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Parity-violating physics in the early Universe can leave detectable traces in late-time observables.
Whilst vector- and tensor-type parity-violation can be observed in the B-modes of the cosmic mi-
crowave background, scalar-type signatures are visible only in the four-point correlation function
(4PCF) and beyond. This work presents a blind test for parity-violation in the 4PCF of the BOSS
CMASS sample, considering galaxy separations in the range [20, 160]h−1Mpc. The parity-odd 4PCF
contains no contributions from standard ΛCDM physics and can be efficiently measured using re-
cently developed estimators. Data are analyzed using both a non-parametric rank test (comparing
the BOSS 4PCFs to those of realistic simulations) and a compressed χ2 analysis, with the former
avoiding the assumption of a Gaussian likelihood. These find similar results, with the rank test giv-
ing a detection probability of 99.6% (2.9σ). This provides significant evidence for parity-violation,
either from cosmological sources or systematics. We perform a number of systematic tests: although
these do not reveal any observational artefacts, we cannot exclude the possibility that our detection
is caused by the simulations not faithfully representing the statistical properties of the BOSS data.
Our measurements can be used to constrain physical models of parity-violation. As an example, we
consider a coupling between the inflaton and a U(1) gauge field and place bounds on the latter’s
energy density, which are several orders of magnitude stronger than those previously reported. Up-
coming probes such as DESI and Euclid will reveal whether our detection of parity-violation is due
to new physics, and strengthen the bounds on a variety of models.

I. INTRODUCTION

A detection of parity-violation in cosmological observables would be a smoking gun for physics beyond the standard
model, and could provide crucial insights into the nature of dark matter, dark energy, and inflation. In the conventional
paradigm, all cosmological correlators are symmetric under the parity operator P, since gravity (along with all other
standard model interactions except the weak force [1]), is P-invariant. Despite this, a number of theoretical arguments
suggest that parity-violating interactions should occur in the early Universe, most notably to source baryogenesis.
Creation of the current baryon asymmetry requires a process which violates charge and parity conservation [2, 3]; a
possible route is via leptogenesis, which, if sourced by gravity, must be parity-violating [e.g., 4–8].

Additional sources of parity-violation include inflationary interactions between multiple fields, such as via the
Chern-Simons term [e.g., 9–14], generation of primordial magnetic fields [e.g., 15–17], vector perturbations generated
by cosmic strings or defects [e.g., 18–20], reheating [e.g., 21, 22], Chern-Simons modified general relativity [11], and
inflationary particle exchange [23, 24], all of which leave distinctive imprints on late-time observables [e.g., 9]. Potential
evidence for such models was recently provided by [25], which found a 2.4σ hint (updated to 3.6σ in [26]) of parity-
violation in the cosmic microwave background (hereafter CMB). Whilst some argue that this effect may be caused
by interstellar dust emission [27] (though see [28, 29]), it has nevertheless provided a resurgence of interest in these
theories.

To constrain such phenomena, we require observables that are parity-sensitive. Common choices are vector and
tensor quantities, such as B modes of the CMB [e.g., 30], or those of galaxy ellipticities [e.g., 31]. These satisfy
P[B] = −B, and can be combined in two-point correlators (e.g., TB and EB for the CMB, or EB for weak lensing).
Barring contamination by systematics, the observables should have no contribution from standard ΛCDM physics, but
can be sourced by effects such as birefringence (whereupon the plane of the photon polarization is coherently rotated
between the surface of last scattering and the observer, as in [25]), gravitational wave chirality [e.g., 9, 32–35], and
multi-field inflation [7, 23, 36]. Information is not limited to the two-point function however; higher-order correlators
such as TTB can give additional constraining power on effects such as birefringence [37].

When constructing observables from scalar fields (such as the galaxy density or CMB temperature), obtaining a
parity-sensitive quantity is more difficult. As an example, the isotropic galaxy two-point correlation function (hereafter
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FIG. 1. Cartoon of the galaxy four-point correlation functions (4PCFs) considered in this work. In the left panel, we show the
4PCF, ζ(r1, r2, r3), which depends on the separation vectors of three secondary galaxies from a given primary. The right panel
shows the parity-inverted 4PCF, P [ζ(r1, r2, r3)], which corresponds to replacing ri with −ri. Unlike for the 2PCF and 3PCF,
the two configurations cannot be related by a rotation. The parity-even 4PCF is a sum of the two geometries (which have the
same side-lengths and relative angles), whilst the parity-odd 4PCF is a difference. In this work, the 4PCF is given as a function
of three lengths (r1, r2, and r3) and three internal angles (fixing the angle of the ri vectors with the respect to the primary
galaxy). The latter are represented by their harmonic-space momenta, `1, `2 and `3, with odd-parity 4PCFs corresponding to
odd `1 + `2 + `3. Assuming standard ΛCDM physics, the two correlators shown in the figure should be equivalent, thus the
expectation value of the parity-odd 4PCF is zero.

2PCF) is insensitive to parity, since the action of P is equivalent to a rotation, under which the statistic is invariant. In
three-dimensions, the isotropic N -point correlation functions (NPCFs) are parity-sensitive only if N > 3; this applies
also to the CMB, since the intrinsic fluctuations are the projection of a three-dimensional quantity. The simplest
statistic with which to probe scalar parity-violation is thus the 4PCF, as pointed out in [23, 38, 39]. A cartoon of this
is shown in Fig. 1.1

Whilst a number of works have considered the 4PCF of the CMB [e.g., 44, 45] including its parity-odd contributions
[38, 46] (though only theoretically), the large scale structure (LSS) equivalent has been rarely explored. Given the
influx of spectroscopic data expected in the next decade from DESI [47], Euclid [48], and Rubin [49], galaxy surveys
seem to be a natural arena in which to hunt for parity-violating interactions, allowing constraints to exceed the CMB
cosmic variance limit. Historically, use of the higher-point galaxy correlation functions has been hampered by the
computational resources required for their estimation; näıvely, the 4PCF requires O(N4

g ) operations to compute from
Ng galaxies. Recent works have significantly improved upon this [50, 51], with the algorithm of [51] requiring only
O(N2

g ) operations. This allows the 4PCF of current galaxy surveys to be computed in ∼ 30 CPU-hours. The approach
proceeds by first projecting the correlation function into a suitable angular basis [52]; thence, the integrals decouple
and the 4PCF may be computed by summing over pairs of galaxies. This naturally generalizes to higher-dimensions,
as well as to anisotropic correlators [53]. Furthermore, there is a natural split into parity-even and parity-odd basis
functions. The former can be used to place constraints on gravitational non-Gaussianity from a hitherto unexplored
statistic [54], whilst the latter are the subject of this work (see also [23, 39]).

There are two main ways in which parity-violation can be probed using the galaxy 4PCF. Firstly, one may place
constraints on the amplitudes of specific physical models given their associated theoretical predictions. This is an
approach oft-used in the analysis of CMB 3- and 4-point functions, for example in non-Gaussianity studies, which
typically exploit separability of the underlying theoretical templates for significant computational gain [e.g., 55]. This
approach was also suggested in [23, 46, 56], and allows for targeted constraints on specific models of early-Universe
particle exchange, via a search for their specific isotropy-violating signatures. An alternative method would be to first
measure the full galaxy 4PCF in some set of bins, then perform a blind test, looking for the signatures of any physical
model (and systematic effects). This approach is possible since the parity-odd 4PCF receives no contribution in ΛCDM,
including from general relativistic and baryonic effects. Given the multitude of possible models for parity-violation,
we will principally adopt the second strategy in this work, though we demonstrate also the first, by placing constraints
on a specific model involving Chern-Simons terms in the inflationary Lagrangian. Analysis using the galaxy 4PCF
comes with its complexities, however. In particular, the high-dimensionality of the statistic prohibits conventional
mock-based χ2-analyses. To alleviate this, we include a data-compression step, facilitated using a theoretical model

1 Large scale structure correlators are sensitive also to redshift-space distortions [40, 41], giving dependence of the statistic on line-of-sight
velocities [42]. This enables vector-type parity-violation to be probed in the 3PCF [43], though it requires careful modelling of galaxy
velocities.
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of the 4PCF covariance [57], which dramatically reduces the number of bins without introducing bias. It is not
guaranteed that the 4PCF likelihood be Gaussian however (see Appendix A and [58, 59]); to provide a fully robust,
yet conservative, test for parity-violation, we make use of a likelihood-free inference technique, involving a suite of
realistic simulations. We caution that such blind tests are naturally subject to systematic uncertainties, some of which
will be explored in this work. The results below represent the first constraints on scalar parity-violation from LSS
data.

The remainder of this work is structured as follows. In §II, we present the parity-odd 4PCF estimator, including the
corrections necessary to account for non-uniform survey geometry, before we discuss the data and covariance matrices
in §III. Analysis methods are considered in §IV, with the corresponding constraints on parity-violation presented in
§V. In §VI, we include a number of systematic checks and a brief discussion of potential biases in the approach. §VII
discusses parity-breaking phenomena including the presentation of an inflationary model for the parity-odd 4PCF,
based on a Chern-Simons coupling, whose amplitude is then bounded using the BOSS data. We conclude in §VIII,
with Appendices A and B discussing the impacts of likelihood non-Gaussianity and sketching the derivation of the
Chern-Simons 4PCF template. Jupyter notebooks containing our analysis pipeline can be found on GitHub.2

Note on Blinding : To limit confirmation bias, the BOSS data were sent to an external collaborator (M. König)
after computation, and not revealed until the analysis pipeline was constructed and tested. The initial draft of the
paper was also written before unblinding (encompassing all sections except §VI and Appendix A), with the BOSS
data replaced by that from a single mock dataset.

II. MEASURING THE PARITY-ODD 4PCF

We begin by outlining our estimator for the parity-odd 4PCF, which is implemented in the public encore code.3

Further details of the formalism can be found in [51] (for the general NPCF estimator and encore), [52] (for the basis
functions), [54] (for the parity-even 4PCF), [39] (for an overview of the parity-odd 4PCF) and [53] (for extensions
beyond flat 3D space).

A. Isotropic Basis Functions

Given a (scalar) density field δ(r), the 4PCF is defined as

ζ(r1, r2, r3) ≡ 〈δ(s)δ(s + r1)δ(s + r2)δ(s + r3)〉 , (1)

where 〈· · ·〉 represents a statistical average over realizations of δ. A cartoon of this parametrization is shown in Fig. 1.
By statistical homogeneity, the 4PCF is independent of the absolute coordinate s.

As demonstrated in [51, 53], a complete angular basis for the isotropic N -point correlation functions is given by the
isotropic basis functions of (N − 1) coordinates defined in [52] (see also the TriPoSH formalism; [60]).4 For N = 4,
the basis functions are

P`1`2`3(r̂1, r̂2, r̂3) ≡ (−1)`1+`2+`3
∑

m1m2m3

(
`1 `2 `3
m1 m2 m3

)
Y`1m1(r̂1)Y`2m2(r̂2)Y`3m3(r̂3), (2)

where Y`m(r̂) is a spherical harmonic, the 3 × 2 matrix is a Wigner 3-j symbol, and the mi summations run over
integer mi ∈ [−`i, `i]. Such functions arise from the theory of angular momentum addition, and are specified by
three non-negative integers {`1, `2, `3}, encoding the relative orientation of r̂1, r̂2, and r̂3. Due to the 3-j symbol, the
integers must obey the triangle condition |`1 − `2| ≤ `3 ≤ `1 + `2, and we additionally enforce `i ≤ `max. In practice,
we restrict to relatively low `max, which gives an angular resolution of θmin ≈ 2π/`max for the internal angles of the
4PCF tetrahedron. The basis functions have the following properties under parity and conjugation transformations
(for parity operator P):

P [P`1`2`3(r̂1, r̂2, r̂3)] = (−1)`1+`2+`3P`1`2`3(r̂1, r̂2, r̂3), P∗`1`2`3(r̂1, r̂2, r̂3) = (−1)`1+`2+`3P`1`2`3(r̂1, r̂2, r̂3), (3)

2 Available at github.com/oliverphilcox/Parity-Odd-4PCF.
3 Available at github.com/oliverphilcox/encore.
4 The approach naturally extends to anisotropic correlators [53], though we do not consider them in this work.

https://github.com/oliverphilcox/Parity-Odd-4PCF
https://github.com/oliverphilcox/encore
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implying that the basis is parity-odd and pure imaginary if `1 + `2 + `3 is odd, and parity-even and real else.
Furthermore, (2) is invariant under joint rotations of all three separation vectors, i.e. {r1, r2, r3} → {Rr1, Rr2, Rr3},
for arbitrary rotation matrix R.

The isotropic part of the galaxy 4PCF can be decomposed into the basis of (2):

ζiso(r1, r2, r3) =
∑
`1`2`3

ζ`1`2`3(r1, r2, r3)P`1`2`3(r̂1, r̂2, r̂3), (4)

where the coefficients ζ`1`2`3 (hereafter denoted ‘multiplets’) can be obtained via the orthonormality of P`1`2`3 .5 Given
the transformation properties of (3), we find a natural split of ζiso into parity-even and parity-odd parts:

ζ+(r1, r2, r3) =
∑

`1+`2+`3=even

ζ`1`2`3(r1, r2, r3)P`1`2`3(r̂1, r̂2, r̂3), (5)

ζ−(r1, r2, r3) =
∑

`1+`2+`3=odd

ζ`1`2`3(r1, r2, r3)P`1`2`3(r̂1, r̂2, r̂3).

These satisfy P [ζ±(r1, r2, r3)] = ± ζ±(r1, r2, r3), and may be related to the sum and difference of the two panels in
Fig. 1. In this work, we restrict to odd `1 + `2 + `3, and thus consider the (purely imaginary) parity-odd 4PCF.

B. 4PCF Estimator

Invoking the ergodic principle, we may estimate the full 4PCF as an integral over four density fields,

ζ̂(r1, r2, r3) ≡ 1

V

∫
ds δ(s)δ(s + r1)δ(s + r2)δ(s + r3), (6)

where V is the integration volume. This is unbiased, i.e. it has expectation E[ζ̂] = ζ. Since the basis functions of (2)
are orthonormal [52], (6) can be used to construct an estimator for the 4PCF basis coefficients:

ζ̂`1`2`3(r1, r2, r3) =

∫
dr̂1dr̂2dr̂3 P∗`1`2`3(r̂1, r̂2, r̂3)ζ̂(r1, r2, r3) (7)

=
1

V

∑
m1m2m3

(
`1 `2 `3
m1 m2 m3

)
×
∫
ds dr̂1dr̂2dr̂3 δ(s)δ(s + r1)δ(s + r2)δ(s + r3)Y`1m1

(r̂1)Y`2m2
(r̂2)Y`3m3

(r̂3),

using the conjugate properties of (3). Defining the harmonic coefficients

a`m(s; r) ≡
∫
dr̂ δ(s + r)Y`m(r̂), (8)

this is separable in r̂i:

ζ̂`1`2`3(r1, r2, r3) =
∑

m1m2m3

(
`1 `2 `3
m1 m2 m3

)∫
ds

V
δ(s)a`1m1(s; r1)a`2m2(s; r2)a`3m3(s; r3). (9)

For a discrete density field defined by Ng particles at positions {xi} with weights wi, the estimator can be written as
a sum:

a`m(xi; r) ≡
Ng∑
j=1

wjY`m(x̂j − xi)δD(r − |xj − xi|), (10)

ζ̂`1`2`3(r1, r2, r3) =

Ng∑
i=1

∑
m1m2m3

(
`1 `2 `3
m1 m2 m3

)
wi a`1m1

(xi; r1)a`2m2
(xi; r2)a`3m3

(xi; r3),

5 Since the anisotropic basis functions are orthogonal to those of (2), the decomposition in (4) holds regardless of whether the full statistic
is isotropic.
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where the Dirac delta, δD, ensures that we count only secondary particles, j, separated from the primary, i, by a
distance r. Since we must compute a`m at the location of each primary particle, the estimator requires a sum over
pairs of particles, and thus has complexity O(N2

g ); in practice, the scaling is closer to linear, as the mi summation
is rate limiting for large `max [51]. By replacing the Dirac function in (10) by a binning function of finite width, the
estimator extends to bin-averaged 4PCF estimates; we refer the reader to [51, 54] for details. We further note that
the 4PCF contains also a ‘disconnected’ piece sourced by two copies of the 2PCF. Whilst this can be subtracted at
the estimator level directly [54], it does not contribute to parity-odd multiplets, and will thus be ignored henceforth.

C. Edge-Correction

Finally, estimator (9) must be modified to account for the non-uniform survey geometry. For this purpose, we first
define the 4PCF using the generalized Landy-Szalay form [51, 61, 62]

ζ̂(r1, r2, r3) ≡ N (r1, r2, r3)

R(r1, r2, r3)
, (11)

where N and R are the 4PCF estimates obtained from ‘data-minus-random’ and random catalogs respectively, both
of which are modulated by the survey window function. Following some algebra, the edge-corrected 4PCF multiplets
are given by

ζ`1`2`3(r1, r2, r3) =
∑
`′1`
′
2`
′
3

[
M−1

]`′1`′2`′3
`1`2`3

(r1, r2, r3)
N`′1`′2`′3(r1, r2, r3)

R000(r1, r2, r3)
, (12)

defining the coupling matrix

M
`′1`
′
2`
′
3

`1`2`3
(r1, r2, r3) =

(−1)`
′
1+`′2+`′3

(4π)3/2

∑
L1L2L3

RL1L2L3
(r1, r2, r3)

R000(r1, r2, r3)

[
3∏
i=1

√
(2`i + 1)(2Li + 1)(2`′i + 1)

]`1 L1 `′1
`2 L2 `′2
`3 L3 `′3

(13)

×
(
`1 L1 `′1
0 0 0

)(
`2 L2 `′2
0 0 0

)(
`3 L3 `′3
0 0 0

)
,

with the curly brackets indicating a Wigner 9-j symbol. This allows us to ‘undo’ the effects of non-uniform survey
geometry by measuring the 4PCF multiplets of the random field R.6 Note that there are two manners in which an
parity-odd ζ can be sourced: parity-odd N and parity-even R, or parity-odd R and parity-even N .7 For this reason,
it is imperative to restrict to parity-odd multipets only after performing edge-correction.

III. DATA

A. Data and Simulations

Our dataset comprises galaxies from the twelfth data-release (DR12) [64] of the Baryon Oscillation Spectroscopic
Survey (BOSS), part of SDSS-III [65, 66]. The survey contains two samples, CMASS and LOWZ, of which we use
the former. This contains 587 071 (216 041) galaxies in the Northern (Southern) galactic cap (hereafter denoted NGC
and SGC), across a redshift range z ∈ [0.43, 0.7] and an effective redshift of zeff = 0.57.8 We use a fiducial cosmology
{Ωm = 0.31,Ωbh

2 = 0.022, h = 0.676, σ8 = 0.8, ns = 0.96,
∑
mν = 0.06 eV} to convert angles and redshifts to

Cartesian coordinates [cf. 54, 67], and assign galaxy weights according to

wtot = (wrf + wfc − 1)wsyswfkp. (14)

Here wrf , wfc, and wsys correspond to redshift-failure, fiber-collision, and systematic weights respectively, with wfkp =

[1 + n(z)P0]−1 being the well-known FKP weight [68] for background number density n(z) and P0 = 104h−3Mpc3.
To model the survey geometry, we use the BOSS random catalogs, containing 50× more randoms than galaxies.

6 Note that this does not remove any geometry effects that couple to the anisotropic 4PCF, nor those coupling to the 4PCF multiplets
with `i > L, assuming an initial `max of L. The former effect is expected to be small (and usually ignored for the 3PCF [e.g., 63]),
and the latter is ameliorated by discarding all multiplets containing `i = L after edge-correction, justified by noting that the coupling
matrix, M , is close to tridiagonal.

7 This occurs since the product of 3-j symbols in the coupling matrix is zero unless `1 + `2 + `3 + `′1 + `′2 + `′3 + L1 + L2 + L3 is even.
8 Data are publicly available at data.sdss.org/sas/dr12/boss/lss/.

https://data.sdss.org/sas/dr12/boss/lss/
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We additionally make use of a suite of Nmocks = 2048 ‘MultiDark-Patchy’ (hereafter Patchy) simulations [69, 70].
These are computed using an approximate gravity solver and calibrated to an N -body simulation, with halo occupation
parameters adjusted such that the mocks well reproduce the BOSS two- and three-point statistics. These share the
CMASS survey geometry and are assigned weights via

wtot = wvetowfcwfkp, (15)

including the veto weight wveto. The mocks are generated with the parameter set {Ωm = 0.3071,Ωbh
2 = 0.02205, h =

0.6777, σ8 = 0.8288, ns = 0.96,
∑
mν = 0 eV} and coordinates are converted using the BOSS fiducial cosmology.

B. 4PCF Estimates

One of the main drawbacks with higher-order NPCFs is their dimensionality. To characterize the 4PCF, we must
specify three multiplet indices (`1, `2, `3) and three radial bins (r1, r2, r3), which can lead to a statistic with a large
number of (highly correlated) elements [51]. For this reason, we adopt a relatively coarse radial binning scheme using
Nr = 10 linearly spaced radial bins in [20, 160]h−1Mpc, giving ∆r = 14h−1Mpc. Furthermore, we enforce r2 > r1+∆r
and r3 > r2 + ∆r, to ensure that the the separation between any two galaxies in the 4PCF tetrahedron is at least ∆r
(cf. Fig. 1). This removes modes from the non-linear region; these are difficult to model and can be strongly affected
by baryonic physics. For the angular binning, we fix `max = 5, leading to a total of 56 radial bins and 111 multiplets
(both parity-odd and parity-even), hence 6 216 elements in the full 4PCF statistic. In the analysis of §IV, we use only
the 23 multiplets with odd `1 + `2 + `3 and `i ≤ 4, giving a total of Nζ = 1288 elements; the rest are required for
edge-correction (§II C).

Computation of the 4PCF multiplets, ζ`1`2`3(r1, r2, r3), is performed using the encore code [51]. We separately
measure the contributions from a random catalog and a set of 32 ‘data-minus-random’ catalogs, each with 1.5× the
galaxy density; the latter are averaged to form the N quantities entering the edge-correction equation (11), whilst
the former give R.9 Using (12), the quantities are then combined to form the edge-corrected 4PCF multipoles.

For samples with similar number densities to BOSS, the runtime of encore scales as NgN
3
r (`max + 1)5 [51], with

computation dominated by the mi summations of (10) rather than estimation of the harmonic coefficients a`m (which
scales as N2

g (1+`max)2, albeit with a more modest prefactor). In practice, we parallelize computation using OpenMP,
with each NGC (SGC) each simulation requiring ∼ 32 (6) CPU-hours to analyze on a modern 16-core Intel processor,
including edge-correction. In total, analysis of the BOSS data and 2048 Patchy mocks required ∼ 80k CPU-hours.
This is comparable to the computational costs of the 2PCF analysis in Ref. [73], and is facilitated by the efficient
nature of the encore algorithm. We display a selection of the measured 4PCF multiplets in Fig. 2.

C. Covariance Matrices

The Patchy mocks described in §III A can be used to form a sample covariance of the 4PCF statistic in the
standard manner:

Ĉ`1`2`3;`′1`
′
2`
′
3
(r1, r2, r3; r′1, r

′
2, r
′
3) =

1

Nmocks − 1

Nmocks∑
i=1

(
ζ

(i)
`1`2`3

(r1, r2, r3)− ζ̄`1`2`3(r1, r2, r3)
)

(16)

×
(
ζ

(i)
`′1`
′
2`
′
3
(r′1, r

′
2, r
′
3)− ζ̄`′1`′2`′3(r′1, r

′
2, r
′
3)
)
,

where ζ(i) represents the i-th 4PCF estimate (in the NGC or SGC region), and ζ̄ is the average over Nmocks realizations.
Since the number of 4PCF bins exceeds the number of Patchy mocks, this is not invertible, making it difficult to
perform traditional χ2-based analyses. For this reason, we supplement the sample covariance with the analytic
covariance described in [57]. Essentially, this computes:

Cov(r1, r2, r3; r′1, r
′
2, r
′
3) =

∫
ds

V

ds′

V
〈δ(s)δ(s + r1)δ(s + r2)δ(s + r3)δ(s′)δ(s′ + r′1)δ(s′ + r′2)δ(s′ + r′3)〉 (17)

−
∫
ds

V
〈δ(s)δ(s + r1)δ(s + r2)δ(s + r3)〉

∫
ds′

V
〈δ(s′)δ(s′ + r′1)δ(s′ + r′2)δ(s′ + r′3)〉 ,

9 If the algorithm’s runtime scales as N2
g , this partitioning minimizes the Poisson error at fixed computational cost [71, 72]. In our case,

the scaling is closer to linear, thus the total work is roughly independent of the partition size.
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FIG. 2. Measurements of the parity-odd 4PCF from the BOSS CMASS galaxy sample, alongside those from 2048 Patchy
simulations. The NGC (SGC) results are shown in blue (red) bands, with the BOSS data shown as error-bars, using the
Patchy variances. Results are displayed for a selection of {`1, `2, `3} multiplets (which specify the internal angles of the galaxy
tetrahedron, as in Fig. 1), whose values are indicated by the title of each subfigure. In total, 23 parity-odd multiplets are
included in the analysis of §V. The horizontal axis specifies the radial bin combinations, {r1, r2, r3}, with the central values of
r1, r2 and r3 in each bin shown in the top panel. These correspond to the distances of the secondary, tertiary, and quaternary
galaxies from the primary in Fig. 1. For visibility, the 4PCF measurements are rescaled by a factor −i r1r2r3. As expected, the
Patchy measurements show no signs of parity-violation. Given the high correlation between neighboring bins, it is difficult to
visually assess whether the BOSS dataset contains signatures of parity-violation; this is quantified in Figs. 4 & 5.
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where the statistical expectations can be expanded using Wick’s theorem to yield products of four 2PCFs. The covari-
ance is then projected into the angular basis of §II A and simplified. The approach makes a number of assumptions:

• Isotropy: The 2PCF ξ(r) ≡ 〈δ(s)δ(s + r)〉 is assumed to be a function only of |r|. This neglects redshift-space
distortions, which have a non-trivial impact on the isotropic 4PCF covariance.

• Gaussianity: The expectations entering (17) strictly contain additional contributions from higher-order corre-
lators such as the 3PCF.

• Survey Geometry: Whilst the 4PCF is edge-corrected (§II C), the same is not true for the covariance. The
latter inherits non-trivial dependence on the survey geometry [e.g., 74, 75], which cannot be simply captured by
modifying the survey volume or shot-noise [57].

For these reasons, we do not expect the analytic models of [57] to accurately predict the true covariance of BOSS. It is
a relatively close approximation of matrix structure however, and will thus be used as a proxy covariance to facilitate
the analysis techniques described in §IV. We construct the covariance using the same radial binning parameters as in
§III A, restricting to odd `1 + `2 + `3. Following the prescription of [74] (but generalized to higher dimensions), we
use an effective volume of 1.90h−3Gpc3 (0.77h−3Gpc3) and shot-noise Pshot = 3130h−3Mpc3 (3160h−3Mpc3) for the
NGC (SGC) subsample. The input 2PCFs are taken from a fit to the BOSS CMASS power spectrum, modelled using
the Effective Field Theory of Large Scale Structure [76], as implemented in class-pt [77].

Fig. 3 compares the analytic and sample covariances for the NGC region, with the latter estimated from (16) using
2048 Patchy mocks. Considering the correlation matrices (Fig. 3a, defined as Rij ≡ Cij/

√
CiiCjj for covariance

Cij), we find good agreement between the two, indicating that the Gaussian theory model well reproduces the matrix
structure. However, the diagonal elements (Fig. 3b) of the analytic covariance are roughly a factor of two less than
those of the sample covariance. This is likely to arise from the non-trivial survey geometry of the BOSS CMASS
region [57] and prohibits direct use of the analytic covariance as a model for the 4PCF statistics.10

IV. ANALYSIS METHODS

Below, we discuss two techniques that will be used to search for a signature of parity-violation in §V: (1) a non-
parametric rank test, which does not require the likelihood to be Gaussian, and (2) data compression followed by
a mock-based χ2-analysis. Both approaches make use of the smooth (but inaccurate) covariance matrix model of
§III C to overcome the difficulties associated with the high-dimensionality of the 4PCF. To avoid confirmation bias,
the pipeline implementing these techniques11 was constructed before the BOSS data were unblinded.

A. Non-Parametric Rank Test

Non-parametric tests provide a powerful way to analyze data when the underlying likelihood is not known. Here, we
consider a rank test, examining the null hypothesis of zero parity-odd 4PCF. To implement this, we first define a test
statistic, computed on both the data and a set of mocks. These simulations are required to obey the null hypothesis
(i.e. be parity-invariant) and have realistic noise properties. The test statistic measured from data is then compared
to the empirical distribution obtained from the mocks, allowing construction of a detection significance. For example,
if the data statistic exceeds that of 95% of the mocks, we may reject the null hypothesis at 95% CL. The principal
advantage of this approach is that it does not require a theoretical PDF for the test statistic, i.e. we do not have to
assume the 4PCF to be a draw from some multivariate Gaussian. Indeed, the observed 4PCF does not appear to be
Gaussian; this is explored in Appendix A. A limitation of such rank tests is that one cannot claim a detection at high
significance; rather the maximal confidence level is (1− 1/Nmocks).

Below, we will use the following test statistic, dubbed the pseudo-χ2:

χ̃2 ≡
[
ζT C̃−1ζ

]
NGC

+
[
ζT C̃−1ζ

]
SGC

, (18)

where ζ is the set of measured parity-odd 4PCF multipoles (treated as a Nζ-dimensional vector), and C̃ is the

theoretical covariance matrix (§III C). If C̃ is equal to the sample covariance (in the limit of infinite mocks), (18) reduces

10 Note that this discrepancy is not fully resolved by rescaling the theory covariance by a constant factor.
11 Available at github.com/oliverphilcox/Parity-Odd-4PCF.

https://github.com/oliverphilcox/Parity-Odd-4PCF


9

0 50 100 150 200 250 300
Bin Index 1

0

50

100

150

200

250

300

Bi
n 

In
de

x 
2

111

111

122

122

133

133

144

144

212

212 221

2048 Patchy Mocks

0 50 100 150 200 250 300
Bin Index 1

0

50

100

150

200

250

300

111

111

122

122

133

133

144

144

212

212 221

Gaussian Theory

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
rre

la
tio

n 
M

at
rix

(a) Correlation Matrices

0 50 100 150 200 250 300
Bin Index

10 8

10 7

10 6

10 5

Re
du

ce
d 

Co
va

ria
nc

e 
Di

ag
on

al

111 122 133 144 212 221

2048 Patchy Mocks
Gaussian Theory

(b) Covariance Diagonal

FIG. 3. Comparison of the sample and analytic covariance matrices for the parity-odd 4PCF of the BOSS CMASS NGC region.
The former are estimated using (16), whilst the latter use the approach of [57], which does not include redshift-space distortions,
non-Gaussianity, or the effects of survey geometry. Fig. 3a compares the correlation matrices (defined as the covariance matrices
normalized by their diagonals); we see similar structure in both cases. The rows and columns represent the indices of the 4PCF,
collapsed into one dimension, with each submatrix (indicated by the dotted lines) showing a different multiplet {`1, `2, `3}, as
labelled in green. Elements within a submatrix are ordered in increasing radii r1, r2, r3. We include only the first six multiplets
here; 23 are used in the analysis of §V & VII C. Fig. 3b shows the corresponding diagonal elements of the covariance. Notably,
the analytic covariance is an underestimate by a factor close to two; we expect this to arise primarily due to the non-uniform
survey geometry of the CMASS region [57].

to the usual χ2 statistic, given a fiducial model of zero parity-odd 4PCF and assuming the NGC and SGC regions to
be independent. Whilst the covariances are not quite equal in practice (Fig. 3), we expect (18) to produce a close-to-
optimal weighting for the data, particularly if the likelihood is close to Gaussian. Furthermore, since the pseudo-χ2

statistic does not subtract off a mean, the rank test will naturally account for any spurious parity-odd contributions
that are present in both Patchy and BOSS. These might arise from imperfections in the edge-correction routine or
lightcone projection effects. To perform the test, we simply compute χ̃2 for BOSS and each of the Nmocks = 2048
Patchy simulations (§III A), before assigning a detection significance from the empirical Patchy PDF.

B. Compressed Gaussian Analysis

A common trick when dealing with high-dimensional statistics is to apply some form of data compression [e.g.,
78–81]. In general, this proceeds by projecting the data onto some (small) set of basis vectors, thus greatly reducing
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the dimensionality. When performing parameter inference, basis vectors are usually chosen to preserve the Fisher
information matrix [e.g., 78, 80] or the log-likelihood [81]. Since our primary goal in this work is to search for signatures
of parity-violation in a model-agnostic fashion, we adopt a somewhat different compression scheme, following [54, 79].

Here, we project the 4PCF onto a basis given by the eigenvectors of the theoretical covariance matrix (§III C).
Explicitly, we define the projected statistic

v ≡ UT ζ, (19)

where the orthogonal matrix U is specified by C̃ = UΛUT for diagonal eigenvalue matrix Λ. The compressed statistic
has covariance E

[
vvT

]
= UTCU, where C is the covariance of ζ; if the theory and analytic covariances agree, this is

diagonal and equal to Λ. In practice, we expect the compressed coefficients to be almost independent.
To perform dimensionality reduction, we must restrict to a subset of the aforementioned basis vectors. Given that

we have no prior on the shape of a parity-violating 4PCF signal, we cannot select the basis vectors based on signal-
to-noise considerations (as in [54, 79]). Instead, we use the Neig eigenvectors with smallest Λi, corresponding to the
directions that can be most well measured.12 This highlights the benefits of using the theoretical covariance matrix
to perform the projection; since the sample covariance does not have full rank, its smallest eigenvalues are not well
defined.

Following selection of the basis vectors, we project both the BOSS data and the Patchy mocks into the Neig-
dimensional subspace using (19). As in (16), we can form a sample covariance for v from the Patchy measurements:

Ĉv,αβ =
1

Nmocks − 1

Nmocks∑
i=1

(
v(i)
α − v̄α

)(
v

(i)
β − v̄β

)
, (20)

where v
(i)
α indicates the compressed 4PCF of the i-th mock, with α, β ∈ {1, . . . , Neig}. Assuming Nmocks > Neig,

the sample covariance has full rank (unlike the uncompressed 4PCF covariance), and is thus invertible. In the low-
dimensional subspace, analysis centers around the following statistic:

T̂ 2 = vT Ĉ−1
v v, (21)

where we have assumed zero mean, as in the null hypothesis. If v is assumed to be Gaussian distributed (a fair

assumption if the dimensionality is small), T̂ 2 follows a χ2-distribution with Neig degrees of freedom in the limit of

large Nmocks. In practice, we must account for noise in the sample covariance Ĉv. A approach is to add the ‘Hartlap’
correction factor [82, 83], leading to the modified statistic

Ĥ2 = fH × vT Ĉ−1
v v, fH =

Nmocks −Neig − 2

Nmocks − 1
, (22)

whose expectation is χ2. Ĥ2 is then analyzed using a χ2-distribution, assuming Gaussianity. However, this does not
correctly treat the sample covariance noise, and results in a PDF which is too sharply peaked if Neig is close to Nmocks

[84]. Instead, one should analyze the T̂ 2 statistic (21) directly, using the PDF:

fT (T 2;n, p) =
Γ [(n+ 1)/2]

Γ(p/2)Γ [(n− p+ 1)/2]

n−p/2(T 2)p/2−1

(T 2/n+ 1)(n+1)/2
, (23)

where n = Nmocks − 1, p = Neig, and Γ is the Gamma function [84]. When dealing with multiple independent
datasets (i.e. the NGC and SGC 4PCF measurements), one may sum the two T 2 estimates; the resulting PDF is
the convolution of two copies of (23), and is easily evaluated with a Fast Fourier Transform. This approach will be
adopted for the main analysis of §V to ensure that we do not claim a false detection of parity-violation.

Finally, we comment on the validity of our compression scheme. By the Eckart-Young theorem [85], the scheme is

optimal (in terms of inverse-variance) in the limit of C̃ = C and a Gaussian covariance. Since the data and mocks are
compressed in the same manner, it is unbiased for any choice of projection matrix U or dimension Neig. If too few
basis vectors are used or if the theory covariance is far from the truth, the penalty (in the limit of large Nmocks) is
simply a reduced detection significance.13 When using finite Nmocks, increasing Neig will also lead to increased noise

in the covariance matrix Ĉv, somewhat lessening the detection significance. To incorporate these effects, a range of
Neig values will be considered in §V.

12 Additional choices of basis functions can be found in §VI D.
13 This is easiest to show by considering the average χ2 difference between some signal ζ0 and the null hypothesis of E

[
ζ̂
]

= 0. Without

compression, ∆χ2 = ζT0 C−1ζ0, whilst following projection by some Nζ×Neig matrix U, ∆χ2
proj = ζT0 U

(
UTCU

)−1
UT ζ0. If the projection

is optimal, i.e. if U is the eigenvector matrix of C, then ∆χ2
proj,opt =

∑Neig

i=1 ζ̄20,i/Λi where ζ̄0 = UT ζ0. Since ζ̄20,i ≥ 0 and Λi > 0, it

is clear that ∆χ2
proj,opt ≤ ∆χ2, with equality iff Neig = Nζ . A similar result holds in the more general case due to the properties of

projection matrices; this is easily shown by rotating to a diagonal basis.
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FIG. 4. Empirical distribution of the pseudo-χ2 test statistic defined in (18) from 2048 Patchy mocks and the BOSS data. This
is a proxy for the standard χ2 parameter, but uses the theoretical covariance matrix of §III C. The data (shown as a vertical
dashed line) has a CDF of 99.6%; this is inconsistent with the null hypothesis of parity-invariance at 2.9σ. Note that this test
does not assume Gaussianity of the likelihood, and naturally encompasses any spurious parity-odd contributions appearing in
both the Patchy mocks and the BOSS data. The significant detection of parity-violation found by this test indicates either
parity-violating physics or unresolved systematics. The above plot represents the main result of this work.

V. NULL-TEST RESULTS

We now proceed to assess whether the BOSS data contains signatures of parity-violation. Firstly, we consider
the raw 4PCF measurements, displayed in Fig. 2 for a selection of multiplets {`1, `2, `3}. As expected, the mean
parity-odd 4PCF of Patchy mocks appears close to zero. This functions as a useful consistency test for the analysis
pipeline; errors in the 4PCF computation could have led to a detectable signal in Patchy mocks, especially given
that the parity-even 4PCF is large [54]. For the standard-deviations, we find a rough scaling of (r1r2r3)−1, with
enhanced amplitudes found for the SGC region due to its smaller volume (§III). Moving to the BOSS results, we find
considerable (highly correlated) scatter around zero, but no obvious signatures of parity-violation.

To examine this further, we turn to the non-parametric rank test of §IV A. In Fig. 4, we plot the empirical distribution
of the pseudo-χ2 test statistic; this appears to have broader tails than a standard χ2 distribution (most likely due

to imperfections in the theoretical covariance C̃), highlighting the importance of a non-parametric treatment. The
BOSS data has a rank of 2040/2048, and an associated detection probability of 99.6% (equivalent to 2.9σ).
This is inconsistent with a random draw from the empirical distribution of Patchy mocks, and gives evidence for
parity-violation. A greater number of simulations would be needed to probe this detection at higher significance.

An additional test is given by the projected χ2-based analysis discussed in §IV B. Whilst this assumes a Gaussian
distribution for the compressed statistic (somewhat justified by the reduced number of bins), it uses the sample
covariance rather than the theoretical covariance, and thus optimally weights the data. In the top panel of Fig. 5, we
show the theoretical and empirical distributions of the projected sample statistics T 2 and H2 (§IV B) from Patchy,
with the latter obtained via bootstrapping. For small Neig, the empirical distributions of both statistics seem well-fit
by their theory models, which is expected since Nmocks is considerably larger than Neig. At larger Neig we begin to
see discrepancies between the H2 statistic and the accompanying χ2 theory model, with the former having a slightly
narrower distribution. Considering the detection CDFs shown in the lower panel of Fig. 5, the distribution of Patchy
mocks appear somewhat non-uniform for the H2 statistic at Neig > 100. In particular, 152 (199) mocks lie in the
outermost 5% of the theory distribution for Neig = 100 (Neig = 250), in contrast to the 102±10 expected. This echoes
the conclusion of [84]; if Neig is close to Nmocks, improper treatment of covariance matrix noise may be dangerous, and
could lead to false detections of parity-violation. For the T 2 distribution (which correctly treats such effects) we find
somewhat better agreement, with 135 and 162 mocks in the outer 5% region respectively. However, the distribution
still appears to be somewhat skewed. We attribute this to intrinsic non-Gaussianity of the 4PCF likelihood (see [e.g.,
59] and Appendix A), whose effect increases as the size of the data vector increases, and the Central Limit Theorem
becomes less applicable.

For the BOSS data, the compressed Gaussian analysis gives detection significances of 59.2%, 77.8%, 83.3%, and
100.0% for Neig = 10, 50, 100, and 250 respectively, equivalent to 1.3σ, 1.7σ, 1.9σ, and 3.9σ in a two-tail test. The
fact that these results are a strong function of Neig suggests that our projection scheme is inefficient, i.e. that 4PCF
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FIG. 5. Distributions of the H2 and T 2 statistics (22) & (21) for the compressed BOSS data and Patchy simulations. We show
results using various numbers of basis vectors, Neig, as indicated by the titles, and note that the statistic includes both NGC and
SGC measurements. The top panels compare the theoretical and empirical PDFs for each statistic, whilst the bottom panels
display the CDFs. Results for BOSS are shown as vertical dashed lines in both cases. To compute the empirical distributions
(shown as histograms), we apply bootstrapping; (Nmocks−1) mocks are used to define a sample covariance, allowing computation
of H2 and T 2 for the excluded mock. The theoretical PDFs for H2 and T 2 are the convolution of two χ2 or T 2 distributions
(23). For BOSS, we report detection probabilities of 59.2%, 77.8%, 83.3%, and 100.0% from the T 2 statistic using Neig = 10, 50,
100, and 250 basis vectors respectively. As in Fig. 4, we find mild evidence for parity-violation, particularly as Neig increases.
We caution that this test assumes a Gaussian likelihood, which may lead to overestimated detection probabilities at high Neig

(as suggested by the somewhat skewed empirical distribution of Patchy mocks at Neig = 250, and the results of Appendix A,
which correspond to Neig = Nζ).

components dropped from the analysis carry significant information regarding the parity-violating signature.14 This
is a consequence of performing a blind analysis; given the lack of a physical model, we cannot choose basis vectors
which maximize the signal-to-noise (though see §VI D for results using alternative choices of compression scheme).
Overall, we find a weak preference for a non-Gaussian signal using the compressed analysis. This notwithstanding,
we again find a preference for a non-zero parity-odd signal from the sample, though again caution that the Neig = 250
result may be artificially enhanced by likelihood non-Gaussianity.

To close, we comment on the implications of the results found herein. Firstly, we note that the results are largely
consistent between the two tests, with both finding a detection of large-scale parity-violation at ∼ 3σ. This cannot be
caused by an incorrectly modelled likelihood (evidenced by the rank test), nor is it a result of our analysis incorrectly
treating the window function (which would have led to the compressed analysis showing a parity-violating signature
in the Patchy mocks). This leaves two explanations: (1) new physics, and (2) unexplained systematics.
Whilst the first is a distinct possibility (and is not ruled out by other observations, since no former experiment has
measured the 4PCF in a model-agnostic fashion), the second should also be carefully considered. A brief discussion
of this is presented in the next section.

VI. SYSTEMATIC TESTS

Below, we report the results of various checks performed to test the results of §V, utilizing data cuts, mock catalogs,
and rescaled statistics. In the final section, we will also comment on potential sources of systematic effects that could

14 This differs from the conclusion of [54], which used a similar compression scheme to analyze the parity-even 4PCF. In the former work,
basis vectors were chosen based on the mean non-Gaussian signal from the mocks, ensuring optimal linear compression. This is not
possible in our case, since the mocks conserve parity.
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FIG. 7. As Fig. 4, but normalizing the 4PCF mea-
surements by a realization-dependent amplitude, as de-
scribed in §VI C. This will account for an overall rescal-
ing factor between the BOSS data and Patchy simu-
lations, arising, for example, from a different value of
σ8. In this case, the detection significance is slightly
reduced, however, we still find hints of parity-violation
at the 2.4σ level.

lead to a false detection of parity-violation. All the analyses below were devised post-unblinding.

A. Data Partitioning

A simple test for systematic errors is to repeat the non-parametric rank test described in §IV A for the two BOSS
regions (NGC and SGC) separately. The two patches are in opposite hemispheres, have different calibrations, and are
of different angular sizes, thus this is a sensitive test of the effects of survey calibration and large-scale modes.

Fig. 6 displays the pseudo-χ2 statistic for the two BOSS regions separately (plotting both the observational data and
the empirical distribution from 2048 Patchy mocks). Here, we find ranks of 2023/2048 and 1963/2048 for the NGC
and SGC regions separately, with a lower significance found for the smaller-volume region, as expected. Neither value
is enough to claim a detection on its own, however, the trends from the two are in agreement, and their combination
reaches the 2.9σ level reported in §III. This test does not reveal any clear differences between the two regions; the
results are consistent with our expectations if this is indeed a bona fide detection of parity violation.



14

B. Dependence on Radial and Angular Scales

An additional test is to examine the impact of radial and angular binning on the detection significance reported in
§V. For this purpose we will primarily use the rank test of §IV A, and adjust the criteria for which bins are included
in the analysis, always including a subset of those discussed in §III B. In general, we expect the detection significance
to decrease somewhat as the dimensionality (and hence number of measured Fourier-modes) is reduced, relative to
the initial size of Nζ = 1288). This will be particularly apparent if we excise regions in which the signal is strongest.

First, we consider changing the radial binning strategy. Two variations are possible: we can filter based on the
distances of secondary galaxies from the primary or those of the secondary galaxies from each other (cf. Fig. 1).
To test the former, we will separately remove the first and last radial bin in each dimension, i.e. that with ri ∈
[20, 34]h−1Mpc and [146, 160]h−1Mpc respectively. When the minimum radius is increased, we have a modest decrease
in dimensionality (to Nζ = 805) and a detection rank of 1949/2048 (2.0σ). If the maximum radius is instead
reduced, Nζ decreases by a third, but we do not find a change in the overall detection significance. The first result
is unsurprising: the variance scales approximately as (r1r2r3)−2, thus, if the signal has support over a range of radii,
removing the low-r bins would reduce the detection significance. In the second case, the lack of variation suggests
that the detection is not caused by some spurious ultra-large mode (arising from foregrounds, for example), though
we caution that the signal-to-noise in these modes is the smallest.

To vary the allowed distances between secondary galaxies, we may modify the restrictions on the allowed tetrahedral
shapes. In particular, accepting configurations with r1 < r2 +γ∆r < r3 +2γ∆r restricts the internal separations to be
at least γ∆r (with γ = 1 in the fiducial analysis of §V). If we set γ = 0, and thus include all bins satisfying r1 < r2 < r3,
secondary galaxies can be arbitrarily close together, and the size of the data-vector increases to Nζ = 2760. If the
signal contains small-scale power, this should increase the detection significance; here, the non-parametric test gives
a rank of 2045/2048 (almost at the saturation point), equivalent to 3.2σ, with the Neig = 100 (250) compressed
χ2-based analysis giving a detection probability of 99.7% (100.0%), equivalent to 3.4σ (4.3σ). This suggests that
small-scale modes are of importance, though we note that they could contain contributions from parity-breaking
physics on halo scales, such as magnetohydrodynamics (whose contributions are generally expected to be small in the
main analysis, since we restrict to separations above 14h−1Mpc). If we instead fix γ = 2, forcing secondary galaxies to
be separated by at least 28h−1Mpc, we find a sharp reduction in dimensionality to Nζ = 460, but only slight decrease
in the detection rank (to 1970/2048, or 2.1σ). This suggests that the signal causing the detection contains non-trivial
support on relatively large (and generally well understood) scales.

Next, we consider varying the angular binning, by altering the maximum multipole `max, and thus the values of
{`1, `2, `3} (§II) that are used in the analysis. Setting `max = 3 reduces the dimensionality to Nζ = 616, and changes
the detection significance to 1970/2048, or 96.2% (2.1σ). The physical action of this is to reduce the number of
squeezed tetrahedra in the analysis (which have smaller internal tetrahedron angles i.e. large `). If `max is further
reduced to 2 (with Nζ = 224) the rank falls to 1466/2048, or 71.6% (1.1σ). Our conclusions for `max = 3 are similar
to the above: the signal contains contributions from small-scale modes, but is not entirely dominated by them, whilst
the `max = 2 result will occur primarily due to the much reduced dimensionality, and thus signal-to-noise. We further
note that the multiplets with greatest impact on the detection significance are {`1, `2, `3} = {1, 1, 1}, {1, 2, 2} and
permutations thereof. This is again unsurprising, given that these are the modes with the greatest signal-to-noise,
but may serve to indicate that any signal observed is not entirely from some squeezed limit.

C. Realization-Dependent Rescaling

Under null assumptions (and assuming Gaussianity for the sake of illustration), the rank test compares the variance
of the observational data with that of the Patchy mocks. As such, a spurious detection of parity-violation could
be caused by the simulations underestimating the true covariance, for example due to mismatches in the galaxy bias
parameters or the underlying cosmology. From Fig. 4, we see that excellent agreement between data and mocks can
be obtained if one inflates the covariance of the Patchy simulations by 13%. Under the assumption of a Gaussian
4PCF covariance, this requires the 2PCF to be rescaled by 3%. Whilst this may seem straightforward, it is somewhat
non-trivial, since the Patchy simulations are calibrated to match the BOSS two- and three-point clustering statistics
on small scales [69, 70].

To probe this, we consider normalizing the odd-parity 4PCF measurements by their even-parity (more specifically,
disconnected) counterparts and reapplying the rank test of §IV A. To perform this robustly, we first fit the Gaussian
4PCF contribution to a simple theory template (presented in [86]), extracting a single overall amplitude for each



15

realization.15 The odd-parity 4PCF measurements (both for the BOSS data and each Patchy mock) are then
divided by this amplitude, which will remove the dominant effect of an overall rescaling of the Patchy covariance
compared to that of BOSS. Whilst the Patchy covariance need not be wrong by a simple constant, this is expected
to capture the leading-order effect, and particularly accounts for the unknown value of b1σ8. We note that this
prescription cannot be easily applied to the compressed Gaussian analyses, since it violates the Gaussian assumption
on large scales due to sample-variance cancellation.

In practice, we find an NGC (SGC) normalization factor of 0.85 (0.99) for BOSS, and 0.92±0.04 (0.94±0.06) for the
2048 Patchy simulations. Notably, the BOSS NGC data has a smaller factor; this will shift the corresponding pseudo-
χ2 value of BOSS towards those of the mocks. In Fig. 7, we show the corresponding rank test results, finding that the
detection significance is slightly reduced (to 2014/2048), matching our expectation. However, this is consistent with
the broadened posterior associated with this test (comparing the widths of the empirical distributions in Figs. 4 & 7),
and we still find a weak detection of parity-violation, now at 2.4σ. It is clear that the detection cannot be entirely
removed by a simple rescaling; if differences in the statistical properties of simulations and observational data are to
blame, they must be scale dependent.

D. Choice of Compression Scheme

For the compressed Gaussian analysis of §IV B, it is important to choose a set of basis vectors that allow for
significant dimensionality reduction whilst preserving key features of the data. For null tests such as that of §IV B,
this is non-trivial, since we do not have prior knowledge of the form of a parity-violating model. For this reason,
the analysis of §III adopted a set of basis vectors selected using a minimum variance criterion; this is equivalent to
maximizing signal-to-noise assuming a uniform signal in all bins.

An alternative approach would be to assert some typical form for the parity-violating signal, and use this to select
a sensible set of basis vectors onto which the measured 4PCFs are projected. A simple choice is ζΛ(r1, r2, r3) ∝
(r1r2r3)−1 (matching the approximate scaling of the error-bars). In this case, the compressed Gaussian analysis
gives detection significances of 0.8σ, 1.8σ, 3.5σ for Neig = 50, 100, 250 respectively. A more nuanced choice would
be to weight by the inflationary parity-breaking 4PCF model introduced in §VII. This has a physically reasonable
form (albeit specific to a single parity-breaking phenomenon) and leads to Gaussian significances of 0.7σ, 1.5σ, 2.3σ
respectively. Finally, we consider fixing the fiducial model to the {`1, `2, `3} = {0, 0, 0} multiplet of the disconnected
4PCF. This will indicate whether the observed signal was sourced by incomplete subtraction of the disconnected
component. In this case, we find detection significances of 2.0σ, 1.3σ and 2.6σ.

For an ideal projection, corresponding to matched true and fiducial 4PCFs, a strong detection significance would
be found at small Neig (whereupon the effects of likelihood non-Gaussianity are suppressed), which would increase
only slightly as Neig was increased. This behavior is clearly not observed for any of the templates discussed above,
suggesting that the signal causing the 4PCF detection is not close to one of the above forms. This is unsurprising:
even if the signal is cosmological in nature, it could be sourced by a wide variety of physical effects, each of which
has a different signature in the Nζ = 1288-dimensional 4PCF statistic. That we do not observe a strong detection
with any template is additionally consistent with the notion that, if such effect is real, it lies on the threshold of that
detectable by current data.

E. Tests on Mock Catalogs

A useful end-to-end test of our analysis pipeline is to apply it to a set of (parity-conserving) mock catalogs and test
whether a signal is observed. For this purpose, we will use the Nseries simulation suite:16 a set of 84 mock catalogs
created to verify the BOSS analysis pipeline [87]. These were constructed from full N -body simulations (though are
not quite independent) using the cosmological parameters {Ωm = 0.286, σ8 = 0.82, ns = 0.97, h = 0.7,

∑
mν = 0},

and have similar halo occupation distribution and selection function to the BOSS data, as well as a careful treatment
of fiber collisions. The Nseries window function is somewhat different to that of BOSS (cf. §III A), and includes
only the NGC region. For this reason, the simulations are accompanied by 2048 Patchy simulations generated with
the Nseries window function (hereafter ‘Patchy-Nseries’ simulations), which will be used to generate covariances
and perform the relevant rank tests. Unlike for BOSS, the Patchy-Nseries simulations were not calibrated to the
small-scale clustering of the Nseries simulations (which have a slightly modified cosmology to Patchy-Nseries); as

15 An alternative approach is to divide the odd-parity 4PCF by the value of the disconnected (i.e. Gaussian) 4PCF in each bin; this is not
performed since the latter statistic suffers from significant cosmic variance on large scales and can be negative.

16 Available at www.ub.edu/bispectrum/page11.html

https://www.ub.edu/bispectrum/page11.html
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a result, the covariance of Nseries and Patchy-Nseries could differ somewhat, which would have implications for
the parity-violation tests, as discussed in §VI C.

Using the methodology of §IV, we analyze each of the 84 Nseries simulations in turn, giving the 4PCF measure-
ments shown in Fig. 8 (which display no obvious signal). Here, we show results only for the rank tests; implementation
of the other tests discussed above (such as the compressed Gaussian analysis and constraints on the inflationary mod-
els of §VII) can be found online.17 Fig. 9a compares the distribution of the pseudo-χ2 statistic for the Nseries and
Patchy-Nseries simulations (following §V). If our analysis pipeline is working as expected, and the statistical prop-
erties of Nseries and Patchy-Nseries are similar, the empirical pseudo-χ2 distributions of the two should match,
thus the Nseries simulations should have a mean rank of ≈ 1024/2048 (with some deviations expected from sample
variance). In practice, we find a mean rank of 244/2048 (11.9%), which is significantly below the expected value.
Since the test statistic is a quadratic form, this does not imply a false detection of parity violation (which would give
a mean rank greater than 1024/2048); instead it highlights differences between the Nseries and Patchy-Nseries
simulation suites (despite the similarity observed in Fig. 8). As mentioned above, these could come from a variety of
factors, such as a different underlying cosmology, the inclusion of fiber collisions in the former, and a different halo
occupation distribution. Notably, none of the Nseries mocks have a mean rank above 95%, hence we do not find
evidence for parity-violation in any case.

To more closely assess the impact of differences in the Nseries and Patchy-Nseries covariance matrices (which
cause the difference in pseudo-χ2, in the Gaussian limit), we additionally perform a rank test with the mocks rescaled
using the realization-dependent factor of §VI C. The relevant normalization is 0.90±0.03 for Nseries, and 0.92±0.04
for Patchy-Nseries. This differences implies that the Nseries histogram will shift slightly in the direction of
Patchy-Nseries; this is observed in Fig. 9b. The mean rank is 634/2048 (31.0%), which is significantly closer to the
expected value than without rescaling. Around 10% of the Nseries mocks lie in the outer 5% region of the Patchy-
Nseries histogram, giving approximately a one-in-ten chance of a false detection (or here, an anti-detection). The
shift in the mean rank induced by the rescaling factor leads to two conclusions: (a) the factor can be usefully adopted
to remove the lowest-order differences in simulation covariance matrices (validating the approach of §VI C), (b) the
difference between Nseries and Patchy-Nseries covariances is not fully captured by the rescaling, and is thus
scale-dependent.

The above tests indicate that the validity of our null-tests depend strongly on whether the statistical properties of the
simulation suite employed to compute empirical distributions match those of the real data. A difference in the sample
covariance matrix (which could be caused by various effects, as elaborated upon below) can lead to a false under- or
over-detection of parity-violation. For the Nseries simulation suite, these differences are quite significant and lead to
a marked under-detection; however, this can be substantially reduced by including the realization-dependent rescaling
factor of §VI C.

F. Other Sources of Systematics

Whilst the above tests constrain a variety of different systematic effects, they are by no means exhaustive. Below,
we discuss a number of additional effects that could contribute to the tentative detections reported in §V. These can
be separated into two groups: (a) effects that lead to the Patchy simulations having a different covariance (and
higher-order statistical properties) to that of the data, and (b) observational phenomena causing a parity-violating
signal in the odd-parity 4PCF itself.

Firstly, we consider possible causes for a systematic difference between Patchy mocks and BOSS data. Besides
simple differences in cosmological parameters or halo occupation distributions, discrepancies could arise due to the
treatment of non-linear evolution. The Patchy mocks are generated using approximate gravity solvers only (before
being calibrated to an N -body simulation, and the observational data); whilst this will not affect the large (linear)
scales, it can modify the small-scale clustering, and thus provide an error on small scales, where the constraining
power of the data is greatest. Simply calibrating the two- and three-point functions does not guarantee that the
covariance is well reproduced, since this depends on N -point functions up to N = 8. Such effects would distort the
pseudo-χ2 distribution of the Patchy mocks, and could lead to false detections of parity violation. This hypothesis
can be probed via the Nseries tests of §VI E; once realization-dependent rescaling is included, we find fair agreement
between the mock data and Patchy-Nseries simulations, and no spurious detections of parity-violation. For the
BOSS data, we expect better agreement with Patchy, given that the simulations were calibrated to the observed
small-scale clustering; however, we still find a 2.9σ detection of parity-violation, or 2.4σ when the rescaling factor

17 github.com/oliverphilcox/Parity-Odd-4PCF

https://github.com/oliverphilcox/Parity-Odd-4PCF
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FIG. 8. Measurements of the parity-odd 4PCF from the mean of 84 Nseries mocks (black) and 2048 Nseries-Patchy
simulations (blue), following the form of Fig. 2. We additionally display theoretical predictions for the Chern-Simons inflationary
model (green), and its two constituent parts, proportional to dodd0 (red dashed) and dodd1 (purple dashed). Theory models are
multiplied by an amplitude corresponding to ACS = 5 × 104 for visibility, with data-driven constraints on this parameter
presented in Fig. 10. The Nseries dataset appears consistent with parity-conservation, as expected; this is explored further in
Fig. 9.
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FIG. 9. Distribution of the pseudo-χ2 statistic for a set of high-fidelity Nseries simulations (orange) and the corresponding
empirical distributions obtained from 2048 Patchy-Nseries mocks. In the left panel (analogous to Fig. 4), we find a mean rank
of 244/2048, with 30/84 mocks lying in the outer 5% region of the empirical distribution Patchy-Nseries distribution. As
such, we report an underestimate of the test statistic relative to that expected. This is attributed to the difference in cosmology
and bias parameters between the Nseries mocks and Patchy simulations. The right panel shows the effect of including the
realization-dependent rescaling factor discussed in §VI C: this reduces the difference between datasets and increases the mean
rank to 634/2048, with only 8 of the 84 simulations in the outer 5% of the empirical distribution. In both cases, there are
no Nseries simulations with a pseudo-χ2 value in the upper 5% region of the empirical distribution, thus no detection of
parity-violation.

is included. This reduces the likelihood that the effect is caused by inaccuracies in Patchy (considering also the
scale-cut information discussed in §VI B), though this effect is certainly worthy of future study.

Another effect not included in the Patchy mocks is that of fiber collisions, arising from the inability to position
telescope fibers within a certain distance from each other. If the assignment of fibers to a telescope image is performed
in a particular direction (i.e. picking all objects above a certain brightness from one side of a field-of-view to another),
and the quartet of galaxies contains some distant component, a parity-violating signal may be created, due to a
preference of one tetrahedral handedness over the other. Two lines of evidence suggest this may not be an important
contribution: firstly, the Nseries mocks include the effect of fiber collisions and do not show strong evidence for a
parity-violating signal; secondly, most tetrahedra considered in this work have large radial separations. Although fiber
collisions happen in the angular domain, rather than radial, all galaxies have minimum separations above 20h−1Mpc
(§VI B), thus most fibers of relevance will be spaced by tens of arcminutes. The effect could also change the statistical
properties of the data (i.e. the covariance matrix); this impact of this is analogous to the effects discussed above.

The BOSS data-set is also known to contain systematic effects on large scales due to imperfectly subtracted fore-
ground modes, arising, for example, from Galactic emission or varying seeing conditions. Given that these do not
impact BAO measurements, they are usually ignored, though they may be of more relevance to the analyses con-
sidered herein. For such an effect to show up in the odd-parity 4PCF signal, it would need to be parity-violating.
Since observational effects are not required to obey isotropy and homogeneity, this is possible, and could formed, for
example, from the composition of two small-scale 2PCFs (of different lengths) with a large-scale gradient between
them. This is analogous to the disconnected 4PCF contribution (but parity-odd) and could be sourced by the above
observational phenomena, or even cosmological effects such as isocurvature modes. From the analysis employing
hemispherical cuts (§VI A), it is clear that, if this was the cause of the parity-breaking detection, it is not a one-off
phenomenon, and, moreover, it is not sourced solely by very small or very large tetrahedron configurations (§VI B).
The particular form of our tetrahedral basis (i.e. the decomposition into coupled spherical harmonics) makes checking
individual tetrahedral configurations difficult, unless a dedicated analysis is performed; the best way to probe them
would be with mocks including all observational effects, though none of this type currently exist. We note however,
that such large-scale modes would likely have an impact also on lower-order statistics which utilize large-scale data.
The consistency of such two-point and three-point function analyses with those of the CMB suggest that these effects,
if present, are comparatively small [76, 88].
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VII. CONSTRAINTS ON INFLATIONARY PARITY-VIOLATION

The 4PCF measurements presented in §V may be used to place constraints on specific models of cosmological parity-
violation, such as those involving inflation. As noted in Appendix B of [7], parity-violation cannot be generated by
single-field inflation,18 thus its detection in data could give evidence for multiple fields active in the early Universe.
Here, we consider a particular multi-field model, which gives an analytic form for the parity-odd galaxy 4PCF, in
addition to lower-dimensional observables. An analogous procedure may be used to constrain any model which induces
a non-trivial parity-odd 4PCF; a selection of these are briefly discussed in §VII A 2.

A. Primordial Correlators

1. Chern-Simons Inflation

Consider an inflationary Lagrangian containing the following couplings between an inflaton field, φ, and a U(1)
gauge field, Aµ:

L ⊃ f(φ)

[
−1

4
FµνF

µν +
γ

4
Fµν F̃

µν

]
, (24)

where Fµν ≡ ∂µAν − ∂νAµ is a two-form. The second term involves the Hodge dual, F̃µν , and is of the Chern-Simons
form [e.g., 10, 13, 90, 91]. This is controlled by two pieces: a function f(φ) giving the time evolution of the field,
and a dimensionless ratio γ, which sets the amplitude of parity-breaking.19 Following [13, 93], we will assume γ
to be constant (on naturalness grounds), and fix f(φ) ∝ a−4 (for scale-factor a), such that the vector field has a
time-independent vacuum expectation value (vev) and thus a scale-invariant correlator.20 If one instead assumes
f(φ) ∝ const., the energy density of the vector field will decay as a−4 during inflation, giving observational signatures
only on the largest scales [12].

The Lagrangian (24) leads to a number of modifications to the standard inflationary picture. Firstly, the presence
of a background vev Aµ0 (usually represented in the electromagnetic notation as E0, with B0 = 0) leads to anisotropic
expansion, and its perturbations can provide an isocurvature source for the primordial curvature ζ. Such effects
are strongly constrained by CMB data, limiting the energy density in the gauge field (hereafter ρE) to be a small
fraction of the inflaton energy density ρφ. Couplings between the inflaton and gauge field will additionally generate
gravitational waves through the metric tensor hij , as well as scalar-tensor couplings. This can lead to observable
signatures in CMB E-modes and B-modes (and non-zero parity-breaking spectra such as CTB` and CEB` ), though
such effects are slow-roll suppressed [13]. We note that a non-zero vev E0 is a natural prediction of the theory; this
is simply the impact of long-wavelength classical perturbations in the vector field which have not yet re-entered the
horizon.21 Furthermore, the action of non-zero γ is to produce an excess of one gauge field helicity mode over the
other, causing a parity asymmetry.

In this work, we are interested in the scalar correlators generated by the above interaction, i.e. those only involving
the curvature ζ. As demonstrated in [12, 13, 38, 95], the gauge fields lead to anisotropy in the two-point function:

〈ζ(k1)ζ(k2)〉 = (2π)3δD (k1 + k2)Pζ(k1)
[
1 + g∗(k̂1 · Ê0)

]
, (25)

where Pζ ≈ H2/(4εM2
pk

3) is the primordial power spectrum, for Hubble parameter H, Planck mass Mp, and slow-roll
parameter ε. This is of the well-known ACW form [96], for approximately scale-invariant coupling g∗ ∝ ρE/ρφ.
Furthermore, the Lagrangian given in (24) generates an angle-averaged bispectrum and trispectrum of the curvature
perturbation ζ. The first takes the form of [97, 98]:

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)3δD (k1 + k2 + k3)
∑

n=0,1,2

cnLn(k̂1 · k̂2)Pζ(k1)Pζ(k2) + 2 perms., (26)

where Ln is a Legendre polynomial of order n, and the coefficients cn (simply related to Planck ’s fL=n
NL parameters

[98]) are again proportional to the fractional energy density in the vector field [13], and satisfy c0 = −2/3c1 = 2c2.

18 An exception can occur for ghost inflation [89]; this will be discussed in future work.
19 Constraints on the reheating temperature from Big Bang nucleosynthesis restrict the coupling strength to |γ| < 5.5 [12, 92].
20 This is a natural choice within the Ratra mechanism [93, 94].
21 Following [13], the magnitude of this ought to scale as Ntot − N , where N is the number of e-folds before the CMB modes exited the

horizon, and Ntot gives the total duration of inflation.
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These parametrize a number of effects beyond the inflationary Lagrangian (24), such as curvature fluctuations sourced
by primordial magnetic fields [e.g., 17], solid inflation [e.g., 99] (which boasts c2 � c0), and massive spinning particles
[e.g., 24, 100]. Finally, the four-point function for the CS model was computed in [38, 95], and can be expressed in
terms of the reduced trispectrum t, defined as:〈

4∏
i=1

ζ(ki)

〉
= (2π)3δD

(
4∑
i=1

ki

)[
tk1k2

k3k4
+ 23 perms.

]
. (27)

Separating even and odd parts, we have:

tk1k2

k3k4

∣∣∣
even

=
∑
n=0,2

deven
n

(
Ln(k̂1 · k̂3) + Ln(k̂1 · K̂) + Ln(k̂3 · K̂)

)
Pζ(k1)Pζ(k3)Pζ(K) (28)

tk1k2

k3k4

∣∣∣
odd

= i
∑
n=0,1

dodd
n

(
Ln(k̂1 · k̂3) + Ln(k̂1 · K̂) + (−1)nLn(k̂3 · K̂)

) [
(k̂1 × k̂3) · K̂

]
Pζ(k1)Pζ(k3)Pζ(K)

where K = k3 + k4 is the trispectrum diagonal, and t−k1−k2

−k3−k4
= ±tk1k2

k3k4
for the even and odd components respec-

tively. This depends on new parameters, {dn}, with the odd-parity contributions sourced iff γ is non-zero (i.e.
if the Lagrangian contains a Chern-Simons term). Whilst (28) is a relatively general parametrization for scale-
invariant parity-odd primordial trispectra, we may specialize to the Chern-Simons model by fixing deven

0 = deven
2 /2,

and dodd
0 = −dodd

1 /3, each of which is linear in ρE/ρφ.
For later convenience, we will rewrite the odd-parity reduced trispectrum corresponding to (24) as

tk1k2

k3k4

∣∣∣
odd

= 3i ACS Pζ(k1)Pζ(k3)Pζ(s)
[
(k̂1 × k̂3) · ŝ

] [
1− k̂1 · k̂3 + k̂1 · ŝ− k̂3 · ŝ

]
≡ t(k1,k3, s), (29)

introducing the Mandelstam variable s ≡ k1 + k2, and defining the overall amplitude ACS ≡ −dodd
0 = dodd

1 /3 as

ACS ≈
0.3

π2

e8π|γ|

|γ|6
|g∗|
0.01

(
N

60

)2

, g∗ ≈ −
5.4× 105

π

e4π|γ|

|γ|3
0.01

ε

(
N

60

)2
ρE
ρφ
, (30)

for |γ| > 1, assuming that modes of interest exited the horizon N e-folds before the end of inflation. As expected
from §II, the reduced trispectrum in (29) is pure imaginary, and depends on a parity-odd cross-product.

Combining the above, we can constrain the gauge field energy density from the two-, three- or four-point functions
of the scalar field, or, following the transformations outlined in VII B, the galaxy overdensity. As in [13, 38], we expect
the constraints to be a strong function of |γ|: gauge field production increases with γ, and the N -point function scales
as 2(N − 1) powers of the gauge field perturbation δE, leading to a prefactor of e4π(N−1)|γ|/|γ|3(N−1). In this work,
we will derive constraints only from the parity-odd 4PCF: this provides both a tight constraint for |γ| > 0 due the
above argument, and is a clean probe, since it is not contaminated by gravitational non-Gaussianity.

2. Other Sources

Before proceeding to derive constraints on the Chern-Simons inflationary model, we briefly discuss a number of
alternative phenomena that can source parity violation. Firstly, the Lagrangian presented in (24) remains applicable
when φ is not the inflaton. This has been suggested as a mechanism for primordial magnetogenesis [93, 94], and will
source similar parity violation. An additional case of interest is when Fµν is the electromagnetic tensor and φ an
axion-like particle in the late Universe; this can generate detectable cosmic birefringence [e.g., 25, 33, 101]. Secondly,
the inflationary Lagrangian could contain a gravitational Chern-Simons term

L ⊃ f ′(φ)RλσµνR̃
σµν
λ (31)

[9–11], for some Riemann curvature tensor Rµνρσ and a function f ′(φ) of the inflaton φ. Following a similar calculation
to that of [38] for the Lagrangian described above, one can compute to compute the scalar trispectrum corresponding
to (31), which is now sourced by couplings to tensor modes rather than vectors.

Primordial parity-violation can also arise from particle exchange in the early Universe (as part of the so-called
‘cosmological collider’ [24, 102]). At high energies, it is natural to assume that the inflaton is coupled to additional
fields (be they scalars, vectors or tensors), via some three-point interaction vertices, e.g., (∂µφ)(∂νφ)∂µV ν for a
primordial vector V µ. In this case, the two-point function of the inflaton (and thus the curvature perturbation ζ) can
receive an off-diagonal contribution. A simple example of this occurs for light mediators, which takes the form

〈ζ(k1)ζ(k2)〉|Xp(K) =
BζζXp

(k1, k2,K)

PXp
(K)

X∗p (K)(2π)3δD (k1 + k2 + K) , (32)
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where PXp
is the power spectrum of X in some polarization state p, and BζζXp

is the interaction three-point function
[e.g., 23, 46, 56, 103, 104], or, more precisely, its consistency-relation-violating component [105]. Combining two of
these interactions, one obtains an exchange diagram for ζ, i.e. a four-point function of the scalar curvature, with some
shape proportional to |BζζXp

|2/PXp
. If the field in question is helical, this can lead to a parity-violating trispectrum if

PX+
6= PX− . As discussed in [23], such contributions can be measured directly using a statistical anisotropy (‘fossil’)

estimator, which can be recast as a model-specific compression of the full four-point function. In the squeezed limit
(K � k1 ≈ k2, again noting that massive mediators can have different behaviors, [cf. 103, 104, 106]), the interaction

bispectrum is approximately given by (3/2)Pζ(k1)PXp
(K)εpij k̂

i
1k̂
j
1 [23, 24, 102], where εp is the polarization tensor.

For a light vector exchange field X, this leads to the following schematic form for the trispectra (following [23]):

tk1k2

k3k4

∣∣∣
even
∼
[
PX+

(K) + PX−(K)
]
Pζ(k1)Pζ(k3)(k̂1 · K̂)(k̂3 · K̂)

[
k̂1 · k̂3 − (k̂1 · K̂)(k̂3 · K̂)

]
, (33)

tk1k2

k3k4

∣∣∣
odd
∼ −i

[
PX+

(K)− PX−(K)
]
Pζ(k1)Pζ(k3)(k̂1 · K̂)(k̂3 · K̂)

[
(k̂1 × k̂3) · K̂

]
The similarities of this and (28) are manifest, particularly if one assumes a scale invariant form for the power spectrum
of X, such that PX±(K) ∝ Pζ(K). We thus note that a simple extension to the parametrization of (28) can incorporate
trispectra arising from particle exchange. A similar conclusion holds also for intermediate fields X of higher spin
(noting that scalar exchange cannot generate parity-violating couplings).

B. 4PCF Model

To place constraints on the Chern-Simons interaction, we must compute the galaxy 4PCF associated with the
primordial trispectrum of (29). At redshift z, the tree-level galaxy trispectrum, Tg, can be related to the primordial
correlator via

(2π)3δD(k1 + k2 + k3 + k4)Tg(k1,k2,k3,k4, z) =

〈
4∏
i=1

Z1(ki, z)M(ki, z)ζ(ki)

〉
, (34)

where M(k, z) is the transfer function, defined by δmatter(k, z) ≡ M(k, z)ζ(k), and Z1(k, z) ≡ b(z) + f(z)(k̂ · n̂)2 is
the tree-level galaxy RSD kernel (for linear bias b(z), growth-rate f(z) and line-of-sight n̂). From (34), we may obtain
the odd-parity 4PCF using Fourier transforms:

ζ−(r1, r2, r3, z) =

4∏
i=1

[∫
ki

M(ki, z)Z1(ki, z)

] ∫
s

t(k1,k3, s)
[
ei(k1·r1+k2·r2+k3·r3) + 23 perms.

]
(35)

× (2π)3δD (k1 + k2 − s) (2π)3δD (k3 + k4 + s) ,

shifting the permutation sum to the exponential term by symmetry, and using Dirac delta functions to enforce
s = k1 + k2 = −k3 − k4. The corresponding multiplets, ζ`1`2`3 , can then be estimated by performing weighted
integrals over r̂i, as in (7). Following a lengthy derivation sketched in Appendix B, we obtain the final form for odd
`1 + `2 + `3:

ζ`1`2`3(r1, r2, r3, z) = (4π)11
√

2ACS i
`1+`2+`3

∑
L1L2L3L4L5L′5

iL1+L2+L3+L4−L5+L′5CL1L2L3L4L5L′5
(36)

×
(
L1 L2 L5

0 0 0

)(
L3 L4 L′5
0 0 0

)
M`1`2(`3)`30

L1L2L3L4L5L′5

×
∫
x2dx

∫
x′2dx′KL5L′5

(x, x′)I`1L1
(x; r1)J`2L2

(x; r2)I`3L3
(x′; r3)J0

L4
(x′; 0) + 23 perms.

(cf. B9). Here, I, J and K are Bessel-weighted integrals over the transfer function and/or primordial power spectrum

(B10), C`1···`N ≡
√

(2`1 + 1) · · · (2`N + 1), and M is a coupling matrix given in (B11). The 4PCF may thus be
computed as a two-dimensional integral, following evaluation of the (radially-binned) I, J and K functions for a
range of values of L, `, x and x′. In practice, the 4PCF model is computed in Python, with the various Wigner 3-j
and 9-j symbols evaluated using sympy.22 In Fig. 8 we plot the theoretical model for a range of multiplets, finding a
shape that depends strongly on both {ri} and {`i}, with some multiplets dominated by the dodd

0 part, and others by
that proportional to dodd

1 .

22 Code implementing this calculation is available at github.com/oliverphilcox/Parity-Odd-4PCF.

https://github.com/oliverphilcox/Parity-Odd-4PCF.git
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FIG. 10. Constraints on the amplitude of physical models for parity-violation, both for the Chern-Simons Lagrangian of (24)
(left) and the more general parametrization of (28) (right), using the explicit parity-odd 4PCF prediction given in (36) and
plotted in Fig. 8. To obtain these distributions, we fit the measured 4PCF multiplets shown in Fig. 2 to templates derived in
Appendix B, following compression of both observations and model into a 100-dimensional subspace. For the Chern-Simons
model, we give results for both the trispectrum amplitude ACS and the corresponding ratio of parity-breaking gauge field and
inflaton energy densities, ρE/ρφ, using relation (30) with |γ| = 1. The 1σ constraints are ACS = 0± 760 for the mean of 2048
Patchy mocks (blue) and ACS = 570± 780 for the BOSS data (red), both of which are consistent with zero. The right panel
gives constraints on the doddn parameters appearing in (28): we find dodd0 = −610±800 (−20±770) and dodd1 = −13 000±35 000
(0± 34 000) for BOSS (mean of Patchy) data respectively. In the Chern-Simons model, −dodd0 = dodd1 /3 = ACS.

C. Amplitude Constraints

The importance of the inflationary gauge field may be quantified by the ratio of energy densities, ρE/ρφ, or the
parity-odd 4PCF amplitude, ACS (30). This sets the level of parity-violation imprinted in the primordial inflaton
perturbations, arising from interactions with the U(1) gauge field. To constrain the amplitudes, we perform parameter
inference using the measured 4PCF multiplets of §V and the Chern-Simons model given in (36). For simplicity, we will
assume the data to be Gaussian distributed, and work in a compressed subspace containing Neig = 100 basis vectors
for each of the NGC and SGC regions (whose distribution was shown to be approximately Gaussian in §V). In §IV B,
a minimum-variance criterion was used to select the basis vectors; here, we instead pick those with maximal signal-
to-noise for the Chern-Simons model. The reduced dimensionality facilitates direct use of the Patchy simulations to
form the sample covariance (20); to account for the finite number of mocks, we perform inference using the following
log-likelihood:

− logL(ACS) =
Nmocks

2
log

[
1 +

T 2(ACS)

Nmocks − 1

]
+ const. (37)

This uses the T 2 statistic, defined analogously to (21):

T 2(ACS) ≡ (v̂data −ACSvCS)
T
Ĉ−1
v (v̂data −ACSvCS) , (38)

where v̂data represents the compressed 4PCF data-vector, Ĉv is a sample covariance, and vCS is the compressed 4PCF
model of (36), excluding the ACS prefactor. Likelihoods for the NGC and SGC region are constructed separately and
multiplied, assuming independence. Here, we perform two analyses; one using the BOSS data, and the second using
the mean of Nmocks = 2048 Patchy mocks. In the latter case, no Chern-Simons contribution should be present.

Fig. 10 shows the resulting constraints on the trispectrum amplitude. For the mean of Patchy mocks, the 1σ
constraint is ACS = 0± 760 (demonstrating unbiasedness, as expected), with ACS = 570± 780 observed for BOSS. In
both cases, the constraints are consistent with zero, suggesting that the Chern-Simons coupling is not responsible for
the detection of parity-violation reported in §V. If we additionally restrict to ACS ≥ 0, we find that ACS < 1500 and
ACS < 2000 for the mean-of-Patchy and BOSS datasets respectively (95% CL).23 Additionally including tetrahedra

23 We have additionally verified that no false detection of Chern-Simons inflation is obtained when using the Nseries mocks of §VI E.
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with small separations between secondary galaxies (as in §V) does not appreciably improve the constraints, which we
justify by noting that the bulk of the signal-to-noise occurs on comparatively large scales.

Of greater physical interest are the constraints on the energy densities ρE/ρφ. These may be obtained from the
ACS bounds using (30), assuming fiducial values for the inflationary parameters and fixing the coupling strength to
γ = 1, giving an equal contribution from the parity-even and parity-odd terms in (24).24 Using the BOSS CMASS
data, we find ρE/ρφ < 1.6× 10−19 (95% CL). If |γ| is increased to 2, the gauge field production is strongly amplified,
and the constraint tightens to ρE/ρφ < 3.5× 10−33.

We may additionally place limits on the phenomenological parameters {dodd
n } appearing in (28). Using an analogous

method to the above, we find the 1σ constraints dodd
0 = −610 ± 800 and dodd

1 = −13 000 ± 35 000 from BOSS, both
of which are fully consistent with zero. For the mean of 2048 Patchy simulations, we find dodd

0 = −20 ± 770 and
dodd

1 = 0 ± 34 000, again indicating that the method is unbiased. Although the physical scale of the two coefficients
is the same (in the Chern-Simons model they follow the relation −dodd

0 = dodd
1 /3 = ACS), the first parameter is

constrained almost 50× better than the second: this is attributed to the different angular behavior of the two terms,
with dodd

0 dominating the {`1, `2, `3} = {1, 1, 1} multiplet, for example (cf. Fig. 8).
Our results for the Chern-Simons model may be compared to those obtained from the power spectrum and bispec-

trum of the CMB.25 In particular, the Planck 2018 T - and E-mode dataset (analyzed with the smica prescription)
gave the constraints

−0.036 ≤ g∗ ≤ 0.036, −13 ≤ c0 ≤ 11, −7 ≤ c1 ≤ 281, −55 ≤ c2 ≤ 37 (39)

[98, 107], on the inflationary parameters g∗ and {cn} appearing in the two- and three-point parametrizations of (25)
and (26) at 95% CL, and translating into our notation. Assuming γ = 1 and the above fiducial parameters, these
can be used to place bounds on the gauge field energy density: ρE/ρφ . 7 × 10−13 (2 × 10−16) using the two-
(three-)point function measurements [cf. 38]. Furthermore, a forecast of the detectability of ρE/ρφ from the CMB
four-point function was presented in [38]. This predicted a bound on ρE/ρφ of ∼ 3×10−20 at 95% CL (or equivalently
σ
(
dodd

1

)
= 640) for a cosmic-variance dominated measurement using `max = 2000 and |γ| = 1.

Bounds on the gauge field energy density from the BOSS 4PCF are far stronger than those obtained from the CMB
anisotropic power spectrum and isotropic bispectrum (for |γ| > 0), due to the exponential dependence on |γ| [38,
Fig. 4]. As such, they represent the strongest current constraints on Chern-Simons inflationary models.
Our measurement is roughly a factor of five worse than that predicted for the CMB: this occurs since the latter
is contains significantly more Fourier-modes than the observed galaxy distribution, and thus an increased signal-to-
noise ratio (although is subject to the smoothing effects of projection integrals). As the volume of spectroscopic data
grows, we expect the constraints on ρE/ρφ to significantly strengthen, especially considering that the signal-to-noise

of the Chern-Simons 4PCF (36) scales as
√
Vsurvey, roughly independent of redshift.26 A survey such as DESI will

probe ∼ 100× the BOSS volume [47], and should thus be expected to tighten the constraints on ρE/ρφ (and any
other parity-breaking model amplitudes) by roughly an order of magnitude, providing stronger constraints on parity-
breaking inflation than possible with the CMB. Finally, we note that, for LSS, the parity-odd 4PCF is an optimal
place in which to search for these signatures, since, unlike other observables, the statistic is free from gravitational
effects, thus we do not have to marginalize over the effects of late-time non-Gaussianity.

VIII. SUMMARY AND CONCLUSIONS

Searching for parity-violation provides a unique manner in which to probe new physics occurring in the early
Universe, including that of multi-field inflation, baryogenesis, and primordial magnetic field generation. Whilst there
is a long history of constraining various parity-breaking phenomena using the CMB [6, 9, 10, 13, 17, 20, 37, 38, 108],
few analyses have made use of LSS data. In this work, we have placed the first constraints on (hitherto unexplored)
scalar-type parity-violation using the BOSS CMASS galaxy sample. The isotropic NPCFs are only parity-sensitive
if N > 3 [23, 38, 39]; recent developments in NPCF computation [51] have enabled efficient computation of the
galaxy 4PCF, enabling such analyses. To provide a model-agnostic test, we have performed a blind search for parity-
violation using the full parity-odd 4PCF (whose expectation value is zero in ΛCDM). Our primary tool has been
a non-parametric rank test, comparing the BOSS 4PCF (on scales between 20h−1Mpc and 160h−1Mpc) to that of
a suite of realistic mock catalogs. This avoids the need to assume a Gaussian likelihood, and provides a robust

24 Note that exchanging γ → −γ simply swaps the dominant and suppressed helicity states of the gauge field.
25 Since the coupling is assumed to be active only during inflation, the Lagrangian (24) does not generate cosmic birefringence. Generation

of parity-violating CMB spectra is possible however (due to helical gravitational wave production) but this is slow-roll suppressed, as
noted above.

26 Note that this differs from the signal-to-noise of the gravitational 4PCF, which scales as [b(z)D(z)]2
√
Vsurvey [54].
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(albeit conservative) model-agnostic test. In the BOSS sample we found tentative evidence for parity-violation, with
a detection probability of 99.6%, equivalent to 2.9σ. This indicates either new physics beyond the standard
model or unknown systematics.

As an additional test, we have performed a classical χ2-based analysis of the BOSS data, making use of a data com-
pression scheme and a covariance matrix computed from mock catalogs. Furthermore, we use a theoretical Gaussian
covariance [57] to facilitate high-fidelity compression, which reduces the dataset to Neig numbers; importantly, the re-
sults are not biased this choice, avoiding a potential systematic error. Post-compression, the empirical χ2 distribution
closely matches that of the theory model for Neig . 100; this gives credence to the assumption of Gaussianity. For this
test, we find a detection probability of 83.3% from BOSS when using Neig = 100, or 100.0% when using Neig = 250,
though the latter may be artificially inflated from likelihood non-Gaussianity. The results are broadly consistent with
those from the rank test; however, the strong dependence on Neig implies that our basis decomposition is inefficient,
and that information may be being lost.

We have a carried out a number of tests to explore potential systematic effects in our data which could lead to a
false detection of parity violation. These include splitting the data into sub-regions, imposing radial and angular cuts,
comparing against mock catalogs, altering the compression scheme, and normalizing by an overall rescaling factor. No
clear evidence for systematics is observed, and we find our detection to be relatively coherent across various scales and
sky regions. That said, our tests do rely heavily on the Patchy mocks well-representing the statistical properties of
the BOSS data; although we have ruled out differences due to an overall rescaling factor, a scale dependent difference
remains the most likely cause of our results, in the absence of a cosmological signal.

Finally, we have used the measured 4PCF to bound the amplitudes of physical models of parity-violation. Here, we
have primarily considered a single scenario; a Chern-Simons term in the inflationary Lagrangian, which couples the
inflaton to a U(1) gauge field. This leads to a definite prediction for the primordial polyspectra [13, 38], which, with
some effort, can be translated into a model for the galaxy 4PCF. Performing a Gaussian likelihood analysis using this
template gives a comparable constraint on the ratio of gauge field and inflaton energy densities to that expected from
the CMB [38] (but much stronger than that from lower-order statistics); ρE/ρφ < 1.6 × 10−19 (95% CL), assuming
standard inflationary parameters. Notably, this does not appear to explain the above parity-violating signal. Similar
constraints may be obtained for any other physical model giving a definite prediction for the galaxy 4PCF.

The coming years will lead to an explosion in the volume of LSS data available, which will either confirm or refute
the tentative detection of parity-violation found herein. Unlike for the gravitational contribution [54], the signal-to-
noise of the inflationary 4PCF is not a strong function of redshift, with the constraints on models of new physics
being primarily sensitive to the survey volume. To further increase the constraining power, we may fold in additional
information, for example using the 5PCF and anisotropic NPCFs (which source additional information regarding
vector parity-breaking [43]). Going beyond spectroscopic surveys, it is likely that high-volume observables such as
intensity mapping and the Lyman-α forest, as well as the CMB itself, will shed additional light on this, pinning down
a variety of new physics models.
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FIG. 11. Distribution of the pseudo-χ2 statistic (18) estimated from Patchy-Nseries simulations (red) and Gaussian realiza-
tions (blue), drawn from a distribution with mean and covariance estimated from a second set of Patchy-Nseries simulations.
The clear differences between the distributions indicates that the full 4PCF likelihood cannot be well-approximated as Gaus-
sian.
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Appendix A: Likelihood Non-Gaussianity

A major assumption of most cosmological analyses is that the underlying likelihood for the statistic of interest can
be well approximated as Gaussian. Whilst this is often ensured by the central limit theorem, it can break down in
the case of highly-correlated data, such as that considered in this work. In this appendix, we present a simple test to
check whether the likelihood of the full 4PCF can be justifiably considered Gaussian.

For this purpose, we take the Patchy-Nseries NGC simulations (§VI E) and partition them into two groups. The
first 500 are used to compute a sample mean and covariance for the distribution, thus defining a Gaussian distribution
from which we draw 105 mock observations. Each of these is compressed into one dimension via the pseudo-χ2 statistic
defined in (18), and histogrammed. This can then be compared to the empirical pseudo-χ2 distribution obtained from
the remaining simulations directly. If the likelihood is Gaussian, the two distributions should match.

The resulting PDFs are shown in Fig. 11. Notably, the empirical and Gaussianized distributions do not match,
indicating that the full 4PCF distribution is not well described by a Gaussian, even in the best-case scenario when
the mean and variance are estimated from the simulations. In particular, the Gaussian assumption overestimates the
sample variance, which will reduce any potential detection significance. If one instead uses the theoretical covariance
to define the Gaussian distribution, the situation is far worse: the pseudo-χ2 distribution instead peaks at ≈ 1250,
indicating a breakdown of the modelling assumptions (as discussed in §III C). Finally, we note that, although the
full (uncompressed) 4PCF distribution appears to be non-Gaussian, this does not imply that the same is true for the
projected statistics of §IV B, since the central limit theorem becomes more applicable as the dimensionality reduces.

Appendix B: Derivation of the Chern-Simons 4PCF Model

Below, we sketch the derivation of the parity-odd 4PCF induced by the Chern-Simons coupling of §VII. Our starting
point is the general expression given in (35), which is a product of four pieces. By expanding the angular dependence
of each term using the isotropic basis functions (§II A), we may compute the full 4PCF efficiently.

To begin, we consider the primordial Chern-Simons trispectrum defined in (29). The angular pieces may be written
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in terms of isotropic basis functions of three coordinates using [52, Appendix A.2]:

(k̂1 × k̂3) · ŝ = i

√
2

3
(4π)3/2P111(k̂1, k̂3, ŝ), k̂1 · k̂3 = − 1√

3
(4π)3/2P110(k̂1, k̂3, ŝ), (B1)

k̂1 · ŝ = − 1√
3

(4π)3/2P101(k̂1, k̂3, ŝ), k̂1 · k̂3 = − 1√
3

(4π)3/2P011(k̂1, k̂3, ŝ).

The resulting products of two basis functions can be simplified using [52, §6.3], yielding

t(k1,k3, s) = −
√

2ACS(4π)3/2Pζ(k1)Pζ(k3)Pζ(s) (B2)

×
[
P111(k̂1, k̂3, ŝ) +

1√
5
P221(k̂1, k̂3, ŝ) +

1√
5
P212(k̂1, k̂3, ŝ)− 1√

5
P122(k̂1, k̂3, ŝ)

]
,

whose radial part is separable in k1, k3 and s. For the general parity-odd trispectrum given in (28), we obtain the
same result, but with the replacement ACSP111 → −dodd

0 P111, ACSP221 + 2 perms.→ dodd
1 P221/3 + 2 perms..

Next, we consider the Dirac delta functions. By rewriting (2π)3δD (k1 + k2 − s) as a complex exponential, inserting
plane-wave expansions [109, Eq. 16.63], then performing the angular integral, the function can be expressed as a sum
over one-dimensional integrals and isotropic basis functions of three coordinates:

(2π)3δD (k1 + k2 − s) = (4π)5/2
∑

L1L2L5

iL1+L2+L5(−1)L5CL1L2L5

(
L1 L2 L5

0 0 0

)
PL1L2L5

(k̂1, k̂2, ŝ) (B3)

×
∫ ∞

0

x2dx jL1
(k1x)jL2

(k2x)jL5
(sx),

where CL1...LN
≡
√

(2L1 + 1) . . . (2LN + 1), the 2 × 3 matrices are Wigner 3-j symbols and we have used properties
of the Gaunt integral [110, Eq. 34.3.22]. Similarly,

(2π)3δD (k3 + k4 + s) = (4π)5/2
∑

L3L4L′5

iL3+L4+L′5CL3L4L′5

(
L3 L4 L′5
0 0 0

)
PL3L4L′5

(k̂3, k̂4, ŝ) (B4)

×
∫ ∞

0

x′2dx′ jL3(k3x
′)jL4(k4x

′)jL′5(sx′).

Note that the integrands are again separable in {ki} and s. Using the approach of [111], they may equivalently be
rewritten as infinite sums.

For the transfer functions M(k, z)Z1(k, z), we first expand the redshift-space kernel Z1(k) in spherical harmonics
(dropping the redshift dependence for clarity):

Z1(k̂; n̂) ≡ b+ f(k̂ · n̂)2 = 4π
∑
`m

[(
b+

f

3

)
δK
`0 +

2f

15
δK
`2

]
Y ∗`m(n̂)Y`m(k̂) ≡ 4π

∑
`m

Z` Y
∗
`m(n̂)Y`m(k̂), (B5)

for linear bias b(z), growth rate f(z) and line-of-sight n̂. Since we consider only isotropic 4PCFs in this work, we
can integrate over the LoS orientation (which is equivalent to performing a joint rotation of all {ri}). Following some
algebra, this leads to a set of isotropic functions of four coordinates (see [52] for details):∫

dn̂

4π
Z1(k̂1; n̂)Z1(k̂2; n̂)Z1(k̂3; n̂)Z1(k̂4; n̂) = (4π)2

∑
j1j2j12j3j4

(
j1 j2 j12

0 0 0

)(
j12 j3 j4
0 0 0

)
Zj1Zj2Zj3Zj4 (B6)

×Cj1j2j12j3j4Pj1j2(j12)j3j4(k̂1, k̂2, k̂4, k̂4),

where ji ∈ {0, 2} and j12 ∈ {0, 2, 4}.
The final contribution is from the Fourier basis functions and their permutations, which can be written

ei(k1·r1+k2·r2+k3·r3) + 23 perms. =
∑
H

ei(k1·rH1+k2·rH2+k3·rH3+k4·rH4), (B7)

where {H1, H2, H3, H4} is one of the 24 permutations of {1, 2, 3, 4}, and we have introduced r4 = 0 for convenience.
Projecting onto the 4PCF basis functions P`1`2`3(r̂1, r̂2, r̂3) gives a sum of isotropic functions of four coordinates:∑

H

(4π)−1/2

∫
dr̂1dr̂2dr̂3dr̂4 P∗`1`2`3(r̂1, r̂2, r̂3)ei(k1·rH1+k2·rH2+k3·rH3+k4·rH4)Y`4m4

(r̂4) (B8)

=
∑
H

(4π)7/2ΦH(−i)`1+`2+`3j`H1
(k1rH1)j`H2

(k2rH2)j`H3
(k3rH3)j`H4

(k4rH4)P`H1`H2(`∗)`H3`H4
(k̂1, k̂2, k̂3, k̂4),
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using the plane wave expansion and inserting `4 = m4 = r4 = 0 in the first line. In the second line we include a
permutation factor ΦH , given by (−1)`1+`2+`3 if {`H1, `H2, `H3, `H4} is an odd permutation of {`1, `2, `3} (removing
the zero element) and unity else. Furthermore, `∗ is set by the position of the zero, e.g., `∗ = `H2 if `H1 = 0, `∗ = `H4

if `H3 = 0 et cetera.
Combining the above results, we obtain

ζ`1`2`3(r1, r2, r3) = (4π)11
√

2ACS i
`1+`2+`3

∑
H

∑
L1L2L3L4L5L′5

iL1+L2+L3+L4−L5+L′5CL1L2L3L4L5L′5
(B9)

×
(
L1 L2 L5

0 0 0

)(
L3 L4 L′5
0 0 0

)
× M`H1`H2(`∗)`H3`H4

L1L2L3L4L5L′5

×
∫
x2dx

∫
x′2dx′KL5L′5

(x, x′)I`H1

L1
(x; rH1)J`H2

L2
(x; rH2)I`H3

L3
(x′; rH3)J`H4

L4
(x′; rH4),

defining the integrals:

I`L(x; r) ≡
∫ ∞

0

k2dk

2π2
M(k)Pζ(k)jL(kx)j`(kr), J`L(x; r) ≡

∫ ∞
0

k2dk

2π2
M(k)jL(kx)j`(kr), (B10)

KLL′(x, x
′) ≡

∫ ∞
0

s2ds

2π2
Pζ(s)jL(sx)jL′(sx

′).

In practice, we must integrate the statistic over radial bins of finite width, which corresponds to replacing e.g., j`(kr)
with ̄b`(k) for bin b. The bin-integrated Bessel functions are analytic and their forms can be found in [112, Appendix
A].

The coupling matrix in (B9) is given by an integral over five isotropic basis functions of five coordinates:

M`H1`H2(`∗)`H3`H4

L1L2L3L4L5L′5
=

∑
j1j2j12j3j4

Cj1j2j12j3j4
(
j1 j2 j12

0 0 0

)(
j12 j3 j4
0 0 0

)
Zj1Zj2Zj3Zj4

∫
dk̂1dk̂2dk̂3dk̂4dŝ (B11)

×
[
Pj1j2(j12)j3(j4)j40PL1L2(L5)0(L5)0L5

P00(0)L3(L3)L4L′5
P`H1`H2(`∗)`H3(`H4)`H40

]
(k̂1, k̂2, k̂3, k̂4, ŝ)

×
[
P10(1)1(1)01 +

1√
5
P20(2)2(2)01 +

1√
5
P20(2)1(2)02 −

1√
5
P10(1)2(2)02

]
(k̂1, k̂2, k̂3, k̂4, ŝ),

where we have noted that that isotropic functions of N coordinates may be rewritten in terms of those with N+M ≥ N
coordinates by inserting a factor (4π)M/2. Despite its complexity, this can be evaluated analytically, making extensive
use of the product relation for isotropic basis functions of five coordinates:

PΛPΛ′ = (4π)−5/2
∑
Λ′′

(−1)Λ′′1 +Λ′′2 +Λ′′3 +Λ′′4 +Λ′′5 CΛCΛ′CΛ′′
5∏
i=1

[(
Λi Λ′i Λ′′i
0 0 0

)]
PΛ′′ (B12)

×

Λ1 Λ2 Λ12

Λ′1 Λ′2 Λ′12

Λ′′1 Λ′′2 Λ′′12


Λ12 Λ3 Λ123

Λ′12 Λ′3 Λ′123

Λ′′12 Λ′′3 Λ′′123


Λ123 Λ4 Λ5

Λ′123 Λ′4 Λ′5
Λ′′123 Λ′′4 Λ′′5


[52, §6.5], where Λ ≡ {Λ1,Λ2, (Λ3),Λ4, (Λ123),Λ4,Λ5}, the curly braces indicate Wigner 9-j symbols and CΛ involves
all elements of Λ. This simplifies considerably when some elements of Λ or Λ′ are zero.
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