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We calculate the eccentricity dependence of the high-order post-Newtonian (PN) series for the gen-
eralized redshift invariant 〈ut〉τ for eccentric-orbit extreme-mass-ratio inspirals on a Schwarzschild
background. These results are calculated within first-order black hole perturbation theory (BHPT)
using Regge-Wheeler-Zerilli (RWZ) gauge. Our Mathematica code is based on a familiar proce-
dure, using PN expansion of the Mano-Suzuki-Takasugi (MST) analytic function formalism for l
modes up to a certain maximum and then using a direct general-l PN expansion of the RWZ equa-
tion for arbitrarily high l. We calculate dual expansions in PN order and in powers of eccentricity,
reaching 10PN relative order and e20. Detailed knowledge of the eccentricity expansion at each
PN order allows us to find within the eccentricity dependence numerous closed-form expressions
and multiple infinite series with known coefficients. We find leading logarithm sequences in the PN
expansion of the redshift invariant that reflect a similar behavior in the PN expansion of the energy
flux to infinity. A set of flux terms and special functions that appear in the energy flux, like the
Peters-Mathews flux itself, are shown to reappear in the redshift PN expansion.

PACS numbers: 04.25.dg, 04.30.-w, 04.25.Nx, 04.30.Db

I. INTRODUCTION

Using a recently developed method and Mathemat-
ica code [1, 2], we calculated previously high-order
post-Newtonian (PN) expansions of the energy and an-
gular momentum radiated to infinity by non-spinning
eccentric-orbit extreme-mass-ratio inspirals (EMRIs) in
first-order black hole perturbation theory (BHPT) (see
also [3]). The resulting expansions, in both PN order
and eccentricity e, were taken to high PN order (19PN)
and e10 and to somewhat lower PN order (10PN) and
higher order (e20) in eccentricity. The detailed behav-
ior in eccentricity allowed us to find numerous closed-
form expressions and infinite series in e with identifiable
coefficient sequences. In the process we found a set of
leading-logarithm connections between low-order multi-
pole moments of the orbital motion and arbitrarily high
PN order sequences in the fluxes [2, 4, 5]. Since then,
fluxes at the horizon have also been found, to 18PN (rel-
ative to the leading horizon flux) and e10 as well as to
10PN and e20 [2, 6]. Taken together these expansions
are useful since fluxes are the most significant contribu-
tors to EMRI orbital phase evolution [7]. High-order PN
expansions of the fluxes and ultimately waveform ampli-
tudes associated with Kerr EMRIs could make important
early-phase baseline contributions to more comprehen-
sive efforts to develop “fast” waveform models for the
LISA mission [8].

These deep PN expansions in first-order BHPT in the
dissipative sector can also be extended to perturbations
of the metric and of local, conservative, gauge-invariant
quantities. The first such local quantity to be exam-
ined for its connections between BHPT and PN theory
was Detweiler’s redshift invariant [9] for circular orbits,
ut, which was initially calculated through 3PN order
[10]. Ultimately, Kavanagh, Ottewill, and Wardell [11]

used analytic expansion methods to compute this term
to 21.5PN for circular orbits. The redshift invariant was
generalized to eccentric orbits by Barack and Sago [12],
who defined it in that case as the average of ut taken in
proper time over one radial libration, 〈ut〉τ . Its behavior
was calculated to 3PN order in [13] using results from
the full PN theory (see [14] for review of status of PN
theory). The redshift is one of multiple gauge-invariants
that can be calculated in both BHPT and PN theory and
compared. Others that have been identified, either for
circular or eccentric orbits, include the first-order in the
mass ratio effects on apsidal advance of eccentric orbits
[12], location of the innermost stable circular orbit [15],
spin-precession invariant ψ (correction to geodetic pre-
cession) [11, 16–19], tidal invariants [11, 20], and octupole
invariants [21]. Conservative-sector invariants calculated
in BHPT may supply calibration of effective-one-body
(EOB) potentials (see, e.g., [22–34]), which is important
since EOB allows rapid evaluation of the dynamics of
merging binaries and covers broad regions of parameter
space. Recent work has also shown that the redshift in-
variant, in particular, can be directly translated to the
local sector of post-Minkowskian (PM) dynamics, allow-
ing derivation of higher-order PM scattering mechanics
[32–34]. This paper turns the use of our recently de-
veloped code to the task of uncovering the higher-order
(10PN and e20) behavior of the redshift invariant and
in the process we show intriguing physical connections
between the conservative and dissipative sectors.

The present method derives from work of [29, 35, 36].
Mode functions for l ≥ 2 are computed in the Regge-
Wheeler-Zerilli (RWZ) gauge [37, 38]. For l modes up
to a certain order, PN expansions of the mode functions
are found using the Mano-Suzuki-Takasugi (MST) for-
malism [39], as shown in previous applications [11, 17,
25, 29, 40, 41]. Modes of the metric perturbation are
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derived from the mode functions, and the modes of the
redshift invariant 〈ut〉lτ are found through projection of
the metric perturbation on the four velocity. Finite lo-
cal value of the redshift invariant is then obtained by
directly applying mode-sum regularization to the scalar
quantity. Mode-sum regularization requires knowledge
of all l modes. Beyond the range in l covered by the
MST expansion, we use a direct PN expansion ansatz for
general-l solutions of the Regge-Wheeler (RW) equation
[40]. The modes of 〈ut〉lτ derived at low l by MST and
general l by the ansatz are augmented by direct solution
of the l = 0, 1 modes to complete the regularization.

The structure of this paper is as follows. In Sec. II we
briefly outline the problem setup and the MST formal-
ism, with a focus on how the mode functions in the RWZ
gauge can be PN expanded. That section includes discus-
sion of the metric perturbations and how they are likewise
PN expanded. The metric perturbations evaluated at the
location of the small body are needed to find the regular-
ized (conservative sector) self-force. As mentioned, for
conservative sector quantities the l-mode expansion of
the metric must be made for all l. The MST formalism
is used to find l-modes up to a modest l related to the
sought-after PN order. Sec. III details the separate pro-
cedure used to obtain general, higher l-modes. In Sec. IV
we briefly recall the final two, non-radiative modes that
are not covered by the RWZ formalism and discuss the
mode-sum regularization procedure, which is specialized
here for extracting the redshift invariant. Secs. V is then
the heart of the paper, outlining the expected form of the
eccentric-orbit PN expansion of the redshift and display-
ing our results for the numerous non-log and log parts
of the eccentricity dependence up to 10PN order. (We
show results in this paper up to 8.5PN with the remain-
der being posted at [42, 43].) The redshift invariant is
expressed using two different compactness parameters,
1/p involving the dimensionless semi-latus rectum p and
y = (MΩϕ)2/3 involving the mean azimuthal frequency
Ωϕ. This section then summarizes the results, includ-
ing a discussion of the uncovered connection between the
redshift PN expansion and the PN expansion of the en-
ergy flux to infinity. We also compare our PN expansion
numerically to self-force results published previously for
compact orbits. Sec. VI concludes with summary and
outlook.

Throughout this paper we primarily choose units such
that c = G = 1, though in making PN expansions we
reintroduce η = 1/c as a PN (slow motion) parameter
for bookkeeping purposes. Our metric signature is (−+
++). Our notation for the RWZ formalism follows that
found in [3, 44], which in part derives from notational
changes for tensor spherical harmonics and perturbation
amplitudes introduced by Martel and Poisson [45]. For
the MST formalism, we largely make use of the discussion
and notation found in the review by Sasaki and Tagoshi
[46].

II. BRIEF REVIEW OF RWZ AND MST
FORMALISMS

We briefly outline the setup of the problem of calcu-
lating conservative sector perturbations for bound EMRI
motion on a Schwarzschild background. We further sum-
marize the MST analytic function expansions, the use of
which are required for modes with small l in the PN ex-
pansion. This process is more extensively detailed in [1]
and is based on earlier work in [11, 29, 35, 40, 41].

A. Bound orbits on a Schwarzschild background

The secondary is treated as a point mass µ in bound
geodesic orbit about a Schwarzschild black hole of mass
M with ε = µ/M � 1. The line element in Schwarzschild
coordinates xµ = {t, r, θ, ϕ} is

ds2 = −fdt2 + f−1dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
, (2.1)

with f = 1− 2M/r. For motion xα = xαp (τ) confined to
the equatorial plane, the four-velocity is

uα(τ) =
dxαp (τ)

dτ
=

(
E
fp
, ur, 0,

L
r2p

)
, (2.2)

where E and L are the conserved specific energy and an-
gular momentum, respectively. The radial proper veloc-
ity ur is then found from the normalization of uµ. Or-
bital motion is conveniently described by an alternative
(Darwin) parameter set {χ, p, e} [47–49] with

E2 =
(p− 2)2 − 4e2

p(p− 3− e2)
, L2 =

p2M2

p− 3− e2
,

rp (χ) =
pM

1 + e cosχ
. (2.3)

One radial libration occurs with each 2π advance in χ.
The dimensionless quantity 1/p can thus immediately
serve as a PN compactness parameter. Integrals can be
written down from separate ordinary differential equa-
tions (ODEs) for the evolution of ϕ, t, and τ in terms
of χ [44, 50]. Each integrand can be expanded as a PN
series (e.g., in 1/p) and the integrals can be solved order
by order in powers of 1/p. Definite integrals yield the
fundamental frequencies Ωr and Ωϕ. The radial period
is given by

Tr =

∫ 2π

0

rp (χ)
2

M(p− 2− 2e cosχ)

[
(p− 2)2 − 4e2

p− 6− 2e cosχ

]1/2
dχ,

with Ωr = 2π/Tr. The azimuthal frequency is given by

Ωϕ =
4

Tr

(
p

p− 6− 2e

)1/2

K

(
− 4e

p− 6− 2e

)
, (2.4)

where K(m) is the complete elliptic integral of the first
kind [51]. Each frequency is PN expanded. Once the
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azimuthal frequency known, the usual PN compactness
parameter y = (MΩϕ)2/3 can obtained as a power se-
ries in 1/p, or vice versa. Eccentric motion also leads to
expansions in powers of Darwin eccentricity e.

B. The RWZ master equation

Bound motion acts as a periodic source for the first-
order gravitational perturbations. On a Schwarzschild
background these can encoded by a pair (even and odd
parity) of RWZ-gauge master functions [37, 38, 45]. The
master equations in the frequency domain (FD) take the
form [

d2

dr2∗
+ ω2 − Vl(r)

]
Xlmn(r) = Zlmn(r). (2.5)

Here r∗ = r+2M ln |r/2M−1| is the tortoise coordinate,
the frequency spectrum is discrete ω ≡ ωmn = mΩϕ +

nΩr, and the source functions are given by

Zlmn(r) =
1

Tr

∫ 2π

0

(
Glm(t) δ[r − rp(t)]

+ Flm(t) δ′[r − rp(t)]
)
eiωtdt. (2.6)

The functions Glm(t) and Flm(t) [52] follow from the
point-particle stress-energy tensor. Both the source term
and the potential Vl(r) are (l +m) parity-dependent.

The homogeneous form of this equation yields two in-
dependent solutions: X in

lmn = X−lmn, with causal (down-

going wave) behavior at the horizon, and Xup
lmn = X+

lmn,
with causal (outgoing wave) behavior at infinity. The
odd-parity homogeneous solutions can be determined di-
rectly using the MST formalism [39], which we outline
below. The corresponding even-parity solutions are de-
rived from the odd-parity solutions using one form of the
Detweiler-Chandrasekhar transformation [44, 53–56].

C. The MST homogeneous solutions and the source integration

The MST solution for X+
lmn can be expressed [11] as

X+
lmn = eizzν+1

(
1− ε

z

)−iε ∞∑
j=−∞

aj(−2iz)j
Γ(j + ν + 1− iε)Γ(j + ν − 1− iε)
Γ(j + ν + 3 + iε)Γ(j + ν + 1 + iε)

×

U(j + ν + 1− iε, 2j + 2ν + 2,−2iz), (2.7)

where U is the irregular confluent hypergeometric function, ε = 2Mωη3, z = rωη, and η = 1/c (which serves as
a 0.5PN expansion parameter). In this equation, ν is the renormalized angular momentum, which is an eigenvalue
chosen to make the series coefficients aj converge in both limits as j → ±∞. Both ν and aj are determined through
a continued fraction method [39, 46], which leads to series in ε for both (which are then PN series).

Similarly, the solution for X−lmn is given by

X−lmn = e−iz
(z
ε
− 1
)−iε ( ε

z

)iε+1 ∞∑
j=−∞

aj
Γ(j + ν − 1− iε)Γ(−j − ν − 2− iε)

Γ(1− 2iε)
×

2F1(j + ν − 1− iε,−j − ν − 2− iε; 1− 2iε; 1− z/ε), (2.8)

which is expressed in terms of the ordinary (Gauss) hypergeometric function. The ν and aj appearing here are the
same as those found in solving for the up (+) solution (2.7).

The process of expanding these homogeneous solutions by collecting on powers of η is fully described in [1], based
on the methods initially presented in [40] and [11]. The homogeneous solutions are normalized initially by making
the choice a0 = 1 in solving the recurrence relation for aj . However, it proves useful to remove z-independent factors
from these solutions to reduce their size and complexity, as described in [1, 11]. This step temporarily rescales the
solutions, which are then used to form a Green function to find the inner and outer solutions that reflect the behavior
of the source. Integration with the Green function yields normalization coefficients on both sides of the source region

C±lmn =
1

WlmnTr

∫ 2π

0

(
dt

dχ

)[
1

fp
Glm(χ)X∓lmn +

(
2M

r2pf
2
p

X∓lmn −
1

fp

dX∓lmn
dr

)
Flm(χ)

]
eiωt(χ)dχ, (2.9)

where a subscript p denotes functions that are evaluated along the worldline of the particle and Wlmn is the Wronskian.
In the dissipative sector, it is necessary to rescale these coefficients in order that their complex square yields the fluxes
[1]. To find local conservative quantities, the time domain (TD) extended solutions, Ψ±lm, are constructed from the

combinations C+
lmnX

+
lmn and C−lmnX

−
lmn [1, 52], which automatically produce the proper normalization. In the present

application, these time domain functions are then PN expanded.
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D. The metric perturbations

The first-order generalized redshift invariant is a quantity that depends upon the metric perturbation and its
regularized behavior evaluated along the particle worldline. The general metric perturbation expressions all involve
products of the normalization coefficients C±lmn with some linear functional of the homogeneous solutions X±lmn, prior
to summing to transfer from the FD to TD [29, 52]. As discussed in [29], singular and discontinuous parts of the FD
metric perturbations cancel on the particle’s worldline in summing over m, leaving the l-dependent functions being
C0. The even-parity TD amplitudes are

Klm,±(t, r) = f∂rΨ
e,±
lm +A(r)Ψe,±

lm ,

hlm,±rr (t, r) =
Λ

f2

[
λ+ 1

r
Ψe,±
lm −K

lm,±
]

+
r

f
∂rK

lm,±,

hlm,±tr (t, r) = r∂t∂rΨ
e,±
lm + rB(r)∂tΨ

e,±
lm ,

hlm,±tt (t, r) = f2hlm,±rr , (2.10)

where Ψe
lm is the solution to the TD Zerilli-Moncrief equation [52]. The + and − superscripts correspond to whether

the solution is constructed from C+
lmnX

+
lmn or C−lmnX

−
lmn (see below). The expressions above use the following

definitions

λ =
1

2
(l + 2)(l − 1), Λ = λ+

3M

r
,

A(r) =
1

rΛ

[
λ(λ+ 1) +

3M

r

(
λ+

2M

r

)]
, B(r) =

1

rfΛ

[
λ

(
1− 3M

r

)
− 3M2

r2

]
. (2.11)

The l-mode decomposition of the full even-parity metric perturbation pµν can then be written as

plrr(t, r, θ, ϕ) =

l∑
m=−l

[
hlm,+rr (t, r)Θ[r − rp(t)] + hlm,−rr (t, r)Θ[rp(t)− r]

]
Ylm(θ, ϕ),

pltr(t, r, θ, ϕ) =

l∑
m=−l

[
hlm,+tr (t, r)Θ[r − rp(t)] + hlm,−tr (t, r)Θ[rp(t)− r]

]
Ylm(θ, ϕ),

pltt(t, r, θ, ϕ) = f2 plrr,

plAB(t, r, θ, ϕ) =

l∑
m=−l

r2ΩAB
[
Klm,+(t, r)Θ[r − rp(t)] +Klm,−(t, r)Θ[rp(t)− r]

]
Ylm(θ, ϕ). (2.12)

Here, ΩAB is the unit-radius metric on the two-sphere (i.e., Ωθθ = 1,Ωϕϕ = sin2 θ,Ωθϕ = Ωϕθ = 0), as utilized in [45].
Likewise we can express the odd-parity TD amplitudes as follows

hlm,±t (t, r) =
f

2
∂r(rΨ

o,±
lm ), hlmr (t, r, θ, ϕ) =

r

2f
∂tΨ

o,±
lm , (2.13)

with the l-mode decomposition of the full odd-parity metric perturbation given by

pltB(t, r, θ, ϕ) =

l∑
m=−l

[
hlm,+t (t, r)Θ[r − rp(t)] + hlm,−t (t, r)Θ[rp(t)− r]

]
X lm
B (θ, ϕ),

plrB(t, r, θ, ϕ) =

l∑
m=−l

[
hlm,+r (t, r)Θ[r − rp(t)] + hlm,−r (t, r)Θ[rp(t)− r]

]
X lm
B (θ, ϕ), (2.14)

where X lm
B (θ, ϕ) is the odd-parity vector spherical harmonic defined in [45].

These reconstructions of the metric are valid for all t and for r > 2M . The redshift invariant, however, merely
requires the behavior along the trajectory r = rp(t) itself. To parameterize the background motion, and therefore
the self-force, it is computationally convenient to use χ instead of t. Accordingly, we modify the notation so that
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quantities are thought to be functions of χ (e.g., r = rp(χ), f = fp(χ), t = tp(χ), etc). Expressing everything, including
derivatives, in terms of χ, we find the following local behavior for the l-modes of the even-parity metric perturbation

plrr(χ) =

(
dχ

dr

)∑
mn

Ylm(π/2, 0)

f
C±lmne

imϕ−iωt

{[(
dr

dχ

)
Λ(λ+ 1)

fr
−
(
dr

dχ

)
Λ

f
A(χ) + r

(
dA(χ)

dχ

)]
X±lmn(χ)

+ (rA(χ)− Λ)

(
dX±lmn(χ)

dχ

)
+ r

d

dχ

[
f

(
dχ

dr

)(
dX±lmn(χ)

dχ

)]}
,

pltr(χ) =
∑
mn

Ylm(π/2, 0)C±lmne
imϕ−iωt(−iω)

[
r

(
dχ

dr

)(
dX±lmn(χ)

dχ

)
+ rB(χ)X±lmn(χ)

]
,

pltt(χ) = f2pl,±rr ,

plAB(χ) = r2ΩAB
∑
mn

Ylm(π/2, 0)C±lmne
imϕ−iωt

[
f

(
dχ

dr

)
∂χX

±
lmn +A(χ)X±lmn

]
, (2.15)

and of the odd-parity metric perturbation

pltB(χ) =

(
f

2

)∑
mn

X lm
B (π/2, 0)C±lmne

imϕ−iωt
(
dχ

dr

)
d

dχ
(rX±lmn),

plrB(χ) =

(
r

2f

)∑
mn

X lm
B (π/2, 0)C±lmne

imϕ−iωt(−iω)X±lmn. (2.16)

Since the l-modes are C0 at r = rp(χ), the same result emerges in using either the + or − side mode functions.

III. GENERAL-l EXPANSIONS

The MST formalism, as briefly summarized in Sec. II, provides mode functions for specific l. We used that procedure
in several previous papers [1, 3–6, 44] that dealt with gravitational wave fluxes, taking advantage of the fact that
the PN expansions of higher l fluxes begin at successively higher PN order. To determine the redshift invariant or
other conservative quantities, l modes of the local behavior of the metric perturbation are needed. This introduces
a difficulty not encountered with the fluxes—the PN expansions of higher l contributions, plµν(χ), do not begin with

successively higher PN order. Thus, to obtain correct PN coefficients in the expansion of the metric plµν(χ), a sum
over all l must be made. This necessitates finding analytic expansions for arbitrary l.

A. The homogeneous solutions and normalization constants

To generate expansions for general l, we might try directly expanding the odd-parity MST solutions (2.7) and (2.8)
while leaving l arbitrary. However, the Γ functions in the summations make such an approach apparently intractable.
An alternative method utilizes an ansatz [11, 40] for the homogeneous solutions of the RW equation

X−lmn =
( ε
z

)−ν−1
(1 +A2η

2 +A4η
4 + · · ·+A2lη

2l +O(η2l+1)),

X+
lmn = (z)−ν(1 +B2η

2 +B4η
4 + · · ·+B2lη

2l +O(η2l+1)), (3.1)

as a general-l PN expansion with undetermined coefficients. Here Ai and Bi are functions of z, ε, l. The original
ansatz [40] employed different prefactors, namely rl+1 and r−l. This was modified [11] to use ν in the exponents,
which removes logarithmic terms from the Ai and Bi coefficients. The PN expansion of ν itself is found using the
continued fraction method (but for general l) and then the expansions are plugged into the homogeneous RW equation[(

1− ε

z

) ∂

∂z

((
1− ε

z

) ∂

∂z

)
+ η2 +

(
1− ε

z

)( l(l + 1)

z2
− 3ε

z3

)
η2
]
X±lmn = 0. (3.2)

The ODE is then solved order-by-order. For even parity, Zerilli equation solutions are derived from the RW solutions
via the Detweiler-Chandrasekhar transformation [1]. The ansatz (3.1) does not fully incorporate the boundary con-
ditions, which makes it break down at PN orders at and above O(η2l). If a target PN order P is set, the ansatz will
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be useless for l ≤ P and portions of the solution for those values of l must be determined separately with the MST
formalism.

Proceeding in this way, we obtain a general-l PN expansion for ν, the first few terms of which are

ν = l +
24 + 13l + 28l2 + 30l3 + 15l4

6l + 10l2 − 20l3 − 40l4 − 16l5
ε2 + (51840 + 102816l − 850608l2 − 1855326l3 − 675625l4 + 733273l5

+ 1217380l6 + 1397512l7 + 1355518l8 + 1520455l9 + 1678310l10 + 1096830l11 − 8295l12 − 605640l13−
456120l14 − 147840l15 − 18480l16)ε4/[8(l − 1)l3(1 + l)3(2 + l)(2l − 3)(2l − 1)3(1 + 2l)3(3 + 2l)3(5 + 2l)]

+O(ε6), (3.3)

and obtain the general-l expansions for the mode functions, which are again truncated after the first few terms

(zl)X+
lmn = Xser

up = 1 +

[
ε
(
−3 + 2l + l2

)
(1 + l)(2z)

+
z2

−2 + 4l

]
η2 (3.4)

+

[
ε2l
(
12− 29l + 4l2 + 11l3 + 2l4

)
4(3 + 2l) (−1 + l + 2l2) z2

+
ε
(
4− l + 8l2 + l3

)
z

4l (−1 + l + 2l2)
+

(1 + l)z4

8(−3 + 2l) (−1 + l + 2l2)

]
η4 +O(η6),

( ε
z

)l+1

X−lmn = Xser
in = 1−

[
ε

2z

(
−4

l
+ l

)
+

z2

6 + 4l

]
η2 (3.5)

+

[
ε2(−3 + l)(−2 + l)(1 + l)(2 + l)

l(−1 + 2l)4z2
+
ε(−12 + (−7 + l)l(2 + l))z

l(1 + l)(3 + 2l)4
+

z4

(15 + 16l + 4l2)8

]
η4 +O(η6).

Here we defined Xser as the normalized PN series that begin at O(1). It is useful to factor out leading terms (z−l) and
(ε/z)−l−1 at each step of the calculation so that PN orders do not depend on l. Eventually, all l-dependent powers of
η will cancel in the metric perturbation due to their corresponding presence in the Wronskian.

The next few steps in the general-l procedure are identical to the specific-l case [1, 29]. The Wronskian and source
terms are expanded and then the C±lmn normalization coefficients are computed using (2.9). The general-l expansions
are significantly lengthier than their specific-l counterparts, making this step a bottleneck in the calculation. Of course,
in applications to the orbital phase evolution in EMRI waveforms, the accuracy requirements on the conservative part
of the self-force are relaxed relative to those on dissipative terms by a factor of the mass ratio [7].

B. Sums of spherical harmonics over m

The construction of the full metric perturbation involves summation over all three mode indices l,m, n. The
summation over n is straightforward, as only finite n are needed to reach any particular order in the expansion
over eccentricity e. The summation over l will range from l = 0 to l = ∞, but the form of the summands will
involve products and quotients of polynomials in l. Infinite sums over these expressions are still trivial to execute in
Mathematica. This leaves the more difficult task of summing m modes from −l to l for general l. In the process of
constructing the l-modes of the metric perturbation (2.15), we find the following two classes of sums

l∑
m=−l

mN |Ylm(π/2, 0)|2 (even parity), (3.6)

l∑
m=−l

mN |∂θYlm(π/2, 0)|2 (odd parity), (3.7)

where N is any positive integer. Sums of these types occur because one spherical harmonic factor explicitly appears
in (2.15) while a second spherical harmonic implicitly resides in the calculation of C±lmn. Powers of m come from
powers of ε and PN expansion of the Fourier kernel. Closed-form expressions must be derived for both of these sums.

The evaluation of the first (even-parity) summation starts by using the spherical harmonic addition theorem,
reduced to the following form for this case

l∑
m=−l

eimϕ|Ylm(θ, 0)|2 =

(
2l + 1

4π

)
Pl(cos2 θ + sin2 θ cosϕ). (3.8)
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Then, the even-parity sum can be derived by differentiating multiple times

l∑
m=−l

mN |Ylm(π/2, 0)|2 =
∂N

∂ϕN

[
l∑

m=−l

(−i)Neimϕ|Ylm(π/2, 0)|2
]
ϕ=0

= (−i)N
(

2l + 1

4π

)
∂N

∂ϕN
[Pl(cosϕ)]ϕ=0 . (3.9)

When N is odd, the LHS is real while the RHS is imaginary. Thus, sums for odd N must vanish. Equivalently, we
can set z = iϕ and make the Taylor expansion of Pl(cos(−iz)) in z. Except for the added factor of (2l + 1)/4π, the
coefficient of the zN/(N !) term in the expansion will correspond to the desired sum over mN .

The odd-parity summation requires more effort but it can be derived by taking a pair of θ derivatives of the
even-parity addition formula

∂2

∂θ2

(
l∑

m=−l

emz|Ylm(θ, 0)|2
)

= 2

l∑
m=−l

emz|∂θYlm(θ, 0)|2 + 2

l∑
m=−l

emz
(
∂2θYlm(θ, 0)

)
Ylm(θ, 0). (3.10)

Rearranging and fixing the polar angle, we find

l∑
m=−l

emz|∂θYlm(π/2, 0)|2 =
1

2

∂2

∂θ2

[
l∑

m=−l

emz|Ylm(θ, 0)|2
]
θ=π/2

−
l∑

m=−l

emz
[
∂2θYlm(π/2, 0)

]
Ylm(π/2, 0). (3.11)

The first portion can be easily written in terms of Pl and the second term can be reduced using the spherical harmonic
differential equation itself. We then find

l∑
m=−l

emz|∂θYlm(π/2, 0)|2 =

(
2l + 1

8π

)
∂2

∂θ2

(
Pl(cos2 θ + sin2 θ cos(−iz))

)
θ=π/2

+ l(l + 1)

(
2l + 1

4π

)
Pl(cos(−iz))−

(
2l + 1

4π

)
∂2zPl(cos(−iz)), (3.12)

with the Nth term in the Taylor series in z giving the desired odd-parity summation over mN .
An alternative means of evaluating the two classes of summations involves expressing them in terms of the Gauss

2F1 hypergeometric functions. Indeed, it can be shown [57] that

l∑
m=−l

emz|Ylm(π/2, 0)|2 =

(
2l + 1

4π

)
elz 2F1(1/2,−l, 1, 1− e−2z), (3.13)

which is readily Taylor expanded in z with the Nth power term directly providing the even-parity result. The approach
based around expanding Legendre functions in (3.9) for calculating the even-parity sums is slightly faster than this
second, alternative route with hypergeometric functions, so we retain use of the former in our Mathematica code.

The same paper gives the following odd-parity summation (except for an errant factor of 1/4)

l∑
m=−l

emz|∂θYlm(π/2, 0)|2 =

(
2l + 1

π2

)
e(l−1)z

Γ(3/2)Γ(l + 1/2)

Γ(l)
2F1(3/2,−l + 1,−l + 1/2, e−2z). (3.14)

This expression is not immediately easily expanded in z. Instead, we can apply the hypergeometric identity

2F1(a, b, c, z) =
Γ(c− a− b)Γ(c)

Γ(c− a)Γ(c− b) 2F1(a, b; a+ b+ 1− c; 1− z)

+
Γ(a+ b− c)Γ(c)

Γ(a)Γ(b)
(1− z)c−a−b2F1(c− a, c− b; c+ 1− a− b; 1− z), (3.15)

to make headway. When substituted in (3.14), the second term on the right hand side in the identity vanishes for
all l of interest here since there is a Gamma function in the denominator Γ(b) = Γ(−l + 1) with negative argument.
Hence, the hypergeometric function itself in (3.14) can be replaced with the following,

Γ(−2)Γ(1/2− l)
Γ(−1/2)Γ(−l − 1)

2F1(3/2, 1− l; 3; 1− e−2z) = (−1)l
Γ(l + 2)

4
√
π

Γ(1/2− l)2F1(3/2, 1− l; 3; 1− e−2z), (3.16)
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where we have canceled the formally diverging terms using

Γ(−2)

Γ(−l − 1)
=

( −3∏
k=−l−1

k

)
=

1

2
(−1)l+1Γ(l + 2). (3.17)

Including the rest of the factors from (3.14) and noting

Γ(−l + 1/2)Γ(l + 1/2) = π sec lπ = π(−1)l, (3.18)

we arrive at

l∑
m=−l

emz|∂θYlm(π/2, 0)|2 =

(
2l + 1

8π

)
e(l−1)zl(l + 1) 2F1(3/2,−l + 1; 3; 1− e−2z). (3.19)

Taylor expanding the right hand side this expression in z and plucking off the mN term provides the desired odd-parity
sums and turns out to be much faster to execute in Mathematica than its Legendre function alternative.

With a means of handling the sums over m, the general-l PN expansions for the mode functions can be inserted
in (2.9) to obtain the PN expansion of C±lmn and in (2.15) to obtain the l-modes of the metric perturbation. The
calculation proceeds much the same way as in the specific-l case, though the general-l expansions are found to be
orders of magnitude larger and more cumbersome to manipulate.

IV. ADDITIONAL CONSIDERATIONS IN THE CONSERVATIVE SECTOR

Our previous papers [1, 3, 5] utilizing this code have focused on the dissipative sector. In the present effort,
leading to a PN expansion of the redshift invariant, there are additional considerations that arise exclusively in the
conservative sector. The first of these is the computation of the low-order modes (l = 0, 1) and the second is mode-sum
regularization.

A. Non-radiative modes

The l = 0 and l = 1 modes are not addressed by the RWZ master equation and the metric perturbations for these
modes must be found directly [38, 58–61]. We follow the presentation found in [29]. The l = m = 0 monopole mode
is even parity and was found by Zerilli to be

p0tt = 2µ

[
E
r
− f

Efprp

(
2E2 − fp

(
1 +
L2

r2p

))]
Θ[r − rp(t)], p0rr =

2µE
f2r

θ[r − rp(t)]. (4.1)

However, in this particular gauge the metric perturbation is not asymptotically flat, which can be seen by inspecting
the ptt component. Recovering asymptotic flatness is effected by introducing a gauge transformation [29, 61] involving
just the ξ0 component of the gauge generator. This affects only ptt (for the l = 0 mode) and leaves

p0tt = 2µ
E
r

Θ[r − rp(t)] +
2µf

Efprp

[
2E2 − fp

(
1 +
L2

r2p

)]
Θ[rp(t)− r]. (4.2)

For l = 1, both even-parity (m = 1) and odd-parity (m = 0) contributions are present. Gauge freedom allows the
odd-parity mode to appear in a single metric component,

p1tϕ = −2µL sin2 θ

(
1

r
Θ[r − rp(t)] +

r2

r3p
Θ[rp(t)− r]

)
, (4.3)

which is in a form suitable for our first-order perturbation calculations [29]. The even-parity l = m = 1 dipole
mode is more complicated and expressions can be found in [29, 38, 58]. However, this multipole part of the metric
perturbation is understood to be a pure-gauge mode and its contribution to the redshift invariant (and presumably
all other gauge-invariant quantities) vanishes locally [29].
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B. Mode-sum regularization

The last major hurdle in the computation of local conservative quantities is that of regularization. The retarded-
time metric perturbation emerges from (2.15) after summing over l, which diverges on the worldline of the particle.
A local gauge invariant quantity (like the redshift invariant) computed from the retarded field would itself diverge.
What is needed instead is to extract the effective (regular) metric perturbation experienced by the particle, which is
found through regularization.

Regularization can be approached by using the splitting prescription of Detweiler and Whiting [62], which decom-
poses the retarded metric perturbation into regular and singular fields

pµν(x) = pSµν(x) + pRµν(x). (4.4)

As its name implies, the singular field is divergent at the location of the particle, sharing this aspect with the retarded
field. The singular and retarded fields satisfy the same inhomogeneous field equation but with different boundary
conditions. A consequence is that the regular field pRµν is a solution to the homogeneous field equation. Because of
symmetry, the singular field makes no contribution to the self-force, leaving those effects to the regular part. In this
way, the regular metric perturbation added to the background Schwarzschild metric can be thought of as a smooth
effective metric in which the point particle executes (perturbed) geodesic motion.

The regular-singular decomposition can be incorporated as part of mode-sum regularization [63, 64]. This approach
takes advantage of the fact that while the retarded and singular fields are divergent on the worldline, their individual
l-modes are finite. Thus, if the l-modes of the singular field can be determined, they can be subtracted from the
l-modes of the retarded field, allowing a convergent sum to be formed for the regular metric perturbation. Like the
retarded metric, the singular metric is gauge dependent. The singular metric, or alternatively the self-force itself,
has l dependence that can be represented as an expansion in which each term has dependence that is polynomial in
l or reciprocal of a product of polynomials in l. Most work has focused on expanding the singular field in Lorenz
gauge and there the l-independent coefficients (i.e., regularization parameters) of these terms have been calculated
for multiple orders [65]. Only the first regularization parameter is needed in the case of the metric itself to achieve
a convergent result, while the first two parameters are needed to regularize the self-force. Because our approach is
analytic, only the regularization parameters that are essential for convergence are needed.

However, because our focus in this paper is on a gauge-invariant scalar quantity (i.e., the redshift invariant), we
can instead directly regularize the redshift invariant, avoiding the complications of components and gauge. As noted
by Detweiler [10], the regularization scheme becomes gauge invariant when working with gauge invariant quantities.
Furthermore, we avoid the whole usual issue of whether to regularize the metric components in a tensor spherical
harmonic basis or by treating each component in an expansion over scalar harmonics [66]. We are thus able to extract
the finite result using a single regularization parameter found by using Lorenz gauge.

V. THE GENERALIZED REDSHIFT INVARIANT

A. Background and implementation

For an eccentric orbit, the redshift invariant is the average of ut = dt/dτ integrated over proper time τ for one radial
libration period [12, 13, 29]. This quantity is equivalent to the coordinate-time period, Tr, divided by the proper-time
period, Tr, and generalizes Detweiler’s original redshift invariant, which was defined as the instantaneous value of ut

for circular orbits [10, 67]. All of the necessary tools to calculate the redshift invariant have been summarized in the
previous sections.

As mentioned before, this particular gauge-invariant quantity encodes important details of the conservative motion
of the system. The first-order conservative dynamics contribute at O(ε0) in the cumulative EMRI phase (i.e., post-1
adiabatic order), a level needed for the generation of accurate waveform templates in the LISA mission, making the
redshift invariant especially valuable. In addition, there is an exact correspondence between the PN expansion of
〈ut〉τ and the expansion of the Q(1/r, pr; ν) EOB potential, which governs the deviation from geodesic behavior in
the EOB Hamiltonian [27–29, 35, 36, 68]. The transformation between these quantities is outlined in [27].

Given our first-order self-force calculation, we seek the first-order correction to the ratio Tr/Tr. To achieve a gauge-
invariant result, we make the assumption that the (observable) radial libration frequency is held fixed in going from
the background geodesic to the first-order perturbed orbit. The result is that all of the necessary gauge-invariant
information is contained within the first-order correction to Tr alone [12, 13, 29]. Thus, we can express 〈ut〉τ as〈

ut
〉
τ

=
Tr

Tr + ∆Tr
=
Tr
Tr
−∆Tr

Tr
T 2
r

=
〈
ut
〉0
τ

+
〈
ut
〉1
τ
. (5.1)
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The first term, Tr/Tr, is the geodesic value of the redshift invariant, which can be trivially calculated using the Darwin
parameterization of the background orbit. The second term is the conservative self-force correction, scaling as µ/M
and requiring the calculation of the first-order piece of the proper time radial period ∆Tr. This correction was found
[12, 13] to be given by a projection of the regular part of the metric perturbation

∆Tr = −Tr
〈

1

2
pRµνu

µuν
〉
τ

= −Tr
〈

1

2
pµνu

µuν −HS

〉
τ

. (5.2)

Here the average is taken over a τ period and in the second equality the projection is made on the retard-time metric
perturbation. The term HS is the projection of the singular metric that must be subtracted off. To obtain finite
results, this subtraction is done in an l-mode by l-mode fashion using the leading order regularization parameter
[12, 29, 65]

HS =
∑
l

H[0] =
∑
l

2µ

π
√
L2 + r2

K
(
L2

L2 + r2

)
, (5.3)

where K is the complete elliptic integral of the first kind. Like the rest of our quantities, H[0] can be PN expanded in
1/p and expanded in e. The series expansion of H[0] is trivial to calculate, with the leading few terms being

H[0] =
( µ
M

)[1

p
(1 + e cosχ)− 1

4p2
(1 + e cosχ)

3
+

1

64p3

(
(1 + e cosχ)

3
(

9 (1 + e cosχ)
2 − 16(3 + e2)

))
+ · · ·

]
.

The regularized redshift invariant is constructed from the individual l-dependent differences〈
1

2
plµνu

µuν
〉
τ

−
〈
H[0]

〉
τ
, (5.4)

which are then summed from l = 0 to l = ∞. The l-modes of the retarded-time metric perturbation, plµν , are
calculated in three different blocks. The modes l = 0 and l = 1 are expanded using the non-radiative solutions in
Sec. IV A, while the modes from l = 2 to the integer part of the PN order minus 1 (which in this paper for 10PN
means l = 9) are expanded using specific-l MST solutions, and lastly the remaining modes from the desired PN order
to infinity are expanded using the general-l ansatz from Sec. III. Once (1/2)plµνu

µuν is assembled (and regularized)
for both specific and general l, the summation over l is computationally efficient.

This procedure was first implemented in [35], where the redshift invariant was expanded to 6.5PN and e2 in
eccentricity and to 4PN and e4. Shortly thereafter, the expansion was taken [29] to 4PN through e10. Those efforts
were followed by [36], who extended the result to 4PN and e20, as well as 9.5PN through e4. More recently, these
latter authors improved the eccentric knowledge to 9.5PN and e8 [34], as that level was needed to complete a novel
transcription of the redshift invariant to the scattering angle for hyperbolic orbits, which can be used to compute the
full post-Minkowskian dynamics to high order.

This paper extends the PN and eccentricity expansion further by taking the redshift invariant to 10PN and e20.
More importantly, we have further analyzed each eccentricity function (in keeping with work in [3–5, 44]) to find
those that can be manipulated either into closed-form expressions or into known infinite series. By known we mean
cases where an infinite series is derived from sums over Fourier spectra of low-order multipole moments, as we showed
occurs in the dissipative sector for gravitational wave fluxes radiated to infinity. Other sums over Fourier spectra
of low-order multipoles were shown [4, 5] to yield sequences of closed-form expressions in the PN expansion of the
fluxes to infinity. Surprisingly, a number of these special functions, both closed form and infinite series, reappear
in parts of the PN expansion of the (conservative) redshift invariant. In the case of non-closed-form functions, we
present resummations that rely on factoring out powers of 1 − e2 (often referred to as eccentricity singular factors)
that improve the convergence of the remaining series as e → 1 [4, 29, 44]. In what follows, we present the redshift
invariant in two different PN series, using first the compactness parameter 1/p and then the parameter y = (MΩϕ)2/3.

B. Redshift invariant as an expansion in 1/p

In terms of the compactness parameter 1/p, circular-orbit studies [11] lead us to expect the following form of the
PN expansion of the redshift invariant

〈
ut
〉1
τ

=
( µ
M

) 1

p

[
U0 +

U1
p

+
U2
p2

+
U3
p3

+
(
U4 + U4L log p

) 1

p4
+
(
U5 + U5L log p

) 1

p5
+
U11/2
p11/2
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+
(
U6 + U6L log p

) 1

p6
+
U13/2
p13/2

+
(
U7 + U7L log p+ U7L2 log2 p

) 1

p7
+
U15/2
p15/2

+
(
U8 + U8L log p+ U8L2 log2 p

) 1

p8
+
(
U17/2 + U17/2L log p

) 1

p17/2
+
(
U9 + U9L log p+ U9L2 log2 p

) 1

p9

+
(
U19/2 + U19/2L log p

) 1

p19/2
+
(
U10 + U10L log p+ U10L2 log2 p+ U10L3 log3 p

) 1

p10
+ · · ·

]
, (5.5)

where each one of the Uk is a function of eccentricity e (which if appropriately scaled is sometimes called an en-
hancement function). Our perturbation results when sorted on p dependence allow the Uk(e) functions to be read off.
Due to the increasing complexity of the expansion with PN order, we limit our presentation in this paper to 8.5PN
order. The full results to 10PN will be available on the Black Hole Perturbation Toolkit [42] website and our group
repository [43].

We find that the first few leading terms (0PN, 1PN, 2PN, and 3PN) all have simple closed-form expressions

U0 = −(1− e2),

U1 = −2
(
1− e2

)2
,

U2 =
(
1− e2

)2 (
9− 5e2

)
+
(
1− e2

)3/2 (−14 + 9e2
)
,

U3 =
(
1− e2

)2 (
28− 8e2 − 4e4

)
+
(
1− e2

)3/2 [−205

3
+

41π2

32
+ e2

(
−241

6
+

41π2

64

)
+

27e4

2

]
. (5.6)

All four of these functions were previously derived from the full PN theory in [13]. The first two, U0(e) and U1(e),
were later confirmed in closed form through expansion of the RWZ formalism by the authors of [29]. This latter effort
also produced U2(e) and U3(e) as power series in eccentricity through e10. Our calculation has now extracted and
verified the exact eccentricity functions found in [13] directly through BHPT.

At 4PN order, a log(p) term makes its first appearance. The 4PN non-log function contains combinations of
transcendentals similar to the 3PN flux at infinity. Intriguingly, the 4PN log term, U4L(e), is exactly proportional to
the Peters-Mathews quadrupole flux term, L0(e) [69]

U4L =
64

5

(
1− e2

)3/2(
1 +

73e2

24
+

37e4

96

)
=

64

5

(
1− e2

)5 L0(e). (5.7)

As we recall, the Peters-Mathews flux is found to be a sum over the Fourier power spectrum g(n, e) of the Newtonian
mass quadrupole [69, 70] (see also [4]),

L0(e) =

∞∑
n=1

g(n, e) =
1

(1− e2)7/2

(
1 +

73

24
e2 +

37

96
e4
)
. (5.8)

The similarities with the 3PN flux (and the fact that the 3PN log flux term shows up in the 3PN non-log flux)
led us to seek a compact expression for the 4PN non-log term, U4(e), resembling that of L3(e). The procedure is
described in Sec. IV of [4]. We found the following segregation of terms

U4 =
(
1− e2

)3/2 [− 1963

45
− 21182e2

45
+

1469e4

9
− 129e6

16
+
√

1− e2
(
− 1508

45
+

5281e2

90
− 159e4

2
+ 5e6

)]
(5.9)

−2

[
γE + log

(
8
(
1− e2

)3/2
1 +
√

1− e2

)]
U4L(e) +

(
1− e2

)3/2(677π2

512
+

17879π2

1536
e2 +

29665π2

12288
e4
)
− 128

5

(
1− e2

)5
Λ0(e).

As is evident, the 4PN non-log redshift invariant separates into a set of closed terms, including one with U4L(e), along
with an added term containing a function denoted by Λ0(e). The Λ0(e) function turns out to be an infinite series.
It is, in fact, the first in a sequence of functions that we previously identified [4]. In that paper, we showed that the
functions Λ1(e), Λ2(e), etc appeared in the leading-logarithm sequence in the energy flux at infinity. The first such
term that showed up in the flux was Λ1(e), also known as χ(e) [14, 71] which appears in the 3PN energy flux. The
sequence of functions Λk(e) that we defined contained a first element, Λ0(e), which is given by

Λ0(e) =

∞∑
n=1

log
(n

2

)
g(n, e). (5.10)
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Even though this particular function made no appearance in the energy flux, it does interestingly now appear in the
redshift at 4PN order.

At 5PN order there are log and non-log terms. The 5PN log term in the redshift is found to be another closed-form
function

U5L =
(
1− e2

)3/2(−956

105
− 2026e2

21
− 211e4

10
+

2393e6

420

)
. (5.11)

Just as with the 4PN case, the 5PN log term is coupled into the 5PN non-log term. Following the procedure used
above, we can seek a compact expression for the 5PN non-log redshift. The result is similar

U5 =
(
1− e2

)3/2 [(711289

1575
− 166903e2

252
− 5861983e4

4200
+

4691137e6

7200
− 5625e8

64

)
+
√

1− e2
(

61433

1050

+
366389e2

6300
+

1825589e4

3150
− 897e6

4
+ 26e8

)]
− 2

[
γE + log

(
8
(
1− e2

)3/2
1 +
√

1− e2

)]
U5L + Uχ5 (5.12)

+ π2
(
1− e2

)3/2 [− 64771

768
− 122659e2

768
+

106757e4

2048
+

9679e6

3072
+
√

1− e2
(

369

64
− 369e2

128
− 369e4

128

)]
,

with a set of new closed form terms and with a single remaining infinite series, denoted by Uχ5 , that soaks up the
appearance of log(2), log(3), etc transcendentals. This χ-like function has not (yet) been determined in terms of
multipoles within the multipolar post-Minkowskian (MPM) PN formalism [14] and thus it is only known in our
present calculation as an expansion to e20:

Uχ5 = (1− e2)3/2
[(

248 log(2)

7
− 243 log(3)

7

)
+

(
− 39380 log(2)

21
+

80919 log(3)

70

)
e2+(

1159803 log(2)

35
− 3082941 log(3)

320
− 9765625 log(5)

1344

)
e4 +

(
− 611462239 log(2)

1890
+

4054941 log(3)

896

+
3299921875 log(5)

24192

)
e6 +

(
32367232 log(2)

15
+

73001048877 log(3)

114688
− 3402892421875 log(5)

3096576
−

96889010407 log(7)

442368

)
e8 −

(
63126936562 log(2)

4725
+

34356489334353 log(3)

5734400
− 32100152734375 log(5)

6193152

− 28419552326641 log(7)

7372800

)
e10 +

(
5276536312963 log(2)

60750
+

10364402788528311 log(3)

458752000

− 7174481733359375 log(5)

445906944
− 322609178993859793 log(7)

10616832000

)
e12 +

(
− 5186372399556326 log(2)

10418625
+

1135462692217658751 log(3)

44957696000
+

1026818179405390625 log(5)

43698880512
+

9149100203955857957 log(7)

63700992000

)
e14+(

748264799632979347 log(2)

333396000
− 609082161701573645199 log(3)

822083584000
+

13203573865427998046875 log(5)

89495307288576

− 14949272565618057218377 log(7)

32614907904000
− 81402749386839761113321 log(11)

2237382682214400

)
e16

+

(
− 883299584070658267147 log(2)

108020304000
+

48265448696337440140569 log(3)

11509170176000

− 7667417741966072528515625 log(5)

4832746593583104
+

222715444298861595602129 log(7)

211344603217920

+
236352943152570442830239113 log(11)

362455994518732800

)
e18 +

(
290351111127874858038001 log(2)

10802030400000

− 974062330634519749930801293 log(3)

73658689126400000
+

423462131605851394906953125 log(5)

51549296998219776

− 3843873591325549271865416797 log(7)

2113446032179200000
− 1568842386573481329215281289749 log(11)

289964795614986240000

− 91733330193268616658399616009 log(13)

289964795614986240000

)
e20 + · · ·

]
. (5.13)
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The first half-integer PN term arises at 5.5PN order [72]. For circular orbits, this term is known to be associated
with the effect of the 1.5PN energy flux tail showing up in the redshift factor [73]. In our calculations for eccentric
orbits this function emerged as being exactly proportional to the eccentricity dependence of the 1.5PN energy flux
enhancement function ϕ(e) [4, 14, 44, 70, 71]

U11/2 = −13696

525
π
(
1− e2

)13/2
ϕ(e), (5.14)

a result that appears in [33] in slightly different notation. It is well known that the tail enhancement function is found
[70] as an infinite series over the Newtonian quadrupole moment power spectrum

ϕ(e) =

∞∑
n=1

n

2
g(n, e), (5.15)

and is therefore easily calculable to arbitrary order in e2. In [4] we found this function to be the first element, Θ0(e),
in an infinite sequence of functions, Θk(e), that appear in the subleading-log (or 3PN-log) terms in the energy flux.

Furthermore, as shown in [44], it is the combination
(
1− e2

)5
ϕ(e) that is an infinite series in e2 with diminishing

coefficients and which limits on a finite number as e→ 1.
At 6PN order, the log(p) term is found to also be a closed-form function in e2, but with the wrinkle that a lower-order

log term, U4L, reappears

U6L =
(
1− e2

)3/2(−419576

2835
− 3187312e2

2835
− 831494e4

945
− 59098e6

315
− 12889e8

5040

)
+

9

2
(1− e2)3/2 U4L. (5.16)

As with 5PN, we can make some headway in analyzing the structure of the 6PN non-log term. We find, for example,
that the 6PN log term couples into the 6PN non-log. We also find several closed-form functions multiplying the
appearance of the π2 and π4 transcendental combinations. Beyond that there is an infinite series with rational
coefficients and another series, Uχ6 , that contains log(2), log(3), etc transcendentals. At this point, we have not been
able to manipulate the rational-number series into a closed-form expression, which was possible in the case of U4 and
U5. Instead, both of these series are given as expansions to e20

U6 = (1− e2)3/2
(

17083661

4050
+

2700577231e2

132300
+

161896927e4

8400
+

30273005737e6

9525600
− 58376487559e8

152409600

− 5527943783e10

14515200
− 36259997113e12

174182400
− 67759073909e14

487710720
− 12979122851e16

123863040

− 37020766301e18

445906944
− 433129626457e20

6370099200
+ · · ·

)
− 2

[
γE + log

(
8
(
1− e2

)3/2
1 +
√

1− e2

)]
U6L

+ π4
(
1− e2

)3/2(2800873

262144
+

27872821e2

524288
+

41197641e4

2097152
− 135909e6

4194304

)
+ π2

(
1− e2

)3/2 [− 1231647119

1769472
− 4365848063e2

884736
− 8200800977e4

2359296
− 68605901e6

262144
− 38113839e8

8388608

+
(
1− e2

)3/2(−8339

1024
+

72005e2

1024
+

191331e4

8192

)]
+ Uχ6 , (5.17)

Uχ6 = (1− e2)3/2
[(

1215 log(3)

7
− 652336 log(2)

2835

)
+

(
30101992 log(2)

2835
− 85779 log(3)

40
− 9765625 log(5)

4536

)
× e2 +

(
− 177664066 log(2)

945
− 23175639 log(3)

2240
+

3353515625 log(5)

36288

)
e4 +

(
5725580404 log(2)

2835

+
15974601543 log(3)

17920
− 3033371509375 log(5)

2612736
− 96889010407 log(7)

373248

)
e6 +

(
− 887519089375 log(2)

40824

− 6552704842893 log(3)

573440
+

693828478128125 log(5)

83607552
+

87590207685169 log(7)

11943936

)
e8

+

(
2392238577122749 log(2)

10206000
+

3631791410461107 log(3)

57344000
− 162963875003125 log(5)

3981312
−

1019942547198706943 log(7)

11943936000

)
e10 +

(
− 105745169881200781 log(2)

52488000
+

3877667156883681 log(3)

65536000
+
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62356409327340625 log(5)

573308928
+

102210299549702981063 log(7)

171992678400

)
e12 +

(
3133171953524932019 log(2)

240045120
−

83389586865982335 log(3)

22478848
+

11457047215621220496875 log(5)

18877916381184
− 6522844667781563185519 log(7)

2293235712000

− 81402749386839761113321 log(11)

471947909529600

)
e14 +

(
− 4813254866666992632161 log(2)

72013536000

+
177380873493979007695959 log(3)

5754585088000
− 25670728576758333505178125 log(5)

2416373296791552

+
8810523169175992438990487 log(7)

880602513408000
+

254291295259872635488850159 log(11)

60409332419788800

)
e16

+

(
9192410559014602065623101 log(2)

31109847552000
− 53375870964426295835250711 log(3)

368293445632000

+
122391122829784578980588140625 log(5)

1565809896320925696
− 7642813738393655784243245839 log(7)

285315214344192000

− 188665985427182853199195707341 log(11)

3994413000818688000
− 91733330193268616658399616009 log(13)

39145247408023142400

)
e18

+

(
− 11551363401726154564820010019 log(2)

9332954265600000
+

5974056293971987433032285851 log(3)

14731737825280000

− 531598234297333443052911578125 log(5)

1391831018951933952
+

2732223161911355671416537362081 log(7)

57063042868838400000

+
12865262475131526047951261471976161 log(11)

39145247408023142400000

+
63598994107503492021893060068543 log(13)

1118435640229232640000

)
e20 + · · ·

]
. (5.18)

At 6.5PN the redshift function is found to be another (presumably) infinite rational-number series, which we
calculated to e20

U13/2 =π (1− e2)3/2
(

81077

3675
+

7082924e2

11025
+

19545681e4

15680
+

171593203e6

705600
− 24169567e8

4644864

− 5517037829e10

10160640000
+

1289360091619e12

7803371520000
− 1698130226071e14

229419122688000
− 377560795098119e16

587312954081280000

+
6704699069179e18

14158437285888000
+

8520571675445796049e20

76115758848933888000000
+ · · ·

)
. (5.19)

As a term that is 1PN relative to the 5.5PN redshift function, it is possible that the 6.5PN redshift may represent
some combination of the 1.5PN and 2.5PN energy flux tail functions (or more properly, of the 0PN and 1PN source
motion multipole moments). We will leave the search for that connection to a future paper.

The 7PN terms represent an added level of complexity, with a first appearance of a log2(p) term. The log2(p) term
is of closed form and is directly proportional to the 3PN log energy flux function, F (e) [14, 71]. The log term reveals
a structure similar to that of the 4PN non-log function, featuring a return appearance of U7L2 and containing another
one of the 3PN energy flux functions, in this case χ(e) = Λ1(e) [4, 14, 71] itself. Our expansion of the rational-
number series part, however, stops short of providing enough information to allow it to be manipulated into a closed
form. Finally, the 7PN non-log part is an infinite series with numerous transcendentals and powers of transcendental
numbers as coefficients. We present only a few coefficients here, saving the rest for the online repositories [42, 43].
These three functions are

U7 = (1− e2)3/2
[

12624956532163

382016250
− 10327445038γE

5457375
+

109568γ2E
525

− 9041721471697π2

2477260800
− 23851025π4

16777216

− 16983588526 log(2)

5457375
+

438272

525
γE log(2) +

438272 log2(2)

525
− 2873961 log(3)

24640
− 1953125 log(5)

19008

− 2048ζ(3)

5
+

(
40501543520891

125023500
− 37267116191γE

1091475
+

931328γ2E
315

− 37593336465137π2

990904320

− 12464105531π4

251658240
− 196923520603 log(2)

5457375
+

1753088γE log(2)

1575
− 6683648 log2(2)

1575
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− 55044555129 log(3)

784000
+

1872072

175
γE log(3) +

1872072

175
log(2) log(3) +

936036 log2(3)

175

+
2439453125 log(5)

114048
− 17408ζ(3)

3

)
e2 +

(
17120008508868443

27505170000
− 917258418203γE

10914750
+

8852752γ2E
1575

− 536485713928139π2

9909043200
+

24259399603π4

62914560
− 952475674979 log(2)

1212750
+

393441568γE log(2)

1575

+
740753296 log2(2)

1575
+

66160453137993 log(3)

55193600
− 4212162

35
γE log(3)− 4212162

35
log(2) log(3)

− 2106081 log2(3)

35
− 1472676171875 log(5)

2838528
− 678223072849 log(7)

6082560
− 165472ζ(3)

15

)
e4 + · · ·

]
, (5.20)

U7L = (1− e2)3/2
(

5163722519

5457375
+

36697636511e2

2182950
+

833592361883e4

21829500
+

219994202647e6

14553000

+
346091521507e8

232848000
+

5895396959e10

9504000
+

41803247e12

108000
+

16344589e14

60480
+

15771376787e16

77414400

+
178135189e18

1105920
+

29119129511e20

221184000
+ · · ·

)
− 4

[
γE + log

(
8
(
1− e2

)3/2
1 +
√

1− e2

)]
U7L2

− 109568

525
(1− e2)8χ(e), (5.21)

U7L2 = (1− e2)3/2
(

27392

525

)(
1 +

85

6
e2 +

5171

192
e4 +

1751

192
e6 +

297

1024
e8
)

= (1− e2)8
(

27392

525

)
F (e). (5.22)

As might be expected, the 7.5PN term, as the third half-integer term and 2PN correction to the 5.5PN redshift, is
an infinite series with rational coefficients

U15/2 =π (1− e2)3/2
(

82561159

467775
+

73692788269e2

26195400
+

336208042337e4

69854400
+

51301033584109e6

22632825600

+
117144137627477e8

241416806400
− 5009246358913537e10

57940033536000
− 4421924451335987e12

166867296583680

− 6030593084685188237e14

454249862922240000
− 639047634512255985157e16

74756548869488640000

− 213545959135760979200821e18

37677300630222274560000
− 90046530071830147716010793e20

22606380378133364736000000
+ · · ·

)
. (5.23)

The 8PN redshift contributions are similar in structure to features seen at 5PN, 6PN, and 7PN. Like 7PN, there
is an 8PN log2(p) term that is closed in form. The 8PN log term contains a return appearance of U8L2 and it further
separates, like the 5PN and 6PN non-log terms, into a χ-like series containing log transcendental number coefficients
and a remaining rational-number series. In this case, like 7PN log, the rational-number series in the 8PN log term is
only known to e20. The 8PN non-log term is a complex series, with only a few coefficients shown here, leaving the
rest to the online repositories [42, 43]. We find

U8 = (1− e2)3/2
[
− 7516581717416867

34763478750
− 1526970297506γE

496621125
− 108064γ2E

2205
− 246847155756529π2

18496880640

+
22759807747673π4

6442450944
− 1363551923554 log(2)

496621125
− 3574208γE log(2)

3675
− 2143328 log2(2)

1575

− 2201898578589 log(3)

392392000
+

37908

49
γE log(3) +

37908

49
log(2) log(3) +

18954 log2(3)

49
− 41408ζ(3)

105

+
798828125 log(5)

741312
+

(
− 11055650107673008247

6883168792500
+

4072595375711γE
496621125

− 36209008γ2E
3675

− 45536963437709173π2

277453209600
+

1900985448773627π4

64424509440
− 6752485219069 log(2)

23648625
+

77260192γE log(2)

1575

+
1369273264 log2(2)

11025
+

46741772758059 log(3)

156956800
− 70898166γE log(3)

1225
− 35449083 log2(3)

1225

− 70898166 log(2) log(3)

1225
− 6266287109375 log(5)

72648576
− 678223072849 log(7)

46332000
+

958624ζ(3)

105

)
e2
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+

(
1505993024318088529

1835511678000
+

157108097019259γE
496621125

− 7047512γ2E
147

− 128983569284008979π2

443925135360

+
810412974158849π4

42949672960
+

4268621081358131 log(2)

496621125
− 28157926288γE log(2)

11025
− 6057603976 log2(2)

1225

− 3927930747653331 log(3)

717516800
+

1973769687γE log(3)

2800
+

1973769687 log(2) log(3)

2800

+
1973769687 log2(3)

5600
− 29898969861484375 log(5)

16273281024
+

3173828125γE log(5)

7056
+

428016ζ(3)

7

+
3173828125 log(2) log(5)

7056
+

3173828125 log2(5)

14112
+

3748926479678051 log(7)

1976832000

)
e4 + · · ·

]
, (5.24)

U8L = (1− e2)3/2
(

769841899153

496621125
− 3814689327311e2

993242250
− 144438148878409e4

993242250
− 9467353875299e6

52972920

− 35883020985379e8

977961600
− 1471341925457e10

188348160
− 139981090287e12

32032000
− 33108069083e14

11289600

− 195156076961e16

90316800
− 51917170997e18

30965760
− 1393506257047e20

1032192000
+ · · ·

)
− 4

[
γE + log

(
8
(
1− e2

)3/2
1 +
√

1− e2

)]
U8L2 + Uχ8L, (5.25)

Uχ8L = (1− e2)3/2
[(

4280672 log(2)

11025
− 18954 log(3)

49

)
+

(
− 97532944 log(2)

2205
+

35449083 log(3)

1225

)
e2

+

(
13021836344 log(2)

11025
− 1973769687 log(3)

5600
− 3173828125 log(5)

14112

)
e4 +

(
20333297889 log(3)

78400

− 1607044879436 log(2)

99225
+

1754489453125 log(5)

254016

)
e6 +

(
56824736038921 log(2)

396900

+
453776788877859 log(3)

10035200
− 2483678962109375 log(5)

32514048
− 8816899947037 log(7)

663552

)
e8

+

(
− 852887396476489 log(2)

735000
− 280310702846358393 log(3)

501760000
+

10223282240234375 log(5)

21676032
+

18727987261867681 log(7)

55296000

)
e10 +

(
221370828402431906 log(2)

22325625
+

23025946077060861357 log(3)

8028160000

− 330898321172265625 log(5)

173408256
− 853513907519888633221 log(7)

238878720000

)
e12

+

(
− 8963770141645538357 log(2)

121550625
+

1232021848498062153183 log(3)

786759680000

+
1864847696637355859375 log(5)

458838245376
+

10521634442344300732457 log(7)

477757440000

)
e14

+

(
2479395019071424128029 log(2)

5834430000
− 12742371516403267758044721 log(3)

100705239040000

+
20498612836182160865234375 log(5)

939700726530048
− 7441303652495936331330901 log(7)

81537269760000

− 128046524785498944231253933 log(11)

23492518163251200

)
e16 +

(
− 1104365325145934208143569 log(2)

567106596000

+
191754205895862468592394607 log(3)

201410478080000
− 50803935116307668662066015625 log(5)

152231517697867776

+
10860283420254440580447366481 log(7)

39627113103360000
+

1744072191687631808797341997021 log(11)

13592099794452480000

)
e18

+

(
2220617736605099271594254231 log(2)

283553298000000
− 1024327182220393415834369745243 log(3)

257805411942400000
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+
10855085329137334241788375390625 log(5)

4871408566331768832
− 9898173809145672448664085120763 log(7)

15850845241344000000

− 103629515649148597467998465637518081 log(11)

76115758848933888000000

− 201538126434611150798503956371773 log(13)

3044630353957355520000

)
e20 + · · ·

]
, (5.26)

U8L2 = (1− e2)3/2
(
− 27016

2205
− 9052252e2

3675
− 1761878e4

147
− 20257439e6

2205
− 698783e8

784
+

491013e10

39200

)
. (5.27)

Finally, we provide in this paper one further term in the redshift invariant (8.5PN) and save the remaining results
to 10PN and e20 for release at the Black Hole Perturbation Toolkit [42] and our group repository [43]. The 8.5PN
redshift has both a log(p) and non-log term, each of which demonstrates additional connections to the energy flux
at infinity. The 8.5PN log term turns out to be proportional to a function, Θ1(e), that we identified previously [4]
as contributing to the 4.5PN energy flux. This function is given by the following sum over the Newtonian mass
quadrupole spectrum

Θ1(e) =

∞∑
n=1

(n
2

)3
g(n, e), (5.28)

and can be evaluated exactly to any desired order in e2. Thus, the 8.5PN log redshift is part of a leading-log sequence
in the redshift that is analogous to the leading-log series in the energy and angular momentum fluxes. We find
explicitly

U17/2L = − π
(

11723776

55125

)
(1− e2)19/2 Θ1(e)

= π(1− e2)3/2
(
− 11723776

55125
− 179108156e2

33075
− 3476454503e4

165375
− 30371758363e6

1587600
− 29489429729e8

7620480

− 6377226117523e10

76204800000
+

51655953119e12

130636800000
− 56934823428673e14

477956505600000
+

61709721913247e16

3277416038400000

− 10585818010370879e18

59465436600729600000
− 6093295182537785141e20

17839630980218880000000
+ · · ·

)
. (5.29)

The 8.5PN non-log term can then be separated in an orderly fashion. It features an appearance of U17/2L itself and
there is also a term with a second previously identified function, Ξ1(e) [4],

Ξ1(e) =

∞∑
n=1

(n
2

)3
log
(n

2

)
g(n, e), (5.30)

which is another analog of the function χ(e) and also depends exclusively upon the Newtonian mass quadrupole. This
second term soaks up all the remaining appearances of transcendental numbers and leaves a final series with rational
number coefficients. The result is

U17/2 = π(1− e2)3/2
(
− 2207224641326123

1048863816000
− 71647706604932467e2

1048863816000
− 810445553448114013e4

2581818624000

− 18435323045231443783e6

56638646064000
− 4277286582396672996821e8

51553754284032000
− 403116895474561377313e10

47734957670400000

− 2243648120491392755469179e12

477240468229324800000
− 15908263768163409948152909e14

5456449353421946880000

− 17132229781087995700006572689e16

7982005911291533721600000
− 2510618005651588728917156811889e18

1508599117234099873382400000

− 194103765865113110422717940935393e20

144825515254473587844710400000
+ · · ·

)
− 2

[
γE + log

(
8
(
1− e2

)3/2
1 +
√

1− e2

)
−
(

35

107

)
π2

]
U17/2L

+ π

(
23447552

55125

)
(1− e2)19/2Ξ1(e). (5.31)
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C. Redshift invariant as an expansion in y

We can now use the easily derived PN expansion of 1/p in terms of the compactness parameter y to give an
alternative expansion of the redshift invariant. The general form of that expansion is

〈ut〉1τ =
( µ
M

)
y

[
V0 + V1y + V2y2 + V3y3 +

(
V4 + V4L log y

)
y4 +

(
V5 + V5L log y

)
y5 + V11/2y11/2

+
(
V6 + V6L log y

)
y6 + V13/2y13/2 +

(
V7 + V7L log y + V7L2 log2 y

)
y7 + V15/2y15/2

+
(
V8 + V8L log p+ V8L2 log2 y

)
y8 +

(
V17/2 + V17/2L log y

)
y17/2 +

(
V9 + V9L log p+ V9L2 log2 y

)
y9

+
(
V19/2 + V19/2L log y

)
y19/2 +

(
V10 + V10L log p+ V10L2 log2 y + V10L3 log3 y

)
y10 + · · ·

]
. (5.32)

The Vk(e) functions in the y expansion exhibit most of the same structure as the Uk(e) in the 1/p expansion, so as
we list our findings we will primarily refer back to the previous section for comments found there. As with the 1/p
results, the first few terms in the y series all yield closed forms, with the first two having been found previously [29]

V0 =− 1, (5.33)

V1 =− 2− 4e2

1− e2
, (5.34)

V2 =
1

(1− e2)2

(
14− 15e2

2
− 6e4 +

√
1− e2(−19 + 14e2)

)
, (5.35)

V3 =
1

(1− e2)3

[
58− 132e2 + 76e4 − 8e6

3
+
√

1− e2
(
−295

3
+

41π2

32
+ e2

(
713

6
+

41π2

64

)
− 171e4

2

)]
. (5.36)

The 4PN terms share properties with U4 and U4L as discussed near (5.9) and (5.7) (with the added change of a
sign flip between log(p) and log(y) terms)

V4 =
1

(1− e2)4

[
− 66827

180
+

117799e2

180
− 442291e4

1440
− 65e6

12
+

85e8

3
+
√

1− e2
(

52943

180
− 84751e2

360

+
5881e4

72
+

3327e6

16

)]
+ 2

[
γE + log

(
8
(
1− e2

)
1 +
√

1− e2

)]
V4L

+
π2

(1− e2)7/2

(
677

512
+

2135π2

1536
e2 − 33311π2

12288
e4
)
− 128

5
Λ0(e), (5.37)

V4L =− 64

5

1

(1− e2)7/2

(
1 +

73e2

24
+

37e4

96

)
= −

(
1− e2

)−5 U4L = −64

5
L0(e). (5.38)

The remaining higher-order terms are similar to their counterparts in the 1/p expansion. In what follows, we give
the closed-form parts and many of the infinite series in e2 out to order e20 (with a few exceptions). For brevity we
have omitted listing the χ-like portions of the y-expansion terms (e.g., Vχ5 , Vχ6 , etc), relegating those along with the
more complicated series expansions to the posting at [42, 43]. The 5PN terms have a structure that mirrors that
discussed near (5.11) and (5.12)

V5 =
1

(1− e2)5

(
1606877

3150
+

7523659e2

3150
− 733791e4

280
+

838289e6

5040
− 4985231e8

8064
+

35782139e10

268800

+
11177111e12

201600
+

19535179e14

806400
+

70069067e16

5734400
+

38935589e18

5898240
+

752638217e20

206438400
+ · · ·

)
+ 2

[
γE + log

(
8
(
1− e2

)
1 +
√

1− e2

)]
V5L +

π2

(1− e2)9/2

[
− 84451

768
− 68375e2

384
− 87881e4

6144
+

4243e6

2048

+
√

1− e2
(

2009

64
− 2009e2

128
− 2009e4

128

)]
+ Vχ5 , (5.39)

V5L =
1

(1− e2)9/2

(
956

105
+

4714e2

21
+

12313e4

30
+

6109e6

140

)
. (5.40)



19

As the first appearance of a term of its type, the 5.5PN redshift V11/2(e) is identical to U11/2(e) (5.14) up to a

power of 1− e2 and is likewise proportional to the 1.5PN energy flux tail

V11/2 = −13696

525
π ϕ(e) =

(
1− e2

)−13/2 U11/2. (5.41)

An understanding of the structure of the 6PN terms follows from the discussion surrounding (5.17) and (5.16)

V6 =
1

(1− e2)6

(
17083661

4050
+

532849892e2

19845
− 13121598937e4

793800
+

22207024181e6

4762800
− 171292853309e8

33868800

− 31878137383e10

67737600
− 2080903905791e12

1219276800
− 99502106951e14

81285120
− 7814620751519e16

8670412800

− 109440738879557e18

156067430400
− 14748616145089e20

26011238400
+ · · ·

)
+ 2

[
γE + log

(
8(1− e2)

1 +
√

1− e2

)]
V6L

+
π4

(1− e2)11/2

(
2800873

262144
+

27872821e2

524288
+

41197641e4

2097152
− 135909e6

4194304

)
+

π2

(1− e2)11/2

[
− 1380825359

1769472
− 3533232287e2

884736
− 3298849937e4

2359296
− 106812205e6

262144
+

384008563e8

25165824

+
(
1− e2

)3/2(77991

1024
+

110221e2

3072
− 2256613e4

24576

)]
+ Vχ6 , (5.42)

V6L =
1

(1− e2)11/2

(
1326776

2835
+

5364808e2

2835
− 1087216e4

945
− 141367e6

63
− 1010039e8

5040

)
+

59

2
√

1− e2
V4L. (5.43)

The 6.5PN term is proportional to an infinite series with rational number coefficients, similar to the U13/2 term
(5.19)

V13/2 =
π

(1− e2)6

(
81077

3675
+

10821932e2

11025
+

518653529e4

141120
+

465892081e6

235200
+

10086118841e8

116121600

+
3522792971e10

10160640000
− 489338360093e12

7803371520000
+

8260641257293e14

1147095613440000
− 45676604096923e16

117462590816256000

+
1182988156073e18

70792186429440000
+

1182698258651584849e20

76115758848933888000000
+ · · ·

)
. (5.44)

The redshift invariant at 7PN features the first appearance of a log2(y) term, which is closed in form. As the
discussion surrounding the corresponding terms, (5.20), (5.21), and (5.22), in the 1/p expansion showed, the 7PN
y-expansion terms separate similarly

V7 =
1

(1− e2)7

[
12624956532163

382016250
− 10327445038γE

5457375
+

109568γ2E
525

− 9041721471697π2

2477260800
− 23851025π4

16777216

− 16983588526 log(2)

5457375
+

438272

525
γE log(2) +

438272 log2(2)

525
− 2873961 log(3)

24640
− 1953125 log(5)

19008

− 2048ζ(3)

5
+

(
95954904706559

312558750
− 60219626092γE

1819125
+

4492288γ2E
1575

− 29974613135297π2

1238630400

− 99857911927π4

503316480
− 357143036 log(2)

11025
+

219136

315
γE log(2)− 7341056 log2(2)

1575
− 153791486811 log(3)

2156000

+
1872072

175
γE log(3) +

1872072

175
log(2) log(3) +

936036 log2(3)

175
+

611328125 log(5)

28512
− 83968ζ(3)

15

)
e2

+

(
− 408859577737

22325625
− 103798581437γE

1039500
+

926192γ2E
225

+
77870248904627π2

2831155200
− 104270589937π4

402653184

− 20802851168513 log(2)

21829500
+

130800224

525
γE log(2) +

106275824 log2(2)

225
+

347735485526229 log(3)

275968000

− 21996846

175
γE log(3)− 21996846

175
log(2) log(3)− 10998423 log2(3)

175
− 1417441796875 log(5)

2838528
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− 678223072849 log(7)

6082560
− 121184ζ(3)

15

)
e4 + · · ·

]
, (5.45)

V7L =
1

(1− e2)13/2

(
− 5163722519

5457375
− 36822832351e2

2182950
− 136448109487e4

2425500
− 505462816847e6

14553000

+
2286191870693e8

232848000
+

114737952487e10

66528000
+

8196389e12

54000
− 545737e14

60480
− 4065182087e16

77414400
(5.46)

− 70788229e18

1105920
− 14350431011e20

221184000
+ · · ·

)
+ 4

[
γE + log

(
8(1− e2)

1 +
√

1− e2

)]
V7L2 +

109568

525
χ(e),

V7L2 =
1

(1− e2)13/2

(
27392

525

)(
1 +

85

6
e2 +

5171

192
e4 +

1751

192
e6 +

297

1024
e8
)

=

(
27392

525

)
F (e). (5.47)

The 7.5PN term is proportional to another infinite series in e2 with rational coefficients

V15/2 =
π

(1− e2)7

(
82561159

467775
+

91675684453e2

26195400
− 16022780959e4

69854400
− 691420819648151e6

22632825600

− 4122993297854251e8

241416806400
− 67223507326794097e10

57940033536000
− 4573218369555807463e12

20858412072960000

− 10499957605818206893e14

90849972584448000
− 36738832192598535471139e16

523295842086420480000

− 35781609047672532119149e18

768924502657597440000
− 740782396859898339667508393e20

22606380378133364736000000
+ · · ·

)
. (5.48)

As the discussion near (5.24), (5.25), and (5.27) would suggest, the 8PN term is quite complex but does allow a
separation into closed-form and infinite series parts of different type. We find

V8 =
1

(1− e2)8

[
− 7516581717416867

34763478750
− 1526970297506γE

496621125
− 108064γ2E

2205
− 246847155756529π2

18496880640

+
22759807747673π4

6442450944
− 1363551923554 log(2)

496621125
− 3574208γE log(2)

3675
− 2201898578589 log(3)

392392000
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+

37908
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γE log(3) +
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log(2) log(3) +
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+
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+
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+
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225
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26424115200

+
879870714987551π4

32212254720
− 2812127235664 log(2)

12733875
+

398923264γE log(2)

11025
+

245903104 log2(2)

2205

+
58970211975621 log(3)

196196000
− 71372016γE log(3)

1225
− 71372016 log(2) log(3)
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− 35686008 log2(3)

1225

− 1546498046875 log(5)

18162144
− 678223072849 log(7)

46332000
+

238208ζ(3)

15

)
e2 +

(
− 1850695307993262971

367102335600

+
474991573730237γE

662161500
+

85298687127989143π2

184968806400
− 108590956γ2E

1225
+

318549856963953π4

85899345920
+

1927184488471871 log(2)

220720500
− 28549712792γE log(2)

11025
− 54378998732 log2(2)

11025
+

1575274959 log2(3)

5600

− 3185922772104363 log(3)

717516800
+

1575274959γE log(3)

2800
+

1575274959 log(2) log(3)
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− 33310535689609375 log(5)

16273281024
+

3173828125γE log(5)
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+

3173828125 log(2) log(5)
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+
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14112
+

11290185715696489 log(7)

5930496000
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7

)
e4 + · · ·

]
, (5.49)

V8L =
1

(1− e2)8

(
− 769841899153

496621125
+

1569199431248e2

70945875
+

461479855229957e4

1324323000
+
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9459450

+
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454053600
− 80964330820213e10

216216000
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− 197888011746329e14
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− 96496373295233e16

2012774400
− 2126293356495073e18

59175567360
− 47751587053936639e20

1690730496000
+ · · ·

)
+ 4

[
γE + log

(
8(1− e2)

1 +
√

1− e2

)]
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V8L2 =
−1

(1− e2)15/2

(
27016
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+

4040052e2

1225
+

52505354e4

2205
+

349164251e6

11025
+

1500201151e8

176400
+

1800063e10

7840

)
. (5.51)

The 8.5PN redshift term in the y-expansion is similar to (5.31) and (5.29), and separates into distinct infinite series
with the appearance of the special functions Θ1(e) and Ξ1(e)

V17/2 =
π

(1− e2)8
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− 2207224641326123

1048863816000
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+
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+
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+
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) ∞∑
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2
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=
π

(1− e2)8

(
11723776

55125
+

179108156e2

33075
+

3476454503e4

165375
+

30371758363e6

1587600
+

29489429729e8

7620480

+
6377226117523e10

76204800000
− 51655953119e12

130636800000
+
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477956505600000
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+
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+
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+ · · ·

)
. (5.52)

D. Discussion

A primary focus of this paper is on taking the high-
order analytic PN series of the redshift invariant to a
deeper expansion in eccentricity, with the goal of finding
as many closed-form terms or fully-determinable infinite
series expansions in e as possible. By pushing our ana-
lytic self-force calculation to e20, we found a surprising
amount of this fully-explicable structure in the eccen-
tricity dependence, including a series of connections be-
tween the (conservative-sector) redshift invariant and the
(dissipative-sector) energy flux to infinity. We summarize
the findings here.

The 0PN and 1PN redshift functions, V0(e) and V1(e),
were found previously through self-force calculations and
known to have closed form [29]. (This effectively is also
true of U0(e) and U1(e), and everything we say in this sec-
tion about the analytic determinability of Uk(e) functions
in the 1/p expansion pertains equally well to Vk(e) func-
tions in the y expansion.) In taking the self-force calcula-

tions further, we are able to show that the 2PN and 3PN
redshift terms can be condensed into closed expressions of
a particular form, with a dominant-subdominant eccen-
tricity singular factor structure, though these two terms
were previously found [13], in slightly different form, us-
ing a full PN theory calculation (see their Eq. (4.51)).
The 2PN term, which contains only rational number coef-
ficients, is reminiscent of the 2PN energy flux, L2(e) [71].
The 3PN redshift term contains both rational numbers
and appearances of coefficients with π2, which is unlike
any PN term in the flux expansion prior to the advent
of tail-squared terms. The appearance of π2 in this early
term in the redshift is traceable to the sum over infinite l
that occurs in conservative sector self-force calculations.
(Recall that the sum of inverse square integers is ζ(2)
and totals to π2/6.)

It is at 4PN and beyond in the redshift expansion that
our calculation reveals new results. Indeed, at 4PN order
itself there emerges a more profound connection between
the redshift expansion and the energy flux at infinity.
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We found the U4L(e) term in the redshift invariant to be
exactly proportional to the Peters-Mathews energy flux
L0(e) [69]. (This result was implicitly present in the 4PN
log term, V4L, found in [29] but its closed form and con-
nection to the energy flux was missed by resumming on
a different eccentricity singular factor.) Then, within the
4PN non-log term, U4(e), we found the Peters-Mathews
flux function reappearing, as well as a second function,
Λ0(e), that also depends exclusively on a sum over the
Fourier power spectrum g(n, e) [4] of the Newtonian mass
quadrupole moment. The function Λ0(e) is an infinite se-
ries in e2 but its coefficients are fully determinable at all
orders. Other than Λ0(e), the rest of the U4(e) term
has a closed form. The structure of U4(e) is similar to
the 3PN non-log energy flux [71], except that where the
two Newtonian-quadrupole-derived functions, F (e) and
χ(e) = Λ1(e), appear in L3(e), it is L0(e) and Λ0(e) that
appear in U4(e).

Following the discussion in [4], we can recognize the
connection between U4L(e) and U4(e) is similar to that
occurring between leading and subleading logarithmic
terms in the PN expansion of the flux at infinity. As
a reminder, we showed previously [4] that a pair of infi-
nite sequences of leading logarithms exists in the energy
flux PN expansion, at integer orders p−3k logk(p) and at

half-integer orders p−(3k+3/2) logk(p) (for k ≥ 0). The
terms in these sequences are completely determined by
sets of special functions, Tk(e) and Θk(e), that are de-
fined by infinite sums over n of even and odd integer pow-
ers of n/2 multiplying the Newtonian mass quadrupole
spectrum g(n, e). A new term in each sequence arises
every 3PN orders as a new power of log(p) appears. Ev-
ery integer-order leading log (proportional to Tk(e)) can
be shown to have a closed-form expression. Every half-
integer-order leading log (proportional to Θk(e)) remains
an infinite series, but with exactly known rational num-
ber coefficients.

The subleading-log terms formed a second pair
of infinite sequences in the energy flux at inte-
ger orders p−3k logk−1(p) and at half-integer orders

p−(3k+3/2) logk−1(p). At the same PN order as a leading-
log term, these are terms with one lower power of log(p).
In another context [5], these terms were referred to as
3PN-corrected leading logs (or 3PN-log terms). At inte-
ger PN order these subleading-log terms were shown to
feature a return appearance of the functions Tk(e) and
another special function, Λk(e), with the remaining an-
alytic dependence requiring self-force calculation to de-
termine. At half-integer PN order these subleading-log
terms were shown to feature a return appearance of the
functions Θk(e) and yet another special function, Ξk(e).
The positions of these leading and subleading-log terms
in the energy flux PN expansion are graphically depicted
in Fig. 1 in [5] by the four red and green sequences.

If we now carry these ideas over to the PN expansion
of the redshift invariant, we can take the 4PN log term,
U4L(e), as the start of the integer-order redshift leading-
log sequence. The next terms in that sequence would be

U7L2(e), U10L3(e), etc. If the observed pattern holds to
higher order, each term in the sequence will be fully de-
termined by the Newtonian quadrupole and proportional
to the closed-form functions Tk(e), starting with k = 0.
Since the leading logs in the energy flux actually begin
with the non-log L0(e) Peters-Mathews term, in princi-
ple it is an open question whether we should consider
the non-log term U1(e) as the start of the redshift lead-
ing logs. The conjectures regarding the primacy of the
Tk(e) functions and U1(e) will ultimately be settled by a
formal PN theory calculation.

The first half-integer-order term in the redshift is
U11/2(e) at 5.5PN order. This first appearance of a half-
integer order term was found in high precision numerical
work [72] and its connection to the tail field was discussed
in [73]. In our self-force calculations this term emerged
as exactly proportional to the 1.5PN energy flux tail en-
hancement function ϕ(e) (see also [33]), which is the first
function Θ0(e) in the Θk(e) function sequence [4]. It is
reasonable to regard U11/2(e) as the first element in the
redshift half-integer leading-log sequence, which is lagged
by four PN orders relative to the corresponding sequence
in the energy flux. The next elements in this sequence
would be U17/2L(e), U23/2L2(e), etc. As we showed in the
previous subsections, U17/2L(e) is directly proportional
to Θ1(e), which supports a conjecture that the entire run
of half-integer-order leading logs will be determined by
the Θk(e) functions. The next element in that sequence,
U23/2L(e), is beyond where we have taken our present
calculations.

If the redshift leading logs begin with U4L(e), then the
redshift integer-order subleading logs start with U4(e).
This sequence continues with U7L(e), U10L2(e), etc. Our
present calculations reveal the first three elements in this
sequence. Like in the corresponding sequence in the en-
ergy flux, we find that the redshift subleading logs fea-
ture a return appearance of the closed-form leading-log
function (proportional to the relevant Tk(e)) and func-
tions from the Λk(e) (χ-like [71]) sequence, starting with
k = 0).

The half-integer-order subleading logs in the redshift
would begin with U17/2(e) and continue with terms with

k ≥ 1 that have PN dependence p−3k−17/2 logk−1(p).
Our present calculations only overlap the first term in
this sequence, but we do see the expected behavior that
U17/2(e) depends in part on U17/2L(e) (∝ Θ1(e)) and on
Ξ1(e).

It seems reasonable to conjecture that, like in the en-
ergy flux [5], there will be 1PN-log sequences in the red-
shift. At integer PN orders, this sequence would be
U5L(e), U8L2(e), U11L3(e), etc. Our results reveal the
first two terms in this sequence and find that they are
both closed-form expressions. Following the logic, the
half-integer-order 1PN-logs would be the sequence that
starts with U13/2(e), U19/2L(e), U25/2L2(e), etc. The first
two functions follow the expectation of being rational-
number coefficient infinite series (times an overall factor
of π). Like with the 1PN-logs in the energy flux expan-
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sion, these terms may derive from what we called earlier
[5] the 1PN (source) multipole moments–the Newtonian
current quadrupole, the Newtonian mass octupole, and
the 1PN correction to the mass quadrupole. This idea
deserves further study.

Finally, the analogues in the redshift of the 4PN-logs in
the energy flux [5] would be the integer-order sequence
U5(e), U8L(e), U11L2(e), etc and the half-integer-order
sequence U19/2(e), U25/2L(e), etc. If the analysis of the
corresponding terms in the energy flux is a guide, these
too might be partly determined through application of
known levels of PN theory. Note that once a derivation
of Uχ5 is found, all PN terms through 5.5PN (at first
order in the mass ratio) in the redshift invariant will be
completely known functions of eccentricity.

E. Comparison to numerical data

We can assess the validity of these expansions by com-
paring them to the numerical redshift data given in Ta-
ble II of [13]. Results from larger orbits in that data
set are well fit by our PN expansions, which leads us to
single out smaller orbits (p = 10 and p = 20) for com-
parison, where convergence is expected to be slower. We
compare the numerical self-force results to both the y
and 1/p versions of our PN expansions, and we try a
few added resummation methods to check for improved
convergence. Two such methods are logarithmic resum-
mation (in which the log of the series is taken, the new
series is evaluated numerically, and then the result is ex-
ponentiated) and reciprocal resummation [74, 75].

Results from making the comparisons at two orbital
sizes (p = 10 and p = 20) are shown in Figs. 1 and 2.
Fig. 1 considers four distinct orbits (with the two sepa-
rations and with two eccentricities, e = 0.1 and e = 0.4).
The wider orbit (p = 20) with low (e = 0.1) eccentric-
ity converges rapidly and uniformly with increasing PN
terms. At the other extreme, the orbit with p = 10 and
e = 0.4 is decidedly slower to converge but still reaches a
relative error of order 10−4 when using the y expansion
and its resummations. The energy flux required an ex-
pansion to 19PN to attain an error of 10−5 for the p = 10,
e = 0.5 orbit [1], which suggests that the redshift invari-
ant has better convergence properties. Furthermore, it is
worth remembering that in EMRI calculations the contri-
butions to the orbital phase evolution from conservative
terms in the dynamics are suppressed by the mass ratio
relative to the (secular) flux contributions [7]. This sug-
gests that even a slow-to-converge PN expansion of the
conservative part of the self-force may be useful in close
orbits.

While the rate of convergence varies with orbital pa-
rameters, we do observe at least continued monotonic
approach to the numerical self-force results as we add
PN terms. Despite the fact that the PN expansion is
expected to be an asymptotic expansion, there is still no
evidence even at 10PN order in the redshift at p = 10

of added terms becoming detrimental to accuracy of the
approximation. Interestingly, the y expansion appears
consistently better than the 1/p expansion in the orbits
we have considered. Finally, it is notable that for the
p = 20, e = 0.1 and e = 0.4 orbits we reproduce the nu-
merical self-force data with our expansions taken to 9PN
order or less. Hence, the accuracy of the full 10PN order
expansion with that orbit remains unknown.

Fig. 2 shows how our expansion offers generally consis-
tently useful accuracy with increasing eccentricity e. At
higher PN order (6-10PN) the eccentricity dependence is
not known exactly but instead contains infinite series in
e2 that are truncated at e20 in the present work. Factor-
ing out the right eccentricity singular factor at each PN
order helps, but the truncated series lead to variations
in accuracy with e. These effects can be seen in the rise
and fall, and local minimum in the 6PN, 8PN, and 10PN
comparisons in the p = 10 orbit in Fig. 2. Nevertheless,
we expect that the residuals would generally continue to
fall if the PN series were extended marginally further. In
the p = 20 orbit in Fig. 2, the curves of residuals are
incomplete or missing at 6-10PN orders because of lim-
its on the accuracy of the numerical self-force results to
which we are making comparison.

VI. CONCLUSIONS

We have presented the PN and eccentricity expansion
of the gravitational redshift invariant, for a point mass in
eccentric bound motion about a Schwarzschild black hole,
to a higher order than has been achieved previously. We
determine the redshift analytically to 10PN order and,
importantly, to e20 in eccentricity. We present results in
this paper to 8.5PN, while relegating 9PN to 10PN terms
to a posting at the Black Hole Perturbation Toolkit [42]
website and on our group repository [43]. The depth of
the eccentricity expansion allows us to resum on expected
singular factors and simplify the remaining eccentricity
dependence at each PN order. In many cases we find
closed-form expressions for the eccentricity dependence.
Some of these closed-form functions are identifiable as
terms that appear in the PN expansion of the energy
flux at infinity, associated with leading-logarithm and
subleading-logarithm sequences in the energy flux. The
leading-logarithm terms in the energy flux all depend
solely upon the Newtonian quadrupole moment power
spectrum g(n, e) (over eccentric motion harmonics n).
Once the presence of these terms from the dissipative
sector was identified as showing up in the (conservative)
redshift invariant, it was possible to find known infinite
series terms and, using techniques developed in [4] and
[3], to uncover added terms in the redshift whose eccen-
tricity dependence follows merely from g(n, e). A full
summary of these findings and their significance is found
in Sec. V D.

We also compared the high-order expansions to pub-
lished close-orbit numerical results to examine the accu-
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FIG. 1. Accuracy of the redshift invariant PN expansion and its resummations for several individual orbits. The numerical
values of our redshift expansion are plotted against data from [13] for the orbits (p = 10, e = 1/10), (p = 10, e = 2/5), (p =
20, e = 1/10), (p = 20, e = 2/5). Within each plot comparisons are made for both the 1/p and y expansions, both with and
without the use of logarithmic and reciprocal summations. Note the changes in vertical scaling in the bottom two plots. Lines
in the bottom two plots vanish where the expansions reproduce all numerical digits given in [13] (note that the numeric result
for the right plot contained one less significant digit than that for the left).
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FIG. 2. Accuracy of the redshift PN expansion with increasing e. The (simple) y expansion is compared to numerical data
for the e values 0.05 to 0.40 at 0.05 intervals (plots are made continuous for clarity) for both p = 10 and p = 20. Decreasing
residuals are observed with increasing PN order, though with some unexpected variations at high order. Lines in the right plot
vanish where the expansions reproduce all numerical digits given in [13], including the entire 10PN comparison.
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racy of the PN expansion. We found the PN expansion
to still be converging at 10PN for orbits with semi-latus
p = 10. It is conceivable that the series might be ex-
tended further and still improve accuracy. The bottle-
neck step of the present calculation taken to 10PN and
e20, expansion of the integral for the general-l form of
C+
lmn, required about 7 days on a single core of the UNC

Longleaf cluster. The rest of the process (including ex-
pansion of the homogeneous solutions, metric perturba-
tions, and redshift itself across specific-l and general-l
sectors) required thousands of CPU hours, but highly
parallelized over 10s-100s of cores so that individual tasks
finished more quickly (ranging from minutes to a few
days).

All of the machinery presented here is readily ex-
tendible to calculating the spin-precession invariant ψ
and other higher-order invariants. We will present results
on ψ in a subsequent paper. Additionally, now that we
are calculating PN expansions in the conservative sector,
we may be able to make connection with the EOB formal-
ism. The redshift invariant can be transcribed to yield
portions of the EOB Q(1/r, pr; ν) potential by extending
a procedure described in [27]. However, the process is
difficult, with each new order in e2 requiring the deriva-

tion of an additional transformation. It is not presently
possible to transform closed-form eccentricity functions
in 〈ut〉τ to find closed functions in Q(1/r, pr; ν). A sim-
ilar fact is true of the spin-precession invariant, whose
(complicated) transformation to the EOB gyromagnetic
ratio gS∗(1/r; pr; pϕ) is mapped out in [30]. The deriva-
tion of a procedure to transform all powers of e would
be highly beneficial in the context of this work on closed
forms. Otherwise, it may be possible to perform the two
transformations to high finite order in e2 and then use
factorizations and resummations to extract closed forms.
These possibilities will be explored in future work.
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D 91, 084024 (2015), arXiv:1502.07245 [gr-qc].
[69] P. C. Peters and J. Mathews, Physical Review 131, 435

(1963).
[70] L. Blanchet and G. Schäfer, Classical and Quantum
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