dropped for ease of
notation. These models are a direct result of the deriva-
tions in Sec. II.

To model the final signal term Pvv(k, z), we use the
relation between the velocity and matter power spectra
introduced in Eq. (17),

Pvv(k, z) =

(
bvfaH

k

)2

Pmm(k, z). (42)

Here, we have introduced a the optical-depth degeneracy
parameter bv. This parameter, with an expected value of
1.0, is introduced to account for the fact that kSZ data
allows for the measurement of the product of the Pge and
Pgv, which means that a constant factor of scale could
be exchanged between the two while keeping the signal
unchanged.

In summary, the measurement covariance matrix
C(k, µ, z) is constructed based on the above three models
for Phh(k, µ, z), Pvh(k, µ, z) and Pvv(k, z). This is used to
construct a 4× 4 information matrix over the parameter
space spanned by [bh, bv, fNL, τNL] with the fiducial val-
ues set to [1.6, 1.0, 0.0, 0.0], respectively. We invert this
matrix and marginalise over the parameters bh and bv to
obtain error estimates for fNL and τNL. We also experi-
mented with marginalising over cosmological parameters,
but found that these do not significantly change our error
estimates.

It is important to note that the value of Π, under the
curvaton model constraint τNL = (6fNL/5)2(1 + Π), is
not well-defined for the assumed null hypothesis, fNL =
τNL = 0. Therefore, in our forecasts, we assume that
the models presented in Eq. (42) represent one possible
parametrization of non-Gaussian power spectra under a
multi-field model of inflation. That is, we vary the pa-
rameters τNL and fNL independently, around their fidu-
cial values, to construct our information matrix and make
our forecasts. These estimates are propagated to quote a
constraint for the parameter rNL introduced in Eq. (15).

The noise spectrum for the velocity reconstruction
term Nvv is given by µ−2

L Nvr , where the form of Nvr
was introduced in Eq. (30). For halos, we assume that
the noise is given primarily by the galaxy shot noise along
with photo-z errors. Photo-z errors can be implemented
for halos by a convolution of the halo density field with a
Gaussian kernel in the radial direction, the form of which
was introduced in Eq. (29). The halo noise power spec-
trum is then

Nhh(k, µ) =
1

W 2(k, µ)ngal
, (43)

where we have directly used the galaxy number density
ngal based on our assumption that the galaxy distribution
has a one-to-one correspondence with the distribution of
halos, on large scales.

TABLE I. Baseline configurations for the cross-correlated
CMB and LSS experiments. Values for baseline 1 match the
specifications of the VRO survey and CMB-S4. The values
for baseline 2 are similar to those expected for DESI and SO.
The survey volumes were kept the same across the two fore-
casts to emphasize the dependence of the forecasts on galaxy
density and photo-z errors.

baseline 1 baseline 2
redshift z 1.0 1.0

survey volume V 100 Gpc3 100 Gpc3

halo bias bh 1.6 1.6
galaxy density ngal 10−2 Mpc−3 2 × 10−4 Mpc−3

photo-z error σz 0.06 -
CMB resolution θFWHM 1.5 arcmin 1.5 arcmin
CMB sensitivity s 1 µK−arcmin 5 µK−arcmin

V. FORECAST RESULTS

In this section we provide forecasts for different exper-
imental configurations. In the first part we analyse two
different baseline configurations and provide estimates
based on our assumed specifications on the galaxy sur-
vey and CMB measurement instrumentation. We then
consider one of these baselines and vary each of the es-
perimental parameters, in isolation, to display the effects
of these variations on our ability to constrain fNL and
τNL.

A. Baseline Forecasts

To establish the parameter dependencies of our fore-
cast, we first display the results from our information
matrix analysis for the two sets of baseline experiments
described in Sec. III. Their instrumental specifications
have been summarized in Table I. Baseline 1 specifica-
tions were chosen to resemble the experimental configu-
ration of VRO and CMB-S4. Similarly, baseline 2 corre-
sponds to the combination of DESI and an SO-like CMB
experiment.

Our forecasts on the aforementioned baseline config-
urations have been summarized in Table II. This table
also includes constraints on the parameter rNL, around
a fiducial value of 0, corresponding to the assumed null
hypothesis. To simplify our calculations, we assume a
cubic geometry for the survey volume and for our kSZ
formalism. Therefore, these forecasts do not include the
effects of the time evolution of power spectra and biases
on the light cone. For a complementary kSZ formalism
using maps on the light-cone, see e.g., Refs. [67–69].

For the baseline 1 experiments, the improvement fac-
tor in our ability to measure fNL and τNL, arising from
the cross-correlation with kSZ data, is 10 and 195, re-
spectively. For baseline two, the improvement is 2 and 5
for the two parameters, respectively. In both cases, the
improvement factor in the correlation-coefficient between
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FIG. 1. Forecasted error ellipses on fNL and τNL at 68% and 95% confidence intervals, after marginalizing over bh and bv. Left:
results when only galaxy survey data is considered. Right: results when velocity reconstruction data is added to the analysis.
Each color corresponds to one of the baselines defined in Table I.

the two parameters is much higher. This is explained by
the fact that the cross-correlation of the two data sets
allows for the inclusion of the Pvh(k) signal, which offers
an independent constraint for fNL.

B. Experiment Parameter Variations

In order to assess which experimental limitations have
the greatest impact on measurements of primordial non-
Gaussianity, we isolate the effects of certain experimental
parameters on our ability to constrain fNL and τNL by
varying each parameter in isolation. For the following
forecasts, we assume the baseline 1 configuration, the
specifics of which are provided in Table II.

To highlight the scales that contribute most to the sig-
nal, we plot both σfNL

and στNL
as a function of the

smallest measurable Fourier mode for our galaxy sur-
vey. This corresponds to varying the largest recover-

TABLE II. Information matrix based estimates on the errors
across the two parameters, fNL and τNL. The results of error
propagation to rNL are also included. To arrive at these es-
timates, a mean value of 0 was chosen for both fNL and τNL,
while the halo bias was defined for each experiment as shown
in Table I.

baseline 1 baseline 2

fNL error σgal
fNL

5.8 6.0

σkSZ+gal
fNL

5.9 × 10−1 3.1

τNL error σgal
τNL

2.9 × 102 3.6 × 102

σkSZ+gal
τNL

1.5 6.9 × 101

rNL error σgal
rNL

2.0 × 102 2.5 × 102

σkSZ+gal
rNL

1.0 4.8 × 101

able k-mode from the survey volume V , directly impact-
ing the value of kmin as it appears in Eq. (39). These
plots are displayed in Fig. 2. In both cases, the effects
of sample variance cancellation become evident below
k ≈ 2×10−2 Mpc−1. This behaviour can be explained by
comparing the model for Pvv(k) [Eq. (42)] to the assumed
model for Nvv[derived from Eq. (28)]. These models in-
dicate that the signal-to-noise ratio (SNR) of our velocity
reconstruction is inversely proportional to k2. Therefore,
on small scales, we are only dependent the signal from
Phh(k) to constrain both fNL and τNL, causing the errors
to coincide across the estimates from the single (galaxy)
data-set and the cross-correlated (galaxy-kSZ) data-sets.
In contrast, the higher SNR on larger scales allows us to
constrain the non-Gaussian parameters using the models
for both Pmh(k) and Phh(k). Therefore, on these larger
scales, the effects of sample variance cancellation are on
full display.

To explore, more carefully, the information contained
in the signal across both cases on large scales, we also
display the dependence of σfNL and στNL on kmin when
there is no contamination in our signal coming from shot
noise, photo-z errors, and CMB instrument noise. These
plots are displayed in Fig. 3.

At large values of k, we no longer see the ‘Galaxy’
curve coincide with the ‘Galaxy+kSZ’ results. This is
a consequence of the much lower velocity reconstruction
noise in the absence of shot noise. However, it is clear
that an extension of the curves to smaller scales would
reveal behaviour similar to the curves in Fig. 2, as a re-
sult of cosmic variance. The behaviour on larger scales is
a lot more noteworthy for this set-up. In the case of σfNL

,

we see an inflection point at k ≈ 3 × 10−3 Mpc−1, after
which the slope of the curve gets closer to zero. In con-
trast, when the galaxy survey data is combined with ve-
locity reconstruction data, the forecast on σfNL

decreases

steadily below k ≈ 10−3 Mpc−1. This indicates that the
large-scale modes contain a significant amount of data
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FIG. 2. Left: σfNL as a function of kmin for baseline 1. Right: στNL as a function of kmin for baseline 1. The lower bound for k,
on the left of the plots, is defined by the survey volume V . When the two data sets are cross-correlated, the error in fNL and
τNL drastically decreases below k ≈ 2 × 10−2 Mpc−1 (in comparison to the ‘Galaxy’ case), owing to the low noise in velocity
reconstruction on large scales.
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FIG. 3. Left: σfNL as a function of kmin for baseline 1. Right: στNL as a function of kmin for baseline 1. For both the above
sets of data we assume that the halo shot noise is zero and there are no photo-z errors. The lower bound for k, at the left end
of the plots, is defined by the survey volume V . The behaviour in this unrealistic case matches the results in Fig. 2, where
once again we see a sharp decrease in the error in fNL and τNL when the two data sets are cross-correlated due to high SNR
in the velocity reconstruction on larger scales.

that allows us to better constrain fNL with the cross-
correlated data-sets. In contrast, the ‘Galaxy’ estimate
of στNL never experiences the inflection point seen in the
corresponding σfNL curve, within the range of kmin plot-
ted. However, the benefit of cross-correlating the data-
sets is still evident in the relatively steeper decrease in
στNL

on larger scales. It is also important to note that
when the two data sets are combined, the error in τNL

decreases more steeply than the error in fNL i.e.; on the
largest scales στNL

reaches a minimum of ∼ 10−3 whereas
σfNL

is only improved to ∼ 10−2.

The difference in the behaviour of σfNL
and στNL

as
a function of scale kmin can be understood by analysing
the non-Gaussian model for Phh(k) [Eq. (42)]. The con-
tribution of τNL to this signal comes from a term that is
dependent on α(k)−2, or equivalently on k−4 [where α(k)

is defined in Eq. (6)]. In contrast, the contribution of fNL

to this signal comes from a term that scales as k−2. We
conclude that, because the Phh(k) signal is dominated
by the τNL contribution, τNL is constrained much better
than fNL on larger scales. Furthermore, this difference is
most evident in the ‘Galaxy+kSZ’ case because an im-
proved constraint on fNL more directly translates to an
improved constraint on τNL due to the inclusion of the
Pmh signal.

It is precisely this dependence on the large scales that
explains the behaviour of the forecasts under varying
galaxy number density ngal. The dependence of σfNL

and
στNL

on varying values of ngal has been plotted in Fig.
4. The solid lines correspond to results derived based on
the experimental configuration corresponding to baseline
1 in Table I, including shot noise and photo-z errors. The
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FIG. 4. Left: σfNL and στNL as a function of ngal, assuming that the galaxy data is used in isolation. Right: σfNL and στNL as
a function of ngal, assuming that the galaxy data is cross-correlated with the kSZ data set. The solid (dashed) lines correspond
to baseline 1 with a survey volume of 100 Gpc3 (180 Gpc3). Galaxy density not only defines the shape of the small scale power
spectra but also defines the amount of shot noise in galaxy survey data. The sharp decrease in both σfNL and στNL for the
cross-correlated data-set (right) is due to the fact that a high galaxy number density allows one to probe larger scales due to
the lowered galaxy shot noise.

dashed lines represent results derived from the same set-
up, with only the survey volume V updated to 180 Gpc3.
For clarity, the fiducial value of bh was held constant.

When considering only the galaxy survey data, the re-
sults displayed on the left in Fig. 4 show that although
the estimates improve slightly with decreasing shot noise,
the cosmic variance limit is quickly reached for both our
estimates of fNL and τNL, irrespective of the assumed sur-
vey volume. This is because, using galaxy survey data
alone forces us to constrain both fNL and τNL using the
model for Phh(k) in isolation. Furthermore, as seen in
Fig. 3, the slope in the σfNL

error is closer to zero with
inclusion of low k-modes. Therefore, although the lower
shot noise (higher ngal) allows us to probe larger and
larger scales, the ability to constrain the non-Gaussian
parameters eventually plateaus, as is seen in our results.

However, when the galaxy survey data is cross-
correlated with the kSZ data, the lowered shot noise has
a much more pronounced impact on both σfNL

and στNL

(right of Fig. 4). In fact, the effect of the higher ngal

on στNL
is much steeper, with the results indicating that

at high enough galaxy number density one can constrain
τNL better than fNL. This is because a higher number
density allows for the use of more signal from large-scale
k-modes. When cross-correlating the two data sets, the
inclusion of these modes allows for a steady improvement
in the ability to measure fNL in the absence of noise, as
shown in Fig. 3. This improved constraint on fNL trans-
lates into a better measurement of τNL. This, combined
with the difference in the contribution of each of these
terms to the Phh signal, allows for a tighter constraint
on τNL than fNL when larger scales can be included as a
result of lower shot noise.

The threshold value of ngal required to measure τNL

with a higher sensitivity than fNL is dependent on the

survey volume. The results from the two different sur-
vey volumes, presented on the right of Fig. 4, indicate
that the two uncertainty curves for fNL and τNL inter-
sect at lower values of ngal for larger survey volumes, as

expected. While a survey with V = 100 Gpc3 (under the
baseline 1 configuration) can only achieve στNL

. σfNL

with ngal ≈ 10−1 Mpc−3, increasing the survey volume

to V = 180 Gpc3 allows for the sensitivities to intersect
at a more achievable ngal ≈ 3× 10−2 Mpc−3.

To establish the dependence of these errors on CMB
instrumental noise [Eq. (35)], we also calculated the val-
ues of σfNL

and στNL
under varying values of sensitivity

s and resolution θFWHM, independently. In both these
calculations we assumed the baseline 1 configuration for
all other parameters. In our results we find that varying
the sensitivity from 0.25 µK-arcmin to 14 µK-arcmin ap-
proximately increases our error in fNL by 3.1x and τNL

by 6.3x. In contrast, the dependence of the errors on the
CMB telescope resolution is a more pronounced. When
the resolution is varied from 0.5-10 arcmin, σfNL

steadily
increases by a factor of 9.8. Similarly, the forecasted error
in the estimation of τNL increases steeply by a factor of
100 for the same variation in CMB telescope resolution.

Finally, the values of σfNL and στNL were also calcu-
lated for varying values of photo-z error σz. The value
of σz was varied from 0.0 to 1.0, which approximately
resulted an increase in σfNL

by a factor of 3.2 and an
increase in στNL

by a factor of 2.5. This minimal effect
of varying σz is explained by the scale dependence of the
fNL and τNL terms that makes the constraints most de-
pendent on the largest scales measured.
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VI. CONCLUSIONS

kSZ tomography is a powerful probe of the large-
scale matter distribution that will be accessible with the
next generation CMB and large-scale structure surveys.
Cross-correlating this data set, with galaxy distribution
data from upcoming large-scale structure surveys, such
as the VRO survey and DESI, leads to sample variance
cancellation in the measurement of galaxy bias and other
quantities. In this paper, we have calculated the sensi-
tivity with which both fNL and τNL can be measured
using this method of cross-correlation. We also display
the improvement coming from the addition of the kSZ
data set and identify the experimental factors that most
prominently contribute to better sensitivity in our mea-
surements.

The statistical power of this method is most evident
at large scales (k < 10−2 Mpc−1), arising from the low
noise in the velocity reconstruction from kSZ data. For
a cross-correlation between VRO survey data and CMB-
S4, we find that one can reach σfNL ≈ 0.59 and στNL ≈ 1.5
and improvement factors of 10 and 195, respectively, in
comparison to estimates that use VRO data alone, with-
out internal sample variance cancellation. Similarly, for
the combination of DESI and a SO like survey we cal-
culate σfNL ≈ 3.1 and στNL ≈ 69, with a corresponding
improvement factors of 2 and 5, respectively. This fore-
cast includes marginalization over all relevant parameters
and realistic photo-z errors as well as redshift space dis-
tortions. In our analysis of the experimental parameters
which most heavily influence our sensitivity to measuring
the scale-dependent bias, we find that the best results
are achieved when the galaxy survey data is obtained
from a large survey volume, with well measured large-
scale modes, in combination with a high galaxy number
density count. Furthermore, we expect that binning the
galaxy survey data by mass, population, or redshift, to
achieve internal sample variance cancellation, will fur-
ther improve sensitivity to both τNL and fNL, following
the analysis in [43, 44].

In our work we have used a simplified 3-dimensional
box geometry to illustrate the properties of the method
and highlight the potential to measure signatures of non-
Gaussianity using kSZ tomography data. We assume a
fixed, functional form for βf [Eq. (12)] to explicitly dis-
play forecasts on fNL and τNL alone. However, the depen-
dence of βf on bh may require further simulation-based
analysis for a non-Gaussian universe (see Ref. [70]). Al-
though there are other modelling assumptions intrinsic
to our calculation of velocity reconstruction noise, such
as the assumed distribution of electron gas within halos,
we expect a marginalisation over these model parameters
to have a minimal impact on our sensitivity to fNL and
τNL. In these forecasts we also account for optical depth
degeneracy via an added parameter in our information
matrix; however, we expect that the measurements of
electron profiles from fast-radio burst searches [71], as
well as cross-correlation between radial and transverse

velocities (latter reconstructed from so called ‘moving-
lens’ tomography [72–74]) can potentially mitigate this
bias in the near future. Although the inclusion of GR
effects could lead to degeneracies with the existing fNL

and τNL parameters (explored for the fNL case in Refs.
[75, 76]), we expect the effects of these degeneracies to
be minimised by redshift binning or the consideration of
multiple populations of halos.

We find that our forecasts compare well with other at-
tempts at constraining local non-Gaussianity under sam-
ple variance cancellation, using different tools for cross-
correlation. Our constraints on both fNL and τNL are
slightly better than (within a factor of ∼ 2 and ∼ 3, re-
spectively) the forecasts presented in Ref. [44], where
sample variance cancellation was achieved by consider-
ing multiple populations of halos, assuming an LSST-
type survey. Moreover, cross-correlation of reconstructed
CMB lensing potential and galaxy clustering can also
probe local type of non-Gaussianities, as showin in Ref.
[77]. Their forecast on fNL, considering the survey com-
bination of LSST and CMB-S4, with redshift binning, is
comparable to the value presented in this paper. How-
ever, such forecasts would be sensitive to lensing recon-
struction biases, which are likely more detrimental [78]
than similar biases in kSZ tomography [69]. Including
the CMB-lensing or moving-lens tomography [72–74] for
additional sample variance cancellation from transverse
modes could lead to some improvement, the analysis of
which is left to future work. Ultimately, our forecasts in
this paper indicate that kSZ tomography is a prominent
tool for cross-correlation physics, allowing for impressive
constraints on the PNG parameters in the curvaton sce-
nario.
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Appendix A: Halo Model

For the forecasts in this paper, we use the halo model to
calculate the non-linear power spectra involving electron
and galaxy fields. These power spectra are used to calcu-
late the noise in our velocity reconstruction from the mea-
sured kSZ anisotropies. In this section, we present a short
overview of this modelling methodology and present our
modelling assumptions.
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The halo model is dependent on the fundamental as-
sumption that all the dark and baryonic matter is bound
in halos of varying masses and density profiles. The
correlation function for the matter-density or galaxy-
density fluctuations then receives two contributions, one
which accounts for the clustering of distinct halos (“two-
halo” term) and another which accounts for the cluster-
ing within each individual halo (“one-halo” term). A
review of this model can be found in Ref. [79].

1. Dark Matter

Although the non-linear power spectrum of dark mat-
ter clustering is not directly used in the velocity recon-
struction estimates, we make assumptions on the clus-
tering of these halos that define the form of the electron
and galaxy power spectra. These specifics are described
below.

Given the linear matter power spectrum Pmm(k), and
the cosmological matter density ρm (at the redshift of
consideration), the rms variance of mass within a sphere
of radius R that contains mass m = 4πρmR

3/3 is defined
as:

σ2(m, z) =
1

2π2

∫ ∞
0

dk k2 Pmm(k, z)W 2(kR). (A1)

Here, R = R(m) and W (kR) is the window function in
Fourier space:

W (kR) =
3[sin(kR)− kR cos(kR)]

(kR)3
. (A2)

This is then used to define the halo mass function,

n(m, z) = f(σ, z)
ρm
m2

d ln[σ(m, z)−1]

d ln(m)
, (A3)

where m is the halo mass. This quantity denotes the
number density of halos per mass interval, at a specific
redshift z. For our calculations, we assume the Tinker
collapse fraction [80]:

f(σ, z) = A

[(σ
b

)−a
+ 1

]
e−c/σ

2

, (A4)

with A = 0.186, a = 1.47, b = 2.57, and c = 1.19.
The linear halo bias, consistent with the above collapse

fraction, is assumed to be [81]:

bh(ν) = 1 +
1√
aδc

[√
a(aν2) +

√
ab(aν2)1−c

− (aν2)c

(aν2)c + b(1− c)(1− c/2)

]
,

(A5)

where, in this model, a = 0.707, b = 0.5, c = 0.6, and we
have defined ν(m, z) = δc/σ(m, z). Note that these set
of equations satisfy the consistency relation:∫ ∞

−∞
d lnm m2n(m, z)

( m
ρm

)
bh(m, z) = 1. (A6)

2. Galaxies

The distribution of galaxies inside each halo is mod-
elled according to the Halo Occupation Distribution
(HOD) [82]. Under this model, we assume separate dis-
tributions for central and satellite galaxies, the forms of
which are determined in [65].

The number of central galaxies in a halo is either 0 or
1. They are always located exactly at the halo’s center.
The mean number of centrals in a halo of mass m is fixed
by the amount of stellar mass in each halo and is given
by:

N̄c(m) =
1

2
− 1

2
erf
[ log10(mthresh

? ) − log10(m∗(m))√
2σlogm∗

]
.

(A7)
Here, m∗(m) is the stellar mass in each halo of mass
m and is modelled according to the form provided in
equation 13 of Ref. [65]. The galaxy sample is defined
by imposing a threshold stellar massmthresh

? of observable
galaxies. This model assumes a log normal distribution
for stellar mass in a fixed halo of mass m, with a constant
redshift independent scatter σlogm∗ . For our calculations
we set the value of this scatter to 0.2.

The mean number of satellite galaxies in a halo of mass
m is given by:

N̄s(m) = N̄c(m)
( m

msat

)αsat

exp
(−mcut

m

)
. (A8)

The free parameters in this model, msat, αsat and mcut,
depend on the choice of mthresh

? . Their dependence on the
threshold stellar mass is consistent with the ‘SIGMOD1’
model in Ref. [65] at redshift z = 1.

The total galaxy-galaxy power spectrum is the sum
of the one halo and two halo contributions, which are
defined as:
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P 1h
gg (k, z) =

∫ ∞
−∞

d lnm
mn(m, z)

n2
gal

[
2〈Nc(m)Ns(m)〉uc(k)us(k|m, z) + 〈Ns(m) (Ns(m)− 1)〉us(k|m, z)2

]
,

P 2h
gg (k, z) = Pmm(k, z)

[∫ ∞
−∞

d lnm mn(m, z)bh(m, z)
N̄c(m)uc(k) + N̄s(m)us(k|m, z)

ngal

]2

.

(A9)

where ngal is the mean number of galaxies in the sim-
ulated survey. It is dependent on the chosen value of
mthresh
? , and is defined as:

ngal =

∫ ∞
−∞

d lnm mn(m, z)[N̄s(m) + N̄c(m)]. (A10)

Furthermore, uc(k) and us(k|m, z) represent the Fourier
space distribution profiles of centrals and satellite galax-
ies, respectively. Since we assume that the centrals are
at exact halo centers, we set uc = 1. We assume that the
satellite galaxies follow an NFW profile:

ρ(r|m, z) =
ρs

(r/rs)(1 + r/rs)2
, (A11)

where the scale radius rs is related to the virial radius rvir

via the concentration parameter c = rvir/rs. The mass
and redshift dependence in this distribution arises from
the assumed model for the concentration parameter:

c(m, z) = A
( m

2× 1012 h−1M�

)α
(1 + z)β , (A12)

where A = 7.85, α = −0.081, and β = −0.71 [57].

Finally, the expectation values 〈Nc(m)Ns(m)〉 and
〈Ns(m) (Ns(m)−1)〉, appearing in Eq. (A9), are defined
to be N̄s(m) and N̄s(m)2/N̄c(m), respectively, assuming
Nc(m) and Ns(m) are maximally correlated.

3. Electrons

The electron distribution is modelled under the as-
sumption that all the electron gas is bound within dark
matter halos. Given this assumption, the auto-power
spectrum of the electron gas is a sum of a one-halo and
two-halo contribution, each of which is defined as:

P 1h
ee (k, z) =

∫ ∞
−∞

d lnm mn(m, z)
( m
ρm

)2

|ue(k|m, z)|2,

P 2h
ee (k, z) = Pmm(k, z)

[∫ ∞
−∞

d lnm mn(m, z)
( m
ρm

)
bh(m, z)ue(k|m, z)

]2

.

(A13)

Here, ue(k|m, z) refers to the Fourier-space distribu-
tion profile of the electron gas, which we assume to be
a function of halo mass m and redshift z only. We use
the AGN model-based fit function for the real-space mass
distribution of the electron gas [83],

ρgas =
Ωb
Ωm

ρc(z)ρ̄0

( x
xc

)γ[
1 +

( x
xc

)α]− β−γα
, (A14)

where we have dropped the explicit dependence of some
of the above parameters on mass and redshift for ease
of notation. In the above model from Ref. [83], x =
r/R200(m, z) where R200 is the radius at which the dark
matter halo reaches a density of 200ρc(z). Furthermore,
we have γ = −0.2 and xc = 0.5. The remaining pa-

rameters ρ̄0(m, z), α(m, z), and β(m, z) are fitted with a
power law in halo mass and redshift:

A = Ax0

(
m

1014M�

)αxm
(1 + z)α

x
z , (A15)

where the parameters for the AGN model used in this
paper have been lifted from Table 2 of Ref. [83].

Given the auto - power spectra defined in Eq. (A9) and
(A13) the cross spectra can be calculated as defined in
Appendix B of Ref. [57]. One example set of spectra,
constructed based on an mthresh

? value that generates a
galaxy number density similar to that of VRO [58], has
been shown in Fig. 5.
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FIG. 5. Auto and cross power spectra in our halo model
assuming the ‘AGN’ model of electron gas profile plotted at
z=0. The shown galaxy auto-power spectrum was constructed
to match the predicted galaxy number density for VRO.
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FIG. 6. CMB Power spectrum for kSZ for redshifts 0 < z <
6.5 calculated in the halo model, assuming the AGN model
based electron gas density profile.

4. kSZ Model

The late-time kSZ contribution to the CMB power
spectrum [labelled CkSZ-late-time

` in Eq. (34)] is also mod-
elled based on the above power spectra. The kSZ angular
power spectrum at large values of `, where its contribu-
tion to the CMB spectrum is the largest, is dominated
by the power spectrum of the transverse momentum field
Pq⊥(k) and is given by [84]

CkSZ
` =

(σT n̄e,0)2

2

∫
dχ

χ2a4
e−2τPq⊥

(
k =

`

χ
, χ
)
. (A16)

We calculate the power spectrum of the transverse mo-
mentum field based on the form provided in [85]

Pq⊥(k, z) = (fHa)2

∫ ∞
−∞

d3k′

(2π)3
Pee(|k − k′|, z)(A17)

k(k − 2k′µ′)(1− µ′2)

k′2(k2 + k′2 − 2kk′µ′)
.

A plot of the computed CkSZ
` used in the forecasts has

been presented in Fig. 6.
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