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We consider the interplay of the Early Dark Energy (EDE) model, the Swampland Distance
Conjecture (SDC), and cosmological parameter tensions. EDE is a proposed resolution of the
Hubble tension relying upon a near-Planckian scalar field excursion, while the SDC predicts an
exponential sensitivity of masses of other fields to such an excursion, m ∝ e−c|∆φ|/Mpl with c ∼ O(1).
Meanwhile, EDE is in tension with large-scale structure (LSS) data, due to shifts in the standard
ΛCDM parameters necessary to fit the cosmic microwave background (CMB). One might hope
that a proper treatment of the model, e.g., accounting for the SDC, may ameliorate the tension
with LSS. Motivated by these considerations, we introduce the Early Dark Sector (EDS) model,
wherein the mass of dark matter is exponentially sensitive to super-Planckian field excursions of
the EDE scalar. The EDS model exhibits new phenomenology in both the early and late universe,
the latter due to an EDE-mediated dark matter self-interaction, which manifests as an enhanced
gravitational constant on small scales. This EDE-induced dark matter-philic “fifth force”, while
constrained to be small, remains active in the late universe and is not screened in virialized halos.
We find that the new interaction with dark matter partially resolves the LSS tension. However, the
marginalized posteriors are nonetheless consistent with fEDE = 0 at 95% CL once the Dark Energy
Survey Year 3 measurement of S8 is included. We additionally study constraints on the model
from Atacama Cosmology Telescope data, and find a factor of two improvement on the error bar on
the SDC parameter c, along with an increased preference for the EDE component. We discuss the
implications of these constraints for the SDC, and find the tightest observational constraints to date
on a swampland parameter, suggesting that an EDE description of cosmological data is in tension
with the SDC.
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I. INTRODUCTION

The Early Dark Energy (EDE) model [1] is a promi-
nent candidate to resolve the Hubble tension [2]. How-
ever, this model faces challenges both from data, in the
form of exacerbated tensions with large-scale structure
observations [3–5], and from theory, namely whether the
model can be self-consistently described as a low-energy
limit of a high-energy theory including gravity. To un-
derstand the interplay of these challenges, in this work
we take guidance from the Swampland Distance Conjec-
ture [6] (and its extension to axions [7–10]), and extend
EDE to an Early Dark Sector.

The Hubble tension, namely, the discrepancy in the
value of the Hubble constant H0 measured locally via the
cosmic distance ladder using Type Ia supernovae (SNIa)
[11, 12] and the value inferred from the cosmic microwave
background (CMB) [13], from large-scale structure (LSS)
[14–19], and from other probes [2], presents a challenge
to the standard ΛCDM cosmological model. In partic-
ular, the disagreement between Planck 2018 CMB ob-
servations and the SH0ES 2020 cosmic distance ladder
measurement stands at 5.0σ statistical significance [20],
with the two values given byH0 = 67.37±0.54 km/s/Mpc
[13] and H0 = 73.04 ± 1.04 km/s/Mpc [20], respectively.
While some local measurements have yielded H0 values
that are not in statistical disagreement with the ΛCDM-
predicted value from CMB and LSS data (e.g., [21, 22]), it
is generally true that local H0 probes have yielded higher
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values than expected in ΛCDM.

A plethora of cosmological models have been pro-
posed to bring these data sets into concordance, and re-
solve the Hubble tension. For a recent review see, e.g.,
[23]. These range from modifications to the early (pre-
recombination) universe, to the late universe, and to the
theory of gravity in the local universe. However, all ap-
proaches face severe challenges: For example, late uni-
verse models that leave the sound horizon at the drag
epoch unchanged are heavily constrained by the inverse
cosmic distance ladder and generally cannot explain the
SH0ES measurement [24]. Early universe models that re-
duce the the sound horizon at recombination can success-
fully raise the Hubble constant while maintaining consis-
tency with CMB observations, but are often in tension
with LSS observations, namely the galaxy clustering and
cosmic shear auto- and cross-correlation two-point func-
tions from the Dark Energy Survey Year 1 [3] and BOSS
full-shape anisotropic galaxy clustering [4]; see also [25]
and [26]. Nonetheless, the relative success of early uni-
verse models at raising the inferred H0 motivates the
search for an embedding into a more complete and yet
still well motivated model that is consistent with all data
sets. Several recent models have been proposed along
these lines, e.g., [27–29].

An interesting case study is Early Dark Energy [1].
In this class of models, the expansion rate is increased
near matter-radiation equality, so as to reduce the sound
horizon at recombination, and thereby raise the H0 value
inferred from the angular scale of the sound horizon. The
model can accommodate larger values of H0 than ΛCDM
whilst not degrading the fit to the CMB, and is thereby
compatible with both SH0ES and Planck. However, the
larger H0 is accompanied by shifts in other ΛCDM pa-
rameters, such as the dark matter density Ωch

2, the
scalar spectral index ns, and the amplitude of density
perturbations σ8. This brings the model into tension
with LSS data [3–5]. Accordingly, when additional LSS
data are included in the analysis, e.g., from the Dark
Energy Survey, the Kilo-Degree Survey (KiDS) [30, 31],
and the Subaru Hyper Suprime-Cam (HSC) survey [32],
or from BOSS [4], the evidence for an EDE component is
significantly diminished [3–5] (see [33] for an alternative
viewpoint).

The minimal EDE model is comprised of a scalar field
φ with potential V (φ) = V0 [1− cos(φ/f)]

n
. This poten-

tial, first proposed in [34], is a generalization of the usual
axion potential (see [35] for a review). In this model,
the relative energy density in φ is peaked at a critical
redshift zc, at which point the scalar field constitutes a
fraction fEDE ≡ ρφ(zc)/ρtot(zc) of the energy density of
the universe. The parameters of the model follow from
simple considerations: n ≥ 2 so as to have the EDE
field’s energy density rapidly redshift away following zc,

V
1/4
0 ∼ eV so as to constitute ≈ 10% of the universe at
zeq, and f . Mpl so as to endow the scalar with a mass
m ∼ H(zeq) and thereby set zc ∼ zeq.

This model is, at best, a phenomenological description

of a more complicated theory. The conventional origin
of periodic axion potentials is instantons. A complete
model would need to explain why a tower of instantons
V (φ) ∼

∑
n cne

−Sncos(nφ/f), with Sn the instanton ac-
tion, conspires to take the required form, despite the
Planckian decay constant f ∼ Mpl, which would con-
ventionally be associated with a total breakdown of the
instanton expansion (see, e.g., [36–38]). One might pre-
suppose that the model exists as a low-energy limit of a
UV-complete theory, e.g., that EDE is in the landscape
of string theory [39, 40], and that the low-energy param-
eter fine-tunings are sensible from the UV perspective.
However, it might equally well be the case that the EDE
model is in the swampland [6, 41]. So-called “swampland
conjectures” (for a review, see [42–44]) attempt to delin-
eate the boundaries of the landscape, and identify those
properties that low-energy theories inherit from the high-
energy theory. In particular, the Swampland Distance
Conjecture [6] holds that any Planckian field excursion
|∆φ| ∼ Mpl, such as that in EDE, causes an exponen-
tial suppression of the mass of other fields in the theory,
m ∝ e−c|∆φ|/Mpl , with c > 0 a number of O(1).

In this work we study the interplay of the swampland
and the EDE model. We consider the impact of the
Swampland Distance Conjecture (SDC) [6] (and its ex-
tension to axions [7–10]) on the EDE inference of H0 and
on the tension of EDE and LSS data [3–5]. To this end,
we promote EDE to an Early Dark Sector (EDS). We
consider an EDE-dependence of the mass of dark mat-
ter, given by,

mDM(φ) = m0e
cφ/Mpl , (1)

where φ is initially φi ∈ [0, πf ], and is zero in the present
universe. We assume for simplicity that the above ap-
plies to all of the dark matter (as also considered in, e.g.,
the “Fading Dark Matter” model [45, 46]). The SDC
prediction is that c is positive and order-1, such that the
dark matter is exponentially lightened when φ rolls from
φi ∼Mpl to φ ∼ 0. We perform data analysis allowing c
to vary, and allow the data to decide both the magnitude
and sign of c.

We find that positive c (c > 0), which is the sign of
c predicted by the SDC, raises S8 and exacerbates the
tension with LSS data in this model. On the other hand,
we find that a small but negative c can lower S8 without
decreasing H0, while simultaneously improving the fit to
the CMB. This occurs due to an interplay of imprints on
the cosmic microwave background, both at high-` and
on scales that enter the horizon around zc, and imprints
on the growth of structure, caused by a relative shift
in the redshift of matter-radiation equality and by an
induced attractive dark matter self-interaction (a dark-
matter-philic “fifth-force”) 1.

We perform a Markov Chain Monte Carlo (MCMC)
analysis of a (‘baseline’) combined data set comprised of

1 This is related but distinct from the “cosmic axion force” [47]; in
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Planck 2018 primary CMB and CMB lensing data [13,
48, 49]; BAO distances from the SDSS DR7 main galaxy
sample [50], the 6dF galaxy survey [51], and SDSS BOSS
DR12 [52]; the Pantheon supernovae data set [53]; and
the SH0ES H0 measurement. We find a modest overall
preference for c < 0, with the best-fit value c = −5×10−3.

We find that the EDS model is able to accommodate
a lower S8 than in EDE, and thereby lessen the ten-
sion with LSS data. To substantiate this, we supple-
ment our baseline data set with Dark Energy Survey
Year-3 data (DES-Y3) [54], approximated as a prior on
S8 ≡ σ8(Ωm/0.3)0.5, and we repeat the MCMC analysis.
We find that the best-fit EDS is better able to accommo-
date the DES-Y3 measurement than is EDE, with a rela-
tive reduction in χ2

DES−Y3 of 1.1. However, like previous
analyses [3–5], we find that the combined data set includ-
ing DES-Y3 is statistically consistent with fEDE = 0, in-
dicating that there is little Bayesian justification for this
4-parameter extension of ΛCDM.

Finally, we study the impact of recent CMB tempera-
ture and polarization data from the Atacama Cosmology
Telescope (ACT) [55, 56]. The ACT DR4 data signifi-
cantly improve upon the precision of Planck on small an-
gular scales. The ACT collaboration analysis of the EDE
model [57] found a moderate preference for fEDE > 0, in
contrast to results from Planck. We perform an MCMC
analysis of the EDS model fit to the baseline data set sup-
plemented with ACT DR4 temperature and polarization
spectra. Analogous to the EDE analysis of [57], we find
that the inclusion of ACT data increases the preference
for fEDE > 0, and significantly constrains the timing zc.
We find a factor of two improvement on the constraint
on c relative to the baseline data set.

Turning these analyses on their head, we may ask
what the data, when analyzed in the context of the EDE
model, have to say about the Swampland Distance Con-
jecture. We find a 95% CL upper limit on c given by
c < 0.068 for the baseline data set, and c < 0.035 and
c < 0.042 at 95% CL when DES-Y3 or ACT are included,
respectively. We interpret this as a modest tension be-
tween the Swampland Distance Conjecture and the EDE
model, at the level of a 4− 7% fine-tuning.

The structure of this paper is as follows. In Sec. II we
introduce the Early Dark Sector model, the dynamics,
and the physics behind it. In Sec. III we detail the im-
print on the cosmic microwave background and on large-
scale structure. In Sec. IV we discuss the data sets that
will be used in our analyses, and perform MCMC anal-
yses of the model fit to varying data set combinations.
We detail the implications of this for the Swampland Dis-
tance Conjecture in Sec. IV D, and conclude in Sec. V.

We work in natural units, where the speed of light is
unity. The parameter c refers exclusively to the coupling

that work an ultra-light scalar mediates an interaction with the
Standard Model, whereas in the in the EDS model the interaction
is confined to the dark sector.

parameter of the EDS model, and not the speed of light.
We denote the reduced Planck mass Mpl(= 2.435× 1018

GeV). Unless otherwise stated, values for H0 are given
in units of km/s/Mpc.

II. FROM EARLY DARK ENERGY TO THE
EARLY DARK SECTOR

The idea underlying the EDE model [1] is to shrink the
comoving sound horizon at last scattering, rs, defined by

rs(z∗) =

∫ ∞
z∗

dz

H(z)
cs(z), (2)

with z∗ the redshift of last scattering and cs the sound
speed of the photon-baryon plasma, through the inclu-
sion of an additional source of energy density, namely the
EDE. The reduced sound horizon allows an increased H0

while remaining consistent with CMB observations of the
angular scale of the sound horizon, θs, defined by,

θs =
rs(z∗)

DA(z∗)
, (3)

where DA is the angular diameter distance to last scat-
tering. By adjusting the redshift dependence of the EDE
component, the CMB damping scale can simultaneously
be adjusted to match observations, albeit at the expense
of introducing a tuning or coincidence into the EDE
model.

The baseline EDE model [1] is described by a canonical
scalar field, with potential energy given by

V (φ) = m2f2

[
1− cos

φ

f

]3

. (4)

This potential, of the form first proposed in [34], is a
generalization of the usual axion potential, corresponding
to a careful fine-tuning of an instanton expansion or of
other non-perturbative effects (see, e.g., the discussion in
[3]). Alternative realizations and variations on the EDE
model abound, see, e.g., [1, 58–66].

The common feature of these models is that the energy
density transitions between redshifting slower than ordi-
nary matter to redshifting faster across a critical redshift.
In the baseline EDE model this is achieved as follows. At
early times the scalar is frozen in place by Hubble fric-
tion, and effectively behaves at dark energy. The scalar is
released from Hubble friction when H ' m, for a typical
value of the initial field φi = O(f). Around this time, the
scalar field makes its maximal contribution to the energy
density of the universe, i.e., the ratio of energy densities

fEDE(z) ≡ ρEDE(z)

ρtot(z)
, (5)

where ρtot is the total energy density, is maximal when
z = zc. As a shorthand, we will denote fEDE ≡ fEDE(zc),
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and will explicitly specify fEDE(z) when referring to
the above. At times after zc, i.e., at lower redshifts,
the field rolls down the potential V (φ) and undergoes
damped oscillations. The energy density of the scalar
rapidly redshifts away, naively leaving no trace in the
post-recombination universe.

One can easily estimate the model parameters neces-
sary to resolve the Hubble tension. The sound horizon
and damping scale are most sensitive to dynamics that
occur in the decade of redshift preceding last scattering
[67]. This effectively imposes zc ∼ zeq, which in turn
determines the mass parameter m as

m ∼ 10−27eV. (6)

Meanwhile, the discrepancy in the Hubble constant H0

is roughly 10%, which, combined with φi = O(f) by
standard arguments (see, e.g., [35]), implies that

V (z ∼ zc) ∼ 0.1H2
eqM

2
pl, (7)

and hence,

f ∼Mpl. (8)

Thus we see the EDE scalar field, insofar as it is rele-
vant to the Hubble tension, naturally undergoes a field
excursion |∆φ| ∼ f ∼Mpl.

Little is known about field theories near the Planck
scale. At these scales one can reasonably expect quan-
tum gravity effects, e.g., from string theory, to become
relevant. When assessing models, in lieu of a concrete
string theory construction, one approach is to take guid-
ance from known calculable string theory examples, dis-
tilled into a simple set of conjectures – so-called “Swamp-
land” conjectures [41] (for a review, see [42–44]). The
Swampland conjectures collectively aim to delineate the
boundary between effective field theories that are incon-
sistent once gravity is quantized (or more precisely, EFTs
that do not admit a UV completion into quantum gravity
[42]), and those that are consistent with quantum gravity
(and hence do admit UV completion).

Of particular relevance to EDE is the SDC [6]. The
SDC holds that any low-energy effective field theory is
only valid in a region of field space bounded by the Planck
scale, and the breakdown of effective field theory that oc-
curs at Planckian field excursions is encoded in an expo-
nential sensitivity of the mass spectrum of the effective
theory. This can be expressed as, for the mass of at least
one such field in the spectrum,

M ∼M0e
−α|∆|/Mpl , (9)

where ∆ is the distance traversed in field space, and α
is an order-1 parameter. There are numerous concrete
examples that support the SDC. For example, consider a
universe with an extra dimension that is a circle of radius
R. Dimensional reduction on the circle yields a tower of
massive Kaluza-Klein excitations, with masses given by

m2
n ' n2M2

ple
−2ϕ/Mpl , (10)

where ϕ ≡ Mpllog(MplR) is the canonically normalized
radius of the circle. At large field values ϕ & Mpl, the
Kaluza-Klein fields become exponentially light and a pri-
ori cannot be neglected. For other examples of the scaling
in Eq. (9), see, e.g., the review in [44].

The EDE scenario is precisely the sort of model that
the SDC is designed to address, namely a model with
Planckian field excursions. While this is not unique to
EDE, and is exhibited also in late-universe dark energy
models, such as quintessence [68], the EDE model is
unique in that this exponential sensitivity is activated in
the high-redshift universe. Thus one might hope that cos-
mological observables such as the CMB and LSS may be
powerful probes of the couplings predicted by the SDC,
e.g., of the form in Eq. (9), in the EDE model.

With all this in mind, in this work we consider a sim-
ple model that implements these ideas. We extend the
EDE model to the Early Dark Sector (EDS), and con-
sider a coupling of the EDE field to dark matter of the
form predicted by the SDC. While fields that exhibit the
mass scaling in Eq. (9) could in principle be an arbitrary
fraction of the total dark matter, for simplicity we as-
sume φ couples to all dark matter. As a concrete model,
we consider the following Lagrangian:

L =
1

2
(∂φ)2 + iψ̄ /Dψ − V (φ)−mDM(φ)ψ̄ψ, (11)

where φ is the EDE scalar with potential V (φ) and ψ is a
fermionic cold dark matter candidate with φ-dependent
mass mDM(φ). We consider the specific form of the po-
tential V (φ) given by Eq. (4), and a field-dependent mass
mDM(φ) given by

mDM(φ) = m0e
cφ/Mpl , (12)

as motivated by the SDC, and in particular the extension
of the SDC to axions [7–10]. In our work we fix the
convention that φ decreases over the course of cosmic
evolution, i.e., φ evolves from φi > 0 in the early universe
to φf ∼ 0 in the present universe. The SDC then predicts
that c defined by Eq. (12) is positive (c > 0), such that
the dark matter mass is decreased by a Planckian field
excursion of φ. In what follows, we refer to the system
defined by Eqs. (11), (12), and (4), as the EDS model.

The background cosmology of the EDS model Eq. (11)
is specified by the Friedmann equations, along with the
scalar field equation of motion,

φ̈+ 2aHφ̇+ a2 dV

dφ
= −a2 c

Mpl
ρDM, (13)

where dot denotes a derivative with respect to conformal
time and H = (1/a)da/dt where t is cosmic time, and
the conservation equation for the joint stress-energy of
the dark matter and scalar field. The latter leads to the
modified continuity equation for the dark matter density,

ρ̇DM + 3aHρDM =
c

Mpl
φ̇ρDM. (14)
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FIG. 1. Fiducial example background evolution of the scalar field, the energy density fraction fEDE, and the dark matter mass
mDM(φ). The vertical lines indicate the location of zc. The scalar field indeed undergoes a Planckian field excursion (up to an
order-1 factor), leading to a ≈ 0.3% change to mDM around zc. See Eq. (17) for parameters.

A full derivation of the equations of motion at the back-
ground and linear-perturbation level is given in App. A.
We may understand the background cosmology in a rel-
atively straightforward way. On the dark matter side,
Eq. (14) may be solved exactly, to give the evolution of
the dark matter density at all times. We find

ρDM(a) =
3M2

plH
2
0 ΩDM

a3

mDM(φ)

mDM(φ0)
, (15)

with mDM(φ0) the present-day dark matter mass. This
is consistent with the conservation of the comoving DM
number density, a3nDM(a) = 3M2

plH
2
0 ΩDM/mDM(φ0).

Meanwhile, the scalar field may be understood as evolv-
ing in a time-dependent effective potential, which can be
read off from Eq. (A6) as

Veff(φ, a) ≡ V (φ) + ρDM(a), (16)

where ρDM(a) is given by Eq. (15).
As a fiducial numerical example, we consider the best-

fit model in the fit to primary CMB, CMB lensing, BAO,
SNIa, and SH0ES data, to be presented later in this work
(see Tab. I). We will refer to this example throughout; the
parameters (to be varied in Sec. III and sampled in our
MCMC analysis) are given by, for the EDS parameters,

fEDE = 0.142, log10(zc) = 3.58, (17)

θi ≡
φi
f

= 2.72, cθ ≡ c ·
f

Mpl
= −0.0010,

where we have defined cθ as c in units of f , analogous to
the rescaling of φ into θ, and

100θs = 1.04114, Ωbh
2 = 0.02284, (18)

Ωch
2 = 0.13043, log(1010As) = 3.079,

ns = 0.9931, τ = 0.0600,

for the ΛCDM parameters. The corresponding particle
physics parameters are given by

c = −0.0049, φi = 0.55Mpl,

f = 0.20Mpl, m = 5.4× 10−28 eV, (19)

implying a change in the dark matter mass,

∆mDM

mDM
≡ m(φi)−m0

m0
= −0.003. (20)

The tension-related derived cosmological parameters are
given by

H0 = 72.52 , S8 = 0.848, (21)

σ8 = 0.848, Ωm = 0.3000,

which can be compared with the SH0ES 2020 measure-
ment H0 = 73.2 ± 1.3 [12], and the DES-Y3 measure-
ments [54] S8 = 0.776 ± 0.017, Ωm = 0.339+0.032

−0.031, and

σ8 = 0.733+0.039
−0.049. Note that SH0ES has been included

in the data sets that are used in this fit, while DES-Y3
has not. We will discuss in detail the tension with and
interplay between these data sets in Sec. IV.

The cosmological evolution of the EDE scalar field, the
fractional energy density fEDE(z), and the dark matter
mass mDM(φ), for the above parameters, are shown in
Fig. 1. The scalar field undergoes an O(Mpl) excursion,
and near z = zc = 3801 comprises 14% of the energy
density of the universe. This energy density is rapidly
dissipated as the field rolls down the potential and begins
to oscillate, and at z = 103 its contribution is less than
2% of the energy density of the universe. The dark matter
mass undergoes a fractional change corresponding to a
mass that is 0.3% lighter in the early universe than in
the late universe.

The equations of motion for linear perturbations of
the scalar field and dark matter may be derived follow-
ing the same procedure as for the background evolution,
namely, from the variation of the action with respect to
the scalar field perturbations and the conservation of the
perturbed joint stress-energy tensor (see App. A). In the
synchronous gauge, we find for the scalar field perturba-
tion,

δ̈φ+ 2aH ˙δφ+

(
k2 + a2 d

2V

dφ2

)
δφ+

ḣ

2
φ̇ = −a2 cρDM

Mpl
δc,

(22)
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and for the dark matter,

δ̇c + θ +
ḣ

2
=

1

Mpl
c ˙δφ, (23)

θ̇ + aHθ =
1

Mpl
ck2δφ− 1

Mpl
cφ̇θ, (24)

where θ ≡ ∂iv
i and h is the trace of the spatial metric

perturbation. These results are specific to the choice of
SDC-inspired dark matter mass dependence in Eq. (12);
the equations of motion for a general φ-dependent dark
matter mass m(φ) are given in App. A. The phenomenol-
ogy of perturbations will be discussed in detail in Sec. III.

Finally, we note the model we consider here is similar
to, but distinct from, the modified gravity implementa-
tion of coupled EDE in [29]. While both setups include
a field-dependent dark matter mass, here we consider an
axion-like sinusoidal V (φ), Eq. (4), whereas [29] consid-
ered a monomial V (φ) = λφ4. These two choices for
V (φ) are known to exhibit different phenomenology; see,
e.g., the discussion in [58, 59].

III. PHENOMENOLOGY: THE CMB AND THE
GROWTH OF STRUCTURE

Here we investigate the novel EDS impact of the cou-
pling between the scalar field and dark matter on the
CMB and large-scale structure of the Universe.

A. CMB

In Fig. 2, we show the impact of varying c with the
other parameters fixed to their values in Eqs. (17) and
(18) compared with the Planck TT , EE, TE data. The
various models are plotted as differences with respect to
the best-fit model to baseline data set in units of the
cosmic variance per multipole,

σCV =


√

2
2`+1C

TT
` , TT ;√

1
2`+1

√
CTT` CEE` + (CTE` )2, TE ;√

2
2`+1C

EE
` , EE,

(25)

of the best-fit model. From the ∆c = ±0.02 parame-
ter variations around the best-fit c = −0.005, which is
comparable to the scale of its observational errors, we
can see that the main effects on the TT power spec-
trum of decreasing c is a localized decrease in power near
` ∼ 500 and an increase in power at high multipole mo-
ments ` & 700.

These effects are induced by the gravitational effects
of the change of dark matter mass on the CMB acous-
tic oscillations. These gravitational effects come through
the Newtonian gauge Weyl potential Ψ + Φ; see, e.g.,
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FIG. 2. Planck 2018 data residuals relative to the EDS best-
fit model to the baseline data set. Models with ∆c = ±0.02
around the best-fit −0.005 with all other parameters fixed to
their values in Eqs. (17) and (18) are shown for comparison.
The blue vertical lines indicate the positions of the acoustic
peaks in the best-fit EDS model.

[69]. The change in the Weyl potential drives acoustic
oscillations, especially around the epoch that the oscil-
lations reach their first extrema krs(z) = π where rs is
the comoving sound horizon. In Fig. 3, we show the time
evolution of the Weyl potential and dark matter mass for
the ∆c = −0.02 model with respect to the best-fit EDS
model. The Weyl potential is shown in blue and orange
curves for k = 0.038 and 0.0857 Mpc−1, which correspond
to ` ∼ 500 and 1100, respectively. The dashed verti-
cal lines indicate locations where krs(z) = π for each k
mode with the same color, and the shaded area indicates
the epoch between zc and recombination. We see that
the Weyl potential change follows the dark matter mass
change, which oscillates with time. For a negative c, the
dark matter mass is smaller before zc and larger during
an epoch between zc and recombination. For modes that
cross krs = π well before zc, the decrease in the dark
matter mass at that time causes a larger relative decay
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FIG. 3. Time evolution of Weyl potential, in units of the
initial comoving curvature pertubation, and the dark mat-
ter mass for ∆c = −0.02 with respect to the best-fit EDS
model. All the other parameters are fixed to their values in
Eq. (17) and (18). The dashed vertical lines indicate locations
of krs(a) = π for each k mode with the same color where rs is
the comoving sound horizon. The shaded area indicates the
epoch between zc and recombination.
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FIG. 4. Comparison between the Planck TT data and both
the global best-fit EDS model where c = −0.005 (black line)
and the best model for the baseline data set with c = −0.025
fixed (c− optimized, orange line). The other curves show the
effect of varying the EDS parameters c, θi, and zc from the
former to the latter in the direction indicated by the + and
− with the remaining parameters fixed to the global best-fit
model.

in the Weyl potential and a corresponding increase in
the amplitude of the acoustic peaks at the corresponding
multipoles ` & 700. On the other hand, for modes that
cross right around zc, the change in the Weyl potential
flips sign at the critical phase for driving the acoustic
mode, leading to a local decrement in the power around
` ∼ 500.

As we can see from Fig. 2, these effects for variations of

∆c = ±0.02 with other parameters fixed are too large to
be accommodated by the data and must be compensated
by other parameters. This can be done largely within the
EDS sector itself, without substantially modifying the
other ΛCDM parameters of Eq. (18), especially Ωch

2.
We study these compensating effects in Fig. 4, where
we show TT power spectra for both the global best-fit
EDS model where c = −0.005 (black line) and the best
model with c = −0.025 fixed (orange line). We then it-
eratively perform the parameter shifts from the former
to the latter so as to understand the compensations and
hence the expected parameter degeneracies in the fit to
data. One may appreciate from Fig. 4 that lowering c
from c = −0.005 to c = −0.025 generates a significant
dip in CTT

` around ` ∼ 500. This can be compensated
by lowering the initial phase θi, however this comes at
the expense of significant residuals at somewhat higher
multipoles. Next, tuning zc changes the damping scale,
and hence the high-` amplitude. Therefore, we expect a
c − θi − zc degeneracy in the fit to data. This expecta-
tion is confirmed by MCMC analyses, e.g., Fig. 9, to be
presented in Sec. IV.

In particular these compensations do not involve the
present cold dark matter density Ωch

2, leaving a range of
allowed c at fixed Ωch

2. Indeed in the best-fit model with
c = −0.005, Ωch

2 remains very close to its best-fit value
for EDE (i.e. c = 0) but the change in the dark matter
mass makes the cold dark matter density at early times
smaller. We shall see next that this delays the onset of
the matter-dominated growth of density fluctuations and
hence allows a smaller amplitude of structure today.

B. Growth of Structure

As we have seen, the CMB allows c < 0 with a present
dark matter density Ωch

2 nearly fixed. In this context,
there are two distinct effects of c on the growth of struc-
ture and hence S8 as can be seen in Fig. 5. The first is
that for c < 0 the dark matter mass is lighter at z > zc
and the dark matter density smaller. Therefore the start
of the matter-dominated growth of density fluctuations
is delayed, which leads to a smaller amplitude of fluctu-
ations today for c < 0, all else equal. This can be seen
in Fig. 5 as the negative change in density fluctuation
right after zc. Note that the behavior before zc is due to
the Weyl potential change induced by the change of the
dark matter mass, as we see in Fig. 3. This pre-zc ef-
fect will be suppressed for larger k modes where horizon
crossing occurs much earlier. The second effect is that
the φ field mediates an enhanced gravitational force for
the dark matter, which increases the growth of structure
for large values of |c|.

To understand this second effect, in App. B we de-
rive the equation of the dark matter density perturba-
tion growth at second order in c, under a quasistatic ap-
proximation for the sourced scalar field perturbations,
namely, the assumption that spatial gradients dominate
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FIG. 5. Density growth of EDS best-fit model as c varied,
with fixed H0 and all other parameters (except θs) fixed to
their values in Eqs. (17) and (18). The vertical line indicates
the location of zc. Here k = 0.2hMpc−1 .
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FIG. 6. S8 value as function of c, with fixed H0 and all other
parameters (except θs) fixed to their values in Eqs. (17) and
(18). The red dot indicates the best-fit model.

over temporal derivatives for δφ. This is a good approxi-
mation deep inside the horizon. In this limit, the impact
of δρDM on δφ takes the form of a non-oscillatory offset
δφ(0) ∝ cδc (see Eq. B6). Substituting this back into
the equation for δc, the resulting effect is an O(c2) self-
interaction. We find

δ̈c +Hδ̇c = 4πGa2ρcδc

(
1 +

2c2k2

k2 + a2d2V/dφ2

)
, (26)

where H is the Hubble parameter defined with respect to
conformal time. From this one may read off an effective

10 4 10 3 10 2 10 1 100

k (h/Mpc)
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0.0
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0.2

P(
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/P
(k

)

EDS:c = 0
EDS:c = + 0.025
EDS:c = 0.025
ref: LCDM:best

FIG. 7. Matter power spectra of EDS best-fit model as c
varied, with fixed H0 and all other parameters (except θs)
fixed to their values in Eqs. (17) and (18). The results are
compared to the best-fit ΛCDM model.

gravitational constant,

Geff = GN

(
1 +

2c2k2

k2 + a2d2V/dφ2

)
, (27)

which is independent of the sign of c. This expres-
sion simplifies in the high-k limit, namely, for physical
wavenumbers greater than the mass of the EDE scalar
field, which satisfy,

k

a
� mφ ≡

√
d2V/dφ2. (28)

In this limit, we have,

Geff = GN (1 + 2c2), (29)

which is independent of k and the scalar field potential.
This enhanced gravitational constant can understood as
a dark matter-philic scalar-mediated force.

The range of k-modes which satisfy Eq. (28) changes
throughout cosmic history, as the EDE scalar evolves.
Before zc, for the parameters in Eq. (17), the field mass
is |mφ| ' 3.9× 10−14 eV ' 18h/Mpc. After zc, the field
is released from Hubble friction and begins to oscillate,
and the mass rapidly decreases. After this, modes come
to satisfy Eq. (28). The modes predominantly responsi-
ble for setting S8, k ≈ 0.2h/Mpc, satisfy Eq. (28) shortly
after zc, while longer-wavelength modes begin to satisfy
Eq. (28) at later times tk as a(tk) ∼ k2. The mass even-
tually settles to its value at the minimum of the effective
potential and quasistatically evolves with ρDM. We de-
rive in App. B the scaling of this quasistatic mass with
parameters and show that it remains negligible, even with
the enhanced local ρDM of virialized structures. Conse-
quently, even on nonlinear scales today, the scalar medi-
ates an enhanced force on the dark matter.
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A direct consequence of the enhanced gravitational
constant in Eq. (29) is that both positive and negative
c will increase the late-time growth of δc. This may be
appreciated from Fig. 6, where we show S8 as c is varied
(with H0 held fixed). While S8 may be slightly decreased
by a small negative c, making c further negative leads
to a net increase in S8. This may be understood ana-
lytically as follows. In the matter-dominated limit, the
enhanced gravitational force on the dark matter, below
the Compton scale k � amφ, changes the growth rate to

limc�1 δc ∝ a1+6c2/5 ' a(1 + log(a)6c2/5). This deter-
mines the fractional change in σ8 as ∆σ8/σ8 ' ∆δc(z =
0)/δc ' −log(aeq)6c2/5 ' 9.6c2. This simple estimate
captures the qualitative behavior of S8 in Fig. 6; more
quantitatively we find S8 = 0.8488(1 + 0.22c+ 7.93c2).

These effects are encoded in the matter power spec-
trum by a c-dependent enhancement on small scales. The
linear matter power spectrum for varying c is shown in
Fig. 7, where one may appreciate a net enhancement for
both positive and negative c. The enhancement is less-
ened in the negative c case, since the fifth force effect is
mitigated by the delayed onset growth effect, while the
opposite occurs for c > 0.

The imprint on the matter power spectrum is most sig-
nificant on small scales. This is true for both the imprint
of the shift in matter-radiation equality (from the dark
matter mass variation), and of the enhanced gravitational
interaction. The latter effectively ‘turns on’ as modes
come into the quasistatic approximation, and small-scale
modes have had the greatest period of time spent under
its influence. In our EDS model, these two competing
effects leave only a small ability to lower S8 with c. In-
terestingly though, these two effects are determined by
different regions of the scalar field potential: the shift in
zeq is determined by the release from Hubble friction of
the axion from the hilltop of the cosine potential, while
the enhanced gravitational interaction is determined by
the scalar field mass in the minimum of the potential.
This opens the possibility of modifying the potential in
such a way as to reduce the second effect and lower S8

to below its ΛCDM value, e.g., if φ becomes heavy in the
late universe. We leave the exploration of this possibility
to future work.

IV. CONSTRAINTS FROM DATA

In this work we take as our baseline data set the fol-
lowing combination:

1. CMB: Planck 2018 [13, 48, 49] low-` and high-`
[Plik] temperature and polarization power spec-
tra (TT/TE/EE), and reconstructed CMB lensing
power spectrum.

2. BAO: distance measurements from the SDSS DR7
main galaxy sample [50], the 6dF galaxy sur-
vey [51], and SDSS BOSS DR12 [52], namely, the

optimally combined LOWZ and CMASS galaxy
samples.

3. Supernovae: The Pantheon supernovae data set
[53], comprised of relative luminosity distances of
1048 SNe Ia in the redshift range 0.01 < z < 2.3 .

4. H0: The 2019 SH0ES cosmic distance ladder mea-
surement H0 = 74.03± 1.42 km/s/Mpc [11].2

We supplement the above baseline data set with addi-
tional LSS data from the Dark Energy Survey Year-3
(DES-Y3) analysis [54]:

5. DES-Y3: Dark Energy Survey Year-3 [54] weak
lensing and galaxy clustering data, namely, galaxy-
galaxy, shear-shear, and galaxy-shear two-point
correlation functions, implemented as a Gaussian
constraint on S8 ≡ σ8(Ωm/0.3)0.5 corresponding to
the DES-Y3 measurement S8 = 0.776± 0.017.

The approximation of DES data with an S8 prior proce-
dure was validated with DES-Y1 data in the context of
EDE [3]. In this work, in light of the significant compu-
tational expense of evaluating the full DES 3×2pt likeli-
hood, we assume that an S8 prior continues to be a good
approximation in the EDS model with DES-Y3 data. As
we will see, the baseline data set combination restricts the
EDS model to be a small departure from EDE, and thus
one expects the validation test of [3] to apply, at least at
the level of marginalized 1d and 2d posterior probability
distributions.

Finally, we also supplement our baseline data set
with CMB data from the Atacama Cosmology Telescope
(ACT):

6. ACT: The ACT DR4 [55, 56] temperature and po-
larization power spectra. When combining these
data with the Planck CMB likelihood, we apply the
multipole cut determined in [55] to the ACT data
to avoid double-counting information, in particular
setting `min,TT = 1800.

The ACT collaboration analyzed the EDE model in [57]
and found that ACT data combined with low-` Planck
TT data (` < 650, similar to WMAP) mildly prefer a
non-zero fEDE at ≈ 3σ significance (see also [70] and
[71]). When combining ACT with the full Planck data
set, this preference is no longer seen, due to the dominant
statistical weight of Planck (which does not prefer EDE
on its own). In our work we consider ACT in combination
with the baseline data set, including Planck 2018. We
take care in combining ACT and Planck, and in particu-
lar we apply a multipole cut `min,TT = 1800 to ACT data

2 We use the SH0ES 2019 measurement to facilitate comparison
with previous work, but note that a more recent SH0ES mea-
surement has recently appeared, with a smaller error bar and
slightly lower value (H0 = 73.04 ± 1.04 km/s/Mpc) [20].
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to avoid double counting information (following [55]). We
additionally use increased precision settings in the theo-
retical computation of CMB power spectra when ACT is
included in the joint data set, as emphasized in [55, 72].

We perform MCMC analyses of the EDS scenario us-
ing a modified version of CLASS ([73, 74])3 and poste-
rior sampling with Cobaya [75]. We impose broad uni-
form priors on the ΛCDM parameters. Following past
work on Early Dark Energy (e.g., [3]), we impose uni-
form priors on the EDE parameters fEDE = [0.001, 0.5]
and log10(zc) = [3.1, 4.3], and a uniform prior on the ini-
tial field displacement in units of the decay constant f ,
as θi = [0.1, 3.1]. The choice and impact of EDE priors
is discussed in detail in [3]. Given that the EDE physics
is sensitive primarily to θi (and not φi per se), and given
that θi is itself relatively well-constrained by data [3, 58],
we express mDM(φ) as mDM(θ) = m0e

cθθ, with cθ ≡
cf/Mpl. We impose a uniform prior cθ = [−0.08, 0.08].
Since θi is fairly well constrained for cases that alleviate
the Hubble tension, this allows cθ to function as a proxy
for mDM.

We follow the Planck convention for the neutrino
masses, namely, we hold the sum of the neutrino masses
fixed to 0.06eV with a single massive neutrino eigen-
state. We analyze the MCMC chains using GetDist
[76]4, and consider chains to be converged when the
Gelman-Rubin statistic [77] satisfies R − 1 < 0.05. To
determine maximum-likelihood parameter values we use
the “BOBYQA” likelihood maximization method imple-
mented in Cobaya [78–80]. When handling ACT data, we
use increased CLASS precision settings as discussed in [55],
and a slightly relaxed convergence criterion R− 1 < 0.07
due to the computational expense of these calculations.
In all EDS runs, we use increased CLASS precision setting
perturb sampling stepsize = 0.02.

A. EDS vs EDE: The Interplay of H0 and S8

We first perform a direct comparison of the EDE and
EDS models fit to the baseline data set, namely, Planck
2018 primary CMB anisotropies, Planck 2018 CMB lens-
ing, BAO, Pantheon, and SH0ES. The posteriors are
shown in Figs. 8 and 9, the best-fit parameters and pa-
rameter constraints are given in Tab. I, and the χ2 statis-
tics of the best-fit models are given in Tab. II.

The best-fit EDS and EDE models (Tab. I) have
near-identical cosmological parameters. They are dis-
tinguished primarily by the parameter c, which is c =
−5×10−3 in EDS, while c = 0 in EDE by definition. The
models have near identical best-fit H0 and S8, with H0 =
72.50 km/s/Mpc and 72.52 km/s/Mpc, and S8 = 0.8481
and 0.8495, for EDS and EDE respectively. Both models

3 http://class-code.net
4 https://github.com/cmbant/getdist

are a significant χ2 reduction in comparison to the best-
fit ΛCDM, while the EDS model, with c = −5× 10−3, is
a slightly better fit to the data than EDE, with a rela-
tive χ2 reduction of ∆χ2

EDS−EDE = −1.9. This is driven
by the high-` CMB data, which in turn drives the mild
preference for c < 0, as discussed in Sec. III.

The marginalized posterior distributions, shown in
Fig. 8, shed more light on the differences between the
models. From the H0 − S8 panel of Fig. 8, one may
appreciate that the tight H0 − S8 correlation in EDE is
softened in EDS, evidenced by an overall flattening of the
1σ posterior, and a slight anti-correlation of H0 and S8 in
the 95% contour. Focusing on the SH0ES 1σ region, indi-
cated by the dark grey band, we see that the EDS model
allows a notable reduction in S8 relative to EDE. This
suggests that, in the high-H0 context, the EDS model
may allow greater compatibility with current LSS data,
e.g., from the Dark Energy Survey, than the EDE model.
We return to this point in Sec. IV B.

The ability to raise H0 and simultaneously lower S8 in
EDS relative to EDE is obscured in the 1d marginalized
posteriors and the marginalized parameter constraints.
This occurs due to the low-H0 region of parameter space,
H0 . 70 km/s/Mpc, where the 95% CL contour in EDS
extends to significantly larger S8 values than in EDE.
The net effect, i.e., after marginalizing, is for the 1d S8

posterior in EDS to be near-identical to that in EDE,
differing only in the high-S8 tail.

These two corners of parameter space, i.e., high-H0-
low-S8 and low-H0-high-S8, correlate with the EDS pa-
rameter c. This can be appreciated from the c−H0 and
c−S8 panels in Fig. 8, where one may see that high-H0-
low-S8 correlates with c < 0, while low-H0-high-S8 cor-
relates with c > 0. This suggests that additional S8 data
would prefer c < 0; we return to this in Sec. IV B. There
is an additional effect at c < 0, which amplifies the overall
preference of the baseline data set for c < 0: the negative
c region includes a weak multimodality in log10(zc), and
in particular at log10(zc) ' 3.8 the 1σ contour is con-
tained completely within c < 0. These effects combine to
give an overall mild asymmetry in the posterior, weighted
toward c < 0, and we find c = −0.011+0.029

−0.047.

B. Impact of Dark Energy Survey data

We now supplement the baseline data set with DES-
Y3 data [54], approximated by a Gaussian constraint on
S8 ≡ σ8(Ωm/0.3)0.5 corresponding to the DES-Y3 mea-
surement S8 = 0.776 ± 0.017. To contextualize these
results, we perform the same analysis for ΛCDM. We do
not repeat the baseline+DES-Y3 analysis for EDE, in
light of computational expense and given that the role of
S8 data in EDE was studied in detail in [3].

The best-fit parameters and parameter constraints are
given in Tab. IV and the χ2 statistics are given in
Tab. III. Consistent with expectations from the fit to the
baseline data set, Sec. IV A, we find that when DES-

http://class-code.net
https://github.com/cmbant/getdist
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Constraints on the EDS scenario from Planck, BAO, SNIa, and SH0ES.

Model ΛCDM EDS EDE

100θs 1.04218 (1.04205± 0.00027) 1.04114 (1.04136± 0.00040) 1.04091 (1.04141± 0.00036)
Ωbh

2 0.02249 (0.02252± 0.00013) 0.02284 (0.02291± 0.00024) 0.02286 (0.02280+0.00020
−0.00022)

Ωch
2 0.11840 (0.11821± 0.00085) 0.1343 (0.1288+0.0056

−0.0046) 0.1344 (0.1296± 0.0039)
τ 0.0594 (0.0595+0.0068

−0.0078) 0.0600 (0.0570± 0.0075) 0.0600 (0.0578± 0.0072)
log(1010As) 3.052 (3.052± 0.015) 3.079 (3.062± 0.017) 3.079 (3.067± 0.015)

ns 0.9686 (0.9691± 0.0035) 0.9931 (0.9847± 0.0073) 0.9930 (0.9865± 0.0071)
cθ −0.0010 (−0.0024+0.0091

−0.015 )
fEDE 0.142 (0.099+0.056

−0.041) 0.142 (0.104+0.034
−0.030)

log10zc 3.58 (3.602+0.071
−0.19 ) 3.58 (3.606+0.037

−0.11 )
θi 2.72 (< 3.14) 2.73 (2.60+0.31

+0.022)

c −0.005 (−0.011+0.029
−0.047)

φi [Mpl] 0.547 (0.53+0.10
−0.15) 0.549 (0.48± 0.11)

log10(f/eV) 26.69 (26.857+0.058
−0.37 ) 26.69 (26.652+0.080

−0.14 )
log10(m/eV) −27.27 (−27.04+0.30

−0.55) −27.28 (−27.195+0.031
−0.23 )

∆mDM/mDM −0.003 (−0.007± 0.021)
σ8 0.8093 (0.8087± 0.0060) 0.8481 (0.838+0.011

−0.013) 0.8490 (0.815± 0.011)
Ωm 0.3047 (0.3039± 0.0050) 0.3000 (0.3012± 0.0056) 0.3003 (0.3017± 0.0051)
S8 0.8156 (0.8140± 0.0098) 0.8481 (0.840± 0.014) 0.8495 (0.838± 0.013)
H0 68.16 (68.21± 0.39) 72.52 (71.1± 1.2) 72.50 (71.2± 1.1)

∆χ2
tot 0 −18.1 −16.2

TABLE I. Maximum-likelihood (ML) parameters and 68% CL marginalized constraints for the ΛCDM, EDS, and EDE models,
in the fit to a combined data set comprised of Planck 2018 CMB, CMB lensing, BAO, SNIa, and SH0ES. Parameters in bold
are sampled in the MCMC analyses.

FIG. 8. Interplay of the H0 and S8 tensions in the EDS, EDE, and ΛCDM models (as labeled). The plot shows posterior
distributions for the fit to the baseline data set (CMB, CMB lensing, BAO, SNIa, and SH0ES). Shaded grey and pink bands
denote the SH0ES measurement and the DES-Y3 S8 constraint, respectively.
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FIG. 9. Enlarged set of posterior distributions for the fit to the baseline data set (CMB, CMB lensing, BAO, SNIa, and SH0ES)
for ΛCDM, EDE, and EDS.

Y3 is included the best-fit EDS has a lower S8 than
EDE, whilst having a near-identical value of H0. We find
S8 = 0.8192 and S8 = 0.8228 in EDS and EDE respec-
tively, corresponding to a ∆χ2

DES−Y3 = −1.1 between
the two models. Meanwhile the H0 values are respec-
tively 71.96 km/s/Mpc and 72.02 km/s/Mpc for the two
models, corresponding to ∆χ2

SH0ES = +0.1. Comparing
the total χ2, Tab. III, we find that the best-fit EDS is an
improvement over EDE of ∆χ2

EDS−EDE = −2.0.
The marginalized posterior distributions are shown in

Figs. 10 and 14. The preference for fEDE > 0 is signifi-
cantly diminished when DES-Y3 is included (as expected
based on previous work for EDE [3–5]), and in place of
a detection we find only an upper bound. We find a
95% CL upper bound fEDE < 0.14, which, while consis-
tent with the H0-resolving regime of parameter space, is
also consistent with fEDE = 0, similar to results in the
non-interacting EDE scenario [3] when DES-Y1, HSC,
and KV-450, are included. However, one may appreciate
from the H0 − S8 panel that EDS exhibits a substan-
tial overlap between the 95% CL contours of both the

SH0ES measurement (grey bands) and DES-Y3 measure-
ment (pink bands). This indicates that the EDS model fit
to baseline+DES-Y3 data is statistically consistent with
both SH0ES and DES-Y3, at 95% CL. This is encoded
in the marginalized parameter constraints by a broaden-
ing of the error bars in EDS relative to EDE: comparing
to Tab. VIII of [3], we see that the error bar on H0 in
the EDE fit to a comparable combination of data sets
is ≈ ±1.1, whereas in our analysis we find an error bar
±1.2.

The weighting of the posterior to c < 0 is slightly
strengthened by the inclusion of DES-Y3 data, as the
additional S8 data disfavors the low-H0-high-S8 region
discussed in Sec. IV A. We find c = −0.020+0.025

−0.032 and
highlight the 1d c posterior in Fig. 10, where the support
for the c > 0 tail of the distribution present in the fit
to the baseline data set has been significantly reduced.
Looking at the the c − log10(zc) panel, we again see a
weak multimodality, now accompanied by a tail out to
large zc.
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FIG. 10. The impact of S8 data. The plot shows posterior distributions for the fit to the baseline data set (CMB, CMB lensing,
BAO, SNIa, and SH0ES) supplemented with DES-Y3 data, approximated by a prior on S8, for ΛCDM, EDE, and EDS. Shaded
grey and pink bands denote the 2019 SH0ES measurement and the DES-Y3 S8 constraint, respectively.

EDS χ2 statistics
from the fit to Planck 2018, BAO, SNIa, SH0ES

Datasets ΛCDM EDS EDE

Primary CMB:
Planck 2018 low-` TT 22.9 20.9 20.9
Planck 2018 low-` EE 397.2 397.2 397.2
Planck 2018 high-`

TT+TE+EE
2346.5 2345.1 2346.9

LSS:
Planck CMB lensing 8.9 10.0 10.0
BAO (6dF) 0.00005 0.008 0.005
BAO (DR7 MGS) 1.7 2.0 2.0
BAO (DR12 BOSS) 3.4 3.4 3.5

SNIa (Pantheon) 1034.8 1034.7 1034.7
SH0ES 17.2 1.2 1.2
Planck prior 1.9 2.2 2.2
∆χ2

Primary CMB 0 −3.4 −1.6
∆χ2

LSS 0 +1.4 +1.5
∆χ2

SH0ES 0 −16.0 −16.0
∆χ2

tot 0 −18.1 −16.2

TABLE II. χ2 statistics for the ML ΛCDM, EDS, and EDE
models in the fit to the baseline data set (CMB, CMB lensing,
BAO, SNIa, and SH0ES).

EDS χ2 statistics
from the fit to Planck 2018, BAO, SNIa, SH0ES, and S8

from DES-Y3
Datasets ΛCDM EDS EDE

Primary CMB:
Planck 2018 low-` TT 22.4 21.0 20.9
Planck 2018 low-` EE 396.1 396.7 396.6
Planck 2018 high-`

TT+TE+EE
2349.6 2344.7 2345.5

LSS:
Planck CMB lensing 9.9 9.9 9.9
BAO (6dF) 0.011 0.085 0.078
BAO (DR7 MGS) 2.1 2.7 2.6
BAO (DR12 BOSS) 3.4 4.0 4.0
S8 (DES-Y3) 2.5 6.5 7.6

SNIa (Pantheon) 1034.7 1034.8 1034.8
SH0ES 15.4 2.2 2.0
Planck prior 1.9 1.6 2.0
∆χ2

Primary CMB 0 -5.7 -5.1
∆χ2

LSS 0 +5.3 +6.3
∆χ2

SH0ES 0 -13.2 -13.3
∆χ2

tot 0 -13.9 -11.9

TABLE III. χ2 values for the ML ΛCDM, EDS, and EDE
models in the fit to Planck primary CMB and CMB lensing,
BAO, SNIa, SH0ES, and S8 from DES-Y3.
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Constraints on the EDS scenario from Planck 2018, BAO, SNIa, SH0ES, and S8 from DES-Y3.

Model ΛCDM EDS EDE

100θs 1.04202 (1.04208± 0.00027) 1.04143 (1.04151± 0.00039) 1.04138
Ωbh

2 0.02258 (0.02258± 0.00013) 0.02273 (0.02287± 0.00022) 0.02281
Ωch

2 0.11760 (0.11754± 0.00078) 0.1284 (0.1247+0.0042
−0.0047) 0.1287

τ 0.0535 (0.0577± 0.0071) 0.0583 (0.0557± 0.0074) 0.0581
log(1010As) 3.041 (3.046± 0.014) 3.063 (3.051± 0.015) 3.065

ns 0.9706 (0.9704± 0.0035) 0.9884 (0.9812± 0.0072) 0.9895
cθ −0.0034 (−0.0044+0.0076

−0.0097)
fEDE 0.112 (< 0.140) 0.109

log10zc 3.57 (> 3.39) 3.56
θi 2.69 ( < 2.84) 2.77

c −0.020 (−0.020+0.025
−0.032)

φi [Mpl] 0.461 (0.46± 0.12) 0.463
log10(f/eV) 26.62 (26.835+0.057

−0.43 ) 26.61
log10(m/eV) −27.29 (−26.90+0.21

−0.63) −27.31
∆mDM/mDM −0.0009 (−0.0095± 0.014)

σ8 0.8024 (0.8044± 0.0054) 0.8287 (0.8206± 0.0096) 0.8320
Ωm 0.3004 (0.2999± 0.0046) 0.2931 (0.2961± 0.0052) 0.2934
S8 0.8028 (0.8043± 0.0084) 0.8192 (0.815± 0.010) 0.8228
H0 68.47 (68.51± 0.36) 71.96 (70.7± 1.2) 72.02

∆χ2
tot 0 −13.9 −11.9

TABLE IV. ML parameters and marginalized parameter constraints for ΛCDM and EDS in the fit to a combined data set
comprised of Planck 2018 primary CMB and CMB lensing, BAO, SNIa, SH0ES, and S8 data from DES-Y3. Parameters in bold
are sampled in the MCMC analyses. For EDE we present the ML parameters, but not marginalized parameter constraints, as
we do not repeat the MCMC for EDE (see [3] for analysis of a similar data set combination in EDE). Upper and lower bounds
are quoted at 95% CL.

C. Constraints from ACT Data

Finally, we consider the impact of high-precision small-
scale CMB data, namely, the latest measurements from
the Atacama Cosmology Telescope fourth data release
(DR4) [55, 56]. The ACT collaboration analysis of EDE
[57], in a fit to the combination of ACT, large-scale
Planck TT , Planck CMB lensing, and BAO data, has
found a moderate ≈ 3σ preference for a non-zero EDE
component, finding fEDE = 0.091+0.020

−0.036. As a first look
at ACT and the EDS model, we supplement our base-
line data set with ACT TT , TE, and EE data. We
include the full Planck likelihood, including the high-`
temperature and polarization power spectra, and impose
the multipole cut determined in [55] to the ACT data to
avoid double-counting information, in particular setting
`min,TT,ACT = 1800.

When using the ACT data we use enhanced preci-
sion settings in our modified version of the Boltzmann
code CLASS. The need for this increased precision is doc-
umented in [55] (see their Appendix A). This increased
precision comes at the cost of additional computational
expense in the MCMC analyses. In light of this, and
in light of the existing ACT collaboration analyses of
ΛCDM [55] and EDE [57], in this work we perform an
MCMC analysis of only the EDS model (and not EDE
or ΛCDM), and we present maximum-likelihood param-
eters for only EDS and ΛCDM (and not EDE). Future
optimization of the precision parameters needed for these
calculations, and/or the development of emulators with

which to accelerate the Boltzmann code (e.g., as in [81]),
will be useful.

The best-fit parameters and parameter constraints for
the analysis including ACT are given in Tab. V, and χ2

statistics are given in Tab. VI. The marginalized posterior
distributions are shown in Fig. 11.

Inclusion of the ACT data provides a factor of two im-
provement on the error on c. We find c = −0.002+0.015

−0.024

in comparison with c = −0.011+0.029
−0.047 from the fit to

the baseline data set. This dramatic reduction is largely
driven by the ability of ACT to constrain the timing of
the EDE component, zc. Indeed, from the posterior dis-
tribution of log10(zc) in Fig. 11, one may appreciate that
the inclusion of ACT data in the EDS analysis almost
completely removes the multimodality exhibited in the
fit of EDS to the baseline data set, as ACT removes the
high-zc tail (as discussed in [57]). The reduced multi-
modality in zc propagates to the marginalized constraint
on c, leading to an overall reduction in the error bar.

Meanwhile, the preference for a non-zero EDE compo-
nent is strengthened (as found in [57, 70, 82]): we find the
marginalized constraint fEDE = 0.108+0.053

−0.023 when ACT is

included, compared to fEDE = 0.099+0.056
−0.041 without ACT

data. However, the fEDE posterior distribution in Fig. 11
is significantly broader than a Gaussian, exhibiting ample
support on the boundary of the prior at fEDE ≈ 0. In-
deed we find the 95% CL constraint fEDE = 0.108+0.063

−0.095,
which nearly reaches fEDE = 0. This is reflected also in
the 2d posteriors, e.g., fEDE −H0 and fEDE − S8, which
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are consistent with fEDE = 0 at the 95% confidence level.
The marginalized constraints on H0 and S8 are consistent
with those from the fit to the baseline data set, while the
best-fit values of both are lower when ACT is included,
with H0 = 71.79 and H0 = 72.52 with and without ACT
respectively, and S8 = 0.8385 and S8 = 0.8481 with and
without ACT, respectively.

Turning to the χ2 values, Tab. VI, we find that the
best-fit EDS model is an improvement over the best-fit
ΛCDM model by ∆χ2 = −19.0. This is slightly en-
hanced relative to that in the fit to the baseline data
set (∆χ2

tot, baseline = −18, Tab. II), driven in part by

∆χ2
ACT = −1.9, consistent with the mild preference of

ACT data for a non-zero EDE component.

D. The Swampland

As discussed in Sec. II, the SDC states that a Planckian
field excursion leads to an exponential suppression of the
mass of other fields. The simple setup studied here, with
the scalar field coupled to all of the dark matter, provides
a minimal context within which to test the SDC. A sim-
ilar idea has been explored previously in the context of
quintessence, where it was dubbed Fading Dark Matter
[45].

The 95% bounds on the parameter c are given in
Tab. VII. The posterior distributions for swampland-
related quantities (the field excursion, the axion decay
constant, and the coupling c), along with their corre-
lations with the Hubble parameter H0, are shown in
Fig. 12. The SH0ES measurement is shown in grey
bands. From this one may appreciate that the EDE
resolution of the Hubble tension scenario, namely, the
ability for the EDE model to be 1 − 2σ consistent with
SH0ES, indeed rests upon a Planckian field excursion
|∆φ|/Mpl ' 1/2, and a Planckian axion decay constant
f ∼Mpl/5. Thus one naturally expects the parameter c
to play a role in this model.

However, turning to Tab. VII, we see that the SDC
parameter c is constrained to be c < 0.068 from the base-
line data set, at 95% CL, and c < 0.035 and c < 0.042
at 95% CL when DES-Y3 or ACT are included, respec-
tively. From this we infer a mild tension of the data, in
the context of the EDE model, with the SDC at the level
of a 4− 7% fine-tuning.

While the degree of fine tuning may not be severe, it is
interesting to note that these constraints are an order of
magnitude stronger than constraints on other would-be
O(1) swampland parameters. In particular, the de Sitter
(dS) Swampland Conjecture [83] states that scalar field
potentials cannot be arbitrarily flat, and are bounded
by V ′/V ≥ O(1) in Planck units. The would-be O(1)
parameter of the dS conjecture is constrained by data
to be V ′/V . 0.51 (2σ) [84] or V ′/V . 1.35 (3σ) [85]
(see also [86]). Compared to the constraints on SDC
order-1 parameter presented in this work (c < 0.035, c <
0.042, and c < 0.068 at 95% CL), one may appreciate the

latter are considerably stronger than constraints on the
swampland found in previous works.

Finally, we note that a more complete analysis, which
we will not pursue here, would be to allow variation in
the fraction of dark matter fDM to which the scalar field
couples. This would introduce one new parameter to
the already four-parameter EDS extension to ΛCDM. We
expect the≈ 5% fine-tuning of c in our fixed-fDM analysis
to translate to slightly lesser fine-tunings of c and fDM

once fDM is allowed to vary.

V. DISCUSSION

In this work have extended Early Dark Energy to an
Early Dark Sector (EDS). Motivated by the Swampland
Distance Conjecture [6] (SDC), the EDS is comprised of
the EDE scalar field along with a dark matter candidate
whose mass is exponentially sensitive to Planckian field
excursions of the EDE scalar. The aims of this model
are two-fold: (1) to understand the interplay of the H0

and S8 tensions, and determine whether the competition
between these can be softened by embedding EDE into
a larger model, and (2) to determine the extent to which
EDE (namely the H0-tension-resolving region of EDE pa-
rameter space) is in conflict with the SDC, and thereby
determine whether the EDE resolution of the Hubble ten-
sion lies in the landscape or the swampland.

Concretely, the EDS model is a one-parameter exten-
sion of EDE, parameterized by an additional parameter c
corresponding to the exponent in the dark matter mass,
mDM(φ) = m0e

cφ/Mpl , where φ is the EDE scalar. In our
sign convention, where φ is initially > 0 and decreases
over cosmic evolution, the SDC predicts that c > 0 and
c = O(1). The parameter c has important impacts on
both the CMB and on the growth of structure. In the
CMB the imprint of c contains a localized feature around
` ' 500, corresponding to modes that enter the horizon
near zc and a sign reversal in its effect at much higher
multipoles. This can be understood in terms of the im-
pact of the dark matter mass on the radiation driving of
acoustic oscillations, as described in Sec. III.

Meanwhile, c > 0 (at fixed Ωch
2) leads to an enhanced

growth of structure, due to the relative shift in matter ra-
diation equality to earlier times. The growth of structure
is also subject to a second effect: an effective dark mat-
ter self-interaction (a dark “fifth force”) that is attrac-
tive, and in the limit of high k has strength c2GN . This
leads to enhanced structure formation on small scales for
both positive and negative c. The combination of the two
growth effects allows a small but negative c to decrease
S8. Incidentally, this small negative c also improves the
fit to the CMB.

Armed with the theory motivation and understanding
of the phenomenology, we have performed MCMC anal-
yses of the EDS model fit to a baseline data set combi-
nation of Planck 2018 primary CMB and CMB lensing
[13, 48, 49]; BAO from the SDSS DR7 main galaxy sam-
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FIG. 11. Constraints including ACT data. The plot shows posterior distributions for the fit of the EDS model to the baseline
data set (CMB, CMB lensing BAO, SNIa, and SH0ES) with and without the addition of ACT primary CMB data. Shaded
grey and pink bands denote the SH0ES measurement and the DES-Y3 S8 constraint, respectively.

Maximum Likelihood and Marginalized Parameter Constraints from the combination of the baseline data set and ACT data.

Parameter ΛCDM EDS

100θs 1.04219 1.04150 (1.04151+0.00034
−0.00039)

Ωbh
2 0.02248 0.02257 (0.02258± 0.00017)

Ωch
2 0.1181 0.1311 (0.1302+0.0055

−0.0034)
τ 0.0599 0.0565 (0.0546± 0.0071)

log(1010As) 3.059 3.071 (3.068± 0.015)
ns 0.9725 0.9876 (0.9865+0.0077

−0.0065)
cθ −0.0008 (0.0013+0.0013

−0.0065)
fEDE 0.119 (0.108+0.053

−0.023)
log10zc 3.545 (3.521+0.071

−0.032 )
θi 2.79 (2.44+0.46

+0.16)

c −0.005 (−0.002+0.015
−0.024)

φi [Mpl] 0.474 (0.490± 0.093)
log10(f/eV) 26.61 (26.726+0.011

−0.19 )
log10(m/eV) −27.32 (−27.270+0.033

−0.16 )
∆mDM/mDM −0.0009 (−0.0011+0.0078

−0.011 )
σ8 0.8128 0.8393 (0.840+0.010

−0.0094)
Ωm 0.3003 0.2995 (0.3003± 0.0052)
S8 0.8172 0.8385 (0.841± 0.012)
H0 68.23 71.79 (71.5+1.4

−1.1)
∆χ2

tot 0 −19.0

TABLE V. Maximum likelihood (ML) parameters and marginalized parameter constraints for EDS and ΛCDM in the fit
including ACT data. Parameters in bold are sampled in MCMC analyses. For ΛCDM we give only ML parameters, due to the
significant computational expense of MCMC analyses at the high precision settings required to analyse ACT data.

ple [50], the 6dF galaxy survey [51], and SDSS BOSS
DR12 [52]; the Pantheon supernovae data set [53], and

the 2019 SH0ES H0 measurement [11]. We have per-
formed additional MCMC analyses of the baseline data
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FIG. 12. Early Dark Energy and the swampland conjectures. We show the posterior distributions of the field excursion, axion
decay constant, and dark matter mass dependence, along with their correlation with H0, in the fit to varying data sets. The
swampland distance conjecture would suggest that c = O(1) > 0, while the data constrain c < 0.068, 0.035, and 0.042 at 95%
confidence, for the baseline data set, the baseline + DES-Y3, and baseline + ACT, respectively, and slightly prefer c < 0.

set supplemented with Dark Energy Survey Year-3 data
[54] and supplemented with data from ACT [55, 56].

From the analysis of the baseline data set we find that
EDS can accommodate lower S8 values than EDE with-
out compromising on H0. The low-S8-high-H0 region
of parameter space is correlated with small but negative
c, and we find a mild overall preference for c < 0 in
the fit to the baseline data set. When the data set is
supplemented with DES-Y3, we find that S8 decreases
while leaving H0 nearly unchanged, while maintaining
the preference for c < 0. Compared to EDE, we find
EDS is better able to accommodate the DES-Y3 data
by ∆χ2

DES−Y3,EDS−EDE = −1.1. This demonstrates the
ability of the EDS model to at least partially resolve the
tension of EDE with large scale structure data.

When ACT data are included we find a significant im-
provement on the constraint on c, driven largely by the
improved constraint on zc. Finally, all of these analy-
ses constrain c to be significantly less than 1: we find
c < 0.068 from the baseline data set, at 95% CL, and
c < 0.035 and c < 0.042 at 95% CL when DES-Y3 or

ACT are included, respectively. Taken at face value, this
indicates a tension between the EDE resolution of the
Hubble tension and the SDC.

Finally, we evaluate the overall preference of the data
for the EDE model vs. EDS. To compare the EDS and
EDE models we calculate the Akaike Information Crite-
rion [87], which for the baseline data set yields ∆AIC ' 0,
suggesting no preference for one model over the other. A
more detailed model comparison could be done by com-
puting the Bayesian evidence for each model; we leave
this for future work.

We close this analysis with the following summary
comments:

1. The EDS extension of EDE, namely EDE with
the EDE-dependent dark matter mass mDM(φ) =
m0e

cφ/Mpl , can partially ameliorate the tension be-
tween the EDE resolution of the Hubble tension
and LSS data. However, the data are statistically
consistent with c = 0.

2. ACT data significantly constrain both the timing zc
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χ2 statistics
from the fit to Planck 2018, BAO, SNIa, SH0ES, and ACT

Datasets ΛCDM EDS

Primary CMB:
Planck 2018 low-` TT 22.2 21.3
Planck 2018 low-` EE 397.2 396.4
Planck 2018 high-`

TT+TE+EE
2346.3 2345.9

ACT 243.2 241.2
LSS:

Planck CMB lensing 8.4 9.8
BAO (6dF) 0.0008 0.015
BAO (DR7 MGS) 1.8 2.1
BAO (DR12 BOSS) 3.4 3.4

SNIa (Pantheon) 1034.7 1034.7
SH0ES 16.7 2.5
Planck prior 4.1 2.0
∆χ2

Planck primary CMB 0 −2.1
∆χ2

ACT 0 −1.9
∆χ2

LSS 0 +1.2
∆χ2

SH0ES 0 −14.2
∆χ2

tot 0 −19.1

TABLE VI. χ2 statistics for the ML ΛCDM and EDS models
in the fit to the baseline data set (CMB, BAO, SNIa, and
SH0ES) supplemented with ACT data.

Constraints on the Swampland Distance Conjecture

Datasets 95% upper limit on c

baseline c < 0.068
baseline + S8 from DES-Y3 c < 0.035
baseline + ACT c < 0.042

TABLE VII. Constraints on the Swampland Distance Con-
jecture parameter c, defined by the early dark energy depen-
dence of the dark matter mass mDM = ecφ/Mpl . Upper and
lower bounds are 95% CL.

of the EDE component and the EDS coupling pa-
rameter c. We find that supplementing the baseline
data set with ACT data improves the constraint on
c by a factor of two, and nearly eliminates the pref-
erence for c < 0.

3. Order-1 values of c in H0-resolving EDE are ruled
out by the data. While the SDC does not make
any prediction for the fraction of dark matter to
which the EDE scalar is coupled, this nonetheless
suggests a mild tension between the SDC and EDE
resolution of the H0 tension.

There remain many directions for future work. Our
analysis is motivated by the SDC, but the latter makes
no prediction for fraction of dark matter to which
the scalar field couples. Therefore a natural model
extension is allow this fraction to vary in the fit to
cosmological data sets. Other variations of our analysis
would be to consider different choices of V (φ), such
as monomial φn or hyperbolic tanh(φ/f)n potentials,
and different choices of the dark matter coupling, such

as mDM = m0(1 + cφ2/M2
pl). A final possibility is to

examine the role of EDE-dark matter interactions in
resolving the coincidence problem inherent in early
universe resolutions to the Hubble tension, namely, why
the new physics becomes transiently relevant around
matter-radiation equality, and not in the many decades
of redshift before this epoch. We leave these interesting
possibilities to future work.
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Appendix A: Equations of Motion

We consider cold dark matter interacting with the EDE
scalar field φ. We model dark matter as a population
of non-relativistic Dirac fermions. We consider a model
with action given by,

S =

∫
d4x
√
−g [

1

3M2
pl

R− 1

2
∂µφ∂µφ− iψ̄ /Dψ (A1)

−V (φ)−mDM(φ)ψ̄ψ + h.c. ] .

where ψ is a Dirac fermion, which plays the role of cold
dark matter. As such, we take the non-relativistic limit
of ψ, in which case 〈ψ̄ψ〉 → n(t), where n(t) is the num-
ber density, namely, the total number of particles and
anti-particles, not to be confused with 〈ψ̄γ0ψ〉, which is
the difference between the number of particles and an-
tiparticles. In this limit, the dark matter component is
described by a stress tensor,

T (DM)µ
ν = nDMmDM(φ)uµuν (A2)

with uµ = (−1, vi). This comprises only a part of the
stress tensor of the full interacting system, which is given
by

Tµν = T (DM)
µν + T (φ)

µν , (A3)

where T
(φ)
µν is the φ contribution given by

T (φ)µ
ν = ∂µφ∂νφ−

1

2
δµ ν∂

αφ∂αφ− δµ νV (φ). (A4)

The combined stress tensor is covariantly conserved,

∇µTµ ν = 0, (A5)
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which follows from the contracted Bianchi identities of
General Relativity. The equations of motion of the inter-
acting system are dictated by the conservation equation
Eq. (A5) along with the equations of motion for the scalar
field that follow from the variation of the action.

The equations of motion for the scalar field background
and perturbations are given by the variation of the action
expanded to linear and quadratic order in δφ respectively.
At the background level, where quantities depend only on
time, the variation with respect to the scalar field gives,

φ̈+ 2aHφ̇+ a2 dV

dφ
+ a2n

dmDM

dφ
= 0, (A6)

where dot denotes a derivative with respect to conformal
time τ , whileH is defined with respect to time t. This can
be expressed in terms of the dark matter energy density
as,

φ̈+ 2aHφ̇+ a2 dV

dφ
+ a2 dlogmDM

dφ
ρDM = 0. (A7)

The equation of motion for the dark matter density is
given by

ρ̇DM + 3aHρDM = φ̇
dlogmDM

dφ
ρDM. (A8)

We repeat this procedure for the perturbations, work-
ing in the synchronous gauge. The metric in synchronous
gauge is given in general by

ds2 = a2(τ)
(
−dτ2 + (δij + hij)dx

idxj
)
. (A9)

The perturbation hij may be decomposed into two scalar
degrees of freedom, h and η, defined by the decomposi-
tion,

hij(~x, τ) =

∫
d3kei

~k·~x

[
k̂ik̂jh(~k, τ) (A10)

+(k̂ik̂j −
1

3
δij) 6η(~k, τ)

]

where ~k = kk̂. See, e.g., [88], for more details.
The interaction of the scalar field with dark matter

generates new terms in the quadratic action for pertur-
bations, which are given by,

δS2 = −
∫
dτd3x a4(τ)

[
d2mDM

dφ2
δφ2n+

dmDM

dφ
δφδn

]
,

(A11)
where δn is the perturbation to the dark matter number
density. The resulting equation of motion is,

δ̈φ+2aH ˙δφ+

(
k2 + a2 d

2V

dφ2

)
δφ+

1

2
ḣφ̇ =

−a2

[
dlogm

dφ
ρDMδc +

d2logm

dφ2
δφρDM

]
, (A12)

where we define the fractional dark matter density per-
turbation δc ≡ (δρDM)/ρDM.

To derive the equations of motion for the dark matter
component, we now explicitly evaluate Eq. A5, and apply
the scalar field equations of motion. From the ν = 0
component, we find the equation of motion for δc, given
by

δ̇c + θ +
ḣ

2
=
dlogm

dφ
˙δφ+

d2logm

dφ2
φ̇δφ, (A13)

while from the ν = i component we find the equation of
motion for the velocity perturbations,

θ̇ + aHθ = +
dlogm

dφ
k2δφ− dlogm

dφ
φ̇θ. (A14)

where θ ≡ ∂ivi.

Appendix B: Scalar-Mediated Force on Dark Matter
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FIG. 13. Scalar field φ evolution for c = −0.025 with fixed
H0 and all other parameters (except θs) fixed to their values
in Eqs. (17) and (18). The quasistatic estimation Eq. (B10)
is also shown for comparison.

To assess the combined gravitational and scalar medi-
ated forces on the dark matter we start with the time-
time and trace of the space-space pieces of the Einstein
equation with the synchronous metric of Eq. (A9)

H ḣ
2

= k2η +
1

2M2
pl

a2δρ, (B1)

ḧ

2
+Hḣ− k2η = − 3

2M2
pl

a2δP (B2)
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and combine them to eliminate η:

ḧ

2
+H ḣ

2
= − 1

2M2
pl

a2(δρ+ 3δP ). (B3)

Taking the derivative of the dark matter continuity equa-
tion, Eq. (A13), and plugging in ḧ from above and θ̇ from
the Euler equation (A14), we arrive at,

δ̈c −H(
ḣ

2
+ θc) =

1

2M2
pl

a2(δρ+ 3δP )− 1

Mpl
ck2δφ

+
1

Mpl
cφ̇θc +

1

Mpl
cδ̈φ. (B4)

To gain physical intuition, we consider a quasistatic limit
in which the last term in the above can be neglected. For
small c the second last term is in higher order of c. Note
that there is a non-zero offset value for δφ at late times.
From the equation of motion

δ̈φ+ 2aH ˙δφ+ (k2 + a2 d
2V

dφ2
)δφ+

1

2
ḣφ̇ = −a2 1

Mpl
cδρDM,

(B5)
we can estimate δφ in the quasistatic limit as

δφ(0) ≈ −a2 cδρDM/Mpl

k2 + a2d2V/dφ2
, (B6)

We then plug it into Eq. (B4) and, assuming δρ+ δP is
dominated by dark matter, we have,

δ̈c +Hδ̇c = 4πGa2ρcδc(1 +
2c2k2

k2 + a2d2V/dφ2
). (B7)

From this one may read off an effective gravitational con-
stant,

Geff = GN

(
1 +

2c2k2

k2 + a2d2V/dφ2

)
, (B8)

which is independent of the sign of c.
Notice that the modification to Geff appears on scales

below the Compton wavelength of the scalar k/a >
d2V/dφ2 which itself depends on the dark matter den-
sity. The scalar field oscillates around the minimum of
the effective potential which evolves quasistatically as

dV

dφ
= − c

Mpl
ρDM (B9)

to be

φ = −sgn(c)
22/5c1/5f4/5ρ

1/5
DM

31/5m2/5M
1/5
pl

. (B10)

At the minimum the scalar mass is

mφ =

(
d2V

dφ2

)1/2

=
31/1051/2c2/5m1/5ρ

2/5
DM

21/5f2/5M
2/5
pl

. (B11)

In Fig. 13 we show the late time evolution of the scalar
field for model with c = −0.025 with fixed H0 and all
other parameters (except θs) fixed to their values in
Eqs. (17) and (18). We see that the quasistatic esti-
mation agrees well with the DC offset of the scalar field.
The corresponding Compton wavelength at the minimum
at z = 0 is ∼ 1 Gpc so that for scales relevant to large-
scale structure, Geff ≈ GN (1 + 2c2). Notice also that the
scaling of the range of the modified force is a fairly mild

ρ
−2/5
DM . Although EDS admits chameleon screening of the

force in a high density environment, even in a virialized
halo where the local density is ∼ 200 times the back-
ground, the range remains large compared with both the
scale of the halo and the large-scale structure relevant to
S8.

Appendix C: Implementation In CLASS

We implement the EDS model into the publicly avail-
able Boltzmann code CLASS [73, 74],5 by modifying the
publicly-available CLASS EDE [3].6

We use the synchronous gauge functionality of CLASS
to solve the Einstein equations, Eq. (21) of [88], given
the energy density, pressure, and velocity of the matter
content. From the stress tensor Eq. (A4), the energy
density and pressure of the scalar field are given by,

ρφ=
1

2a2
φ̇2 + V (φ), (C1)

pφ=
1

2a2
φ̇2 − V (φ).

The perturbations to the above, along with the scalar
field velocity perturbation, are given by,

δρφ=
1

a2
φ̇ ˙δφ+ V ′(φ)δφ. (C2)

δpφ=
1

a2
φ̇ ˙δφ− V ′(φ)δφ.

(ρφ + pφ)vφ=
1

a2
kφ̇δφ.

We note that CLASS works in units wherein the energy
density and pressure are rescaled by 1/3M2

pl, i.e., the
stress-energy tensor is rescaled as,

T (CLASS)
µν =

1

3M2
pl

Tµν . (C3)

The scalar field retains units of Mpl. The above rescal-
ing manifests in CLASS as a factor of (1/3) in the CLASS
definition of ρφ, pφ, etc. , relative to Eqs. (C1) and (C2).

The scalar field background equation of motion be-
comes,

φ̈+ 2aHφ̇+ a2 dV

dφ
+ 3a2 dlogmDM

dφ
ρ

(CLASS)
DM = 0 (C4)

5 http://class-code.net
6 https://github.com/mwt5345/class_ede

http://class-code.net
https://github.com/mwt5345/class_ede
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where ρ
(CLASS)
DM is in CLASS units. The perturbed Klein-

Gordon equation becomes,

δ̈φ+2aH ˙δφ+

(
k2 + a2 d

2V

dφ2

)
δφ+

1

2
ḣφ̇ =

−3a2

[
dlogm

dφ
ρ

(CLASS)
DM δ +

d2logm

dφ2
δφρ

(CLASS)
DM

]
.(C5)

The covariant conservation of stress-energy may be ex-
pressed as

∇µ
(
T (DM,CLASS)
µν + T (φ,CLASS)

µν

)
= 0. (C6)

Propagating through the factors of 3 from the conversion
to CLASS units, we find that the equations of motion of
dark matter perturbations in CLASS units are unchanged
from Eqs. (A13) and (A14).

The CLASS EDE code [3] absorbs the cosmological con-
stant Λ into the scalar field potential, as

V (φ) = 3M2
plΛ +m2f2

[
1− cos

φ

f

]3

(C7)

where Λ is a constant. This rewriting utilizes the built-in
functionality of CLASS to tune a parameter in V (φ) in
order to satisfy the energy budget equation

∑
Ωi = 1

for arbitrary initial conditions for the scalar field. We
impose slow-roll initial conditions on φ(t) and adiabatic
initial conditions on δφ, as discussed in [3]. Finally, in
order to sample the EDE parameters fEDE and log10(zc),
we a shooting method to iteratively determine the corre-
sponding model parameters f and m.

In this work we add to CLASS EDE [3] a new cold (pres-
sureless) dark matter component that is coupled to the
EDE scalar as discussed above. We retain the CLASS cold
dark matter component, with a fixed Ωcdm = 10−5, in or-
der to self-consistently define the synchronous gauge.

In order to simultaneously sample the present-day dark
matter density and the scalar field initial conditions, we
implement a shooting method to determine the initial
dark matter density. We impose adiabatic initial condi-
tions for the coupled dark matter component.

Appendix D: Additional Posterior Plots

The enlarged set of posterior distributions for the anal-
ysis with DES-Y3 data and with ACT data are given in
Fig. 14 and 15, respectively.
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