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We study dark matter-helium scattering in the early Universe and its impact on constraints from
cosmic microwave background (CMB) anisotropy measurements. We describe possible theoretical
frameworks for dark matter-nucleon interactions via a scalar, pseudoscalar, or vector mediator; such
interactions give rise to hydrogen and helium scattering, with cross sections that have a power-law
dependence on relative velocity. Within these frameworks, we consider three scenarios: dark matter
coupling to only neutrons, to only protons, and to neutrons and protons with equal strength. For
these various cases, we use Planck 2018 temperature, polarization, and lensing anisotropy data to
place constraints on dark matter scattering with hydrogen and/or helium for dark matter masses
between 10 keV and 1 TeV. For any model that permits both helium and hydrogen scattering
with a non-negative power-law velocity dependence, we find that helium scattering dominates the
constraint for dark matter masses well above the proton mass. Furthermore, we place the first CMB
constraints on dark matter that scatters dominantly/exclusively with helium in the early Universe.

I. INTRODUCTION

Cosmic microwave background (CMB) data provide
some of the best evidence for the existence of dark matter
(DM) [1]. The anisotropy of the CMB is well-described
by the standard ΛCDM cosmology, in which DM is a
cold and collisionless matter component of the Universe.
However, many efforts to incorporate DM into the Stan-
dard Model (SM) of particle physics introduce interac-
tions between DM and SM particles. The early Universe
offers a pristine environment to probe potential non-
gravitational scattering between dark and visible matter,
without the astrophysical uncertainties that affect the in-
terpretation of direct and indirect detection searches.

Elastic scattering between DM and visible matter in-
duces a drag force between the DM and the baryon-
photon fluids in the early Universe [2]. Such interactions
damp perturbations on small scales, which can produce
observable modifications to the CMB anisotropy power
spectra. The scattering cross section typically needs to
be large—depending on the model—to have a measurable
impact on the CMB, but a broad range of DM masses can
be probed.

Previous studies have constrained scattering processes
between DM and baryons under a variety of different as-
sumptions, but they all incorporate scattering with at
least hydrogen nuclei (i.e., protons) [2–9], aside from re-
cent work that also has separate analyses for DM-electron
scattering [10, 11]. DM scattering with protons imme-
diately implies scattering with helium, unless the inter-
action is spin-dependent. Incorporating helium scatter-
ing into CMB analyses generically improves constrain-
ing power, particularly for DM mass above 1 GeV [5–7].
However, the relationship between the scattering cross
sections for helium and for hydrogen is model-dependent.
In the case of velocity-independent scattering, scattering
may occur coherently on all nucleons in helium [2] or on
only the protons in helium [2, 5–7]. References [3, 6] also

explored scattering on the protons in helium for velocity-
dependent interactions.

Despite this rich variety of analyses, there has never
been a dedicated CMB study of DM-neutron scattering;
indeed, the neutron is the only known particle present
during recombination whose DM interactions have not
been studied comprehensively, as DM-photon [12–14] and
DM-neutrino [15, 16] scattering scenarios have been pre-
viously explored. While Ref. [2] did include the effects of
DM-neutron interactions through scattering on helium,
the analysis assumed coherent scattering on all nucleons
in helium and did not account for the mass difference
between hydrogen and helium in writing the DM-helium
cross section; furthermore, the analysis was limited to
velocity-independent scattering for DM mass & 1 GeV.
More generally, DM may scatter with both protons and
neutrons with an arbitrary ratio of couplings.

In this paper, we use Planck 2018 temperature, po-
larization, and lensing anisotropy measurements [17] to
obtain CMB constraints for various combinations of DM-
neutron and DM-proton interactions. We assume all neu-
trons are contained within 4He nuclei after big bang nu-
cleosynthesis, neglecting the small abundances of other
elements and isotopes. Thus, our analysis involves DM
scattering with hydrogen and helium only in the early
Universe. The scenarios of interest are as follows:

A DM-neutron only: DM scatters on neutrons
bound in helium, and the interaction must be spin-
independent.

B DM-proton only: DM may interact with both hy-
drogen and helium. For spin-dependent (SD) interac-
tions, DM scatters only with hydrogen, since helium
has spin zero. Spin-independent (SI) interactions per-
mit scattering with both hydrogen and helium.

C Equal proton/neutron couplings: DM may inter-
act with both hydrogen and helium (for SI interac-
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tions) or only hydrogen (for SD interactions). For SD
interactions, this scenario is the same as Scenario B,
and we refer to this case as Scenario B/C-SD.

We discuss the motivation for models of DM-nucleon
scattering and show how generic considerations give
rise to cross sections that have power-law scalings of
the relative particle velocity v. Thus, our analyses
parametrize the cross section as a power-law in v, and
we use the generic models to set the relationship between
the DM-helium and DM-hydrogen cross sections. For
our benchmark scenarios, we obtain constraints on the
momentum-transfer cross section for DM masses ranging
from 10 keV to 1 TeV and for velocity power-law indices
n ∈ {−4,−2, 0, 2, 4}.

Our CMB analysis for Scenario A, in which DM scat-
ters with neutrons and not protons, is the first to con-
sider scattering with only helium. Such DM-neutron in-
teractions have been motivated by new-physics models
attempting to explain the neutron lifetime anomaly [18]
and the Atomki beryllium decay anomaly [19]. Addition-
ally, various isospin-violating DM models have been moti-
vated by direct detection anomalies in previous years [20–
23]. While our analysis does not assume any specific
scenario, the limits we derive are sufficiently general to
constrain any of these scenarios for appropriately-sized
interactions strengths.

Throughout this paper, we use “hydrogen” and “he-
lium” to reference the DM scattering target, while “pro-
ton” and “neutron” refer to the fundamental particle in-
teraction (i.e., proton scattering can result in both hydro-
gen and helium scattering). Additionally, when referring
to the cross section, we always mean the momentum-
transfer cross section,1 which is relevant for cosmology.
We often omit “momentum-transfer” for brevity.

In Section II, we discuss possible theoretical frame-
works in which DM interacts with neutrons and protons.
In Section III, we treat DM interactions with baryons
in a cosmological setting and present the corresponding
modified Boltzmann equations. We describe our analysis
in Section IV and present our results in Section V. We
conclude in Section VI.

II. THEORY

There are many viable ways to generate scattering in-
teractions between dark and visible matter, and each sce-
nario requires the addition of at least one new “mediator”
particle that connects the DM to quarks. In this sec-
tion, we survey some representative models that realize
interactions with varying degrees of neutron-philic cou-
plings and velocity/spin dependence. These interactions

1 The momentum-transfer cross section is obtained by weight-
ing the differential cross section by the fractional longitudi-
nal momentum transfer and integrating over all angles: σT =∫
dΩ (1 − cos θ) dσ

dΩ
.

induce DM-neutron scattering during the early Universe
and therefore affect CMB anisotropies.

In Table I, we present general results for the non-
relativistic DM-nucleus momentum-transfer cross section
[using the notation of Eq. (15) in Section III] for a generic
set of Lorentz structures. These formulas can be directly
compared with the mediator and model choices in the

following subsections. In our notation convention, c
(′)
i is

a (pseudo) scalar coupling and gi is a vector coupling to
particle species i.

A. Scalar and pseudoscalar mediators

If the mediating particle is a spin-0 scalar or pseu-
doscalar with renormalizable interactions, the most gen-
eral Lagrangian contains the following terms:

Lint = φ χ̄(cχ + ic′χγ
5)χ+ φ

∑
q

q̄(cq + ic′qγ
5)q , (1)

where c
(′)
χ is a (pseudo)scalar coupling to DM, and c

(′)
q is

a (pseudo)scalar coupling to SM quarks q. We take the
DM χ to be a Dirac fermion for simplicity. In principle,
these couplings in Eq. (1) are free parameters. Following
the conventions in Ref. [24], the induced φ-nucleon N
coupling from this interaction can be written using the
nuclear matrix element∑

q

〈N |cq q̄q|N〉 ≡ cN N̄N (scalar) (2)

where the relationship between the quark couplings (cq)
and nucleon couplings (cN ) is presented in the Appendix.

This discussion gives the most general parametrization
of scalar-nucleon interactions, assuming either scalar or
pseudoscalar couplings to quarks in the UV theory. Here,
we have exploited the freedom to choose arbitrary fla-
vor structure without worrying about experimental con-
straints, which can be quite severe depending on the sce-
nario.

B. Vector mediators

For spin-1 vector mediators, the coupling patterns to
different quark flavors is constrained by the requirement
that triangle Feynman diagrams cancel when the new
gauge boson is an external leg of a 3-point diagram
with virtual SM quarks (or other specified fields) flowing
through the internal loop (see Ref. [25] for a discussion).
Models in which this cancellation occurs are anomaly-
free and preserve unitarity; triangle diagram interactions
grow with energy and eventually violate unitarity and,
therefore, also spoil renormalizabiltiy.

DM candidates with masses well above the electroweak
scale (� 100 GeV), can be charged under the weak force
and interact with visible particles through the virtual ex-
change of known heavy particles (e.g., W±, Z0, or h). By
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n
Interaction

(χ−N) SI/SD
Scenario A Scenarios B, C Scenarios B-SI (C = 1), C-SI (C = 4)

He scattering H scattering He scattering

-4 V-V, light SI 2π
g2
χg

2
N

4π2

2 ln (2/θc)

µ2
χHe

2π
g2
χg

2
N

4π2

2 ln (2/θc)

µ2
χH

4C
(
µχH

µχHe

)2

σ0,H

S-S, light SI 2π
c2χc

2
N

16π2

2 ln (2/θc)

µ2
χHe

2π
c2χc

2
N

16π2

2 ln (2/θc)

µ2
χH

4C
(
µχH

µχHe

)2

σ0,H

-2 S-P, light SD 0 4π
c2χc
′2
N

8π2

1

m2
H

0

P-S, light SI 4π
c′2χ c

2
N

32π2

1

m2
χ

4π
c′2χ c

2
N

32π2

1

m2
χ

4Cσ0,H

0 V-V, heavy SI 4π
g2
χg

2
N

4π2m4
V

µ2
χHe 4π

g2
χg

2
N

4π2m4
V

µ2
χH 4C

(
µχHe

µχH

)2

σ0,H

S-S, heavy SI 4π
c2χc

2
N

4π2m4
φ

µ2
χHe 4π

c2χc
2
N

4π2m4
φ

µ2
χH 4C

(
µχHe

µχH

)2

σ0,H

P-P, light SD 0 4π
c′2χ c
′2
N

64π2

µ2
χH

m2
χm

2
H

0

2 S-P, heavy SD 0
16π

3

c2χc
′2
N

8π2m4
φ

µ4
χH

m2
H

0

P-S, heavy SI
16π

3

c′2χ c
2
N

32π2m4
φ

µ4
χHe

m2
χ

16π

3

c′2χ c
2
N

32π2m4
φ

µ4
χH

m2
χ

4C
(
µχHe

µχH

)4

σ0,H

4 P-P, heavy SD 0 8π
c′2χ c
′2
N

64π2m4
φ

µ6
χH

m2
χm

2
H

0

TABLE I. Momentum-transfer cross section coefficients σ0,B for models with vector (V), scalar (S), and pseudoscalar (P)
mediators. The first three columns list the power-law index n for the velocity dependence of the cross section, the structure
of the DM-nucleon interaction, and the dependence of the cross section on the nucleus spin (SI interactions permit DM-
hydrogen and DM-helium scattering, while SD interactions permit DM-hydrogen scattering only). The remaining columns
show expressions for σ0,B for helium scattering in Scenario A, hydrogen scattering in Scenarios B and C (relevant for both SI
and SD interactions), and helium scattering in Scenarios B-SI and C-SI. For n = −4, σ0,B has a logarithmic divergence that
we regulate with small cutoff angle θc, determined by the details of a particular model.

contrast, light (� 100 GeV) DM with SM gauge charges
would have been produced directly at collider experi-
ments, which observed no new particles [26, 27]. Since
we cannot charge light DM under the SM gauge group,
any model whose SM couplings do not automatically can-
cel triangle diagrams must feature additional (typically
heavy) field content with appropriate SM charge assign-
ments to restore this cancellation, which occurs automat-
ically in the minimal SM with known field content.

1. Minimal anomaly-free models

There is a finite list of new abelian vectors that can be
added without introducing anomalies. Each such media-
tor V corresponds to a SM interaction of the form

Lint = VµJ
µ
SM , JµSM ≡ g

∑
f

Qf f̄γ
µf , (3)

where g is an overall gauge coupling and the values
of the Qf charges are given by anomaly cancellation
requirements—for a review, see Ref. [25]. For conve-

nience, we define the overall coupling for species f as
gf ≡ gQf .

The only anomaly free options without additional SM-
charged fermionic field content are

U(1)B−L , U(1)B−3Li , U(1)Li−Lj , (4)

where B/L are baryon/lepton number and Li is a lepton
family number. The gauged Li − Lj scenario does not
feature any couplings to quarks at tree level, so we ignore
this possibility. Note that in each of these cases, there
is also an irreducible contribution to the V − γ kinetic
mixing parameter ε, induced by loops of SM fermions
with V and γ external legs. This mixing in turn induces
a εVµJ

µ
EM coupling to the SM electromagnetic current,

but here ε ∼ 10−2g is generically suppressed.
For the B−L and B− 3Li, the dependence on baryon

number implies that Qf = 1/3 for all quarks, which gen-
erates equal couplings at energies below the QCD con-
finement scale. Thus,

L ⊃ g

3
Vµ
(
ūγµu+ d̄γµd

)
→ gVµ(p̄γµp+ n̄γµn) , (5)

and these scenarios can be constrained by both proton
and neutron scattering in the early Universe.
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Since SM anomaly cancellation need not affect the
charge assignments for DM particles, we are free to
choose the DM coupling gχ = gQχ with an arbitrary
value of Qχ as long as the full particle content in the
dark sector does not introduce additional, non-cancelling
triangle diagrams.

2. Minimal “anomalous” models

Since no model is allowed to be anomalous without vi-
olating unitary/renormalizability, it is possible to patch
anomalies by adding additional SM charged fields to can-
cel off the new triangle diagrams induced by an anoma-
lous pattern of U(1) charge assignments. This enables
vectors to couple to arbitrary currents of SM fields as
long as viable “anomalons” can be added to cancel the
corresponding triangle diagrams.

A popular example of this scenario is gauged
U(1)B [28], which is phenomenologically similar to the
B − L example above, except there are no couplings
to leptons; additional states are added instead to can-
cel anomalies, but these states can be sufficiently heavy
that we can integrate them out well above our energy
scales of interest. For our purposes, the U(1)B model
predicts equal proton/neutron couplings. However, in
principle, models in this category can be engineered to
have arbitrary proton/neutron vector currents. This
class of scenarios is classified as “minimal” only to the
extent that there is a single Abelian gauge group, even
though other new fields are necessary to cancel anoma-
lies; similar considerations apply to any arbitrary pattern
of quark/lepton couplings.

3. Beryllium-motivated non-minimal models

The longstanding ∼ 7σ Atomki beryllium anomaly
concerns a reported excess of events observed in the
8Be(18.15) → 8Be e+e− de-excitation, which may con-
stitute evidence of a new ≈ 17 MeV particle [29] coupled
to baryons and electrons.2 Such light new particles must
evade numerous experimental bounds. It has been shown
that viable models must violate isospin and couple pref-
erentially to neutrons over protons [31].

A leading candidate model to resolve the Atomki
anomaly features the Lagrangian [31, 32]

L =
1

4
XµνX

µν +
m2
X

2
XµX

µ −XµJ
µ
SM , (6)

where X is a new vector boson and the SM current can
be written as

JµSM ≡
∑
f

gf f̄γ
µf , (7)

2 However, see Ref. [30] for a recent interpretation involving only
SM hadronic physics.

where f is a SM fermion. Writing the SM-mediator cou-
pling in units of the electric charge, gf ≡ eεf , the proton
and neutron couplings are

εp = 2εu + εd , εn = εu + 2εd , (8)

and to resolve the Atomki anomaly, the X boson cou-
plings must satisfy

|εp + εn| ≈ 0.011 =⇒ |εu + εd| ≈ 3.7× 10−3 , (9)

and evading constraints from rare pion decay searches
requires [32, 33]

|2εu + εd| < 8× 10−4 . (10)

Thus, satisfying all of these requirements implies the re-
lationship

− 0.067 <
εp
εn

< 0.078 , (11)

so the proton coupling is sharply suppressed relative to
the neutron coupling.

In addition to addressing the Atomki anomaly, the X
mediator can also consistently couple to DM if additional
interactions are included. For example, a Dirac DM par-
ticle χ can interact with X if Eq. (6) is extended to in-
clude the operator

∆L = gχXµχ̄γ
µχ , (12)

which induces DM-nucleon scattering during the CMB
era.

C. Higher Dimension Operators

Beyond the simple renormalizable interactions enumer-
ated above, it is possible to engineer a tower of operators
with non-negative powers of momentum dependence of
the form

Lint =
1

Λ2
(χ̄Γχ)(f̄Γ′f) , (13)

where f is any SM fermion and Λ is a new physics scale
associated with the mass of a heavy particle, integrated
out to yield this interaction. The quantities Γ and Γ′

are each a linear combination of the following Lorentz
structures:

γµ, γ5, γµγ5, qµσ
µν . (14)

For most choices of Γ and Γ′, the corresponding cross
section scales as ∝ vn, where n can be realized using the
renormalizable interactions from Sections II A and II B.
However, for n > 2, the interaction must arise from a
higher-dimension operator and goes beyond the above
discussion. For the remainder of this paper, we consider
n ∈ {−4,−2, 0, 2, 4}, and the n = 4 case can only arise
from a higher-dimension operator.
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III. COSMOLOGY

Within the theoretical framework of Section II, we can
calculate the scattering quantity relevant for cosmology:
the momentum-transfer cross section. Relevant expres-
sions are given in Table I for the particular couplings to
neutrons and protons in our Scenarios A, B, and C. The
cross sections all scale as power laws of the relative par-
ticle velocity v with power-law index n. Therefore, we
parametrize the momentum-transfer cross section as

σB(v) ≡ σ0,Bvn (15)

where B ∈ {H,He} denotes the particular particle species
(i.e., hydrogen or helium) that DM scatters within the
baryon fluid and σ0,B is a constant prefactor that our
CMB analysis constrains. In Scenarios B-SI and C-SI, in
which there is scattering with hydrogen and helium, both
cross sections scale with the same velocity dependence n.

Incorporating DM-baryon scattering in the early Uni-
verse requires modifying the standard Boltzmann equa-
tions [34] that describe the evolution of perturbations.
We label quantities related to the DM and baryon fluids
by χ and b, respectively. In synchronous gauge, the time
evolution of the density fluctuations δχ, δb and velocity
divergences θχ, θb become [2, 4–6, 34]

δ̇χ = −θχ −
ḣ

2
, δ̇b = −θb −

ḣ

2
,

θ̇χ = − ȧ
a
θχ + c2χk

2δχ +Rχ(θb − θχ) ,

θ̇b = − ȧ
a
θb + c2bk

2δb +Rγ(θγ − θb) +
ρχ
ρb
Rχ(θχ − θb) ,

(16)
where h is the trace of the scalar metric perturbation, a is
the scale factor, k is the wave number, cχ and cb are the
sound speeds in each fluid, ρχ and ρb are the energy den-
sities, and overdots denote conformal time derivatives.
Rγ and Rχ are the Compton scattering rate coefficient
and the DM-baryon momentum-transfer rate coefficient,
respectively.

The total momentum-transfer rate coefficient Rχ for
DM scattering with hydrogen and helium is given by

Rχ = RχH +RχHe , (17)

where

RχB = aρb
YBσ0,BNn
mχ +mB

(
Tb
mB

+
Tχ
mχ

)(1+n)/2

(18)

for each scattering species B [6]. In this expression, YB
is the mass fraction of species B, Nn ≡ 2(5+n)/2Γ(3 +
n/2)/(3

√
π), mχ and mB are the DM and B particle

masses, and Tχ and Tb are the DM and baryon fluid tem-
peratures, respectively.

The coupled temperature evolution of the DM and

baryon fluids is given by

Ṫχ = −2
ȧ

a
Tχ + 2R′χ(Tb − Tχ) ,

Ṫb = −2
ȧ

a
Tb +

2µb
mχ

ρχ
ρb
R′χ(Tχ − Tb) +

2µb
me

Rγ(Tγ − Tb) ,

(19)
where µb ≈ mp(np + 4nHe)/(np + nHe + ne); me is the
mass of the electron; mp is the mass of the proton; and
ne, np, and nHe are the number densities of electrons,
protons, and helium, respectively. The heat-exchange
rate coefficient is given by

R′χ =
mχ

mχ +mH
RχH +

mχ

mχ +mHe
RχHe . (20)

In this work, we solve for the DM temperature, ignoring
the backreaction on the baryon temperature evolution.
This approximate treatment is valid while the baryon
and photon temperatures are tightly coupled, down to
redshift z ∼ 300. Incorporating backreaction is expected
to have little effect on our CMB analysis [9].

The velocities of the DM and baryon fluids are strongly
coupled at early times for n ≥ 0, rendering the relative
bulk velocity of the fluids small, compared to the relative
thermal velocities vth = (Tb/mB + Tχ/mχ)1/2. Negligi-
ble bulk velocities allows the velocity dependence of the
cross section in Eq. (15) to be governed by vth, as seen
in Eq. (18). For n = −4 and n = −2, however, inter-
actions are suppressed at early times and the relative
bulk velocity is significant around the time of recombi-
nation. This complication introduces nonlinearities into
the Boltzmann equations [4, 9], and approximate meth-
ods can be employed to maintain linearity when numer-
ically solving. We follow Refs. [4, 7, 8] by modifying the
momentum-transfer rate coefficient in Eq. (18) to be

RχB = aρb
YBσ0,BNn
mχ +mB

(
Tb
mB

+
Tχ
mχ

+
V 2
RMS

3

)(1+n)/2

,

(21)
where VRMS is the root mean square (RMS) relative
bulk velocity between the DM and baryon fluids. Under
ΛCDM, the RMS velocity is given by cVRMS ∼ 30 km/s
prior to recombination (z & 1000) and scales as (1 + z)2

at smaller redshifts. The ΛCDM evolution for VRMS is
applicable for our CMB analysis with 100% of DM inter-
acting; more advanced techniques must be used to ana-
lyze scenarios in which only a fraction DM interacts [9].

IV. ANALYSIS

We use Planck 2018 data to constrain DM interac-
tions, under our three scenarios of interest: Scenario A
in which DM interacts only with neutrons, Scenario B
in which DM interacts only with protons, and Scenario
C in which DM interacts with both neutrons and pro-
tons with equal coupling strength. Since 4He is a spin-0
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nucleus, Scenario A only gives rise to SI scattering dur-
ing the CMB era; Scenarios B and C may have either SI
or SD interactions, corresponding to scattering with hy-
drogen and helium or with hydrogen only. Our analysis
uses a modified version3 of the Cosmic Linear Anisotropy
Solving System (CLASS) [35] to solve the Boltzmann equa-
tions with the modifications described in Section III that
incorporate DM scattering.

We sample our parameter space using the cobaya
Bayesian analysis framework [36, 37] with the Markov
chain Monte Carlo (MCMC) sampler [38, 39] and fast-
dragging [40]. We use the Planck 2018 likelihood code
and employ the commander and simall likelihoods for
low multipoles, the Plik lite nuisance-marginalized
joint likelihood for high multipoles, and the SMICA lensing
reconstruction likelihood [17].

For each velocity power law n and each neutron/proton
coupling scenario, we sample the DM-baryon cross sec-
tion σ0,B as a free parameter with a flat prior for seven
fixed DM masses. We also sample the following five
standard ΛCDM cosmological parameters with broad flat
priors: the Hubble parameter H0, baryon density Ωbh

2,
scalar amplitude As, scalar spectral index ns, reioniza-
tion optical depth τ , and DM density Ωχh

2. We assume
all DM is interacting.

For Scenario A, DM scatters only with helium, so the
sampling parameter is σ0,He. For Scenario B/C-SD, DM
scatters only with hydrogen, so the sampling parameter
is σ0,H. Scenarios B-SI and C-SI involve scattering on
both hydrogen and helium; for these cases, we sample the
parameter σ0,H and fix the helium cross section according
to its relation to the hydrogen cross section in Table I.

Our analysis covers DM masses from 10 keV to 1 TeV.
Below 10 keV, the validity of our assumption of thermal-
ized, cold DM breaks down for n ≥ 0.4 For DM masses
much larger than the masses of hydrogen and helium, the
DM parameters σ0 and mχ are degenerate, appearing to-
gether as σ0,B/mχ in the expression for Rχ. Our exclu-
sion limits in Section V, including scenarios that involve
both hydrogen and helium scattering, scale as σ0,B ∝ mχ

at large DM masses. Thus, our limits at mχ = 1 TeV
can be extrapolated to larger DM masses.

V. RESULTS

We present the 95% confidence level (C.L.) upper lim-
its on the momentum-transfer cross section between DM
and hydrogen/helium as a function of DM mass for var-
ious velocity dependencies in Fig. 1. These results are
also provided in Table II and as supplementary text files
for convenience.

3 https://github.com/kboddy/class_public/tree/dmeff
4 The DM temperature is below the baryon-photon temperature

at early times for n < 0 [9], potentially allowing our analysis to
be extended to lower DM masses.

Scenario B/C-SD, corresponding to DM scattering
with only hydrogen, has been studied previously, and we
have verified consistency with recent work [10]. For pur-
poses of comparison, we include results for hydrogen-only
scattering for n = −4, even though there is not an asso-
ciated model in Table I. We label this case as “generic”
in Fig. 1. We also include “generic” results for n = 4
for Scenario A, corresponding to helium-only scattering.
Since this work places the first bounds on DM that pref-
erentially scatters with helium rather than hydrogen, we
include the result for n = 4 so that there are limits on
helium-only scattering for all values of n in this study.

The impact of helium scattering depends on its con-
tribution to the total momentum-transfer rate coeffi-
cient. For Scenarios B-SI and C-SI, we can write Rχ =
RχH(1+RχHe/RχH), where ratio RχHe/RχH dictates the
relative importance of helium scattering. This ratio in-
corporates the model-dependent ratio of the cross sec-
tions. From Table I, we have

σ0,He

σ0,H
= 4C

(
µχHe

µχH

)n+2

, (22)

where C = 1 for Scenario B-SI and C = 4 for Scenario C-
SI. For each of these scenarios, we determine RχHe/RχH
analytically in the limits of large (mχ � mH,mHe) and
small (mχ � mH,mHe) DM masses. In our estimates
below, we use a helium mass fraction YHe ' 0.24 and a
ratio of masses mHe/mH ' 4.

In the limit of large DM mass, the ratio of the
momentum-transfer rates for Scenario B-SI or C-SI is

RχHe

RχH
≈ 4C YHe

YH

(
mHe

mH

)n+2

×


(
mH

mHe

) 1+n
2

n ≥ 0

1 n < 0 .
(23)

For n < 0 the RMS relative bulk velocity is larger than
the thermal relative velocity at the redshift of interest [9],
so here we have assumed the VRMS term dominates and
thus cancels upon taking the ratio of the rates. Numer-
ically, we have RχHe/RχH ' 10.1C × 2n for n ≥ 0 and
RχHe/RχH ' 20.2C × 4n for n < 0. Therefore, we ex-
pect the inclusion of helium scattering to be negligible for
n = −4, comparable to hydrogen scattering for n = −2,
and dominant for n ≥ 0. This behavior is evident in our
numerical results for the extreme cases of n = −4 and
n = 2. For n = −4, we find that Scenarios B-SI and C-SI
have very similar bounds on σ0,H as Scenario B/C-SD,
indicating that the incorporation of helium scattering in
Scenarios B-SI and C-SI has little impact on the result-
ing bound and thus hydrogen scattering drives the con-
straint. In contrast, for n = 2, the limits for Scenarios
B-SI and C-SI have similar bounds on σ0,He as Scenario
A (helium-only scattering), indicating helium scattering
drives the constraint.

In the limit of small DM mass, the ratio of the
momentum-transfer rate coefficients is

RχHe

RχH
≈ 4C YHe

YH

mH

mHe
' 0.32C , (24)

https://github.com/kboddy/class_public/tree/dmeff
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FIG. 1. The 95% C.L. upper limits on the momentum-transfer cross section coefficient σ0,B , defined in Eq. (15), for DM-
hydrogen (solid) and DM-helium (dashed) scattering. We show results for cross sections with a power-law velocity dependence
of n = −4 (upper left), n = −2 (upper right), n = 0 (center left), n = 2 (center right), and n = 4 (bottom). For each value of
n, we analyze Scenario A with only a DM-neutron coupling (red), Scenario B-SI with only a DM-proton coupling (light blue),
Scenario C-SI with equal DM couplings to protons and neutrons (orange), and Scenario B/C-SD (dark blue) for SD scattering.
For Scenarios B-SI and C-SI, the hydrogen and helium cross sections are related by the expressions given in Table I. The cases
labeled as “generic” do not arise in the models presented in Section II, but we include them for completeness.

so the contribution to the rate from helium scattering is
subdominant to that from hydrogen scattering for Sce-
nario B-SI and comparable for Scenario C-SI. We, there-
fore, expect limits on σ0,H for Scenarios B-SI and B/C-SD
to coincide, as demonstrated by our results in Fig. 1 for
n = 2 in particular. We also note that our limits on σ0,He

for Scenarios A and C-SI are close at low DM mass for
the various n, but the limit for Scenario C-SI is slightly

stronger, as both hydrogen and helium scattering con-
tribute to the constraint. Moreover, the limit on σ0,He

for Scenario B-SI is noticeably different, since hydrogen
scattering is expected to drive the constraint.

We emphasize the relation between the helium and hy-
drogen cross sections within Scenario B-SI or C-SI is de-
termined by the model, as given in Table I. For n = −4
with large DM masses, the helium cross section is smaller
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than (for Scenario B-SI) or equal to (for Scenario C-SI)
the hydrogen cross section; otherwise, σ0,He > σ0,H. Our
results in Fig. 1 reflect these relations by construction.
In particular, a limit on σ0,H that is lower than the cor-
responding σ0,He of a given scenario does not indicate
the data are more sensitive to hydrogen scattering. On
the contrary, we have found that helium scattering is the
dominant effect in constraining DM interactions for large
DM masses for n ≥ 0.

VI. CONCLUSIONS

In this paper, we conduct the first in-depth investiga-
tion of DM-helium scattering in the early Universe. We
account for the appropriate form and velocity dependence
of the hydrogen and helium momentum-transfer cross
sections that arise from heavy and light scalar, pseu-
doscalar, and vector mediators. The cross sections ex-
hibit a power-law dependence on relative velocity, with
a power-law index n ∈ {−4,−2, 0, 2, 4}. We also con-
sider three scenarios for DM-nucleon couplings: DM-
neutron only coupling, DM-proton only coupling, and
equal coupling to protons and neutrons. Using Planck
2018 anisotropy data, we obtain the 95% C.L. upper lim-
its on the hydrogen and helium momentum-transfer cross
sections for these different scenarios with different veloc-
ity dependencies.

Our results can be interpreted in the context of par-
ticular DM models, including those presented in Sec-
tion II, to obtain limits on associated coupling constants
and mediator masses. However, since these limits con-
strain such large (∼ barn sized) cross sections for models
with n ≥ 0 in Fig. 1, the mediator-SM coupling must
be fairly large and the mediator masses must be fairly
light. Thus, each model is also subject to additional lab-
oratory constraints in the parameter space that realizes
such cross sections (for examples, see Refs. [41, 42], which
show strong constraints on the quark-mediator coupling
at low mediator mass). Although the constrained value
of the mediator-SM coupling in a given model depends
on the ratio of dark and visible couplings for a given cross
section limit, perturbative unitarity for the DM coupling
requires ci . 4π for all species [43]; thus, for each choice
of the dark/visible coupling ratio, there is a correspond-
ing limit on cN that can realize the σ0,B we constrain in
our analysis (see Table I).

Given the model dependence of such coupling limits in
each scenario, it is beyond the scope of our analysis to
provide a direct comparison with the experimental limits
in specific cases, but it is expected that for each of the
constraint curves shown in Fig. 1 with n 6= 0, there are
stronger laboratory bounds once the mediator mass and
its SM couplings are specified within a given model (sub-
ject to unitarity bounds on the DM-mediator coupling).
Nonetheless, our results directly constrain the scatter-
ing properties of DM itself during the CMB era, without
reference to any other hypotheses and, therefore, offer

a new probe of protophobic interactions, particularly in
the low (< GeV) DM mass range where direct detection
sensitivity thresholds are too high to probe the typical
momentum transfers that DM in the halo imparts to nu-
clear targets.

We note that some of our constrained parameter space
in Fig. 1 involves σ0 & 10−25 cm2, where theoretical
considerations invalidate the point-particle approxima-
tion for DM scattering with nucleons under the Born
approximation [44, 45]. Larger cross sections can be
achieved through enhancements via the exchange of mul-
tiple mediators or by considering composite DM states
(e.g. dark nuclei [46]). For the latter case, there are addi-
tional (model- and momentum-dependent) form factors
that rescale the cross section with nucleons, which we
do not include in our analysis here; thus, our results in
which σ0 & 10−25 cm2 are valid in the limit where these
form factors are negligible for typical CMB era momen-
tum transfers (e.g. when the momentum transfer is small
compared to a given compositeness scale). Since momen-
tum transfers are set by the sub-eV photon temperature
during the CMB era, we expect that any potential form
factor suppression should be negligible throughout our
parameter space of interest. However, such form factors
might be relevant for direct detection in the halo where
momentum transfers can be larger; thus, comparing our
limits to those of terrestrial scattering experiments (e.g.
from Ref. [47], which constrains neutron-philic compos-
ite DM with direct detection) might require a non-trivial
mapping, depending on the nature of the form factor
suppression.

In comparing limits for point particle interactions,
our results are complementary in mass range to exist-
ing bounds on neutron-philic DM from direct detection
experiments. For comparison, Ref. [48] finds that GeV-
scale DM with spin dependent DM-neutron cross section
σχn ≈ 10−33 cm2 can explain the XENON1T excess [49]
through the Migdal effect while evading other direct de-
tection bounds. This model is constrained by our limits
on Scenario B/C-SD in the n = 0 panel of Fig. 1. Near
the ∼ GeV mass range, our limits (σχn . 10−24 cm2) are
not sufficient to exclude the XENON1T preferred region
in Ref. [48], but they extend the generic direct-detection
limits on neutron-philic DM by many orders of magni-
tude towards lower mass where such limits were previ-
ously unavailable.

Despite strong laboratory constraints on particu-
lar models, our CMB bounds provide valuable and
complementary information on the interaction proper-
ties of cosmologically-abundant particle DM. Upcoming
ground-based CMB experiments, such as the Simons Ob-
servatory [50] and CMB-S4 [51], will achieve significant
improvements in angular resolution, compared to exist-
ing data. Therefore, advancements in CMB experiments
will lead to better sensitivity to DM scattering physics,
which suppresses structure more at smaller scales.
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Appendix: Scalar Formalism

In this section, we review the formalism for defining
the mediator-nucleon coupling at low energy in terms of
mediator-quark interactions in the high energy theory
(above the scale of QCD confinement). Here we follow
the conventions of Ref. [24].

The induced mediator-nucleon coupling in Eq. (2) is

cN =
∑

q=u,d,s

cq
mN

mq
f
(N)
Tq +

2

27
f
(N)
TG

∑
q=c,b,t

cq
mN

mq
, (25)

and we have defined the parameters

f
(N)
Tq ≡ 〈N |

mq q̄q

mN
|N〉 , f

(N)
TG = 1−

∑
q=u,d,s

f
(N)
Tq , (26)

where f
(N)
Tq represents light quark contributions to the

nucleon mass and can be found in the appendix of
Ref. [24]. Similarly, the pseudoscalar nucleon matrix el-
ement can be written

〈N |
∑
q

c′q q̄γ
5q|N〉 ≡ ic′N N̄γ5N (pseudo) (27)

where the effective nuclear coupling can be written

c′N =
∑

q=u,d,s

mN

mq
(cq − C) ∆(N)

q , C ≡ m̄
∑
q

c′q
mq

, (28)

and we have defined m̄ ≡ (1/mu+1/md+1/ms)
−1. The

parameters ∆
(N)
q satisfy the relation

∆(N)
q sµ ≡ 〈N |q̄γµγ5q|N〉 , (29)

where the new parameters here can be found in the ap-
pendix of Ref. [24].
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n DM Mass
Scenario A Scenario B-SI

Scenario
B/C-SD Scenario C-SI

He scattering H scattering He scattering H scattering H scattering He scattering
-4 10 keV 4.0e-41 2.0e-42 8.1e-42 3.6e-42* 1.9e-42 3.1e-41

1 MeV 3.4e-41 3.3e-42 1.3e-41 4.0e-42* 2.1e-42 3.4e-41
100 MeV 4.8e-41 3.6e-42 1.2e-41 6.7e-42* 3.3e-42 4.6e-41

1 GeV 5.5e-41 1.0e-41 1.5e-41 9.0e-42* 6.0e-42 3.6e-41
10 GeV 1.5e-40 4.2e-41 1.7e-41 5.8e-41* 3.9e-41 6.3e-41

100 GeV 1.2e-39 3.4e-40 9.1e-41 5.4e-40* 3.8e-40 4.0e-40
1 TeV 1.1e-38 4.0e-39 1.0e-39 4.5e-39* 5.4e-39 5.5e-39

-2 10 keV 6.8e-33 5.4e-34 2.1e-33 8.1e-34 3.6e-34 5.8e-33
1 MeV 6.0e-33 4.4e-34 1.8e-33 8.0e-34 3.3e-34 5.3e-33

100 MeV 6.7e-33 6.0e-34 2.4e-33 9.4e-34 4.2e-34 6.7e-33
1 GeV 7.4e-33 9.0e-34 3.6e-33 1.5e-33 4.8e-34 7.7e-33

10 GeV 2.6e-32 4.7e-33 1.9e-32 6.7e-33 1.6e-33 2.6e-32
100 GeV 2.1e-31 3.4e-32 1.4e-31 7.0e-32 1.5e-32 2.4e-31

1 TeV 2.1e-30 4.0e-31 1.6e-30 9.0e-31 1.8e-31 2.9e-30
0 10 keV 6.4e-26 3.5e-27 1.4e-26 5.7e-27 2.6e-27 4.2e-26

1 MeV 2.3e-25 1.2e-26 4.8e-26 1.9e-26 1.3e-26 2.0e-25
100 MeV 9.0e-25 3.7e-26 1.7e-25 7.9e-26 3.2e-26 6.0e-25

1 GeV 1.4e-24 9.4e-26 9.9e-25 1.3e-25 4.6e-26 2.0e-24
10 GeV 5.4e-24 1.9e-25 7.7e-24 7.9e-25 8.0e-26 1.3e-23

100 GeV 4.1e-23 1.4e-24 8.3e-23 1.1e-23 5.2e-25 1.2e-22
1 TeV 4.5e-22 1.1e-23 6.9e-22 1.0e-22 4.2e-24 1.1e-21

2 10 keV 9.4e-23 5.4e-24 2.1e-23 6.6e-24 4.2e-24 6.8e-23
1 MeV 2.1e-20 1.3e-21 5.3e-21 1.5e-21 8.0e-22 1.3e-20

100 MeV 3.5e-18 2.0e-19 1.1e-18 2.5e-19 1.2e-19 2.5e-18
1 GeV 3.8e-17 9.1e-19 2.6e-17 2.4e-18 5.7e-19 6.5e-17

10 GeV 3.0e-16 2.2e-18 8.9e-16 2.0e-17 7.0e-19 1.1e-15
100 GeV 3.3e-15 7.5e-18 6.7e-15 1.2e-16 2.2e-18 7.7e-15

1 TeV 2.5e-14 7.9e-17 7.8e-14 1.8e-15 1.9e-17 7.3e-14
4 10 keV 2.7e-20* 2.4e-21

1 MeV 5.7e-16* 3.7e-17
100 MeV 7.2e-12* 3.5e-13

1 GeV 4.5e-10* 1.7e-11
10 GeV 9.3e-09* 2.4e-10

100 GeV 1.1e-07* 2.0e-09
1 TeV 1.4e-06* 3.1e-08

TABLE II. The 95% C.L. upper limits on the momentum-transfer cross section coefficient σ0,B , corresponding to the limits
shown in Fig. 1. The cross sections have a power-law dependence on relative velocity, with a power-law index n. Scenario A
corresponds to DM coupled only to neutrons, Scenario B to DM coupled only to protons, and Scenario C to DM with equal
coupling to neutrons and protons. For Scenarios B and C, the interaction may be SI or SD; note the scenarios are equivalent for
the SD interaction. Blank entries do not have a corresponding model from Section II. ∗We include n = −4 results for Scenario
B-SD and n = 4 results for Scenario A, even though they are not represented by one of the models.
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