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We derive analytic covariance matrices for the N-Point Correlation Functions (NPCFs) of galaxies
in the Gaussian limit. Our results are given for arbitrary N and projected onto the isotropic basis
functions given by spherical harmonics and Wigner 3j symbols. A numerical implementation of the
4PCF covariance is compared to the sample covariance obtained from a set of lognormal simulations,
QUUOTE dark matter halo catalogues, and MULTIDARK-PATCHY galaxy mocks, with the latter
including realistic survey geometry. The analytic formalism gives reasonable predictions for the
covariances estimated from mock simulations with a periodic-box geometry. Furthermore, fitting
for an effective volume and number density by maximizing a likelihood based on Kullback-Leibler
divergence is shown to partially compensate for the effects of a non-uniform window function. Our
result is recently shown to facilitate efficient NPCF estimation.

I. INTRODUCTION

Large-scale structure (LSS) is a powerful observable
with which to elucidate cosmic evolution. To charac-
terize its spatial distribution, various summary statis-
tics have been proposed, of which the most prominent
are the two-point statistics, i.e. the 2-Point Correlation
Function (2PCF) and its Fourier-space counterpart, the
power spectrum [e.g. [1} [2].

Although two-point statistics fully capture information
in the early Universe, assuming a standard inflationary
model with adiabatic perturbations, gravitational evo-
lution induces non-linearities in the LSS at late times,
spreading information into higher-order statistics. Fur-
thermore, different mechanisms during inflation can gen-
erate distinctive non-Gaussian signatures [BH7]. These
two effects justify pushing beyond the power spectrum or
2PCF. Examples include the 3-Point Correlation Func-
tion [3PCF; [8H14], the bispectrum [I5HI9], skew spec-
tra [20, 2], the marked density field [22] 23], and the in-
tegrated bispectrum and trispectrum [24] 25]. Methods
such as BAO reconstruction [26H30], forward-modeling
of the galaxy density field [3TH34], and machine learn-
ing techniques have also been proposed as alternative
but complementary approaches to summary statistics.
Previous work has demonstrated that combining two-
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and higher-point statistics can break the degeneracy be-
tween linear bias and the amplitude of matter fluctua-
tions, tighten constraints on standard ACDM parame-
ters [35H38], and provide further insights into the neu-
trino mass [39H44] and modified gravity [45], [46]. Gravi-
tational evolution imprints a useful shape on the N-point
statistics; In [47] it was shown that for N = 3 this shape
can potentially provide complementary information to
BAO reconstruction when it is used as standard ruler.

To infer cosmological parameters from the N-Point
Correlation Functions (NPCFs) using Bayes’ theorem
with a Gaussian likelihood, a covariance matrix is re-
quired. Usually, this is obtained by sampling indepen-
dent realizations of the statistic from simulations. How-
ever this approach introduces sampling variance, which
then propagates into the parameter estimates [48-51]. To
reduce this variance, the number of mock catalogs must
be much larger than the dimension of the NPCF's; if the
statistic contains many bins, the computational cost of
this poses a significant challenge.

An alternative approach is to compute the covariances
analytically. This has been intensively studied especially
for two- and three-point statistics [I0, 52H62]. Recent
work in Philcox et al. [63] developed an efficient algo-
rithm to measure the NPCF for arbitrary N; given the
high dimensionality of the NPCF'S for large IV, this poses
a further challenge for covariance estimation. Thus far,
few studies have considered the covariance of the NPCFs
with N > 3. To address this, we here derive an ana-



lytic expression for the NPCF covariance at arbitrary N.
In order to efficiently characterise the NPCF we work
with the isotropic basis functions developed in Cahn and
Slepian [64]; these have rotational symmetry in 3D, and
may be related to the quantum-mechanical angular mo-
mentum basis states.

An important assumption in our modeling is that the
two-point statistics are the dominant contribution to the
covariance, i.e. we ignore contributions from three- and
higher-point statistics. To test this assumption, we will
use simulations that include non-Gaussian effects. For
the majority of this paper, we will assume the two-point
statistics to be isotropic, such that the spatial distri-
bution of the galaxy pairs is independent of the line of
sight (l.o.s). In practice, a galaxy’s peculiar velocity, in-
duced by its local gravitational environment, does give
rise to redshift space distortions (RSD) and thus breaks
isotropy. Although the main tests in this paper will be
focused on the isotropic case, we will show in the Ap-
pendix an analytic expression that includes the effects of
RSD, by expanding the anisotropic two-point statistics
in multipoles with respect to the l.o.s. Finally, we will
compare the results of our formalism to the covariance
estimated from mock catalogues with a realistic survey
geometry.

In §I1 we briefly review the isotropic basis and its prop-
erties, before the NPCF estimator is defined in §ITI} In
§IV] we present our formalism for the theoretical covari-
ance in the Gaussian Random Field (GRF) limit, start-
ing with the basic elements as building blocks for con-
structing the Gaussian covariance, then presenting the
general formalism for the NPCF covariance, and ending
with explicit expressions for the case of N = 4. In §V]
we compare our numerical implementation of the Gaus-
sian NPCF covariance to a set of lognormal mocks, a set
of halo catalogues from N-body simulations using QUI-
JOTE simulations and PATCHY mocks, where the latter
include realistic survey geometry. We summarize our re-
sults in §VII Appendices [A] [B] and [D] provide inter-
mediate derivation steps as well as consistency checks,
Appendix [C] discusses the covariance contribution from
the disconnected piece of the NPCF estimators, and Ap-
pendix [E] presents the derivation of the covariance includ-
ing RSD. The code for computing the covariance of the
connected 4PCFs is publicly available [65].

II. REVIEW OF THE ISOTROPIC BASIS
FUNCTIONS

In this section we will provide a summary of the
isotropic basis functions, including a number of impor-
tant properties that will be needed later for the deriva-
tion of the theoretical covariance. Further details are
presented in Cahn and Slepian [64].

A. Construction of the isotropic basis functions

In our notation, the isotropic functions P, are sums
of products of n spherical harmonics Yy, multiplied by a
product of Clebsch-Gordan coefficients, denoted by C{\\/I.
They are constructed so as to be invariant under simul-
taneous rotation of all n coordinates:
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where R stands for a collection of unit vectors 1, ..., F.
Each unit vector r; is associated with a rotation gen-
erator L;, i.e. the angular momentum operator. The
isotropic Py function is an eigenfunction of each oper-
ator L? with eigenvalue ¢;(¢; + 1) and of the operator
(>-r, L;)? with eigenvalue zero (see also the discussion
in [66] for a generalization of this to D dimensions). We
denote the orbital angular momenta by ¢;, with m; be-
ing its projection onto the z-axis [67]. For n > 3 the
combination of a given set of orbital angular momenta,
ly,...,0,, is not unique: we need to specify interme-
diate orbital angular moment. These are constructed
from the primary orbital angular momenta, for exam-
ple, (L; + Ly)? with eigenvalue ¢15(¢12 + 1), and anal-
ogously for (L; + Lo + L3)?, et cetera. For brevity, we
will hereafter call the ¢; ‘primary’ angular momenta and
the l12, 123, ..., ‘intermediate’ angular momenta. Fur-
ther, we use A to indicate the collection of angular mo-
menta {l1, s, (l12), 3, (¢123), ..., Ln}, with intermediate
angular momenta in the brackets, and M to represent
the collection of azimuthal angular momentum compo-

nents {mi,ma,...,m,}, with each m; = {—£;,... ¢},
miz = {—l12.,...,012. } and z;v_l m; = 0. In our con-
vention, the primary angular momenta ¢1, {5, ... follow

the ordering of the unit vectors: ¢; corresponds to ry, £o
corresponds to I, etc.

The C{} coefficient can be expressed using Wigner 3-j
symbols:
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where E(A) = (—1)21' toand k = g —mya+L193—Mi23+
coo+ 19, m—2 — M2, p—o. If the sum of the angular mo-
menta is even, then £(A) =1 and P, is real. Otherwise,
E(A) = —1 and P is imaginary. For n = 2 and n = 3,
C&; becomes:

ot ()™

with (520 being the Kronecker delta. The result in the
second line is non-zero only when /1,05, and /3 satisfy
the triangular inequality, |[¢1 — {2] < l3 < ¢1 + {5. Fur-
thermore, if any of the angular momenta are zero, the
second line reduces to the first [68] eq. 34.3.1].
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Using this, we can expand an arbitrary isotropic function
in this basis

C(R) =D C(R)PA(R),
A

with R = {ry,ro,...,7»} and R = {ry,ro,...,r,}. By
invoking the orthonormality relation Eq. we can ob-
tain the expansion coefficient

(A(R) = / IR ((R)PL(R).

In our context, ((R) is the N-point correlation function.
If we expand the function in the basis Py, parity-even
correlators will have real coefficients, but parity-odd cor-
relators will have purely imaginary coefficients.

B. Useful properties

As we will see in §IV'A] the covariance matrix calcu-
lation in the isotropic basis involves pairs of galaxy IN-
tuplets. In the limit in which our calculation proceeds,
we assume that the density fluctuations are a Gaussian
Random Field and hence we focus on products of cor-
relations between pairs of points. Each of the two N-
tuplets can be understood as a “primary” galaxy at ab-
solute positions respectively x and x’. The two primaries
are separated by a vector s. To increase the symmetry
of our calculation, we pretend that the primaries have
relative positions around x and x’ as ro and r{; at the
end we will take the limit that these go to zero, but re-
taining them in intermediate steps turns out to simplify
the derivation. Around each “primary” there are then
three “secondaries” whose relative positions are given by
respectively {ry,rz,r3} and {r},ra,rs}.

We then examine connections between galaxies from
the “unprimed” family and the “primed” family; these
connections occur by going along a vector r, then along
s, and then along r’. Thus, any connection gives rise to
a three-argument isotropic basis function. The setup is
shown in Fig.

(

For an N-point function covariance, we have 2N den-
sity points, and so the number of pairs is N. Thus, the
number of connections is also IV, and so we are motivated
to look at products of N isotropic functions of three argu-
ments, i.e. Hf\gl Pe,erer (Fi, £}, 8). Furthermore, since we
are interested only in the radial information, the angular
part will be integrated over. Before we dive into the cal-
culation, it is useful to summarize some useful properties
of the isotropic basis that we will repeatedly encounter
in the rest of the paper.

Rotation-Averaging a product of isotropic functions
Consider a product of p spherical harmonics. If we rep-
resent integration over the rotations, R, by dR with
J dR =1 then, as shown in the previous work [64], aver-
aging over the rotation group projects out the isotropic
components:

P
/dR [1Yeim; (REj) =D CRPA(R).
Jj=1 A

The result is non-zero only if ) ;mj =0 and the /; sat-
isfy a generalized triangular inequality, namely that they
can be combined to make a state of zero total angular
momentum. The sum over A includes all possibilities
that can be constructed from the given primary ¢;.

The rotational average of a product of p spherical har-
monics with a common argument is determined in a sim-
ilar fashion:
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where M stands for all the m; and the subscript 0 =

{0,0,...}, and the sum is over all A consistent with the

given ¢; (by the introduction of intermediate £12, etc.).

We have defined the following coeflicient involving the

primary angular momenta:

p
Dy =[] V26 + 1.
j=1



The superscript P stands for “primary”. Since we will

P
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Since the isotropic basis does not encode the absolute
orientation of each galaxy N-tuplet, we can average over
orientation of the #;, ¥}, and § via Eq. (5) with the relative
orientations of directional vectors within each galaxy N-
tuplet fixed. Following this, we find

/ dRdR'dS HPL; oo (B4, 8, 8) (6)
i=1
= (4m)7/2 N QMADR,Ch PA(R)PA (RY).
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where the A, A’, and A” are formed from the primary
components ¢;, ¢;, and ¢ respectively. We introduce the
quantity

p
QAA A == H Z C'fn,éﬂi m//CMCM/CM// (7)
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where the subscripts M, M/, M” stand for collections of
{m;}, {m}}, and {m/}. Since cltty

my H’L ’m
angular momenta we write out its components explicitly.

Orthogonality relation for and product of isotropic
functions
We note that after the rotation average in Eq. @, there is
a product of isotropic functions with arguments R. Since
the Pp are a complete basis, it is possible to write prod-
ucts of two isotropic basis function with the same argu-
ment as a sum of single isotropic basis functions weighted
by a coupling coefficient:

Zg Al/ gAA A”PA”( ) (8)
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where G~! denotes the inverse permutation of G. Here,
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use it often, we write out DY for p = 3 explicitly:

Df o = /(2L + 1)(20 + 126/ +1).

The product of p isotropic functions with three argu-
ments can be explicitly expressed in terms of spherical
harmonics as

Yoo, (23) Yy (8) Yormy (8). (5)

(

where the phase £(A”) in the coefficient arises due to the
conjugation property of the 1botrop1c function P%, (R) =

E(AN"YPa#(R) and we define GM'A” as the generalized
Gaunt integral [64]:

GANA = / dRPA(R)Py (R)Pyr (R)
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From its definition we see that GAMA” ig symmetric in

A, A, A”; we include its explicit evaluation for n = 2,3

and 4 in Appendix [A]
Reordering of arguments

The isotropic function is expressed with arguments
r1,...,r;, with the canonical ordering i = 1,...,n (index
sorted from small to large in r;). When we later consider
the covariance, the contraction of the overdensity fields
may be permuted such that the canonical ordering of the
indices is no longer guaranteed. The isotropic functions
with permuted arguments can be expanded in terms of
the canonically ordered ones (since these latter form a
complete basis) as:

Rg) = ZB/?,;PA’ (R), (10)
A/

where G denotes the permutation of the set {1,2,...,n}.
The reordering coefficient of the inverse permutation,
B/(\;X,, can be obtained by applying the orthogonality re-
lation

_ / dR Px(Re)PL (R))
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products of Kronecker deltas ensure that A and A’ have



the same primary angular momenta; however, they may
still differ in intermediate angular momenta.

III. N-POINT CORRELATION FUNCTIONS

The N-point correlation function (NPCF) is defined as

C(Tla ro,..., rN—l)

= (0(x)d(x+7r)d(x+72) - d(x+rNn_1)), (12)

where the galaxy overdensity is given by §(x) = n(x)/n—
1, with n(x) the galaxy number density with mean 7 and
(0) = 0. The angle bracket denotes the ensemble average
of the overdensity field.

The expectation value in Eq. can be expanded as
a sum of combinations of overdensity fields at different
spatial positions. In the NV = 4 case, the full 4PCF reads

=&(r1)é(r2 — r3) + £(r2)é(r1 —1r3)
+&(r3)é(r1 —ra) + ¢°(ry,ra,r3)
= (%(r1,ra,13) + (°(r1,12,13),  (13)

which consists of two parts. The connected four-point
function (¢(rq,ra,r3) captures the non-Gaussian part of
the signal. We denote the other terms, composed of the
products of two-point correlation functions, as the dis-
connected part, (4°(ry,re,r3). For N = 4 the discon-
nected terms coincide with the 2PCF that sourced by
Gaussian statistics. For N > 4 however, the disconnected
piece can also receive non-Gaussian contributions, such
as 2PCF+3PCF for the 5PCF. Our interest here is the
non-Gaussianity induced by the higher order statistics.
For this purpose, we employ a connected-only estimator
that subtracts all the disconnected pieces at the estimator
level (for details regarding the connected-only estimator,
see our companion paper [69]).

In the limit of large volumes, V', we can replace the
ensemble average by a spatial integral by invoking er-
godicity. This motivates the general NPCF estimator

C(r17r27" y TN— 1 j/

which is unbiased. Using orthonormality to project this
onto the isotropic basis Py (using n = N — 1) for given

C(r17r27r3)

O0(x +r1)d(x + ra)
(S(QZ—F’!‘N 1) (14)

primary angular momenta A = {¢1, 45, ({12),...,{Nn_1} as
in Eq. , we obtain the estimator
5/\(7“1,7“2,...,7“]\[_1) = /dI‘ a:—l—rl

XPA(I'l,I‘Q,..., —1)- (15)

Explicitly, for the 4PCF, we find:

C r1,T2,73)= / /drldrgdrgé(m-i-m)

X0(x +72)0(x + 73)P; 4,0, (1, T2, T3)16)
Throughout this paper we make two important as-
sumptions. First, we work in the Gaussian limit for the
covariance calculation. Even though the gravitationally-
induced higher-order statistics entering the covariance in
principle do not vanish, we assume they are suppressed
compared to the two-point statistics. This assumption
greatly simplifies the derivation below as we will only
need to consider the contractions between two overden-
sity fields, and thus may express results entirely in terms
of the 2PCF or the power spectrum. This assumption will
be addressed below by comparing the Gaussian covari-
ance to that obtained from N-body simulations. Second,
we assume the 2PCF| and likewise the power spectrum,
are isotropic. The majority of the paper is based on this
assumption, however, §V]includes a comparison between
the theoretical isotropic Gaussian covariance numerical
simulations including RSD, which breaks rotational in-
variance.

We use the following conventions for Fourier trans-
forms:

(k) = /dgr e"®T5(r), O(r) = /ke“” 5(k), (17)

where we define [, = (2mr)7% [ d®k. The 2PCF &(r) and
power spectrum P(k) are related by

E(lri —7y]) = /P

Hereafter, we assume isotropy, and thus assume P(k) =
P(k), with k = [k|, and &(r) = £(r). In Appendix [E]
we will discuss how to go beyond the assumption of an
isotropic power spectrum.

(0(r:)o(ry)) = Friri) (18)

IV. DERIVATION OF THE GAUSSIAN NPCF
COVARIANCE MATRICES

The covariance matrix for the NPCF is defined as
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where ((R) is the NPCF estimator with coordinates
R = {r1,re,...,rn_1}, with an analogous definition for
R’. Going from the second to the third line we have de-
fined the separation vector between the primary galax-
ies of the two N-plets as s = x’ — x, and dropped the
spatial integral over x, assuming statistical homogeneity.
Strictly, we first need to apply a Poisson average to dis-
crete tracers, giving rise to the shot noise term. Here we
use abbreviated notation and replace P(k) — P(k)+n "1,
for number density n, when we later compare our an-
alytic results to those from the simulations. We label
the vertices containing ro and rj, as primary vertices
(with rg = r{; = 0) and label the (N — 1) points with
separations ri,rs,...,ry_; relative to the primary as
endpoints. In the Gaussian limit we only need to cal-
culate contractions between pairs of overdensity fields.
The NPCF covariance has 2N overdensity fields and thus
forms N pairs of contractions.

Whereas the definition of the covariance matrix given
in Eq. (evaluated under the assumption of Gaus-
sianity) includes all possible contractions of 2N den-
sity fields, in this section we consider only pairs that
are contractions between unprimed and primed families,
i.e. between r; and r;-. We term these contractions
(and the corresponding covariance matrix contribution)
“fully-coupled”, as they fully couple the unprimed and
primed families. Any self-contraction (i.e. that involv-
ing contraction of two density fields within the same
family, i.e. between r; and r; with ¢ # j) arises from
the disconnected contributions to the NPCF. We term
any covariance contribution that includes at least one
self-contraction “partially-coupled”. All such contribu-
tions vanish in the covariance of the connected-only es-
timator [69]. This fact allows us to focus on the fully-
coupled covariance terms. With the introduction of the
connected-only estimator implies that the disconnected
terms can be isolated and that calculation of their asso-
ciated partially-coupled covariance is not strictly needed,

J

(19)

(

we provide its derivation in Appendix for complete-
ness.

Below, we derive a general expression for the fully-
coupled NPCF covariance matrix under the assumption
that the density fields are Gaussian distributed. In order
to offer a more intuitive understanding of the coupling
structure, we also present a diagrammatic approach to
the calculation.

We note that the 3PCF covariance can be obtained
from the results we will present here. This covariance has
already been derived via a different approach in Slepian
and Eisenstein [55]. We used our formalism to do the
derivation and compared with this earlier result as a
check; up to normalization and phase conventions we
found agreement, and we do not display the derivation
here [70]. Instead, after treating the case for general N,
we then proceed to the 4PCF covariance as an example.

A. Basic elements for the covariance

We first consider the coupling between two endpoints:
specifically, d(x + r;) from the unprimed family and
6(x + s +r}) from the primed family, with i and j be-
tween 0 and N — 1. Such a contraction is represented by
the tripolar structure in Fig. [I The primary vertices, rq
and rj, are indexed as a convenience for keeping track of
the permutations of unprimed and primed density fields;
we will need such permutations later in the calculation.
However, once we have computed our desired contrac-
tions in the isotropic basis, we may evaluate the result at
ro = 0 and r{, = 0, since we place the primary vertices at
x and x’ respectively. We display this approach in Fig.
m

Expanding the contraction (d(x +r;)d(x + s +r7)) in
the isotropic basis, we find

(O(x +1i)d(x +s +17)) = £(|rf +s —1i])

3/2 —L+L+ L
47T/ E { fu’ (7”177”],5)DM'L0000

4it L

A detailed derivation of this is in Appendix |Bl The high-

bty L Per (£,17,8). (20)

(

lighted radial part corresponds to Fig. [1| diagram (4).



To simplify what follows, we introduce the f-integral:
fer0a05(11,72,73)

_/];:kp(k)jfl(krl)]é2(1€7°2)j43(]{;7’3) (21)

following equation (64) in Slepian and Eisenstein [10].
In practice, this is computed in radial bins, wherein we
average each spherical Bessel function (sBF) over r; with

J

<6(X + rg)d(x +s+ I‘6)> |m=r(’)=0 = £(|r6 +s— r0|)|m=r(’)=0 =

Second, we have a primary-to-endpoint coupling. These
couplings can be obtained by taking one of rq or r{, and
their associated angular momenta to zero. In the first
line below, the primary is unprimed and the endpoint is

J

weight r? (see Eq. . Importantly, the bin average
commutes with the integral and can be done prior to the
k integration, which avoids performing the integral over
fine radial bins.

We now consider the forms of equation when 14
and j assume different values. There are three distinct
cases. First, we have a primary-to-primary coupling (the
highlighted radial part corresponds to Fig. [l diagram

(1):

(47‘[)3/2f0()0 (O, 0, S) 73000(0, 0, é), (22)

(

primed. In the second line, we give the alternate choice,
easily obtained by symmetry. Below, the highlighted ra-
dial parts correspond to Fig. [l diagrams (2) and (3).
We have:

(8(x+10)d(x + 5 +17)) [rg=0 = &(|r +5 — T0])]rg=0 (23)
= (4m)%/? Z fom/ O,TJ,S)D&/@/CSSBZ/ Poerer (0,15,8)
(0(x +1:)d(x + 14 +8)) [y =0 = &(Is + 14 — r3]) |y =0
= (4732 " faoe(rs, 0, 8)DjoC06 Proe(¥i,0,8). (24)
14

Finally, we have an endpoint-to-endpoint coupling ,
which is already given by Eq. .

B. Fully-coupled Gaussian covariance

1. General formalism for fully-coupled Gaussian NPCF
covariance

The covariance defined in Eq. (19 can be expanded

(

traction can be written as a Fourier transform of the
power spectrum, which can be expressed as products
of the basic elements with tripolar structure defined in

VA

into the isotropic basis. Using Eq. (20)), each pair con-
J
Cov({(R),{(R')) = Y E(A)Covpa(R, R')PA(R)Pr (R)
AN
— [ X TL 600+ w14 + 8)lra=rimo (25)
G =0
d3s

/ 3N/ZZH Z b4 L Frotr (rGi T 5)

1=0 ZGLZI

where we define Cova a/(C(R), C(R'

P ZGz£ L; A Al A
XDeGiegL,Cooo PZGJ’ (I‘Ghrivs)\mo:rg:m
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)) = Covaa(R,R’) and wuse the

conjugation property 73/’{,(15{’)
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FIG. 1: A diagrammatic representation of the basic elements used as building blocks for the fully-coupled (i.e.
connected) covariance. Coupling between the overdensity fields across the unprimed and primed family
(corresponding to density fields from the first and second NPCFs in Eq. is represented by a tripolar structure
(diagrams (1)-(4), cf. Egs. [20{23)). Each tripolar structure depends on three vectors: r;, r’;, and s. We use dotted
lines to represent the separation vector s. The open circle attached to the end of the dotted lines can be connected
to the one leg of the coupling kernel in diagram (5). Dashed lines depict primary vertices for rg or rj, and solid
lines are for endpoints with ¢ or j non-zero. Diagram (5) is the coupling kernel arising from the rotational average
over the unit vectors r, r’, and s (¢f. second line in Eq. . In the N = 4 case the coupling kernel has four legs.
The lower left diagram (with the cartoon telescope) shows our coordinate convention. x denotes the absolute
coordinate; r; and r;- are the relative coordinates for respectively the unprimed and primed families. s is the
separation vector between the two families.

E(A’)PA/(R’). We denote the permutation by G, is isotropic, we can apply Eq. @ and rotationally
with a total of N! permutation terms. Since the basis average over dR, dR', and dS (with the normalization

[dS = (4m)~! [ d3):

> E(N)Covaar(R, R)Pa(R)Par(R')
AN

S dS _ LailyL;
/ L 4 (4m) PN H ittty i (rai ) 8)Dig012,Co00 '
G Lal'AV i=0
X (471)7N/2Q£GUA”DK~C€” 'ch (R(N))PL’ (R/(N))|rco=1“6=0

s ds _
/ % 7 (471) 3N/QZ Z H i~teittitLi fegien, (TGis T 8)

G LgL'AN'" i=0

Xg'CG'C,A”DKuC([)\”'PLG (R(GN))PL’ (R/(N))lrcozr():o (26)
[
where we denote Lo = {lco,lc1,.-»lan—1)}, £ =  the Rand R’ vectors, A" = {Lo, L1, ..., Ly_1} as the an-

{0, 01, ... £\ _ } as the angular momenta associated with



gular momentum associated with the separation vector
s, and M"” = {My, My, ..., My}. The highlighted coeffi-
cients give rise to the coupling kernel in Fig. [T} diagram
(5). Notice that the isotropic basis used herein has N
coordinates (instead of N — 1, as in the NPCF definition
of Eq. , given that we evaluate the function at ro = 0,
r, = 0 with corresponding angular momentum ¢go = 0
and ¢{, = 0. Later, we will project the covariance onto the
(N —1) basis; for clarity we distinguish the two with the

superscript (V). Since both PLG( ) and Pz (R/(V)

contain a factor Yoo (to) = (47)~/ 2, we find a total pref-
actor (47t)~1. This cancels with our normalization con-

J

COVA7A/ (R, R/)

vention for the rotational average. The non-canonically

ordered isotropic function, P, (R( )) can be rewritten
using the reordering coefﬁment defined in Eq. (| .

Pro(R ZB PR, (27)

Finally, we project the covariance onto the isotropic basis
P (R) and P}, (R’), and perform an angular average over
r and r’. Orthogonality forces J — A and £’ — A/,
giving the general form for the NPCF covariance:

(28)
N—1

82d8 _ _ ’ ” -1 N ”
_ (47.[)31\7/2/72 Z (_1)[ B(A)-Z(A)+Z(A )]/2 Bgc;,l\ gLGAA DA”C{)\ H f@GiZ;Li(TGhT;vS)'rgg:r{,:():

G A Lg

where X(A) =3, 4;, X(A') = >, ¢, and 3(A”)

[ 2

= Zz LZ

2. Fully-coupled Gaussian 4PCF covariance

Henceforth, we will focus on the fully-coupled covari-
ance of the 4PCF. To derive this, we can use the general
form given in Eq. ; however, as an explicit verifi-
cation, we construct the 4PCF covariance in a different
manner. Noticing that contractions with the primary
vertices lead to basis functions involving zero angular mo-

J

L(R,R;s) = (6(x +70)d(x + 5+ 70)) [rg=rj—0

=0

i

menta, we split the fully-coupled covariance into two dif-
ferent cases: those involving a mutual coupling of the pri-
mary vertices §(rg) and §(rf +s) (upper panel of Fig.
and those where the primary vertices couple to the end-
points of the opposite family (lower panel of Fig. .

In this decomposition, the fully-coupled covariance can
be written

Covi L (R, R) = CoviV/(R, R') + Covi{V (R, R'(R9)
next, we will discuss these two cases.

Case I 1In this scenario the contraction of the eight
density fields leads to the term

X (0(x"+7)0(x" +s+7r)) (6(x" +7;)0(x" +s+75)) (§(x"" 4+ 7,)d(x" +s+715))
=Y &lls+1h —ro))&(ls + rh — rer))é(ls + rh — ras)é(ls + rh — ras|)rg=r—o,

defining the shorthand I in the first line. Here, {4, j, k}
denotes a permutation of the set {1,2,3}, which does
not include the primary vertices at ro and r(. There are
3! = 6 options by which to contract the remaining three
density fields from the primed and unprimed families. In

J

IL(R,R/;s

G i=0 LgiliL

here we denote the collection of angular momenta as

i

the second line we introduce the notation GG to denote
a permutation, with {7, j,k} = {G1,G2,G3}. The six
permutations are given explicitly in Table [ Using the
basic elements constructed in Eq. , we can express
the product of the four 2PCF's as

3
—Lai+l+L; Lol L
Z H 47T 32 Z et f@gll’ (TGZ, Tu S)Dﬁc 0Ly CO(% PZGJ' (I‘GZ,I'“ S)|ro =r{ =03 (30)

i

EG = {0u€G17‘€G27£G3}7 L = {0,‘6/1 / } and A" =
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Case Il

FIG. 2: Schematic for the fully-coupled 4PCF covariance (i.e. the covariance of the connected 4PCF). We split the
covariance into two cases. In Case I, the primary vertices (red dots, labelled by r¢ and r{) from the primed and
unprimed families are mutually coupled and all the endpoints (labelled by r; and r}) are coupled. In Case II, the
primary vertices each are coupled to an endpoint from the opposite family.

{0, L1, Lo, L3}. In principle, these should all involve in-
termediate angular momenta, however, the angular mo-
mentum associated with primary vertex is set to be zero,
thus the intermediate momenta are uniquely defined.

Performing a rotational average of dR, dR’, /alllld dS
over £g;, t}, and 8, leads to the quantity Q*¢A A" and

a prefactor (47)~2 for N = 4. When combined with
|

3

AGA'A” —2. P P Lail;L;
g = (470) " Dy 01, HDZGM,’L.AiCOOO

=0

3

_ -2 P LGl L;

= (4m) HDeGiz;Aicooo
i=0

where Df o 1. in the first line is cancelled by the first
a1ty L

9-5 symbol, leaving only one 9-j symbol in the second
line. Here we introduce a Levi-Civita symbol, defined
by & = 1 if {G1,G2,G3} is an even permutation of
{1,2,3} and —1 otherwise. The values of £z for each
permutation G are given in Table[l] Practically, this leads
to a prefactor of (—1)*+¢2+% if the permutation is odd,

. CGiliLi ,
the coeflicients DZ;M;Li and Coip ¢ * for i =0,...,3 (cf.

Eq. @ and Eq. @), we obtain the generalized Gaunt in-
tegral. The Gaunt integral for N = 4 involves a product
of two 9-j symbols and intermediate angular momenta
given in Eq. . However, one of the 9-j symbol can
be reduced due to the presence zero angular momenta,
and the fully determined intermediate angular momenta:
by = L, )y = ), and £15 = Lg1. The Gaunt integral
in this case reads

0 b1 L e Loz Las
0o o o oo o0
Ll Ll Ll L2 L3

e Loz Las
o by Ly
L, L, Ls

(

and unity otherwise. For the even-parity A this phase
does not play a role, but it is of importance for odd parity

A.

Using Eq. (10), we can restore the canonical ordering
in Rg = {f¢1,T¢e,Fgs}. For the 4PCF covariance, the
reordering coefficient BE ', for (N —1) = 3 involves only
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FIG. 3: A diagrammatic representation of a fully-coupled covariance matrix with Case I shown in the upper
panel and Case II in the lower panel (as in Fig.. Each case can be broken down into two elementary
structures: (a) a tripolar structure arising from the contraction between overdensity fields from the primed and
unprimed families, and (b) a coupling kernel given by the rotational average over r, r’; and s. Moreover, since the
covariance involves two primary vertices (one from the primed and the other from the unprimed family), there are
two dashed lines either connected to each other or connected to a solid line. All the three pieces are multiplied,
summed over the angular momenta, and integrated over s. In this figure we use GG; and H; to denote permutations.
For N = 4, the phase (—1)%(M)1-86)/2 op (—1)(A)1=E1)/2 can be directly read off from the plot as one goes
around clockwise: an even permutation in the ordering of angular momenta corresponds to a positive Levi-Civita
symbol and always gives a positive phase, while an odd permutation can flip the sign of the phase for parity-odd
correlators. Diagrams (2) and (3) in Fig. [I| can be distinguished from each other by reading the diagram
clockwise (i.e. one cannot change one into the other by a 2D rotation in the page). The following steps are used to
build the “snowflake” diagrams on the right hand sides of the equation: (1) take the tripolar structures and
multiply them with the coupling kernel, (2) perform an integral over the radial part s of the separation vectors.

a phase and the product three of Kronecker deltas: set J — A and pick out the coefficients of the isotropic
5 basis Py (R) and Py, (R'). Altogether, we arrive at the
-1 _ final form for Case I:
BE@,J = (—1)E(A)(1 £a)/2 H ‘%zci,w (32)
i=1

Performing angular averages over R and R’ allows us to

J

(fe),I / 4 S(A)(1—-Eg)/2 P LiLoL: tor Laz Las
Covy A/ (R, R') = (4m) Z(—l) (W(A~£6)/ Z Drirors Cooo 22 6ty U5

G LiLyLs Ly Ly Ls
s2ds 1 Lgi—t+L;)/2 P LGil; L
x % H [(_1)(_ cimbitla)/ Dyer1,Cooo lf(s)fzcie;Li(TGiﬂ“&S)} : (33)
i=1
[
For illustration, we consider the limit where the corre- representation Eq. , providing a useful cross-check of
lation function £(s) becomes a Dirac delta function, and  our calculation.
the power spectrum consequently becomes unity. This From Eq. , we see that £(s) — 5][5’] (s) implies that

limit enables a direct evaluation of both Eq. and its s — 0. Consequently, we have that v} — rg1, ry = rgo,



i
%
Q
w

Ea
1
-1

1
-1
1
-1

COOO[\?[\DH!—‘Q
MHHOJOO[\DQ
N W~ N W

TABLE I: Explicit forms of the six permutations
appearing in the Case I covariance terms. These arise
from the various options for contracting density fields in
Eq. . Each term involves a contraction between rg;
and r,. We additionally give the Levi-Civita
permutation factor g for each.

ry — rgs. We now consider the representation in terms
of f-integrals. For the first, taking P(k) — 1 gives

k2dk . 1
f000(0,0, s) :/Wjo(ks) = 42D (s). (34)

This is simply a representation of the 3D Dirac
delta function with spherical symmetry, expected since

fOOO(Oa 07 S) = f(s)

IH(R, Rl; S)

12

The other f-integrals can be similarly evaluated in the
limit s — 0 (and again, P(k) = 1). We have

i iy (rci 1)

k2dk

= lim FjeGi (krai )jeg (kri)ir(ks)

k2dk .
/ 52 5 Jeai (krai)je (kr})
1

(1]
= T UG

L (35)
For the first equality, we have noted that, as s — 0, only
jo is non-zero, meaning L — 0 and hence ¢ — ¢ due
to the 3-j symbol in equation . We recognize this
integral as a Dirac delta function, as before.

As shown in. Fig. [d] this result implies that, in the
limit of uniform power spectra, the covariance for two
tetrahedra is non-vanishing only when (1) they have zero
separation length and one of their vertices is coincident
and (2) their sides are the same lengths; i.e. when one
tetrahedron can be perfectly rotated in 3D to overlap
with the other.

Case II Here, we consider sets of contractions that
involve couplings between primary vertices and endpoints
across the two families. Each is of the form

(0(x+73)d(x +5 +10)) (0(x" +10)d(x" +5 +7}))) [rg=ry =0

X (0" +1;)8(x" +s+75)) (0" +ri)d(xX" +s+17,))

where {i,j,k} and {i/,j’, ¥’} are permutations of the set
{1,2,3}. We write the two sets of the permutations
as {i,j.k} = {G1,G2,G3}, {i',j',K'} = {H1, H2, H3},
where one set follows a cyclic permutation, due to the
explicit contraction with the primary vertex. Given the
symmetry among the pair ordering, i.e. {j,j'} < {k, &'},
we can always fix the permutation of one set of endpoints

= Z 8 —1G1)E(s + 11 )(s — T2 + Tia)E(s — a3 + Th), (36)
G.H

(

and let the other set explore all permutations. Here we
choose G to follow cyclic permutation (giving rise to a
factor of three), with H being a standard permutation
including six terms. In total, there are 18 permutations
in this scenario. For clarity, we write them explicitly in
Table [l As before, the primary vertices at ro and r(, are
not permuted.

Including the basic covariance elements, we can write:

IR, R8) =D (410)*2 " fr,0061 (r6150,8) Dy 006, Coie " Prootes (B, 0,8)
G,H

, Lg1La

X (4“)3/2 Z (*1)£H1foe;ﬂe;“(077”}{175)17(1))12;11@’,, Cooo

Z/HlLl
3

X 1_[(47r)3/2 Z

=2 Lgilly, Li

i—fci+1};,i+Lz'f£Gi

where the collection of angular momenta is Lg =

/ D
2 (rGi, This S)DzGie’mchooo

POZ’ s (va'lHlaé)

Lailly, L

Pﬁcl (f'Gzﬁ f‘}h‘v é>7(37)

(

{€c1,0,lga, Loz}, Ly = {0,y Uy U3}, and A7 =
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G1 G2 G3|H1 H2 H3|E Ex {€c1, gy, Lo, L3}
12311 2 311 1 To restore the canonical ordering for Re =
i g g ; ? g i 'i {tG1,Tq2, T3} and Ry = {Fy, Fys, T4}, We use again
1 2 32 3 111 -1 the reordering coefficients, in the form
1 2 3/3 1 2|1 1
1 2 3|3 2 1|1 -1 1
2 3 1]1 2 3|1 1 BE, ;= (—1)"W0- gGWH Y
2 3 11 3 2|1 -1 i=1
2 3 112 1 3|1 1 )
2 3 12 3 1]1 -1 B, = (-1)ZMa-En 2T 6K, (38)
2 3 1(3 1 2|1 1 i an T
2 3 1(3 2 1|1 -1
3 1 2|1 2 3|1 1
3 1 211 3 211 -1 Since we restrict G to cyclic permutations, B/; is
31 212 1 3|1 1 merely a Kronecker delta with a trivial phase. Addl—
3 1 212 3 1]1 -1 tionally, the phase factor X(A’) does not play a role for
3 1 23 1 21 1 even parity A, but is of importance for odd-parity A.
3 1 273 2 1]1 -1 As before, we proceed by performing a rotational av-
o ] erage over dR, dR’, and dS, which leads to a generalized
TAB.LE.H: Explicit forms O.f the 18 permutations Gaunt integral, involving two 9-j symbols, and a sum
appearing in the Case II covariance terms. These arise over intermediate angular momenta. The presence of

from the various options for contracting density fields in oo angular momenta simplifies the intermediate coeffi-
Eq. 7 in particular the contraction of r + rg1 with cients, such that €15 = fg1, £15 = £%;,, and consequently,

rg, © with ry + 7}, ro + 7g2 with 1 4+ 77, and "'y = L1. We do not need to consider permutation of the

ro + rgs with rp + 745 (noting the symmetry of the angular momenta L because their allowed range is fixed
final two terms). We additionally give the permutation  once the unprimed ¢; and the primed angular momenta
factors &g and & for each. ?; are explicitly given (due to the triangular inequality).

With these considerations, the generalized Gaunt inte-
gral for N =4 can be simplified as:

3
GEotN = (1) (DF g, 0 [T [Phie, 1] Gl oot Cofi =2 o
=1
lgi 0 Ll le1 la2 las
x 0 lhy U Uy o s
bar Uy Lo Ly Ly L3
lg1 Lla2 Las
_ L+l Canth Lo plastyL
= (4m) (=) Dy 1, Dovarns Cooo ~ Cooo * 3 Cn Cuz Cus o (39)
L, Ly Ls
[
—2
where the first 9-5 symbol yields a factor of (Dz " ) . factor.
H1
The two 3-7 symbols involving zero angular momentum
get cancelled with ’DfGl o giving rise to an overall phase From the definition of the coefficients we find
J
DR, ch" = (71)L1\/(24G1 F1)(20 5+ 1)(20) + 1)(20) + 1)(204 + 1) x CLeitmbrglalaLs, (40)

(

We proceed by combining Eqs. (38{40]), inserting these Py (R’) Noting that £g1 4 £, + L1 must be an even in-
expressions into the definition of the covariance, and pro-
jecting out the coefficients proportional to Py(R) and

teger (else Cégolgmh is zero), this factor can be dropped

from the overall phase. Altogether we arrive at the final



Covi{ (R, R') =
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form for Case II:

a1 L2 g3

(4 )42(_1)2(A)(1_8H)/2 Z D51L2L365010L2L3 w1 Lus lys

G,H LiLoLs Ly Ly Ls
0, 3
s“ds —lei—t' . +L;)/2 P Lailly;
X % H{(—l)( ci=luitli/ Dyger, LCOOGOH
=1
X fecr0661 (161, 0, 8) fory, 0, (0,71, 8) feaatyy 12 (7625 T2y 8) feas s (TGs, Thss 8). (41)

As before, if we take the limit that the 2PCF is a Dirac
delta function, {(s—rg1) — 5][_-‘?] (s—r¢1) implies the limit
s — rg1. Recalling P(k) = 1, the f-integral associated
with the second correlation function becomes

lim for o (0,751, 5)

s—ragi
) 2dk . /
=l | S throniditi)
1 (1]
preL b (re1 —r')- (42)

In addition, we have s — rg; — ry; for i = 2,3. In this
case, the resulting integral of three spherical Bessel func-
tions can be simplified using equation (3.21) of Mehrem,
Londergan, and Macfarlane [71], which we do not dupli-
cate here. However, the former work shows the result
to be zero unless the three vectors s, rg;, and r’y;,; form
a closed triangle, coinciding with our delta function as-
sumption [72]. This result is unsurprising because the
Dirac delta function can be written as an integral of a
product of spherical Bessel functions. It is interesting
to consider the physical picture (see Fig. . When the
correlation functions approach delta functions in case II,
the two tetrahedra also overlap but with their primary
vertices sitting on the endpoint of that side, in particular,
that side of the tetrahedra must have the same length as
the separation vector of each family.

Notably, Case I and Case II have similar mathemati-
cal structure, with essentially no differences induced by
distinguishing between the primary vertices and the end-
points. Combining both cases allows us to recover the
general form (see Eq. including all 4! = 24 permu-
tation terms. We additionally note that all the above
derivations could be performed in the spherical harmon-
ics basis and would have the same results. We will not
repeat this derivation here.

(

V. NUMERICAL IMPLEMENTATION AND
COMPARISON WITH SIMULATIONS

A. Implementation of the connected covariance

The ingredients for the analytic covariance calculation
from Eq. comprise the f- 1ntegralb a set of coeffi-
cients mcludmg the product of DY, Wigner 3-7, Wigner
9-7 symbols, and the phase. In practice, we compute
all these elements using PYTHON. For efficiency, with
the evaluation of the Wigner 3-j and 9-j symbols per-
formed using the SYmMPY package. We pre-compute the
f-integrals for each radial bin, as well as the coupling
coeflicients, before assembling the covariance. These are
stored in dictionary format and loaded during the cal-
culation. To compute the f-integral, which involves fine
binning in k£ and s, we use an analytic form for the bin-
averaged spherical Bessel functions (see Eq. , which
is exact and speeds up the implementation. We use
5,000 points in k € [10*4, 5] Mpc~'h and 4,100 points
in s € [10*5, 103] h~! Mpc with both linearly spaced.
We choose these ranges and grid sizes such that on the
one hand, the arrays fit in the same memory block man-
aged by NUMPY, and on the other hand, they cover the
integration range of interest with sufficiently small grid
size. Given that our aim is to measure the 4PCF up
to lmax = 4, we compute the f-integrals up to £ = 8
(considering L = ¢+ ¢'). To verify the numerical evalua-
tion and implementation of the bin-averaged f-integral,
we compared the resulting forms to an analytic solution
for the integral of a product of three spherical Bessel
functions [73], modified to accommodate for the bin-
averaging. This is discussed in Appendix

B. Comparison with lognormal simulations

We now compare theoretical covariance to those ex-
tracted from simulations. First, we use a set of 1, 000 log-
normal mocks at redshift z = 2 with a number density of
~1.5 x 107* [h~!Mpc] =2 and volume V = 3.9 [Gpc/h]3.
While it may seem more prudent to construct simula-
tions that match our assumption of Gaussianity, this is
non-trivial, since we require a discrete density field. In
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FIG. 4: Covariance calculation for the 4PCF in the limit of zero separation (i.e. where where ¢ becomes a Dirac
delta function). Left column: In Case I, this limit implies that the two tetrahedra overlap at their origin with
s — 0, r} = rg1, ry = rge, and ry — rgg. Right column: the same limit in Case II implies that the two
tetrahedra also overlap but with one of the primary vertices sitting on an endpoint from the other family.
Consequently, we find s = rg1, s = —ryy, s = rlyy —rge, and s — rly, —ras.

principle, one could use a set of discrete particles which
are assigned the Gaussian random field value as weights.
However, this approach does not reproduces covariance
correctly, since it puts multiple galaxies at the same
position and effectively enhances the shot noise. The
lognormal mocks are generated using NBODYKIT [74],
where the overdensity fields are evolved according to the
Zel’dovich approximation (lowest order Lagrangian per-
turbation theory) [75], [76]. We prepare mocks in both
real- and redshift space in order to investigate the im-
pact of RSD on the covariance. The input linear power
spectrum is generated with the cosmological parameters
{Qm, Quh?, h, ng, 05} = {0.31, 0.022, 0.676, 0.97, 0.8}
with a linear bias b; = 1.8. The 4PCFs are measured
using the ENCORE code [77] at 10 radial bins centered
at i = {27,41,...,153} h~'Mpc with a bin width of
14 h~'Mpc. In this setup, these lognormal mocks have a
low level of non-Gaussianity due to the high redshift and
have a relatively high shot noise.

The sample covariance estimated from mock simula-
tions is defined as

1 Nmock
Cmock =

(¢ -¢) (¥ -2) (a3

Nmock -1 —
1=1

where the data vector ¢(*) (with dimension Nypiys) is the
4PCF measured from the i-th mock simulation, and ¢
is the mean over all Ny ock realizations. Since the mean
is estimated from the mocks themselves, the definition
includes the prefactor (Npea — 1)

When computing the f-integrals in real space, we use

the same input power spectrum that was used to generate
the lognormal mocks. In redshift space the power spec-
trum is additionally multiplied by the isotropic Kaiser
factor (b +2fb/3 + £2/5)/b?, with f being the logarith-
mic derivative with respect to scale factor of the linear
growth rate [78]. In both cases, we damp the power spec-
tra by exp (—(k/ko)?) to avoid numerical issues, setting
ko = 1[Mpc ' h]. We find that the shot noise term is
sensitive to the precise form of exponential damping func-
tion. For the lognormal mocks, which feature a large shot
noise, we observe better agreement between theory and
simulations when the shot noise damping is not included.

Fig. [f] shows a comparison between the theoretical and
sample covariance from the lognormal mocks for angu-
lar momenta {A, A’} = {000,000} in real space. The 2D
plot in the first panel shows the model prediction for the
fully-coupled 4PCF correlation matrix M, where the cor-
relation matrix is the covariance matrix C normalized by
its diagonal terms, i.e. M;; = C;;/,/C;;C;;. We arrange
the radial bins in the following manner: we start by fix-
ing bins in r; and ro and loop over r3, then move to the
next radial bin in ry at the same fixed r; and again loop
over r3, before move to the next bin in r;. This is re-
peated until all possible radial binning combinations are
explored; this specific way of arranging the bins is de-
noted as the net bin index. During this process we force
the radial bin arrangement to be r1 < 75 < r3. In total,
we have C3, = 10!/(7!3!) = 120 radial bins. The radial
bin arrangement also leads to the block structure in the
covariance matrix.
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FIG. 5: Comparison of the analytic and sample covariance matrices for a set of lognormal simulations. The first and

second panels show the comparison of the correlation matrix (defined by M;; = C;;/

C;;C;;) for angular momenta

{A, A’} = {000,000} in real space. Fig. gives the model prediction for the fully-coupled 4PCF correlation matrix,
and the panels above and to the left show the (disconnected) Gaussian 4PCF model in real space. The horizontal
and vertical axes indicate 120 radial bins, ordered so that r; < ro < r3. This gives rise to the block structure in the
matrix and the saw-tooth shape of the correlation functions. Fig.[5b| shows the correlation matrix estimated from
1,000 lognormal mocks, with the extended panels showing the measured full 4PCF from the lognormal mocks in real
space. Fig.[6d shows a comparison of the diagonal elements of the two covariance matrices; we note the values
(vertical axis) are logarithmically scaled.

The second panel of Fig. [5] shows the measurement
from 1000 lognormal mocks in real space with the in-
set showing the measurements of the full 4PCF from
Gaussian mocks. Comparing the first and the second
panel, we can see that the analytic covariance is able
to capture the off-diagonal features. The covariance for
{A, A’} = {000,000} is mostly positive as a result of
the auto-covariance for the angular momenta themselves.
The third panel shows a comparison of the diagonal ele-
ments of these two matrices in log-scale. The extended
panels at the top and right of the first panel in Fig.
show the Gaussian 4PCF model in real space, where the
(disconnected) Gaussian 4PCF consists of a product of
two 2PCF (see appendix A in Philcox, Hou, and Slepian
[69] for a derivation ). Since the 2PCF is approximately
given by a declining power-law, combination with our
radial bin arrangement leads to the saw-tooth shape of
the 4PCF. The extended panels at the top and right of
the second panel of Fig. [pb| are the measured full 4PCF
(includes both connected and disconnected term) in real
space. They both assist the visualization of the block
structure of the correlation matrices.

In order to quantify the similarity between the Gaus-
sian model prediction and the mock measurements, we
perform a test, which we label as ‘the half-inverse test’.
This considers the matrix

S =C 2 CroaCLM2 — 1,

model model (44)
where 1 is the identity matrix. If the two covariances
were identical S which would vanish [79]. Fig. 6| shows
the half-inverse test in the left panel, with the eigenval-

ues of the 4PCF covariance inferred from the model (solid

blue curve) and the mocks (dotted black curve) shown in
the right panel. If the analytic and sample covariance
matrices agree, the half-inverse matrix should follow a
Wishart distribution [80, BI] and we expect the stan-
dard deviation of half-inverse matrix elements to scale as
1/vV/Nmock ~0.03, where Nyock = 1,000 is the number of
mocks. The standard deviation of the diagonal elements
should be two times larger than that of the off-diagonal
ones, since the expression for the variance of a Wishart
distribution contains a Kronecker delta for matrix ele-
ments ¢ = j.

For the lognormal mocks, the mean of the half-inverse
matrix elements is (S) = 2.3 x 1073, much smaller than
their standard deviation. However, we observe a resid-
ual in the diagonal terms; indeed, the mean of these is
0.180. If we decompose the theoretical covariance into
its diagonal eigenvalue matrix D and a unitary matrix V
of eigenvectors, we can write C;li{fel = VD~ Y/2v-1, If
the eigenbasis of the analytic covariance is close enough
to the mock-estimated one, the half-inverse test reduces
to the ratio between the eigenvalues of the two covari-
ances. Here, we see that the eigenvalues of the model
covariance are slightly lower than those of the mock co-
variance. A possible explanation for this residual is that
the lognormal mocks have intrinsically high shot noise,
which can generate non-Gaussian (but Poissonian) terms
in the covariance that require modeling beyond the Gaus-
sian approximation. Another possibility arises from the
choice of input power spectrum. Here, we used the power
spectrum which generated the lognormal mock, instead
of that measured from the lognormal mocks. Due to the
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lognormal transformation of the density fields, and post
Zel’dovich evolution, the two spectra could differ slightly.

Fig. [7 is similar to Fig. but shows a comparison
between the two sets of covariances in redshift space.
Compared to the real space correlation matrix, we see
that RSD slightly enhances the off-diagonal structure for
{A, A’} ={000,000}. The agreement in the diagonal el-
ements and the half-inverse test are of the similar level
compared to the real space test, with similar diagonal
residual found in the half-inverse test as well. Although
our numerical implementation of the 4PCF covariance ig-
nores higher order angular momentum contribution aris-
ing from RSD. A more rigorous treatment of this effect
can be found in Appendix[E] This comparison shows that
the RSD effect can be largely accounted for by simply
modeling the covariance using an input power spectrum
equal to the RSD monopole. Finally, we note that the
RSD doubles the amplitude of the Gaussian 4PCF model
and the full 4PCF measured from the mocks in the ex-
tended panels of Fig.[7aland Fig. These quantities are
dominated by the two-point statistics and the increase in
the amplitude is approximately given by the Kaiser factor
to the fourth power.

C. Comparison with Quijote simulations

To further understand the non-Gaussianity arising
from gravitational evolution and to test the validity of
our Gaussian assumption, we compare the theoretical
covariance formalism to the sample covariance measured
from the QUIJOTE halo catalogues [82]. Each of the Qui-

JOTE simulations has a box size of V = 1.0[h~! Gpc]?,
a fiducial  cosmology  {Qum, O, h, ng, og} =
{0.3175, 0.049, 0.6711, 0.9624, 0.834}, zero neutrino
mass, and is at redshift z = 0.5 [83].

We test our algorithm on 100 QUIJOTE halo cata-
logues created from 1,024% cold dark matter (CDM)
particles. Halos are identified using a particle num-
ber cut Nparticte > 150 per halo, which corresponds to
My = 1.2 x 1013 [h=1 M]. This gives two times lower
shot noise compared to the lognormal mocks. As be-
fore, the catalogues are prepared both in real and redshift
space, and we use the same radial binning. The f-integral
is constructed from the power spectrum monopole mea-
sured from the QUIJOTE halo catalogues for both real
and redshift space. For this set of simulations we applied
exponential damping to both the power spectrum and
shot noise.

Fig. 8] shows a comparison for {A, A’} = {000,000}
in real space. Again, we see a positive matrix, but this
time with an enhanced off-diagonal feature, due to the
lower shot noise (approximately less by a factor of two
than that of the lognormal mocks). Fig. |§| gives a com-
parison for the cross order {A, A’} = {000,101} in real
space. Again, the analytic correlation matrix is able to
capture the features in the off-diagonal elements seen in
the mocks. The overall negative structure in the corre-
lation matrix is due to the anti-correlation between the
4PCF (poo and (1091 Since we correlate two different
angular distributions we expect the structure of the co-
variance to be asymmetric. The right panel shows the
diagonal elements of the cross covariance for the the-
oretical model and the QUIJOTE simulation; here, the
model covariance slightly underpredicts the covariance
diagonal at the small scales seen at the peaks of the saw-
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tooth shape, but overall the ratio between the sample
and mock covariance oscillates around unity with a mean
<C§?ock/czr_rl}odel> ~ 0.96.

To quantify the similarity between the model predic-
tions and simulations, we again utilize the half-inverse
test. The left panel in Fig. shows the results
for {A,A’} = {000,000}, while the right panel shows
{A, A"} = {000,101}, both of which are in real space. In
order to invert the cross covariance, we build a full matrix
which includes the auto-covariance {A, A’} = {000,000}
and {A, A’} = {101,101}, which doubles the size of the
matrix. In this case, we do not observe any residuals
in the diagonal of the matrix. Given 100 halo cata-
logues, the standard deviation is expected to be of order
1/\/ﬁ = 0.1, matching that found from the data.

In addition we also perform a comparison for {A, A’} =
{000,101} in redshift space, shown in Fig. Compared
to the real space, RSD enhances the diagonals by a fac-
tor of ~ 2.3 for this cross covariance term, but its overall
shape is almost unaffected. From the right panel, we
see that the diagonal elements of the theoretical covari-
ance slightly under-predict those estimated from QUI-
JOTE simulation at small scales, but the mean of the ra-
tio is close to unity, with (Cock/Ciodel) ~ 1.04. This is
also demonstrated in panel (d), showing no residual from
the half-inverse test. In principle, we could extend our
model to include RSD effects as described in Appendix
[E} we leave this effort for future work.

D. Comparison with the MultiDark-Patchy mocks

Finally, to test the impact of the non-uniform sur-
vey geometry, we compare our Gaussian covariance
model to a set of MULTIDARK-PATCHY mocks [84] B3]
produced for the Sloan Digital Sky Survey (SDSS)
Baryon Oscillation Spectroscopic Survey (BOSS) Data
Release (DR) 12 [86, B7]. In this test, we fo-
cus on the set of PATCHY mocks that match the
galaxy clustering of the BOSS Constant Stellar Mass
(CMASS) Luminous Red Galaxy (LRG) sample at an
effective redshift z.g = 0.57 in the North Galactic
Cap (NGC). The mock catalogues were constructed
using the Planck cosmology {Q,, Qv, h, ng, 08} =
{0.307115, 0.048206, 0.6777, 0.9611, 0.8288}.

For simulations in a cubic box, the volume, V', enter-
ing the theoretical covariance is simply given by the box
size, and the number density is the ratio between the
number of particles (galaxies or halos) and the volume.
For a sample with survey geometry and a radial selection
function, we generalize the volume and number density
estimator of [61], 88]:

v [[ d®rnA(r)wi(r)]?
off = [ d3rnd(r)wd(r) ’
- [ d3rn®(r)wd(r
fheft = J &3rnT(r)wd(r

57 (45)
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where n(r) is the number density of the sample as a func-
tion of redshift and w(r) is the galaxy weight (includ-
ing both systematic and FKP weights [89]). To calcu-
late this, we apply the default weights provided in the
PATCcHY mocks. These are given by [90]

Wtot = Wikp * Wveto * Whber collision (46)

where the FKP weight is Wikp =
[1+10*(h~! Mpc)? -n(r)]_l, Wyeto 1S a binary in-
dicating whether the object is excluded by veto mask
or not, and Weper collision 1S @ fiber collision weight. For
Parcay NGC, we obtain 7 = 3.2 x 1074 (h~! Mpc) 3
and Vg = 1.9 (h~! Gpc)®. We caution however that this
is only an approximation and does not fully account for
the survey geometry, even for the 2PCF covariance [61].

The input power spectrum is measured from the
PATCHY mocks then fitted using the Effective Field The-
ory of Large Scale Structure [EFT; QI 02] including
one-loop bias, RSD, counterterms and infrared resumma-
tion [93HO5], implemented using the CLASS-PT code [96].
The 4PCF is measured from 999 PATCHY mocks with
random catalogues of the same volume but 50x larger in
number of objects than the data, and the same radial bin-
ning scheme as before. As above, we apply a Gaussian
damping to the power spectrum and shot noise, which
is equivalent to convolving with a Gaussian smoothing
kernel in real space.

To compute the likelihood when performing analysis
of an NPCF measured from data, or to perform a Fisher
forecast, we must invert the covariance matrix. Inverting
a covariance inferred directly from mocks requires the
number of mocks to be larger than the dimensionality of
the data vector, Nyock > Ngq. However, in the 4PCF
case, we face a high-dimensional data vector and this
invertibility condition is generally not fulfilled.

There do exist approaches to bypass this issue, for ex-
ample, the data compression scheme of [16]. This data
compression scheme requires a diagonalizable initial esti-
mate of the covariance and it then seeks the most infor-
mative subspace of the eigenbasis by ranking eigenvec-
tors according to S/N. This subspace may be chosen to
be much lower-dimensional, and hence the covariance in
this subspace can be estimated directly from mocks and
still inverted. However, the initial estimate used to get
the eigenbasis has the full number of degrees of freedom;
since diagonalization is the same fundamental problem
as matrix inversion, one therefore cannot use the mock-
based covariane as this initial estimate. Rather, our an-
alytic covariance may be used as the initial estimate, as
indeed was done in [69].

The analytic covariance matrix formalism does not in-
clude the window function. However, the 4PCF itself
can be edge-corrected (as in [63]), so the GRF that cor-
responds to this is the unwindowed density field. Hence
the appropriate power spectrum to use in our template
is the unwindowed power spectrum. We do note that
the window function can enter the covariance matrix as
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an additional as it could produce a non-trivial 8-point
correlation function.

We optimize the effective number density and survey
volume used in our template by fitting to the noisy covari-
ance measured from the mocks. Our motivation is that
decreasing the number density roughly mimics the effect
of non-Gaussianity and RSD, as well as possibly captur-
ing some of the window function effect outlined above.
The difference between the nominal and the effective vol-
umes can be interpreted as a leading order correction to
the covariance of the survey geometry. Such optimiza-
tion helps to bring the analytic covariance as close to the

J

—log L1 (7, Vo) = M [Tr (Cfl

model

As a test, we optimized the likelihood for the PATCHY

(ﬁ7 %H)Cmocks ) - IOg det C71

mock-based one as possible, which benefits the analysis
of the measured 4PCF [69).

To compute this, we create a 2D grid of parameters,
scanning over both the number density and the effec-
tive volume. We maximize a log-likelihood based on
the Kullback-Leibler (KL) divergence using the expected
Wishart distribution for mock covariances [97] follow-
ing O’Connell et al. [98] and Philcox et al. [99]. This has
the advantage that it only requires the analytic covari-
ance to be inverted. The log-likelihood involves both the
Gaussian covariance and the sample covariance measured
from PATCHY mocks:

(70, Vegr)] + -+ (47)

model

[
NGC region using {A, A’} = {000,000}. The 2D grid



was constructed using 7 € [0.2,4.4] x 10~% (h=! Mpc) 3
with an interval of 2 x 107° (h='Mpc)~3 and V' €
[0.2,5] (h=t Gpc)? in 40 volume bins. Fig. [12] shows a
2D interpolation of the log-likelihood. The degeneracy
direction shows an inverse scaling relation between the
number density and volume; this is as expected since
lowering the number density increases the shot noise,
which increases the overall amplitude of the covariance,
but can be suppressed by a higher volume. In fact, the
volume can already be uniquely defined for a given num-
ber density by maximizing the log-likelihood in Eq. :
Vet = Na/Tr [C;édelCr;ick], with Ngq the dimensional-
ity of the corresponding data vector. For the PATCHY
NGC region, the optimized number density and volume
are respectively given by i = 2.6 x 10=* (h~! Mpc) 3
and Vog = 1.07(h~'Gpec)3. We also performed the
same fitting procedure for the SGC, obtaining n =
2.4 x 107* (b= Mpc) =3 and Vg = 0.37 (h~1 Gpc)3.

The comparison of the correlation matrix for {A, A’} =
{000,000} is shown in Fig. The left and middle pan-
els show the optimized correlation matrix from the model
prediction and the covariance obtained from the PATCHY
NGC mocks, respectively. The right panel shows a com-
parison for the diagonal elements of the analytic covari-
ance model with and without optimization (solid red
curve and dotted black curve, respectively), and the
PaTcHY mocks (dashed grey curve). Fig. [14] shows the
half-inverse test in the left panel, with the right panel
giving the covariance matrix eigenvalues predicted by the
analytic model before optimization (dotted black curve),
after optimization (solid red curve), and estimated from
the PATCHY mocks (grey curve). Before applying the
optimization, there is a clear mismatch between the the-
oretical prediction and the mock measurement, both in
terms of its diagonal elements and the eigenvalues. The
mean of the half-inverse matrix gives (S) = 6 x 1074,
while the mean of the diagonal is 0.0048. Since the pre-
vious tests using the QUIJOTE mocks indicate no obvious
deviations from RSD not nonlinearity, we thus expect
the offset is due to the survey geometry. Fitting for the
number density and effective volume, we find that one
can moderately compensate for this effect.

To this end, we also perform a parameter fit for 13
covariance terms for ¢; < 1. We find the optimized
number density and volume 7 = 2.4 x 10=* (b~ Mpc) 3
and Veg = 1.16 (b~ Gpc)®. Fig. [15|shows a comparison
of the correlation matrices estimated from the PATCHY
NGC mocks and model prediction; for visibility we show
11 terms. The approach and the code developed in this
work have no fundamental limitation regarding £,,.x; we
chose to show up to fpnax = 4 simply because this is
aligned with the choice made in our 4PCF analysis on
BOSS data [69], which uses this same maximum for the
data analysis. Despite an overall good agreement be-
tween the mock correlation matrix and the model one,
we find that different angular momentum orders are af-
fected by the non-Gaussianity and survey geometry in
different ways. As such, the number density and effec-
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tive volume optimized for a specific angular momentum
combination is not necessarily the optimal combination
for the others. This indicates a fundamental limitation
of the fitting approximation.

VI. SUMMARY

Summary statistics, such as the N-point correlation
functions, can effectively capture cosmological informa-
tion from the spatial distribution of L.SS. Throughout the
past decades, significant work has been devoted to devel-
oping pipelines for the analysis of two-point statistics,
focused primarily on the extraction of the BAO position
and the growth parameter, fog [I00HI0§]. The next gen-
eration of surveys, e.g. the Dark Energy Spectroscopic
Instrument [I09], the Euclid satellite [I10L [I11], and the
Rubin Observatory [I12] will map out much larger sur-
vey volumes with increased statistical power, facilitating
analysis beyond the two-point function.

Higher-order statistics allow us to gain new insight into
gravity-induced nonlinearities and neutrino masses, par-
ticularly in combination with two-point statistics. Fur-
ther, they can be used to study scalar parity violation,
which cannot be probed at all for NPCFs with V < 3. A
particular challenge is that higher-order statistics usually
imply high dimensionality; if one purses a simulation-
based covariance estimation, a large number of mocks
are required, which is computationally demanding.

In this paper we discuss an analytic approach to com-
puting the NPCF covariance. In particular, we decom-
pose the NPCF into the isotropic basis functions de-
scribed in [64], and compute the covariance in this basis.
Assuming the density field to be statistically isotropic
(i.e. ignoring RSD), this is a natural basis to use, since
it has full 3D rotational symmetry.

When constructing higher-order NPCFs, it is impor-
tant to subtract any contributions which also appear in
the lower-order statistics, .e. to use only the connected
NPCF. As we have shown, the full NPCF covariance ma-
trix can be written as a sum of two pieces, denoted as
fully-coupled and partially-coupled, with only the former
contributing to the covariances of connected NPCFs. We
present a general formalism for the NPCF covariance un-
der the assumption of Gaussianity, which we can further
break down into basic elements as contractions between
two overdensity fields. Each basic element consists of
an f-integral (Eq. (21))) with coefficients involving prod-
ucts of angular momenta and 3-j symbols multiplied by
a phase. We show that the general NPCF covariance can
be built directly out of these basic elements by invoking
properties of the isotropic basis functions. In the N =4
case, we explicitly derive the analytic form for the 4PCF
covariance, introducing a diagrammatic representation to
assist with understanding of the coupling structure. We
also numerically implement the analytic formalism for
this case.

We compare our theoretical model, which assumes
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covariance of 1,000 PATCHY mocks (including redshift-space effects and non-uniform survey geometry). The
likelihood is constructed using the KL-divergence, as in Eq. @
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FIG. 13: As Fig. but for 999 PATCHY mocks. These include both RSD and survey geometry. The third panel
shows a comparison of the diagonal elements for the PATCHY covariance (grey dashed curve), analytic covariance
with and without optimization (red solid curve and black dotted curve, respectively).

Gaussianity, isotropy, and a uniform survey geometry, to
simulations with various levels of realism, including the
lognormal mocks, which have high redshift and high shot
noise, but suppressed gravitational non-linearity, and the
QUUJIOTE simulations, which have low redshift and low
shot noise, and include non-linear effects. One of the
most interesting conclusions from these numerical tests is
that, even though our naive Gaussian model takes neither
RSD nor gravitational non-Gaussianities into account, it
produces a reasonably accurate estimate of the QUIJOTE
covariances in real and redshift space. However, despite
a good overall match for the lognormal mocks, we do ob-
serve spurious residuals via the half-inverse test. In par-
ticular, we find a residual in the diagonal elements, which

is likely due to beyond-Gaussian correlators induced by
shot noise effects. Finally, we also test our model using
the PATCHY mocks. These have a realistic survey geom-
etry, matching that of the BOSS DR12 CMASS sample.
In this case, we found the survey geometry to have a
major impact on our theoretical prediction. Since our
analytic formalism does not include full treatment of the
window function, we account for the geometry by fitting
for the number density and the effective volume by max-
imizing a likelihood based on the KL-divergence. This is
shown to roughly compensate for the window function.
Our companion paper [IT13] shows that the theoretical
covariance can be used as an important tool to facili-
tate data compression [16] [1T14], allowing a detection of
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choices of A (those involving the first angular momentum being less than or equal to one). Overall, we find
reasonably good agreement between the Gaussian model and the sample covariance. We see some differences in the
off-diagonal terms, and these differences increase with rising angular momenta. The diagonal terms are relatively
consistent with each other, mostly as a result of the parameter fitting.

gravitationally-induced non-Gaussianity from the BOSS
4PCF.

This work represents an important step along the path
to constraining cosmology using. higher-point functions.
A number of extensions are possible, in particular, in-
cluding modeling of window function effects, numerical
implementation of the covariances including RSD, ex-
tension to higher-order statistics such as the 5PCF and
6PCF, and a more thorough study of the performance of
the Gaussian model in the limit of high shot noise.
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Appendix A: Explicit Results for the Generalized
Gaunt Integrals with N=2,3 and 4

In §ITB] we discussed the generalized Gaunt integral;
here, we present explicit results for n = 2,3 and 4, fol-

J

gAAIAI/
i=1
(o) 2o o 0 ey
= (4m)™
ls 05 0 ) =1

where we have used the definition of Cof)ol o (see Eq '
and D e (see Eq. 5), and the quantity 9

by a 9-5 symbol after summing over m;, m}, and m; (for
i=1,2,3).

For n = 4, expanding the QANAY quantity leads to
ten Wigner 3-5 symbols, and consequently the product
of two 9-7 symbols. The detailed derivation of this is
given in Cahn and Slepian [64] (section 6.4 and equation
71), leading to the final result:

is given

GAMA" (4n)—2\/(2£12 +1)(2075 + 1) (207, + 1)

i=1
51 62 512 612 63 64
xq bty by ly by L
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Appendix B: Derivation of the Basic Covariance
Elements

1. Real space

Here we derive the basic covariance elements presented
n §IVA] Without loss of generality we consider only the

J

3
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= (4m)~3/?Q H(o 00

3
lo O, 0 H(% bl )\/(2&—&—1)(2&4—1)(26;’4-1),

4 0 e
< [T/t + e+ ne +1) (o’ 0 0 )

(A3)
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lowing Cahn and Slepian [64]. This uses the definition
of Eq. @D, which includes the quantity QANA"  For
n = 2, given the definition of Q in Eq. @, we have
A= (0, N — (', ¢), and A — (¢”,¢"). This leads
to

gAAIA// (Al)

_ I
= (4m) /(20 + 1) (20 + 1)(20" + 1) <0 0 0 >
This is a rescaling of the well-known result [I15] for the
coeflicient when a product of two Legendre polynomials
is expanded into a sum over single Legendre polynomials.
For n = 3 the generalized Gaunt integral is given by

) V(26 + D)0 + 128 + 1)

(A2)

(

contraction between a single pair of endpoints, neglecting
the subindices and denoting the positions as r and r’.
The coupling between two endpoints across the unprimed
and primed families can be expanded as:

(0(x+71)d(x+s+71)) (B1)
={("+s—r|) = /e. WP (k)

(4m)P> " Ny it Z/P Vier (kr')jr(ks)je(kr)

fm ¢'m’ LM
X Y (&) Yo () Yiar (K) Y701 (8) Yo, (K) Yo (),

where, as stated in we have assumed isotropy (i.e.
that P(k) = P(k)) in the first equality. The second
equality arises from applying the plane wave expansion
three times. Performing the angular integral over k gives
the Gaunt integral:

mm ‘M _

Gy = [ 40037, (Y0¥ = |

(2£+1)(2€’+1)(2L+1)(£ v L)(E A L)

4m 00O m m' M

= (471)_1/2D5£’LC(%/0LC%;7€’M‘ (B2)



Inserting the definition of the f-integral (see Eq. (21)),
J

(f(x+r)i(x+s+71)) =
0L mm' M
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Eq. (B1]) becomes

47'[ Z Z akd +L(47'[) lf[[/L(’l’ 7’ S) (47'[) 1/2D[[/LC£Z LCfrfm'M

X }/gm(f‘)Yg/m/ (f‘l)YL]u(é)
= (4m)®2 > i fr (07 8) Diyep, Chog o (8,1,8). (B3)

'L

Finally, we give expressions for the contraction of two
overdensity fields from the same family. These self-
coupling terms do not occur in the calculation of the
covariance of the connected NPCF, but do appear if one
considers a covariance which includes the disconnected
piece (as in Appendix . In this case, r; and r; denote
two endpoints from the same family. As before, we apply
the plane wave expansion to the exponentials in Eq. ,

then integrate over k to find:
(O(x +r;)o(x+1;)) =
2
_ / k dk:P
272
= (470)*? > (=1)'V20+ 1 fuo(ri,7,0) Peo (£, 75, 0).

14

§(fri —r ) (B4)

k)Y dekrs)je(kr) (20 +1)Lo(R; - ;)
L

In the second line, we have written our result in terms
of the N = 3 isotropic functions to maintain a consistent
structure for all the basic elements. If one of the two
overdensity fields is a primary, the expectation value is
simply a 2PCF:

(6(x +10)d(x +1:)) [rg—0 = §(Iri — Tol)rg—0
= (47)*"? fooo (, 0, 0) Pooo (£, 0, 0). (B5)

2. Redshift space

Below, we derive the basic elements in redshift space,
as a preparation for the fully-coupled covariance with
RSD discussed in Appendix[E] We first expand the power
spectrum in terms of Legendre polynomials:

where Py (k) is the A\*' Legendre multipole of the power
spectrum (where X is even) and 7 is the line of sight.

The expectation value of the product of two overden-

(

sity fields now reads

(6(x+1)d(x+1' +5)) = /k ek (r'+5-1) p(x)
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We can perform an angular integral over k:
[l Y )55 R0, (Y5, )
= Z(_ Mgfrfm/MgL]VIM,u
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because of the additional l.o.s. direction m, we need to
consider isotropic functions with four arguments:

P@Z’LA(f> f‘/a é7 If") (Bg)
> O Yo (B) Ve (V) Y100 (8) Yap(R).

mm/’ Mp

To incorporate the power spectrum multipole decomposi-
tion, we extend the definition of the f-integral as follows:
Fveaes (11,72, 73) (B10)

2
= / . dkP)\(k)J& (krl)jb(kTZ)jZ‘?(kTS).

2m

The redshift space basic covariance element can thus be
written:

(0(x+r)d(x +1' + s>>
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Appendix C: Partially-coupled 4PCF covariance
1. Fully-coupled and Partially-coupled covariances

In §ITVB| we presented the fully-coupled covariance,
which is the part of relevance for the connected NPCF es-
timator. As before, the connected estimator is obtained
by subtracting the disconnected piece from full estimator
as in Eq. . This feature is now included in the EN-
CORE code, and is discussed at length in our companion
paper Philcox, Hou, and Slepian [69]. For completeness
however, we will discuss in this section how one may es-
timate the partially-coupled covariance.

We first sketch our reasoning for ignoring the partially-
coupled terms in the connected 4PCF covariance. Fol-
lowing the definition of our estimator, the fully-coupled
covariance can be written as

Cov™(R,R') = Cov((e, ) (C1)
= COV(&» é') - COV(&dC, CA) - COV(&, CAdC) + COV(édcy {'dc)v

where the the first term in the second equality, the co-
variance of the full estimator, is simply the covariance ob-
tained from all combinations of eight overdensity fields.
We use (§609) to denote the full estimator; given the sym-
metry, any one of the overdensity fields can be thought
of as a primary vertex, with the position of its neigh-
bours fixed relative to the primary. As before, the co-
variance of the full estimator consists of both fully- and
partially-coupled parts. Below, we give an example of a
contraction that leads to a partially-coupled term (here
with angle brackets representing spatial integrals rather
than statistical expectations):

. Ar=T1
Cov(C, ) — (5668)(5'8'8'8").

The disconnected estimator is represented by (44) (d9).
Again, we know the relative position between overden-
sity fields appears within a (---) integral, but the rel-
ative position between two (---) is free. This leads us
to consider only th'e_| self-coupling contractions within an
integral such as (69)(6J); this contraction is, by defi-

L

nition, a 2PCF. Contractions such as (6 )(0 §) must be
integrated over the unfixed pair separation vector, result-
ing in an additional volume factor V!, which leads to a
strong suppression. Below, we list the contractions that

J

L(R,R;s) = (8(x +10)d(x 4+ ra1)) (0(x 48 +10)d(X + 5+ T'y1)) [rg—0,1—0
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contribute to the partially-coupled covariance at leading
order:
P = =11
Cov(Cac, €) — (6 6)(66)(5'8'8'6")
~ A — —
Cov((,Cac) — (6538 8)(6'8')(5'd")

~ ~ — —
Cov(Cae, Cac) — (88)(58)(8'8)(8'8").

After counting the permutations, we find 72 terms in each
case, all of which cancel. This leads only corrections of
O((r2/V)?) and higher, where r. ~ 100 h~!Mpc is the
correlation length. This correction is typically ~ 0.1%
and hence can be neglected when comparing to the mea-
surements from the mock simulations with box length of
Lyox ~ O(1) h=1Gpc. We thus conclude that the fully
coupled covariance does represent that of the connected
4PCF in the large-volume limit.

2. Analytic form

For completeness, we also derive analytic expressions
for the partially-coupled covariance. These contributions
are composed of similar structures to the basic elements
shown in §IVA] and can be divided into four pieces as
shown in Fig. All terms involve a self-coupling, i.e.
the contraction of overdensity fields within a primed or
unprimed family. As a result, the basis function will end
up with one of the angular momenta being zero, with
the other two equal. This implies that the partially-
coupled covariance can be fully characterized just by /¢
and ¢. The fundamental idea of the derivation is similar
to that underlying the fully-coupled covariance deriva-
tion. First, identify the basic elements that contribute
to the given cases. Second, apply a rotational average
over the three direction vectors r, ¥, and § and reorder
the permuted coordinates into canonical ordering. Third,
project the covariance onto the isotropic basis, picking
out the terms proportional to Pa(R) and Py (R’). Here
we necessarily need to introduce both permutations G
and H because self-contraction breaks the symmetry of
the coupling structure. As before, we restrict G to cyclic
permutations, allowing H to explore all possibilities.

Case I The partially-coupled covariance in this case
contains the self-contraction between primary vertices, rg
and r{), and endpoints of their own family (see Fig. [L6).
This can be expressed as

(C2)

X (0(x+rge)d(x+s+ 1)) (0(x+res)d(x+s+rys,)).

Inserting the definition of the basic elements defined in

(

§IVA] we find
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Case IV

FIG. 16: Diagrams for the partially-coupled covariance. This Figure is analogous to Fig. but gives the terms
necessary to model the disconnected 4PCF covariance.
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Given that the sum of the orbital angular momentum
must be an even number, oo = y, and gz = Uy,
thus the sum reduces to one over ¢, ¢/, ¢ with £ = (¢, £),

J

%11 R,R’:s
G,H Lg, ﬁ’

x(Dhyp)* (Cobn )* QU EIDY Ci Pr (Ben, Bz Ban) Py, (B B, i),

where the rotational average over dS gives a factor of
4, following our normalization convention. L has one
angular momentum of zero with the other two equal; the
same goes for £’;. Expressing the two-argument isotropic
basis functions in terms of those with three arguments,

P
H2L2 (TGQ? TH27 )DeGQZII_IZLQCO

€G2€;I2L2 P ~ N A
ta )y, L (FG2, T2, 8)

+L3 ’ P LasliysLs N N N
3T fogs bl Ls (res, Tus, S)Deggz’HSLSCooo Pegsty, Lo (fas, Tys, ). (C3)

(

L =0), "= (L,L). As a reminder, the coefficients
C and DF are given in Eq. and Eq. (5), respectively.
Integrating over s we find

d /
Z Z /S elran )€ (r}11>(4n)42(—1)€+e+qu/L(7"G2,T}I2aS)fﬂ’L(rGi"’T/H?)’S)

20" L

(C4)

(

for example, Py(Fa2,tas) = (470 *Pop(far, Faz, Tas),
we obtain an additional 47t. We now insert the definition
of the generalized Gaunt integral for N = 2 (see Eq. ,
giving
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Using Eq. , we may restore the arguments to canon-
ical order:

Pro(Re)

ZB['G J

P, (Rly) ZB[;/ PR (C6)

In this case, ng; and BE,;J, are given by products of
Kronecker deltas since one of the angular momenta is
zero. Since the partially-coupled covariance always leads
to products of two f-integrals, it is useful to introduce
the g-integral, defined by:

/ s%ds fon(r1,72,8) froa(ry,ry, s)

=/éﬁmmmwmummwmﬁm

= Geeere (Th T2, Tla 7’2)-

(C7)

It is worth noting that, unlike the f-integral, the g-
integral has dimensions of volume. The coefficient (27r)~3
appears due to the definition of the f-integral, together
with the coefficient in the identity for the integral of two

J
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sBF's:
. ) T
/SZde)\(Sa)j,\(Sb) = %6]3((1 —b). (C8)
Together with the relation:
) 2
Z(2L+1)<g€ 3) =1, (C9)

L

we find the final expression for the partially-coupled co-
variance Case I:

Covsxpf\, 72 Z 1)+

G,H Lg,Ll,

20+ 1)(20' +1)

X E(ra1)&(ry1)gece v (G2, 763, T2y TH3)

-1

X BE ABf - (C10)
Here we keep the inverse reordering coefficient to make
clear that the partially-coupled covariance only con-
tributes to the collection of the three angular momenta
with the following form {A, A’} = {0£¢,0¢'¢'} + 8 perms..

Case I 1In this case, only one of the primary vertices
is connected intra-family-wise (as shown in Fig. . It
can happen that the primary vertex of the primed tetra-
hedron is coupled to an unprimed vertex, or the other
way around. By symmetry, we need only discuss one of
the two possibilities. The contraction of the eight over-
density fields can be expressed as

(0(x 4+ 10)d(x + rc1)) (0(x 4+ rG2)d(x + 5 +10)) |ro=rj=0
X (0(x+ 841 )0(x+8+ 1)) (d(x+1ra3)d(x +5+1s3)).

(C11)
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In terms of the basic elements, I11(R,R’;s) becomes

Hlfegne;ﬂo(r/lf1,7’}1270)\/ 20y + 1Py o o(Fpry, 9, 0)
12 o006, (TG2, 0, 8) v/ 20a2 + 1Poga000, (Fa2,0,8)

P LasligLs A ~/ A
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Averaging over dS involves only two angular momenta,
lao and Lg, enforcing o = L3 = £. Similarly, averaging
over dR involves just g2 and ¢G5 and sets {go = lg3 = /.
Finally, since #/;; and #/;, are already combined into an
isotropic function, the integration over dR’ effectively in-
volves only 1, and will result in £}, = 0. The imaginary
phase also becomes unity.

Using the definition given in Eq. (C7)), we have

/ s%ds fr0e(rG2, 0, 8) fooe(rG3, s S)

= geoeo(ra2, 0,763, 7y3); (C13)

in this case, the g-integral can be reduced to an f-
J
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integral. The final form of Case II reads:
COVE\pj\)/’H =

>y @(—1)“5’ (20 +1)(20 +1)

GH Lo.Ch

x &(ra1) feeo(Tye, Ta, 0)geoeo (ra2, 0,763, Th3)

x BE, B\ (C14)
)

The case in which an unprimed primary vertex J(rq) cou-
ples to an endpoint from the primed family §(r}) follows
similarly.

Case III The next form to consider occurs when both
the primed vertices are coupled to a vertex from the op-
posite family. In this case:

Im(R,R’;s) = (6(x +161)0(x +1G2)) (5(x +5 + ryp)d(x + 5+ r'y3))

X (6(x +10)d(x+ s+ 1)) (0(x +1rae3)d(X 48 +10)) [rg=r)—0-

Naively, this case also involves an isotropic function of

the form Pyer; however, the rotational average over the

Imi(R,R';s) =
G.H ton

(C15)

(

endpoint vectors forces their paired angular momenta to
be zero.
Inserting our basic elements, we have:

(41> " frorteio(rar, Ta2, 0) (1) /2061 + 1Peg,06,0(Far, Baz, 0)

$ (42N " for o 0Py Py 0 (= 1) 114 /200, + 1Py or o (¥1, 10, 0)

’
éHl

x (4702 four or (0,75, 8) (1)1 /2055 + 1Pog, o (0,%5,)

’
€H3

x (4m)>/? Z fotaates (0,73, 5)(—1)" 9 \/2La3 + 1Potgy6, (0, Bas, ).

Las

In this case, the rotation average over dR will leave only
the £g3 = 0 term since r'¢; and T'go are already combined
into an isotropic function. Similarly, averaging over dR’
will force ¢;; = 0, allowing us to simplify g1 = ¢ and
0y, = ¢ Therefore, the two f-integrals associated with
lg3 and 4 are given by

/SQdS fooo(o, ras, s)fOOO(Oa T}{37 8)

= 90000(0, 73,0, 73), (C17)

where we have used the identity for the integral of a prod-

(C16)

(

uct of two sBFs given in Eq. (C8)). The final form of Case
IIT reads:

(pc),III
COVA,A’ =

>y @(71)”4’ 20+ 1)(20 +1)

G,H Lg,Ll,

(C18)

X feeo(re1,7G2,0) foreo (T T2, 0)g0000(0, 763, 0, 773)
G™! pH™?
X Bﬁg,ABK,}_],A’
Case IV Finally, consider the direct contraction be-

tween two primary vertices, accompanied by the contrac-
tion of two endpoints from each family
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Iiy(R,R;s) = (6(x +10)d(x + 5+ 10)) |rg=ry =0
X (§(x+7161)0(x+162)) (6(x+ 8+ o)d(x + 8+ 1y3)) (0(x +163)d(x+s+15)). (C19)
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As before, inserting the basic elements leads to
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X (47'[) Z( 1) fozgﬂe’m (0>TH277”H3) 2£H2 + 17)0@’}124}{2 (07rH2a I'H3)
O
X (4’“)3/2 Z iieG3+€/H1+L3 ffcsf}an (ras, 74/Hlv S)nggé’HngPZGﬂ'Hl L3 (fas, IA'/Hlv 8), (C20)
Zc3e}11L3
[
simplifying ¢gn = ¢ and ¢y, = ¢. We can see where the bin-averaged sBF's are defined as:
that the rotational average over dS forces Lz = ~ r2dr i, (kr)O(r:
0 and thus flgs = Oy Moreover, since Tgp Je, (ksri) = J frgihf@gi)( l). (D2)

and rgo are already in an isotropic configuration in
Peeo(fa1,Taa,Ta3), the only allowed values of £g3 and
0, are zero. It follows that the isotropic functions

reduce to constants: Py..e. 1,(tas, tp,8) = (4m)7 3/2
and frgu0 1y (7G3: Ty, 8) = fooo(TG3,TH17$)~ Integrat-
ing over s and using Eq. (C7) we find
/SQdeooo(O,078)f000(7”G3,7“}11,8)
= 90000(0, 0, 763, 7’51 )- (C21)
The final form of Case IV is given by
CoviP T = (C22)
4
3 Z * 1) /20 1)(20 + 1)
G.H La.C),

X fooo(ra1ra2,0) foere (0,752, T'i3) 90000 (0, 0, TG, 1)
G- HH-!
X BLG,ABKIH A

Appendix D: Analytic Solution for Integral of
Product of Three Spherical Bessel Functions

When radial binning is included, the f-integral is eval-
uated with the bin-averaged sBFs:

fertaes(r1,72,73)

k2dk - - .
- / Pk ey (k1 ey (ks ) ey (i ),

2m2 (D1)

Here ©(r;) is a binning function equal to unity within
bin r; and zero elsewhere.

In order to check the evaluation and implementation
of the f-integral, we compare the numerical result to an
analytic form available when we take a toy model power
spectrum. If one uses a power-law power spectrum k"
as a toy model, these integrals have solutions as pre-
sented in [116] and expended upon in [I17]. Here we use
a power-law damped by an exponential, and the needed
base result is in Fabrikant [73] equation (24):

I.(p,q,m,n,l;a,b,c)
_ / exp(—pk) k% (ak) jo (bF)je(ck)dk.  (D3)
0

In particular, we specialize to ¢ = 2, which is given by
equation (26) in Fabrikant [73]. We also set p = 500 and
m=mn=/{=0. For fooo(a,b,c) we then have:

Iexp(1,2,0,0,0;a,b,¢)
1 abc abc abc abc
~ 4abe (_T+++ + o + TS, + T++,) - (D4)

Here, we have introduced the notation that T9%¢, =

an~![(£a £ b £ ¢)/p]. In practice the sBFs with argu-
ments a and b must be bin-averaged, and can be written
as

3 [a?nale (amdxk) - arzninjl (amink)]

jo(ak) = D5
70 (a ) k(ai))nax - a?nin) ’ ( )
where the recurrence relation (Rayleigh’s formula) gives
1d
' - D
Ji(zk) = & dr Jo(zk) (D6)

Replacing the sBF with the bin-averaged one given by
Eq. (D5) and inserting the result into Eq. (D4)) (setting
g = 6 in order to use the analytic solution), we have



Iexp(1,6,0,0,0;a,b, ¢)

- /EajeXP(“k)kGjo(ak)jo(bk)jo(Ck)dk

_ 3 3 9 9
B B —p e

max min “max min

2 2

min “max damin dbmax

2 2

max - min damax dbmln

2 2

+a‘min min da

In the above equation we obtain four types of terms, dif-
fering by their lower or upper bounds in a or b. Next, we
focus on the general form d%%lexp(...):

d d
%%Iexp(...)

d d 1 b b be be
— o e (CTEE T T Tz ).

(D8)

J

dd{1
—m%@mmlwm+w@

1 a+b

maxTmax damax dbmax

31

d d
Iexp(la 27 07 Oa 07 Omax; bmaxa C)

d d
IeXp(la 2; 07 07 07 Amin, bmaxa C)

d d
IGXP(L 2; 07 07 O; Gmax bmina C)

d d
7Iexp(17 27 07 Oa O; Amin, bmina C)

min dbmin

(D7)

(

Due to the symmetry of these expressions, in what follows
we may focus on just the first term T_ﬁlf .-

1 ab

= 125 <tan1[(c+ b+a)/p] —

This form remains the same for the rest of the T¢%¢,
terms, except for the signs. Inserting Eq. (DY) into
Eq. we obtain the final result shown in Fig. [17] (dot-
ted black curves) after integrating over c. As an example,
we evaluate the integral for two cases a = 153 h~'Mpc,
b= 27h 'Mpc and a = 41 h~*Mpc, b = 55h ' Mpc. In
both cases the numerical implementation and the ana-
lytic solution display excellent agreement.

Appendix E: Gaussian NPCF Covariances including
RSD

Here we extend our general expression for the real-
space covariance to include RSD. As a preparation for

J

p (a+b+0?/p?+1  p*((a+b+c)?/p?+1)?

2(a+b+c) ) , (DY)

(

the derivation, we extend the Q quantity to involve four
angular momenta:

QAA/A//A/// _

N
0.0 L\, ’ " 11
I > Comeim s At CACAL A Clion

where the C3} coefficient is defined in Eq. with

(E1)

HAA/A//A/H -

N
_ 4; KQLMi A AN
(4m) =N/ [H DZQLMiCOOOO 1 ot - (E2)
i=1

Furthermore, averaging over isotropic functions of four
arguments gives

N
/ AR AR’ dS AN ] Peoerers, (0,508, )

=1
= (4m)~"
LLIA A

QELNN" DR A D b P (RMN)PL (R/V),

(E3)
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1e-13  Test of fooo(a, b, €)
—— Numerical: a=153, b=27
—— Numerical: a=41, b=55

----- Analytic bin-avg.

lexp(1,6,0,0,0; a,b,¢)
N

|
)]

0 200 400 600 800 1000
¢ [h~*Mpc]

FIG. 17: Comparison of the numerical and analytic implementations of the bin-averaged f-integral, setting
l1 = ly = ¢35 =0, and using a damped power-law power spectrum. We evaluate the integral at radial bin centers a
and b as given in the legend, and their units are h~'Mpec.

For the fully-coupled covariance including RSD we start from Eq. and Eq. (BL1)):
J

Z E(A/)COVAVA/ (R, R,)PA(R)'PA/ (R/)

AN
:/ QNZ H Z *szJrf +L;
i=0 LG, LiX 20 +1 +1
X Dgcie;Li/\icggégiLw\l fZGi,»[;L,; (rai, 7"27 S)Pécié;Lw\i (tais fgv 8,m) |7'0:T'[’):0' (E4)
[
Next, we apply the rotational average over ¥, 1, §, and f. The rotational average over 7 is justified as the isotropic

4PCF must be invariant under rotations. We find:

> E(N)Covaar (R, R))Pa(R)Py(R')

AN
_ 5 3N/2 j—teitti+Li gL /AN
= [y MY 5 "
i=0 £l L;X;s
1" N A
féG Z’ (TG“ TZ, S) DA” CO DA’” CO ,PQG (R(G ))Pﬁl (R/(N))|Tg:’r‘6:0; (E5)

(

as before, going from f{(GN) — Ryg leads to a factor of  cient to restore the canonical ordering of the arguments,
(471)~1/2, which is cancelled with the normalization fac- ~ and project both sides onto the isotropic basis P (R)
tor arising from dS. Next, we use the reordering coeffi-  and Pa/(R’). This yields the final form:



COVA}AI(R7 R/)

2 N—-1
any2 [ 87ds 1 Ai
2 [T S T gy i e

G LgA'A" =0

"
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) (71)[72(A)7E(A’)+Z(A”)]/2
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