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Particular couplings between a scalar field and the Gauss-Bonnet invariant lead to spontaneous
scalarization of black holes. Here we continue our work on simulating this phenomenon in the
context of binary black hole systems. We consider a negative coupling for which the black-hole
spin plays a major role in the scalarization process. We find two main phenomena: (i) dynamical
descalarization, in which initially scalarized black holes form an unscalarized remnant, and (ii)
dynamical scalarization, whereby the late merger of initially unscalarized black holes can cause scalar
hair to grow. An important consequence of the latter case is that modifications to the gravitational
waveform due to the scalar field may only occur post-merger, as its presence is hidden during the
entirety of the inspiral. However, with a sufficiently strong coupling, we find that scalarization can
occur before the remnant has even formed. We close with a discussion of observational implications
for gravitational-wave tests of general relativity.

I. INTRODUCTION

The detection of gravitational waves (GW) produced
by coalescing compact binaries by the LIGO-Virgo-Kagra
Collaboration [1–3] have opened a new avenue to test gen-
eral relativity (GR) in its strong-field, nonlinear regime [4–
8]. In fact, the first three catalogs of observations have
already been used to perform several null tests of GR [8–
17], as well as theory-specific tests [18–26]. The latter have
placed constraints on quadratic gravity theories [21–25].
In these theories, a scalar field couples to a curvature

scalar, which is quadratic in the Riemann tensor (see
e.g. Ref. [27] for an overview). Well-known examples
include coupling to the Pontryagin density or the Gauss-
Bonnet (GB) invariant. The latter theories are often
named scalar Gauss-Bonnet (sGB) gravity. They can
emerge in the low-energy limit of string theory (see, for
instance, Refs. [28–30]), as well as through a dimensional
reduction of Lovelock gravity [31], and belong to the wider
class of Horndeski gravity theories [32, 33].

Black hole (BH) solutions in this theory have long been
known to have a nontrivial scalar field (i.e., a “hair”), to
which we can associate a monopole scalar charge that
depends on the BH’s mass and spin. When the BHs
are found in a binary, their motion can lead to the emis-
sion of scalar dipole radiation, which in turn modifies
the system’s orbital dynamics and the GW signal with
respect to GR’s prediction. Such phenomenology has
been explored with both post-Newtonian (PN) [34–40]
and numerical relativity [41–46] techniques. The scalar
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field can also affect the post-merger signal, modifying
the remnant BH’s ringdown [47–52]. In sGB gravity, the
presence of scalar hair depends on the functional form of
the coupling between scalar field and the GB invariant.

More specifically, if the functional form of the coupling
always has a non-vanishing first derivative, such as for a
linear or exponential coupling, BHs are known to invari-
ably have scalar hair [53–67]. Hence, the observation of
GWs from BH binaries and mixed neutron star (NS)-BH
binaries have allowed us to constrain the length scale at
which the scalar-field-GB interaction becomes relevant to
less than approximately one kilometer [22–25].
In contrast, if the first derivative of the coupling func-

tion vanishes for some constant background scalar field,
both scalarized and unscalarized BH solutions can ex-
ist [68, 69]. Depending on the length scale associated with
the scalar-field-GB interaction, and the BH’s mass [68–70]
and spin [71–78], the BH solutions of GR become unstable
to scalar field perturbations, and the end-state of this
instability is a scalarized BH [79]. This process is similar
to spontaneous scalarization of NSs in scalar-tensor grav-
ity [80, 81]. The difference lies in the fact that for NSs the
scalar field is sourced by matter, while for BHs the scalar
is sourced by the spacetime curvature alone. Thus, one
could envision that the aforementioned GW constraints
(such as e.g. [21]) can be avoided if scalarization occurs
right before merger, or possibly only after merger.

Can such a scenario happen? Here we continue our pre-
vious work [45] and explore how the onset of scalarization
plays out during binary BH mergers. As in our previous
paper, we work in the decoupling approximation, i.e., we
evolve the scalar field on a time-depenedent GR back-
ground. In Ref. [45], we studied a variety of possible pro-
cesses for head-on BH collisions, as well as a quasi-circular
inspiral-merger of equal mass non-spinning binaries using
a positive sign of the scalar-field-GB coupling. We demon-
strated the existence of a process we coined dynamical
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descalarization, whereby initially scalarized BHs merged
to form a larger remnant that descalarized because its GB
curvature was too small to sustain the scalar hair. The
alternative, the dynamical scalarization of the remnant,
was not possible because its larger mass (compared to
the initial BHs’ masses) inevitably leads to a smaller GB
curvature near the horizon.

However, for a negative sign of the coupling, the scalar
field instability happens only for sufficiently rapidly-
spinning BHs (“spin-induced scalarization”) [73–77]. This
leads to the following questions: (1) Does the formation
of a highly spinning remnant cause spin-induced dynam-
ical scalarization? If so, at what stage in the binary’s
evolution is the scalar hair excited? (2) Can the process
of dynamical descalarization found in Ref. [45] be general-
ized to the negative coupling case? Here we address these
questions with a new suite of binary BH simulations and
negative sign of the coupling constant.
We find that indeed spin-induced descalarization and

scalarization of the BH remnant are both possible. The
spin-induced descalarization of initially scalarized, spin-
ning black holes (BHs), extends and completes the work in
Ref. [45]. The spin-induced scalarization of the remnant is
a new result. For values of the coupling constant close to
the scalarization threshold, the growth of the scalar field
has a large instability time-scale. Therefore, scalarization
only becomes significant significantly after the remnant
BH’s ringdown begins. We therefore now coin the term
stealth dynamical scalarization, whereby the scalar field
remains hidden throughout the full inspiral, merger and
early ringdown evolution of the BH binary and is thus
unconstrainable with GW observations.
In the remainder of this work we explain how we ar-

rived at these conclusions. In Sec. II we review both
scalarization and descalarization of BHs in sGB gravity.
Next, in Sec. III we discuss our numerical methods and
our numerical relativity simulations designed to answer
our previously stated questions. In Sec. IV we present our
findings and we finish by discussing some of their obser-
vational implications in Sec. V. We work with geometric
units G = 1 = c.

II. SCALAR GAUSS–BONNET GRAVITY

A. Action and field equations

sGB gravity modifies GR via a nonminimal coupling
between a real scalar field Φ and the GB invariant G , as
described by the action

S =
1

16π

∫
d4x
√−g

[
R− 1

2
(∇Φ)

2
+
αGB

4
f(Φ) G

]
,

(1)

where R is the Ricci scalar, g = det(gµν) the metric de-
terminant, (∇Φ)2 = gµν∇µΦ∇νΦ the scalar field kinetic

term, and

G = R2 − 4RµνR
µν +RµνρσR

µνρσ , (2)

is the GB invariant, where Rµνρσ and Rµν are the Rie-
mann and Ricci tensor respectively. The particular form of
the theory is parametrized by the coupling function f(Φ)
and the coupling constant αGB with units of [Length]2.

As in our previous study [45], we work in the decoupling
limit. That is, we neglect the backreaction of the scalar
field onto the spacetime metric: the scalar field evolves
on a dynamical, vacuum background spacetime of GR.
The action (1) gives rise to the field equation for Φ

�Φ = − 1
4αGBf

′(Φ)G , (3)

where a prime denotes a derivative with respect to Φ.
Since we work in the decoupling limit, the d’Alembertian
and the GB invariant are those of the time-dependent GR
background.
The choice of the coupling function f(Φ) determines

specific sGB models. As we already alluded to in Sec. I,
the models can be classified into two types depending on
the properties of their BH solutions. We label models as
type I if the derivative of the coupling function f ′(Φ) 6= 0.
In this case, BH solutions always have scalar hair [53–
67]. Examples of type I models include the dilatonic
f(Φ) ∝ exp(Φ) [54–57] and shift-symmetric f(Φ) ∝ Φ [58–
60] coupling functions. We label models as type II if the
derivative of the coupling function f ′(Φ0) = 0, for some
constant Φ0. In this case, the theory admits the station-
ary vacuum BH solutions of GR, as proved by the no-hair
theorem of [69], but also admits, when the theorem is
violated, scalarized BHs. Examples include quadratic
f(Φ) ∝ Φ2 [69] and Gaussian f(Φ) ∝ exp(Φ2) [68] cou-
pling functions. Here we consider type II models only.

B. Scalarization of isolated black holes

In the second type of sGB model the onset of scalariza-
tion is found by linearizing Eq. (3) around the background
BH spacetime, i.e., Φ = Φ0 + δΦ, where Φ0 is a constant.
This results in the scalar-field evolution equation(

�−m2
eff
)
δΦ = 0 , (4)

with an effective mass squared

m2
eff := − 1

4αGBf
′′(Φ0) G , (5)

which can become tachyonically unstable; in other words,
the BH can scalarize if m2

eff < 0 [68, 69]. This, however,
is a necessary, but not sufficient condition for scalariza-
tion. The scalarization threshold can be calculated by
finding a bound state solution, i.e, a time independent
solution of Eq. (4) which is regular at the BH horizon
and that vanishes at spatial infinity. By imposing these
boundary conditions on δΦ, the calculation of the scalar-
ization threshold is reduced to a boundary value problem,
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with the dimensionless ratio between αGB and the BH’s
mass squared playing the role of the eigenvalue. The
smallest eigenvalue provides the scalarization threshold
for the “fundamental” (i.e., the nodeless solution) family
of scalarized BHs, while the other eigenvalues determine
the threshold for the formation of “excited states” (i.e.,
solutions with one or more nodes). We focus on the latter
here. See Fig. 1 in Ref. [69] or Sec. 4.3 of Ref. [82] for
further details. To be more concrete, here we consider a
quadratic coupling function,

f(Φ) = Φ2 . (6)

The coupling strength is determined by the dimensionless
constant1

β = αGB/M
2 , (7)

where M is the characteristic mass of the system. The
effective mass then becomes

m2
eff = − 1

2βM 2 G . (8)

If G is positive-definite in the BH exterior, then the
instability can only happen for positive β. However, if G
is negative, at least in some regions outside the horizon,
then the instability can also be triggered with a negative
β. For example, consider the Kerr metric, for which the
GB invariant in Boyer-Lindquist coordinates (t, r̄, θ, ϕ) is
given by

GKerr =
48m2

(r̄2 + σ2)
6

(
r̄6 − 15r̄4σ2 + 15r̄2σ4 − σ6

)
, (9)

where σ = a cos θ and a = J/m is the angular momentum
per unit mass of the BH. When the dimensionless spin
χ = a/m < 0.5, G is positive everywhere outside the
event horizon and so scalarization can only take place if
β is positive. This also holds true in the limiting case
of a Schwarzschild BH. However, for sufficiently rapidly
rotating BHs (i.e., those with χ = a/m > 0.5), the GB
invariant can become negative in the exterior of the outer
BH horizon in regions along the rotation axis [83]. Hence,
spin can induce scalarization of BHs if β is negative and
χ > 0.5 [73–78] and suppress it if β is positive [71, 72].
One may note that scalarized solutions in quadratic

sGB gravity with a positive coupling constant, β > 0, are
unstable to radial perturbations [84]. Although this is
true, such BHs can be stabilized by including higher-order
scalar terms in the coupling f(Φ) [85, 86], through the
addition of scalar field self-interactions while retaining
the quadratic form of f(Φ) [70], or through the addition
of a coupling of scalar field to the Ricci scalar [87, 88].
Since we are investigating the onset of scalarization, it is
unnecessary to include such terms and so we focus only
on the quadratic coupling case here.

1 With respect to the notation of Ref. [45], we are omitting the
subscript “2” and fixing β̄ = 1.

C. Scalarization and Descalarization
in black hole binaries

What could be the consequences of scalarization in
BH binaries? To answer this question, in Ref. [45] we
performed the first numerical relativity simulations of
both head-on collisions and quasi-circular inspirals of
BHs in quadratic sGB gravity with a positive coupling
β. We identified a new effect, that we named dynamical
descalarization, in which initially non-spinning scalarized
BHs shed-off completely their scalar hair after the merger.
This is a result of the comparatively weaker curvature
generated near the horizon of the resulting larger remnant
BH. Consequently, several possible dynamical processes
were discovered for particular combinations of mass ratio
and coupling strength, as illustrated in Fig. 1 of Ref. [45].
We can contrast this with similar simulations in type I
theories in which the remnant BH always retains some
scalar hair [41].

Here we extend our previous work by considering nega-
tive coupling β < 0 values. For this case the spins of the
initial and/or remnant BHs play a crucial role in the devel-
opment of the scalar field of the system due the possibility
of spin-induced scalarization. Specifically, the formation
of negative GB regions close to merger causes the remnant
to scalarize, a process that we call spin-induced dynamical
scalarization. Additionally, we also demonstrate spin-
induced dynamical descalarization – the spin analogue of
the aforementioned dynamical descalarization mechanism
– as high-spinning binary components merge to produce a
lower spin remnant that cannot support the instability.

III. SIMULATING BINARY BLACK HOLES IN
SGB GRAVITY – METHODS AND SETUP

A. Time evolution formulation

We investigate the dynamics of the sGB scalar field,
determined by its equation of motion (3), and sourced by a
binary BH background spacetime. We perform a series of
time evolution simulations in 3+1 dimensions by adopting
standard numerical relativity techniques; see e.g. Ref. [89].
That is, we foliate the four-dimensional spacetime into
three-dimensional spatial hypersurfaces Σt, parametrized
by a time parameter t, with an induced spatial metric γij .
We introduce the timelike vector nµ that is orthonormal
to the hypersurface. Then, the spacetime metric gµν can
be decomposed as

ds2 = gµνdxµdxν (10)

= −
(
α2 − βkβk

)
dt2 + 2γijβ

idtdxj + γijdxidxj ,

where α is the lapse function (not to be confused with the
dimensional coupling constant αGB) and βi is the shift
vector (not to be confused with the dimensionless coupling
constant β). Finally, we introduce the extrinsic curvature
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Kij = − 1
2α (∂t − Lβ) γij , where Lβ is the Lie-derivative

along the shift vector βi.
To simulate the background BH binary we write Ein-

stein’s equations as a Cauchy problem and adopt the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion [90, 91] together with the moving puncture gauge
conditions [92, 93]. We prepare initial data describing
a quasi-circular binary of two spinning BHs with the
Bowen-York approach [94, 95].

To evolve the scalar field Φ in this time-dependent GR
background, we write its field equation (3) as a set of time
evolution equations. Therefore, we introduce the scalar
field’s momentum KΦ = − 1

α (∂t − Lβ) Φ and we apply
the spacetime decomposition to Eq. (3). This procedure
gives the equations

(∂t − Lβ) Φ = −αKΦ , (11a)

(∂t − Lβ)KΦ = −DiαDiΦ (11b)

− α
(
DiDiΦ−KKΦ + 1

4αGBf
′ G
)
,

where Di, G and K = γijKij are the covariant derivative
with respect to the induced metric, the four-dimensional
GB invariant and the trace of the extrinsic curvature of
the background spacetime.

We initialize the scalar field to represent multiple scalar-
ized BHs. For simplicity, we neglect the scalar field’s
initial linear and angular momentum, because it relaxes
to its equilibrium configuration within about 100M from
the start of the evolution, i.e., within approximately one
orbit [41, 96]. Since the scalar field equation (3) is linear,
we can superpose the static bound-state solution anchored
around an isolated BH. For N BHs, we then have

Φ|t=0 =

N∑
a=1

Φ(a) , KΦ|t=0 = 0 , (12)

where the subscript (a) labels the a-th BH. The bound
state of the sGB scalar field around an isolated, non-
spinning BH with a coupling of the form (6) was obtained
numerically in Ref. [69]. We approximate this solution
with the fit

Φ(a)

∣∣
t=0

=
m(a)r(a)

%2
(a)

[
c1 + c2

m(a)r(a)

%2
(a)

+ c3
(m(a)r(a))

2

%4
(a)

]
,

(13)

where %(a) = m(a) + 2 r(a), r(a) is field point distance
from the location of the a-th BH in quasi-isotropic radial
coordinates of the background spacetime, m(a) is the mass
of the a-th BH, and c1 = 3.68375, c2 = 4.97242, c3 =
2.29938× 102 are fitting constants, where we corrected a
misprint in c3 in Ref. [45].

B. Code description

We performed the simulations with Canuda [97], our
open-source numerical relativity code for fundamental

physics [41, 45, 98, 99]. Canuda is fully compatible with
the Einstein Toolkit [100–102], a public numerical rel-
ativity software for computational astrophysics. The Ein-
stein Toolkit is based on the Cactus computational
toolkit [103, 104] and uses the Carpet driver [105, 106] to
provide boxes-in-boxes adaptive mesh refinement (AMR)
as well as MPI parallelization. To evolve the field equa-
tions we employ the method-of-lines. Spatial derivatives
are typically realized by fourth-order finite differences
(with sixth order also being available) and for the time
integration we use a fourth-order Runge-Kutta scheme.

The background spacetime, consisting of two spinning
BHs in a quasi-circular orbit, is initialized with the TwoP-
unctures spectral code [107] that solves the constraint
equations of GR with the Bowen-York approach [94, 95].
We evolve Einstein’s equations using Canuda’s modern
version of the Lean thorn [108] that implements the
BSSN equations with the moving puncture gauge. The
sGB scalar field evolution equations (11) and its initial
data (13) are implemented in Canuda’s arrangement
Canuda_EdGB_dec. Details of the implementation
are described in Refs. [41, 45, 62]. To analyse the nu-
merical data, we compute the Newman-Penrose scalar Ψ4

as a measure for gravitational radiation and we extract
the gravitational and scalar field multipoles on spheres
of constant extraction radius rex using the QuasiLo-
calMeasures thorn [109]. We find the BHs’ apparent
horizons and compute their properties with the AHFind-
erDirect thorn [110, 111].

C. Setup of simulations

To investigate spin-induced dynamical scalarization or
descalarization in binary BH mergers, we have performed
a series of simulations of equal-mass, quasi-circular inspi-
rals for the negative coupling case, β < 0. The initial
BHs have either zero spin or a spin (anti-)aligned with
the orbital angular momentum.

To choose the values of the coupling constant β in our
simulations, we used the numerical data found in Ref. [74]
(cf. Supplemental Material, Table I) to obtain a fitting
formula that returns the value of β at the threshold for
spin-induced scalarization as a function of the dimension-
less spin χ; we will refer to this threshold value as the
critical value of the dimensionless coupling constant. The
critical value for the coupling constant satisfies the scaling

βc(m/M,χ) = (m/M)2 βc(1, χ) , (14)

where m is a place-holder for either the individual masses
of the binary m(a) or the final remnant mass mf , while
M = m1 + m2 is the initial total mass of the binary.
The quantity βc(1, χ) is the critical value of the coupling
that leads to scalarization for a BH of mass 1M and
dimensionless spin χ, namely

βc(1, χ) = − 0.422

(|χ| − 1/2)2
+ 1.487 |χ|7.551 , (15)
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FIG. 1. Absolute value of the critical coupling, βc, for spin-
induced scalarization of a single BH as a function of the
dimensionless spin χ. We show the numerical data of Ref. [74]
and the fitting formula (15). The inset shows the relative error
between the fit and the data. We see that the error is less than
15% in the range 0.5 6 χ < 1 and less than 5% for χ . 0.74.

where βc(1, χ) diverges as |χ| tends to 0.5, in agreement
with Ref. [76]. For instance, if we wish to scalarize the
initial components of the binary, and if the mass ra-
tio is unity, then m(a) = M/2, and βc, (a)(1/2, χ(a)) =
(1/4)βc(1, χ(a)). In Fig. 1, we show Eq. (15) and compare
it against the numerical results of Ref. [74]. We obtain
relative errors smaller than 15% in the range 0.5 6 χ < 1
and less than 5% for χ . 0.74. We use Eq. (14) as refer-
ence to choose the values of β to probe scalarization of
either one (or both) of the initial binary components or
of the remnant BH.

Here, we present two key simulations, listed in Table I
and illustrated in Fig. 2, with the following setups:

Setup A in Table I is designed to address our first ques-
tion: does the formation of a highly spinning remnant
cause spin-induced dynamical scalarization? Here, we
consider a binary of initially non-spinning, unscalarized
BHs that merges into a spinning, scalarized remnant as
illustrated in Fig. 2a. The BHs complete 10 orbits prior
to their merger at tM = 927M , as estimated from the
peak in the gravitational (quadrupole) waveform; see the
bottom panel of Fig. 3. When the coupling β is neg-
ative, the squared effective mass (5) of the initial BHs
(with χ = 0) is positive definite everywhere outside their
horizons, and so they are initially not scalarized. The
final BH has a dimensionless spin of χf = 0.68 and mass
mf ∼ M . For a BH with these parameters, the critical
coupling is βc,f ≈ βc(1, 0.68) ≈ −12.96; cf. Eq. (14). In
our simulation we chose |β| > |βc,f | such that the remnant
BH is indeed scalarized. In this simulation, we initialize
the scalar field according to Eq. (13) around each binary
component. The scalar field disperses early in the simula-
tion, leaving each BH unscalarized and a negligible, but
nonvanishing ambient scalar field in the numerical grid.
Notice that if we had set Φ|t=0 = 0, there would be no
scalar field dynamics [see Eq. (3)].

Setup B in Table I is designed to address our sec-
ond question: is the dynamical descalarization found

s̄

s̄

s↑

(a) Setup A

s↓

s↓

s̄↑

(b) Setup B

FIG. 2. Binary BH simulations, where s (s̄) stands for initial
or final BH states that are scalarized (unscalarized) and with
spin along the positive (↑) or negative (↓) z-direction (i.e.,
aligned or anti-aligned with the orbital angular momentum,
assuming the latter is ↑). BH states without an arrow are
non-spinning. Panel 2a illustrates a process of spin-induced
dynamical scalarization: two initially unscalarized BHs pro-
duce a spinning, scalarized remnant. Panel 2b illustrates a
process of dynamical descalarization: two initially rotating,
scalarized BHs whose spin is anti-aligned with the orbital
angular momentum merge into a rotating BH with a smaller
spin magnitude. Consequently, the remnant descalarizes.

in Ref. [45] a general phenomenon? Is there a spin-
induced dynamical descalarization? Here we consider
a binary of initially rotating, scalarized BHs with spins
χ1 = χ2 = −0.6, anti-aligned with the orbital angular
momentum as illustrated in Fig. 2b. Each of the com-
ponents of the binary has a mass m1 = m2 = M/2.
Inserting these parameters in Eq. (14), we find βc,1 =
βc,2 = βc(1/2,−0.6) ≈ −10.55. In our simulations, we
set |β| & |βc(1/2,−0.6)| such that the initial BHs are
scalarized. The initial BHs merge into a final rotating
BH that has a spin aligned with the orbital angular mo-
mentum of the previously inspiralling system, with a spin
magnitude χf = 0.48. This value is below the threshold
for spin-induced scalarization, and so the remnant BH
does not support scalar hair.

To show that our qualitative results are robust for a
large variety of BH spin parameters, we have performed
a series of additional simulations listed in Table II of
Appendix A. All simulations presented in Tables I and II
have the same grid setup: the numerical domain was
composed of a Cartesian box-in-box AMR grid structure
with seven refinement levels. The outer boundary was
located at 255.5M . We use a grid spacing of dx = 0.7M
on the outermost refinement level to ensure a sufficiently
high resolution in the wave zone. The region around
the BHs has a resolution of dx = 0.011M . To validate
our code and estimate the numerical error of our sim-
ulations, we performed convergence tests for our most
demanding simulation with χ1,2 = −0.6, corresponding
to Setup B in Table I. The relative error in the gravi-
tational quadrupole waveform is ∆Ψ4,22/Ψ4,22 6 0.8%,
while the relative error of the scalar charge accumulates
to ∆Φ00/Φ00 6 30% in the last orbits before merger; the
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Run d/M χ1 χ2 χf β βc,1 βc,f process
Setup A 10 0 0 0.68 −14.30 – −12.96 s̄+ s̄→ s↑

Setup B 10 −0.6 −0.6 0.48 −11.00 −10.55 – s↓ + s↓ → s̄↑

TABLE I. Setup of the simulations of equal-mass, quasi-circular BH binaries. We show the initial separation d/M , the initial
dimensionless spins χ1 and χ2 of each binary component, the dimensionless spin χf of the remnant, and the dimensionless
coupling constant β used in the simulations. For reference, we also show the critical values to scalarize the initial (βc,1 = βc,2)
or final (βc,f ) BHs, calculated using Eqs. (14) and (15). The last column summarizes the process that unfolds during the
simulation. We use s̄ and s to denote unscalarized and scalarized states, respectively, and the subscript ↑ (↓) indicates spin
aligned (anti-aligned) with the orbital angular momentum, which is assumed to be ↑. See Fig. 2 for additional details.

latter is ∆Φ00/Φ00 6 15% in the merger and ringdown
phase. The large error in the scalar field, close to the BHs
merger, is a consequence of the exponential growth of the
scalar field during inspiral. As our investigation is of a
qualitative nature, this cumulative error is not a cause of
concern for our results. However, a future quantitative
analysis would have to address this issue. See Appendix B
for details.

IV. RESULTS

A. Spin-induced dynamical scalarization

Here we present key results obtained with simulation
Setup A (see Sec. III C), corresponding to Fig. 2a. In
particular, we show that an initially unscalarized BH
binary can indeed form a hairy, rotating remnant.
This process is illustrated in the top panel of Fig. 3,

where we present the time evolution of the scalar field’s
monopole charge, rexΦ00, measured at rex = 100M , and
shifted in time such that (t−rex−tM)/M = 0 indicates the
time of merger. The scalar field perturbation that is ini-
tially present in our simulations remains small during the
entire inspiral. See, for instance, the amplitudes rexΦ`m
at (t−rex− tM)/M < 0 which are of O(10−4) or O(10−6).
Yet, we see an exponential growth of the scalar charge,
rexΦ00 ∼ eωI,00t, that exceeds the background fluctuations,
approximately 100M after the merger. We estimate the
growth rate (for our choice of β) to be MωI,00 ∼ 0.062
by fitting to the numerical data. We show this with the
dotted red line in the top and middle panels.

We find a similar behavior in the scalar field quadrupole,
as shown in the middle panel of Fig. 3. That is, both
the axisymmetric (`,m) = (2, 0) and the (`,m) = (2, 2)
multipoles are excited and grow exponentially with a rate
of MωI ∼ 0.062. For the form of the coupling function
considered here, the rate appears to be independent of the
(`,m) multipole and is determined by the coupling con-
stant β, as we further discuss later. The quadrupole scalar
field is absent in the initial data because we initialized
the scalar field with a spherically symmetric distribu-
tion around each of the BHs. Hence, the scalar field
quadrupole we observe is caused by the “stirring” of the
ambient scalar field due to the dynamical binary BH
spacetime, which has a quadrupole moment. These Φ2m
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FIG. 3. Evolution of the scalar field monopole (top panel),
scalar field ` = 2 multipoles (middle panel) and the gravita-
tional waveform of the background spacetime (bottom panel)
for Setup A in Table I. We rescale the multipoles by the ex-
traction radius rex = 100M , and shift them in time such that
(t− rex− tM)/M = 0 indicates the time of merger, determined
by the peak of the gravitational waveform.

multipoles also become unstable eventually, but at a later
time relative to the monopole, as is evident by comparing
the top and middle panels of Fig. 3. The exponential
growth of the Φ2m multipoles is consistent with the find-
ings in Refs. [73, 77], showing that higher-` and m 6= 0
scalar field multipoles can also become unstable.
All of these results beg for the following questions: at

what stage in the binary’s evolution is the scalar field insta-
bility induced? Is it due to the orbital angular momentum
at the late inspiral or is it due to the angular momen-
tum of the remnant BH? As we discussed in Sec. II B, a
necessary (but not sufficient) condition for the tachyonic
instability to occur is for the GB invariant to become neg-
ative outside the BH horizon in the β < 0 case; see Eq. (8).
To address these questions, we inspect the behavior of the
GB invariant at different stages throughout the evolution.

In Fig. 4 we show a close-up of the GB invariant’s (top
panel) and the scalar field’s (bottom panel) profiles along
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FIG. 4. Profiles of the GB invariant (top panel) and of the
scalar field (bottom panel), corresponding to Setup A in Ta-
ble I, along the z-axis in a close-up region near the CAH. The
curves correspond to different times throughout the evolution.
The shaded region indicates the CAH, shown t = 100M after
its formation when the final BH has relaxed to its stationary
state. The GB invariant becomes negative during the BHs’ last
orbit before merger, and settles to its profile around the final
rotating BH with dimensionless spin χf = 0.68. In response,
the scalar field becomes unstable.

the z-axis, parallel to the orbital angular momentum, at
different time snapshots throughout the evolution. In
Fig. 5 we show the GB invariant G together with snap-
shots of the scalar field Φ in the xz-plane, perpendicular
to the orbital plane of the binary. The snapshots cor-
respond to time instants during the inspiral (top left),
half an orbit before merger (top right), at the formation
of the common apparent horizon (CAH) (bottom left)
and about 200M after the merger (bottom right). The
color map represents the scalar field amplitude and is
shared among all panels, while the contours are isocurva-
ture levels |GM4| = {1, 10−1, 10−2, 10−3}, with positive
(negative) values of G in black (red). We also show the
location of the individual BHs using their apparent hori-
zons, represented as ellipses with center, semi-major and
semi-minor axes given by the centroid, maximum and
minimum radial directions as obtained with the AHFind-
erDirect thorn [110, 111]. We do not show the evolution
of G in the equatorial plane because we did not observe
negative regions forming on this plane throughout the
entire simulation.
During the early inspiral, the GB invariant is positive

around the individual, non-spinning BHs, and the scalar
field remains small across the numerical grid as can be
seen in the top left panel of Fig. 5. However, about half
an orbit before merger, we see the formation of regions
between the two BHs where the GB invariant is negative;
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FIG. 5. Snapshots of the scalar field, Φ, and the GB invariant
in the xz-plane corresponding to Setup A in Table I. The color
map indicates the amplitude of the scalar field. The isocurva-
ture contours of the GB invariant correspond to |GM4| = 1
(solid line), |GM4| = 10−1 (dashed line), |GM4| = 10−2 (dot-
dashed line), |GM4| = 10−3 (dotted line), Black (red) lines
correspond to positive (negative) values of G . We show the
inspiral (top left), half an orbit before merger (top right),
formation of the first CAH (bottom left) and about 200M
after the merger.

see top right panel of Fig. 5 and top panel of Fig. 4,
t = 904M curve. By the time t = 904M , the effective
mass squared defined in Eq. (8) has become negative and
this, we re-emphasize, is a necessary, but not sufficient
condition for the tachyonic instability to occur.
As the BHs merge and the system settles to a final,

rotating BH, the GB invariant remains negative along
the z-axis, which now coincides with the remnant BH’s
rotation axis. This is illustrated in the bottom panels of
Fig. 5, which correspond to the instant of the formation
of the CAH (bottom left) and to about 200M after the
merger (bottom right). In response, the scalar field grows
exponentially as can be seen in its profiles shown in the
bottom panel of Fig. 4 for different times after the CAH
has formed. The scalar field assumes a predominantly
dipolar spatial distribution along the BH’s spin axis, a
consequence of the regions where the GB invariant is
negative. We note that the scalar field continues to grow
instead of settling to a stationary bound state because
the magnitude of the coupling is larger than the critical
value for spin-induced scalarization for the final BH with
spin χf = 0.68; see Table I.
To verify that the regions of negative GB curvature

before the merger can induce the instability, we repeated
the simulation of Setup A with a smaller initial BH sep-
aration of d = 6M and a large-in-magnitude coupling
constant β = −103; see Setup A1 in Table II. Although
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FIG. 6. Evolution of the ` = m = 0 (solid line), ` = 2, m = 0
(dashed line) and ` = m = 2 (dot-dashed line) scalar field
multipoles for the coupling β = −103; cf. Setup A1 in Table II.
We rescale the multipoles by the extraction radius rex = 50M
and shift them such that (t− rex − tM)/M = 0 indicates the
time of merger determined by the peak in the gravitational
waveform. For comparison we also show the formation of the
CAH (dotted line). We observe that the scalar field grows
exponentially about 20M prior to the merger.

this choice of coupling, with |β| � |βc,f | = |βc(1, 0.68)|,
may appear unphysical2 it has the desired effect of being
able to cause the instability before the merger and with a
short time-scale; both effects are controlled by |β|. This
can be seen in Fig. 6, where we show the evolution of
the scalar field multipoles, and in Fig. 7, where we show
the field’s profile along the rotation axis. Indeed, shortly
after the GB invariant becomes negative, the scalar field
grows exponentially and exceeds the magnitude of its
background fluctuations at about t = 20M before the
CAH is first found.

In summary, if |β| is large enough, the BHs’ late inspi-
ral and merger may be affected by the sGB scalar field.
However, for |β|-values near the scalarization threshold,
the inspiral and merger of initially unscalarized BH bina-
ries, and their GW emission, are identical to that of GR
and imprints of the sGB scalar field only appear during
the late ringdown. Such effects may be very difficult (if
not impossible) to detect, and this is what we refer to as
stealth scalarization.

B. Spin-induced dynamical descalarization

In this section we present our key results obtained with
simulation Setup B in Table II (see Sec. III C), illustrated
in Fig. 2b. The setup corresponds to two initially rotating,

2 Such a large value of |β| may be unphysical because the phase
space of nonlinear BH solutions (i.e., including backreaction)
has a band structure [69]: given a fixed value of M there is a
maximum value of |β| for which scalarized BHs exist. The domain
of existence of scalarized BHs depends on f(Φ), the BH mass, and
its spin. Thus, if this β is physical requires a careful, nonlinear
analysis. Here we focus only on the scalarization threshold.

−1.5

−1.0

−0.5

0.0

0.5

G
M

4

t = 116M
t = 122M
t = 129M
t = 135M (CAH formation)

0.6 0.8 1.0 1.2 1.4 1.6

z/M

10−8

101

1010

1019

1028

1037

|Φ
|

t = 116M
t = 122M
t = 129M
t = 135M (CAH formation)

FIG. 7. Same as Fig. 4, but for Setup A1 in Table II. We
see that the GB invariant (top panel) becomes negative and
triggers the excitation of the scalar field (bottom panel) before
the formation of the CAH, indicated by the gray region.

scalarized BHs (whose spin is anti-aligned with the orbital
angular momentum) that produce a unscalarized remnant
with a spin magnitude below the scalarization threshold
for any choice of the coupling constant.

In Fig. 8 we show snapshots of the scalar field and
the GB invariant in the xz-plane, perpendicular to the
binary’s orbital plane, during the inspiral (top left), half
an orbit before the merger (top right), at the merger
(bottom left) and about t = 100M after the merger (bot-
tom right). We illustrate the location of the BHs by
their apparent horizons. The color-coding represents the
amplitude of the scalar field and is shared among all
panels. The contours represent the isocurvature lines
|GM4| = {1, 10−1, 10−2, 10−3}, with positive (negative)
values shown in black (red). The spin magnitude of the
two inspiraling BHs is sufficiently large to yield a GB in-
variant that has negative regions outside the BHs’ horizon.
Combined with our choice of |β|, the BHs sustain a scalar
field bound state, as shown in the top left panel of Fig. 8
and the BHs carry a scalar “charge” during the inspiral.
As the BHs merge, they form a single, rotating BH which
has a spin aligned with the orbital angular momentum
and a magnitude of χf = 0.48. For this spin magnitude,
the GB invariant is positive everywhere outside the BH’s
horizon, as shown in the bottom row of Fig. 8. As a
consequence, the effective mass-squared becomes posi-
tive everywhere in the BH’s exterior and the scalar field
bound states are no longer supported. That is, the scalar
field dissipates, and the BH dynamically descalarizes, in
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FIG. 8. Snapshots of the scalar field, Φ, and the GB invariant,
G , in the xz-plane, corresponding to Setup B in Table II.
The color map represents the amplitude of the scalar field.
The isocurvature contours indicate the magnitude of the GB
invariant with |GM4| = 1 (solid line), |GM4| = 10−1 (dashed
line), |GM4| = 10−2 (dot-dashed line), |GM4| = 10−3 (dotted
line), with positive (negative) values shown in black (red). We
show the inspiral (top left), half an orbit before merger (top
right), 10M after the CAH formation (bottom left) and about
100M after the merger (bottom right).

agreement with the no-hair theorem of Ref. [69]3.
These phenomena can also be seen in Fig. 9, where we

show the profiles of the GB invariant (top panel) and of
the scalar field (bottom panel) along the z-axis (parallel
to orbital angular momentum) for several instants during
the evolution. The shaded region indicates the appar-
ent horizon of the final BH. The GB invariant remains
negative outside the individual BHs during their (late)
inspiral. Only when the CAH first forms, does the GB
invariant become positive everywhere outside the remnant
BH’s horizon At this point, the effective mass-squared
becomes positive, the tachyonic instability that kept each
BH scalarized switches off, and the scalar field dissipates
as shown in the bottom panel of Fig. 9.

Does the presence of scalar charges during the inspiral
produce scalar radiation? The answer is affirmative as can

3 One might wonder if the final rotating BH may become superra-
diantly unstable due to the presence of an effective mass for the
scalar field Φ. While the necessary conditions are satisfied [112–
114], the instability for a BH of χf . 0.5 would evolve on e-folding
timescales much longer than those studied here [115, 116]; see
Ref. [73] for a comparison against spin-induced scalarization.
Moreover, if backreaction of Φ onto the metric was included,
the BH mass and spin would decrease until the superradiance
condition is saturated and the instability is turned off. Then, the
scalar decays and the end-state is a BH with no scalar field.
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FIG. 9. Profiles of the GB invariant (top panel) and of the
scalar field (bottom panel) for Setup B in Table II along the
z-axis. The lines correspond to different times during the
evolution. The shaded region indicates the CAH, shown 100M
after its formation. The GB invariant becomes positive outside
the horizon when the CAH is first formed. Consequently,
the scalar field magnitude decreases and the remnant BH
descalarizes.

be seen in Fig. 10 where we show the time evolution of the
scalar field monopole (top panel) and quadrupole (middle
panel). For comparison, we also display the gravitational
quadrupole waveform of the background spacetime (bot-
tom panel). The scalar field monopole quantifies the
development of the combined scalar charge of the BH
binary measured on spheres of radius rex = 100M , i.e.,
enclosing the entire binary. The total scalar charge re-
mains approximately constant during the inspiral as the
coupling is close to its critical value. Its magnitude in-
creases about 10M before the merger which coincides with
the formation of a joined region in which the GB invariant
is negative due to the proximity of the two BHs As the
BHs merge into a single rotating remnant with a spin
below the threshold for the spin-induced scalarization, the
scalar charge decays as illustrated in the inset of Fig. 10
(top panel). Because the scalar charges anchored around
each BH follow the holes’ orbital motion, they generate
scalar radiation. In general, one would expect the scalar
dipole to dominate the signal, as is also the case for shift-
symmetric sGB gravity [37, 38, 41]. In the simulations
shown here, however, the scalar dipole is suppressed due
to the symmetry of the system (equal mass and spin of the
companions), and the ` = m = 2 multipole dominates.
The scalar waveform is displayed in the middle panel

of Fig. 10 and shows the familiar chirp pattern: its ampli-
tude and frequency increase as the scalar charges inspiral
(following the inspiraling BHs in the background), and
culminates in a peak as the BHs merge. The phase of
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(bottom panel) for Setup B in Table I. The waveforms are
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in time such that (t − rex − tM)/M = 0 at the merger. In
the insets we show the absolute values of the multipoles, in
logarithmic scale, during the merger and ringdown.

the scalar field quadrupole clearly tracks its gravitational
counterpart. Therefore, we deduce that the morphology
(phase evolution) of the observed scalar quadrupole ra-
diation is a result of the orbital dynamics of the system.
A sufficiently large magnitude of the coupling constant
may lead to an additional scalarization of the ` = 2 mode,
which would become manifest as an exponential growth
of the signal superposed with the chirp. This situation is
analogous to the evolutions with positive coupling shown
in our previous work [45].

After the merger, the scalar quadrupole exhibits a quasi-
normal ringdown pattern, i.e., an exponentially damped
sinusoid, shown in the inset of Fig. 10 (middle panel).
Here, in contrast to Ref. [45], descalarization occurs due to
the vanishing of negative GB regions outside the remnant
BH (because its final spin is |χf | < 0.5), rather than
due to a reduction of positive curvature (because of an
increase in mass). We note that the scalar field rings
down on similar timescales as the GW signal shown in
the bottom panel of Fig. 10 for comparison. Therefore,
one might expect a modification to the GW ringdown if
backreaction onto the spacetime is included.

V. DISCUSSION

In this paper, we continued our study of dynamical
scalarization and descalarization in binary BH mergers
in sGB gravity by extending our previous work [45]. The

latter focused on a positive coupling constant between
the scalar field and the GB invariant, yielding dynamical
descalarization in binary BH mergers. As a natural con-
tinuation, here we studied a negative coupling for which
the BHs’ spins play a major role in determining the on-
set of scalarization. In particular, we have shown that
the merger remnant can either dynamically scalarize or
dynamically descalarize depending on its spin and mass.

Spin-induced dynamical scalarization occurs when the
merger remnant grows a scalar charge during coalescence
due to the large spin of the remnant. In cases like this, the
initial binary components lack a charge because their spins
are not large enough to support one [73–78]. However,
after the objects merge, the remnant BH spins faster than
either component, allowing for a charge to grow. We
found that it is possible for the scalar charge to grow
as early as 1–2 orbits before a CAH has formed if the
coupling |β| is extremely large. This occurs because there
are spacetime regions before merger (and near the poles
of the future remnant) with a negative GB invariant, and
a sufficient large value of |β| allows bound states to form
fast enough. We also found that if the coupling |β| is
close to the threshold, then scalarization occurs only in
the late ringdown, because of the timescale required for
the bound states to form.
Is such spin-induced scalarization detectable with cur-

rent or future GW observatories? For values of |β| near
the scalarization threshold the instability timescale is
large and the effects of the scalar field growth would only
appear at times much later than the merger and, more
importantly, after the start of the ringdown. Hence, the
inspiral-merger-ringdown of such a binary would be indis-
tinguishable from one in GR, and scalarization would be
a hidden or “stealth” effect, i.e., the remnant BH would
acquire a charge, but its formation would not lead to
an easily measurable effect. For instance, during the
GW ringdown, which is dominated by the fundamental
(`,m) = (2, 2) quasinormal mode (QNM) frequency, we
know that at a spin of χ ≈ 0.68, the decay time is approx-
imately τ ≈ 12.3M [117]. Hence, after 100M from the
peak in the waveform, the dominant mode has decayed
by roughly exp(−t/τ) ≈ exp(−100/12.3) ≈ 10−4. If the
dominant QNM frequency begins to be modified only after
100M , the GW has decayed so much that detecting this
change or constraining it would be essentially impossible.

Is there no hope to detect such late times scalarization?
Not necessarily. If we were to include the scalar field
backreaction onto the spacetime, one could entertain the
possibility that the late time growth of the scalar field (in
particular of Φ22) and the subsequent readjustment of the
spinning remnant BH to its scalarized counterpart could
result in a second GW signal. Confirming this possibility
and, if confirmed, characterizing such a GW signal is left
for future work.
Spin-induced dynamical descalarization occurs when

the merger remnant loses its scalar charge during coa-
lescence due to the low spin of the remnant. In cases
like this, the initial binary components are spinning fast
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enough that each of them has a scalar charge and the
remnant descalarizes if it has spin χf 6 0.5. Here we
demonstrated this effect in a example in which the ini-
tial binary components have their spin angular momenta
anti-aligned with the orbital angular momentum. The
merger produces a remnant BH with χf = 0.48, for which
no scalar field bound states are supported and the field is
radiated away shortly (∼ 10M) after the CAH formation.
Is such spin-induced descalarization detectable with

current or future GW observatories? For such descalar-
ization to be detectable, one must first detect that the
binary components were scalarized during the inspiral.
Our simulations showed that the scalar charges lead to
scalar quadrupole radiation because of the highly sym-
metric configurations (equal mass, equal spin magnitude)
we chose to evolve. More realistic astrophysical configura-
tions (with unequal masses and unequal spin magnitudes)
forces the binary to emit scalar dipole radiation. Such
emission of dipole or quadrupole radiation accelerates the
inspiral, and thus affect the GW phase at −1PN and 0PN
respectively, as shown in shift-symmetric theories [34–39].
These effects in the inspiral are observable and can thus
be constrained with current ground-based [8, 22–25] and
future detectors [118, 119] within the parameterized post-
Einsteinian framework [120–123], provided the binary is
of sufficiently low mass such that enough of the inspiral
is observed [119]. In fact, a constraint of this type was
recently obtained using the GW190814 event [124] in [21].

Let us then assume, for the sake of argument, that some
future event reveals a scalar charge in the inspiraling bi-
nary components. Our results then indicate that descalar-
ization may be detectable, if there is enough signal-to-
noise ratio in the merger and ringdown [41, 42]. This is
because this process occurs at the same time and with
the same timescales as the GW merger and ringdown, see
Fig. 10. Future work could study the backreaction of the
scalar field onto the metric to determine the magnitude of
these modifications in the transient phase, without which
one cannot assess detectability confidently. Our results
indicate that descalarization might be best probed with a
full inspiral-merger-ringdown analysis of the GW signal.
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Appendix A: Full suite of simulations

We ran a larger series of simulations, listed in Table II,
of equal-mass BH binaries with varying initial spin that
show a qualitatively same behaviour as the runs presented
in the main text. In particular, we simulated a series of
initially spinning, unscalarized black holes that formed a
scalarized remnant with larger spin. We also list example
simulations in which one or both initial BHs are scalarized
and they merge into an unscalarized remnant.

Appendix B: Validation tests

To validate our code, we performed a suite of con-
vergence tests. We ran Setup B, our numerically most
demanding setup, at a lower resolution of dxlow = 0.8M
and a higher resolution of dxhigh = 0.625M . The runs in
the main text use a medium resolution of dxmed = 0.7M .
The grid setup is the same across all simulations, see
Sec. III. We estimated the order of convergence n and its
associated convergence factor Qn,

Qn =
(dxlow)

n − (dxmed)
n

(dxmed)
n − (dxhigh)

n . (B1)

We computed the n and Qn for the gravitational wave-
form, Ψ4,22, of the background spacetime and for the
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Setup d/M χ1 χ2 χf β βc,1 βc,f process
A 10 0 0 0.68 −14.30 – −12.96 s̄+ s̄→ s↑

A1 6 0 0 0.68 −1000 – −12.96 s̄+ s̄→ s↑

A2 10 0.6 0.6 0.85 −2.9 −10.55 −3.01 s̄↑ + s̄↑ → s↑

A3 10 0.6 0.6 0.85 −12.0 −10.55 −3.01 s↑ + s↑ → s↑

A4 10 0.0 0.6 0.77 −12.0 −10.55 −5.59 s̄+ s↑ → s↑

B 10 −0.6 −0.6 0.48 −11.50 −10.55 – s↓ + s↓ → s̄↑

B2 10 0.4 −0.6 0.64 −12.0 −10.55 −21.50 s̄↑ + s↓ → s̄↑

TABLE II. List of our complete series of simulations. We denote the initial separation d/M with M being the total mass,
χ1 and χ2 are the initial dimensionless spin parameters of each BH, and χf is the final dimensionless spin parameter of the
remnant. We use s̄ and s to denote unscalarized and scalarized states, respectively, and the subscript ↑ (↓) indicates spin aligned
(anti-aligned) with the orbital angular momentum. The coupling chosen for each simulation is given by β, whereas βc,1 and βc,f
denote the critical couplings for the component/remnant BHs respectively.
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FIG. 11. Convergence plots for the ` = m = 2 mode of the
gravitational waveform (left panel) and the ` = m = 0 mode
of the scalar field (right panel). In both panels, we show
the difference between the low and medium resolution run
(solid line) and the medium and high resolution run (dashed
line). The latter is rescaled by Q4 = 1.94, indicating fourth
order convergence. The lines are shifted in time such that
(t − rex − tM)/M = 0 indicates the time of merger and they
are rescaled by the extraction radius rex = 100M .

scalar charge. We show the corresponding convergence
plots in Fig. 11. For Ψ4,22 we find fourth order conver-

gence, and we estimate the numerical (truncation) error
to be Ψ4,22/Ψ4,22 6 0.8%. For the scalar field charge,
Φ00, we also find fourth order convergence. performed a
convergence test on its ` = m = 0 multipole. We show
our result in the right panel of Fig. 11.
We find a cumulative error ∆Φ00/Φ00 6 30% in the

late inspiral. The numerical error in the merger and
ringdown is ∆Φ00/Φ00 6 15%. As we restrict this work
to a qualitative analysis, this error does not affect the
main results of the paper. Further quantitative work, such
as forecasting constraints on the theory would require this
issue to be addressed.

Finally, in Fig. 12, we show the Hamiltonian constraint
H along the z-axis for Setup B at different time instants.
The constraint violation remains below 10−5 outside the
BH horizon through the simulation.
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FIG. 12. Hamiltonian constraint along the z-axis during the
late-inspiral (solid black), half an orbit before merger (dashed
red), at the time of merger from the peak of the gravitational
waveform (dash-dot blue) and 100M after merger (dotted
green). The shaded region indicates the CAH, shown 100M
after merger.
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