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We revisit the role that gravitational scattering off stars plays in establishing the steady-state dis-
tribution of collisionless dark matter (DM) around a massive black hole (BH). This is a physically
interesting problem that has potentially observable signatures, such as γ−rays from DM annihila-
tion in a density spike. The system serves as a laboratory for comparing two different dynamical
approaches, both of which have been widely used: a Fokker-Planck treatment and a two-component
conduction fluid treatment. In our Fokker-Planck analysis we extend a previous analytic model to
account for a nonzero flux of DM particles into the BH, as well as a cut-off in the distribution func-
tion near the BH due to relativistic effects or, further out, possible DM annihilation. In our two-fluid
analysis, following an approximate analytic treatment, we recast the equations as a “heated Bondi
accretion” problem and solve the equations numerically without approximation. While both the
Fokker-Planck and two-fluid methods yield basically the same DM density and velocity dispersion
profiles away from the boundaries in the spike interior, there are other differences, especially the
determination of the DM accretion rate. We discuss limitations of the two treatments, including
the assumption of an isotropic velocity dispersion.

PACS numbers: 95.35.+d, 98.62.Js, 98.62.-g

I. INTRODUCTION

A supermassive black hole (SMBH) will steepen the
density profile of dark matter (DM) within the hole’s
sphere of influence, i.e., within radius rh = GMbh/v

2
0 .

Here, Mbh is the mass of the hole and v0 is the velocity
dispersion in the galaxy core. The density profile of this
DM spike depends both on the properties of DM and the
formation history of the SMBH. If the DM is collisionless
with a cuspy, spherical, inner halo density that follows a
generalized Navarro-Frenk-White (NFW [1]) profile then
the density in the absence of the hole will obey a power-
law profile, ρ(r) ∼ r−γc . Simulations with DM alone
yield typical powers of 0.9 <∼ γc <∼ 1.2 [2, 3], but if baryons
undergo dissipative collapse into a baryonic disk they
can induce the adiabatic contraction of the central DM
halo into a steeper power law [4–6], with values as high
as γc ∼ 1.6 allowed for our Galaxy [7].

If the SMBH grows adiabatically from a smaller
seed [8] the SMBH then alters the profile inside rh,
forming a DM spike within which ρ(r) ∼ r−γsp , where
γsp = (9 − 2γc)/(4 − γc) [9]. For 0 < γc ≤ 2 the power-
law γsp varies at most between 2.25 and 2.50 for this
case. However, gravitational scattering off of a dense
stellar component inside rh could heat the DM, soften-
ing the spike profile and ultimately driving it to a final
equilibrium value of γsp = 1.5 [10–12], or even to dis-
ruption [13]. Other spikes, characterized by other power
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laws, are obtained for alternative formation histories for
the BH within its host halo, such as the sudden forma-
tion of a SMBH through direct collapse of gas inside
DM halos [14], mergers or gradual growth from an in-
spiraling off-center seed [15], or in the presence of DM
self-interactions [16–18]. It is also possible that baryon
clumps can erase the DM density cusp via dynamical
friction [19, 20].

DM annihilations in the innermost region of the spike,
if they occur, weaken the density profile there. The den-
sity continues to rise with decreasing distance r from the
BH, as it forms a “weak cusp” [21, 22] rather than a
plateau [9]. Within the weak cusp the density increases
as r−1/2 for s-wave DM annihilation and somewhat more
slowly for p-wave annihilation.

Due to their very high DM densities, BH-induced den-
sity spikes can appear as very bright gamma-ray point
sources in models of annihilating DM [9–11, 23–27].
Many of these models are now becoming detectable with
current and near-future high-energy gamma ray exper-
iments, and indeed the excess of ∼ 1 − 5 GeV gamma
rays from the inner few degrees of the Galactic Center
(GC) observed by Fermi may prove to be a first signal
of annihilating DM [28–30], although tension with limits
from dwarf galaxies [31] and the statistical properties of
the photons in the GC excess [32, 33] may indicate a
more conventional astrophysical explanation for the GC
excess, such as a new population of pulsars (see, e.g. ,
[34–36]).

Here we revisit the issue of Newtonian gravitational
scattering of collisionless DM off a stellar component in-
side rh in the presence of a massive, central BH. Our mo-
tivation is multipurpose: (1) to obtain the steady-state
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profile of DM in the cusp to which the time-dependent,
numerical integration of the Fokker-Planck equation in
[10] asymptotes at late times; (2) to generalize the zero-
flux, steady-state solution of the Fokker-Planck equation
in [11] to allow for a net flux of DM onto the BH; and,
especially, (3) to use this problem as one of the simplest
laboratories that can be exploited to compare a Fokker-
Planck approach to a two-fluid conduction approach for
treating the dynamical behavior of a two-component clus-
ter of collisionless gases interacting by gravitational scat-
tering alone (see, e.g. [37–39] and references therein).
Our Fokker-Planck treatment is entirely analytic. Our
two-fluid conduction treatment is first performed ana-
lytically to gain insight, after we adopt some reasonable
approximations. Then, once we recast the DM fluid equa-
tions in the form of a “heated Bondi accretion” problem,
we solve them numerically without approximation.

The plan of the paper is as follows. In Section II we
present our Fokker-Planck treatment and in Section III
our two-component fluid treatment. In Section IV we
discuss some of the implications of our dual analyses. We
adopt gravitational units and set G = 1 = c throughout.

II. FOKKER-PLANCK TREATMENT

A. Phase-Space Distribution Function

We begin by following [10, 11] and adopting a Fokker-
Planck approach to addressing the problem. We regard
a Fokker-Planck treatment as the more fundamental ap-
proach (compared with a fluid approach) to analyzing
Newtonian N-body systems that evolve by undergoing
cumulative, small-angle gravitational (Coulomb) scatter-
ings on two-body relaxation timescales. Here we have a
two-component system consisting of DM particles that
scatter off stars to establish a (quasi)stationary DM dis-
tribution in the presence of a massive, central black hole
(BH) of mass Mbh that dominates the potential in the
spike. The Fokker-Planck equation can be employed
to evolve the phase-space distribution function f(E, t)
of DM particles bound to the BH in the spike, where
E = Mbh/r − v2/2 > 0 is the DM binding energy per
unit mass. Here r is the radius from the BH and v is the
speed of a particle; the velocity dispersions are assumed
isotropic for both DM particles and stars. A power-law
distribution function for the DM satisfying f(E) ∼ Ep

gives rise to a power-law DM density, ρ ∼ r−3/2−p.

The Fokker-Planck equation for the evolution of the
distribution function f of DM particles of mass mχ in
the presence of stars of mass m∗ can be written in the
form [10, 11] (see also [40], Eq. 2-86, with a slight

change of notation)

−∂q(E)

∂E

∂f

∂t
= A

∂

∂E

[
mχ

m∗
f

∫ ∞
E

f∗
∂q∗
∂E∗

dE∗ (1)

+
∂f

∂E

{∫ ∞
E

f∗q∗dE∗ + q

∫ E

−∞
f∗dE∗

}]
,

where q(E) = (2−1/2/3)πM3
bhE

−3/2, A ≡ 16π2m2
∗ ln Λ

and ln Λ = ln(Mbh/m∗). Here f∗ is the distribution func-
tion of the stars, which we take to be a fixed power-law
in the cusp,

f∗ = KEs, E > 0 (2)

for this exercise. The constant K determines the mag-
nitude of the stellar density at a fiducial point in the
cusp (see below) and the power-law with −1 < s < 1/2
determines the density profile there, ρ∗ ∼ r−β , where
β = s + 3/2. For this analysis we set the stellar den-
sity to be zero for unbound stars that orbit outside the
cusp: f∗ = 0, E < 0. The equilibrium distribution func-
tion we might expect for the bound stars is f∗ ∝ E1/4,
i.e. s = 1/4, corresponding to ρ∗ ∝ r−7/4, which is the
Bahcall-Wolfe (BW) [41] steady-state solution for a one-
component, isotropic system of stars deep inside the cusp
around a massive BH. However we shall leave s and β un-
specified in what follows. In principle, it is determined
by solving the Fokker-Planck equation for the stars in
conjunction with Eq. 1 for the DM.

For DM particles the first term in square brackets in
Eq. (1) is negligible since mχ/m∗ � 1. Also we can
recast Eq. (1) as a continuity equation in E-space, as
follows. Consider the DM particle number density per
unit energy, N(E, t) = 4π2p(E)f(E, t), where

p(E) ≡ 4

∫ rmax(E)

0

vr2dr = −∂q(E)/∂E (3)

= 2−3/2πM3
bhE

−5/2,

where rmax(E) = Mbh/E is the maximum radius reached
by a particle orbiting with energy E. Then Eq. (1) be-
comes

4π2p(E)
∂f

∂t
=
N(E, t)

∂t
= −∂F(E, t)

∂E
. (4)

Here the particle flux in E-space, F(E, t), is given by

F(E, t) ≡ −4π2A ∂f
∂E { }, where the terms inside the curly

brackets { } are the terms in curly brackets on the right-
hand side of Eq. (1).

An equilibrium solution satisfying ∂f/∂t = 0 with no
energy flux then requires ∂f/∂E = 0, or p = 0. The
resulting density profile is then ρ ∝ r−3/2. This simple
argument for the DM spike was first presented in [11].
What is particularly interesting, as the above derivation
demonstrates, is that this steady-state DM density pro-
file arises independently of the assumed background stel-
lar distribution function, f∗(E), in the zero-flux case.
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This same DM equilibrium solution was also achieved at
late times, away from the cusp boundaries, in the time-
dependent, numerical integration reported in [10]. There
Eq. (1) was evolved, starting from an adiabatic DM spike
with ρ ∝ r−7/3 in a fixed background stellar density cusp,
after adding an additional flux term to mimic the ex-
pected additional capture of DM particles scattered into
the black hole loss-cone, were the restriction to isotropy
relaxed [42, 43] (see discussion in Section II.D below).

We now generalize the derivation in [11] by allow-
ing for a nonzero energy flux, since DM particles may
be captured by the BH even for an isotropic distribu-
tion. Evaluating the two integrals in the curly brackets
in Eq. (1) and seeking a steady-state solution again by
setting ∂f/∂t = 0 implies ∂F(E)/∂E = 0, or

d

dE

[
Es−1/2

df

dE

]
= 0, (5)

whose solution is

f(E) =
F

(3/2− s)
E3/2−s + C, (6)

where F and C are constants. Substituting Eq. (6) into
the definition of the particle flux F(E) shows that F is
related to F(E) according to

F(E) =
6π2Aq̃K

(s+ 1)(s− 1/2)
F = constant, (7)

where we introduced another constant q̃ ≡ q(E)E3/2.
Eq. (7) shows that F(E) is constant in both t and E.
The two constants F (or F(E)) and C are determined by
two boundary conditions that we can impose on Eq. 6:

b.c. (i) : f = 0, E > Ecut ≡Mbh/rcut, (8)

b.c. (ii) : ρ(r) = ρh, r = rh = Mbh/v
2
0 ,

The first boundary condition cuts off the DM distribution
function for high energies characterizing DM orbits that
would otherwise reside entirely very near the BH. For ex-
ample, any particle that penetrates the marginally bound
radius, where rmb = 4Mbh � rh for a Schwarzschild BH,
must plunge directly into the BH (see, e.g. the discussion
in [17] and references therein). In this case we should set
rcut = rmb. Of course, relativistic effects would modify
our Newtonian treatment in this region, but including
them is beyond the scope of this analysis and does not
affect our main results at larger radii. Alternatively, if
our DM particles were to undergo annihilation reactions
within a larger domain rmb < r ≤ rann, then we must
set rcut = rann � rh [21, 22, 24].

The second boundary condition sets the DM density
to a fiducial value ρh at the outer boundary of the spike,
where the density can be inferred by, e.g., extrapolat-
ing from solar neighborhood estimates in the case of the
Galaxy (see Section IIB below). Inserting b.c. (i) into
Eq. (6) allows us to relate F and C,

F = − (3/2− s)
E

3/2−s
cut

C. (9)

Substituting Eq. (6) into the relation for the DM density,

ρ(r) = mχ

∫ Emax

0

4πv2f(E)dv (10)

= 4πmχ

∫ Mbh/r

0

[2(Mbh/r − E)]1/2f(E)dE.

yields ρ(r) vs. r in terms of F and C. Then employing
b.c. (ii) and evaluating ρ at r = rh yields a second relation
between F and C in terms of ρh. Using both of these
relations for F and C then allows us to evaluate Eq. (6)
for f(E) in terms of ρh and Ecut:

f(E) =
(ρh/mχ)(Mbh/rh)−3/2

27/2π
3 (1− 3

2 (rcut/rh)3/2−sI)

[
1−

(
E

Ecut

)3/2−s
]
,

(11)
where I = B(5/2 − s, 3/2) and B(x, y) is the standard

beta function, i.e. I =
∫ 1

0
dx(1− x)1/2x3/2−s.

B. Density

Inserting Eq. (11) into (10) yields the DM density pro-
file,

ρ(r)

ρh
=

1− 3
2 ( rcut

r )3/2−sI

1− 3
2 ( rcut

rh
)3/2−sI

(rh
r

)3/2
, r ≥ rcut (12)

=
1− (1− r

rcut
)3/2 − 3

2 ( rcut

r )3/2−sI
1− 3

2 ( rcut

rh
)3/2−sI

(rh
r

)3/2
, r < rcut

where I = B(r/rcut; 5/2 − s, 3/2), and where B(x; a, b)
is the standard incomplete beta function; more transpar-

ently, I =
∫ r/rcut

0
dx(1− x)1/2x3/2−s.

We evaluate the density profile given by Eq. (12) and
plot the results in Fig. 1. We consider two cases for rcut:
one in which rcut = rmb (upper plot) and the other in
which rcut = rann (lower plot). For each case we treat
three possibilities for the power-law profile of the back-
ground stars: β = 1 (NFW); β = 7/4 (BW) and β = 1.4
(Galactic center fit [11, 44]). It is clear from the form of
the equation that for r � rcut the equilibrium DM den-
sity profile varies as r−3/2, as in the zero-flux case and, as
in that case, it does not depend at all on the stellar den-
sity. Moreover, for r <∼ rcut, the expression for the DM
density only depends on the stellar phase-space distribu-
tion function power-law s (or corresponding mass density
power-law β = s+ 3/2) and not its magnitude, and from
the figure we see that even the power-law dependence is
barely noticeable.

In evaluating rcut in Fig. 1 we adopt parameters
appropriate for a spike around Sgr A* in the Galac-
tic center. Here Mbh = 4 × 106 M� [45, 46], giv-
ing rmb = 7.7 × 10−7 pc. To estimate rann we fol-
low [24], who adopt a self-conjugate DM particle with
mass mχ = 35.25 Gev annihilating to bb̄ with a cross
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section 〈σv〉 = 1.7 × 10−26 cm3s−1 (typical WIMP val-
ues; [28]), and find that the annihilation region sets in
at ρann = 1.7 × 108 M�pc−3 = 6.6 × 109 GeVcm−3.
Taking the DM density in the solar neighborhood to
be ρD = 0.008 M�pc−3 = 0.3 GeVcm−3 [47], and
ρh = ρD(D/rh)γc , γc = 1 (NFW), where D = 8.5 kpc
is the sun’s distance to the Galactic center, we then
find that rann = 4.4 × 10−5 pc. Here we took v0 =
182 kms−1 (

√
3 times the line-of-sight velocity dispersion

of 105 kms−1 [48]) to get rh = 0.52 pc and used Eq. (12)
for the density inside rh.

We see from Fig 1 that the DM density departs sig-
nificantly from r−3/2 for r <∼ rcut. This is a result of
b.c. (i) and is most evident for rcut = rann, where the
density is seen to vary as ρ ∼ r−1/2 for r � rcut. As dis-
cussed in [21, 22], where this scaling was found previously,
the particles occupying this region have energies much
smaller than the potential there, and so they orbit with
increasing eccentricity and apocenters as r decreases be-
low rcut, penetrating well within rcut only near pericen-
ter. Particles whose orbits would reside entirely within
rcut due to their large binding energy E > Ecut are never
present, as they would be destroyed by rapid capture by
the BH (rcut = rmb) or annihilation (rcut = rann), and
this causes the reduction in the steepness of the density
spike within rcut.

C. Velocity Dispersion

The DM velocity dispersion may be computed from

v2(r) =
4πmχ

ρ(r)

∫ Mbh/r

0

[2(Mbh/r − E)]3/2f(E)dE. (13)

Inserting Eq. (11) into (13) yields

v2(r) = Q(r)
1− 5

2 ( rcut

r )3/2−sÎ

1− 3
2 ( rcut

rh
)3/2−sI

, r ≥ rcut (14)

= Q(r)
1− (1− r

rcut
)5/2 − 5

2 ( rcut

r )3/2−sÎ
1− 3

2 ( rcut

rh
)3/2−sI

, r < rcut

where

Q(r) =
6

5

(
Mbh

r

)
ρhr

3/2
h

ρ(r)r3/2
. (15)

Appearing in the above equations are the two quantities

Î =
∫ 1

0
dx(1 − x)3/2x3/2−s = B(5/2 − s, 5/2) and also

Î =
∫ r/rcut

0
dx(1− x)3/2x3/2−s = B(r/rcut; 5/2− s, 5/2).

We evaluate the velocity profile given by Eq. (14) for
the cases shown in Fig. 1 and plot the results in Fig. 2.
Once again the profiles do not depend at all on the magni-
tude of the background stellar density and only insignifi-
cantly on the profile power-law s. As is seen most clearly
in the cases for which rcut = rann, the DM velocity dis-
persion profile has two distinct regimes. For r � rcut

FIG. 1: Fokker-Planck solution for the DM steady-state den-
sity profile ρ(r) in the spike around a massive black hole,
allowing for background stars. The DM distribution function
cuts off at rcut = rmb (upper figure) and rann (lower figure);
vertical arrows show the location of rcut. Three stellar density
profiles ρ∗ ∼ r−β are chosen for each figure: β =1 (solid, red);
7/4 (dotted, blue); 1.4 (dashed, green). The three curves are
nearly indistinguishable in the plot. The densities and radii
are normalized to their values near the spike outer boundary
at rh. Parameters are chosen that characterize a spike around
Sgr A* in the Galactic center (see text).

the profile is given by v2/(Mbh/r) = 3/(p + 5/2) = 6/5,
as expected for a DM distribution function of the form
f(E) ∼ Ep where p = 0, or ρ ∼ r−3/2. For r � rcut
the profile asymptotes to v2/(Mbh/r) = 2, correspond-
ing to p = −1, or ρ ∼ r−1/2; this result follows from the
fact that this region is filled by E ≈ 0 particles in highly
eccentric orbits near pericenter.
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FIG. 2: Fokker-Planck solution for the DM steady-state ve-
locity dispersion profile in the spike around a massive black
hole, allowing for background stars. Results are plotted for
the cases shown in Fig 1 and the labelling is the same as
in that figure. The velocity dispersion is normalized to the
square of the local circular velocity Mbh/r.

D. Flux

To evaluate Eq. (7) for the constant, nonzero DM flux
F we must first determine K, defined in Eq. (2). This
quantity serves to normalize the stellar distribution func-
tion f∗ to yield a specifed stellar density ρ∗h at a fiducial

radius, rh. Employing an expression identical to Eq. (10),
but for stars rather than DM particles, yields

K =
ρ∗h

4π21/2m∗(Mbh/rh)s+3/2Ĩ
(16)

where ρ∗h is the stellar density at the spike boundary at

r = rh and Ĩ =
∫ 1

0
dx(1 − x)1/2xs = B(1 + s, 3/2). Re-

lating F to ρh and Ecut as described below Eq. (10) and
inserting the result together with Eq. (16) into Eq. (7)
yields the DM mass flux,

Ṁ = −mχF = CF
ln Λm∗ρ∗hρhr

3
h

(Mbh/rh)3/2
, (17)

where

CF =
(3/2− s)3π3

(s+ 1)(s− 1/2)23/2Ĩ

(rcut/rh)3/2−s

[1− 3/2(rcut/rhr)3/2−sI]
,

(18)

and where Ĩ =
∫ 1

0
dx(1 − x)1/2xs = B(1 + s, 3/2). Us-

ing the local heating time for DM particles due to grav-
itational encounters with stars [10] (∼ stellar relaxation
time for distant, two-body encounters, assuming compa-
rable stellar and DM velocity dispersions ),

tr =
0.0814v3

m∗ρ∗ ln Λ
, (19)

allows us to recast Eq. (17) as

Ṁ ∼ MDM

trh

(
rcut
rh

)3/2−s

� MDM

trh
, (20)

where MDM ∼ 4πr3hρh/3 is the total DM mass inside the
spike and trh is the relaxation time at r = rh.

The mass flux given in Eq. (20) is reminescent of the
BW solution for the steady-state mass flux for stars onto
a central black hole. BW also assumed that the distri-
bution function was of the form f(E, t), representing an
isotropic system. The flux at late times was found to
asymptote to the steady-state value [49]

Ṁ∗BW ∼
M∗
trh

(
rcut
rh

)3/2−2s

� M∗
trh

, (21)

with M∗ ∼ 4πr3hρ∗h/3 and s = 1/4. The difference be-
tween the exponent s in Eq. (20) for the DM flux and
2s in Eq. (21) for the stellar flux is due to the fact that
the flux of DM is driven by interactions with background
stars while the flux of stars is driven by self-interactions
with other stars.

A key point to appreciate is that Eqs. (20) and (21)
are both wrong! When proper allowance is made for an
anisotropic velocity dispersion described by a distribu-
tion function of the form f(E, J), where J is the angular
momentum per unit mass, it turns out that the correct
flux is much larger,

Ṁlc ∼
Mh

trh
, f = f(E, J) 6= f(E), (22)
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where Mh = MDM , or Mh = M∗, depending on the com-
ponent. The reason is that the bulk of the flux originates
from high-eccentricity orbits in the outer cusp that are
scattered into the black hole loss-cone and captured in an
orbital period. While the loss-cone only breaks isotropy
logarithmically, it significantly increases the capture rate.
This result was first shown analytically in [42, 43] and
confirmed in more detail numerically in [50, 51]. [For an
early review and references, see [52]]. An extra sink term
that roughly accounts for the DM loss-cone capture rate
was inserted in the Fokker-Planck equation for f(E, t) in
[10], similar to the “patch” introduced in an earlier treat-
ment of the equilibrium stellar distribution performed in
[43] for f(E) as a follow-up to the more general analysis
of f(E, J) in that paper. This sink term does not change
the equilibrium density or velocity dispersion profile sig-
nificantly. Generalizing the isotropic analysis presented
here by solving instead for an anisotropic DM distribu-
tion function of the form f(E, J) is possible, but not the
purpose of this paper. The results should confirm those
anticipated above with regard to the role of the loss-cone.
Most importantly, while the flux would be significantly
increased by allowing for the associated anisotropy, the
modification of the density and velocity profiles would
not be significant, as the deviation in f from isotropy
would only consist of a slowly-varying logarithmic func-
tion of J that reduces the DM distribution as one ap-
proaches the loss cone at low-J [42, 43].

For the Galactic center we consider stars at rh with
ρ∗h = 1.2× 106 M�pc−3, m∗ = M� and Λ = 0.4N,N ≈
6 × 106 [10]. Together with the adopted parameters for
the DM listed above, we then have trh ≈ 1.5 × 109 yrs
and a DM mass inside rh of MDM ≈ 80 M�, which
gives an anticipated DM accretion rate from Eq. (22) of

Ṁ ∼ 5× 10−8 M�yr−1.

III. TWO-COMPONENT FLUID TREATMENT

Adapting the two-component fluid formalism pre-
sented in [37, 38] to the problem at hand, the fluid equa-
tions for the DM particles analogous to Eq. (1) become

∂ρ

∂t
+

1

r2
∂(ρur2)

∂r
= 0, (23)

∂u

∂t
+ u

∂u

∂r
= − 1

ρ

∂P

∂r
− Mbh

r2
, (24)

4πr2ρv̂2
(
D

Dt

)
ln

(
v̂3

ρ

)
= 4πr2Γ ≡ (25)

16πr2(2π)1/2 ln Λ

[
ρρ∗

(v̂2 + v̂2∗)
3/2

]
(m∗v̂

2
∗ −mχv̂

2).

In the above equations, u is the mean radial velocity
and the pressure P = ρv̂2, where v̂ is the one-dimensional
(i.e., line-of-sight) velocity dispersion. The dispersion is

again assumed isotropic, whereby v̂2 = v2/3, and sim-
ilarly for the stars (i.e. v̂2∗ = v2∗/3). The Lagrangian
time derivative D/Dt my be expanded in the usual way
according to D/Dt = ∂/∂t+ u∂/∂r. The quantity Γ ap-
pearing in Eq. (25) gives the DM heating rate per unit
volume by gravitational scattering off stars [40]. The
other variables appearing above have their same mean-
ings as in Section II. Once again we assume that the
background stellar profile is fixed and given by a power-
law with ρ∗ ∼ r−β .

The equation of state is a γ-law with γ = 5/3, as it can
be written in the form P = (γ− 1)ρε, where ε = 3v̂2/2 is
the particle energy per unit mass. This identification is
usually of no significance for applications involving non-
relativistic particles, such as stars in Newtonian stellar
dynamics, but it will be useful below in drawing an anal-
ogy with the theory of Bondi accretion.

We note that Γ has been derived assuming local
Maxwellian velocity distributions for both components.
The basic functional dependence of this term on the lo-
cal density and velocity dispersion should be the same
for other velocity distributions even though the numeri-
cal coeffients may change. This fact should be sufficient
to give the correct scaling of the ρ and v profiles with r
even for non-Maxwellian distributions, as found in previ-
ous dynamical studies (see, e.g.,[43, 53]).

We are interested in solving the above fluid equations
for steady-state, hence we can drop all terms involving
∂/∂t. In addition, we can drop the term on the right-
hand side of Eq. (25) involving mχ, as mχv̂

2 � m∗v̂
2
∗.

The resulting equations then become

4πr2ρu = Ṁ = constant, (26)

u
du

dr
= −1

ρ

∂P

∂r
− Mbh

r2
, (27)

− d ln(v̂3/ρ)

d ln r
=

4πΓr3

Ṁ v̂2
=

3

2
R, (28)

where

R ≡ (Γ
4

3
πr3)/(

1

2
Ṁv̂2) (29)

≈ heating rate inside r by stars

heat per unit time transported across r
.

Note that in Eq. (26) and below we take u to be the
magnitude of the (inward) radial velocity. In obtaining
Eq. (28) we substituted Eq. (26) into Eq. (25). If every-
where R � 1 then the heating of DM by gravitational
scattering off stars is unimportant and the DM gas is
adiabatic (specific entropy s ∝ ln(v̂3/ρ) = constant) and
reduces to adiabatic Bondi flow [54] for γ = 5/3.

We solve equations (26-28) numerically without ap-
proximation in Section IIIB. In the next section we in-
troduce a few simplificatins that enable us to solve them
analytically to gain some preliminary insight.
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A. Approximate Analytic Solution

We anticipate that the mean flow will be highly sub-
sonic (u� a, where a =

√
γP/ρ is the DM sound speed),

whereby we can eliminate the advective term on the left-
hand side of the momentum equation (27). With this
simplification (27) reduces to the equation of hydrostatic
equilibrium,

dP

dr
= −Mbh

r2
ρ. (30)

Next, if we neglect heating (R = 0) and seek power-law
solutions, Eqs. (28) and (30) give

ρ = ρh(rh/r)
3/2, v̂2 = v̂2h(rh/r). (31)

Similarly, the assumed stellar density distribution gives
the corresponding expressions

ρ∗ = ρ∗h(rh/r)
β , v2∗ = v2∗h(rh/r). (32)

Now we treat the heating as a small perturbation on
these exact expressions. For this purpose we can substi-
tute Eqs. (31) and (32) into the perturbation term on the
right of Eq. (28), finding

R = Rh(r/rh)3−β , (33)

where Rh = R(rh). Now the perturbations to the results
in Eq. (31) can be found. Details are given in Appendix
A, and lead to the result that

ρ

ρh
=
(rh
r

)3/2(
1 +

3

10(3− β)(2− β)
Rh
[
(1− 2β)

(
r

rh

)3−β

+ 3 (3− β)

(
r

rh

)
− 5 (2− β)

])
. (34)

A similar expression can be easily given for the velocity
dispersion.

We see from Eq. (34) for plausible stellar density pro-
files with β < 3 that deep inside the cusp where r/rh � 1
the DM density is approximately

ρ

ρh
=
(rh
r

)3/2(
1− 3Rh

2(3− β)

)
, (35)

i.e. it assumes the same power-law profile ρ ∼ r−3/2 that
we found in the Fokker-Planck analysis away from the
inner boundary at r = rcut (see Eq. (12)). By Eq. (30)
we also get the same velocity dispersion deep inside the
cusp, v2 = 3v̂2 = (6/5)Mbh/r (see Eqs. (14) and (15)).
We also find, using Eq. (33), that in the cusp the so-
lution asymptotes to the adiabatic Bondi solution as r
decreases, and is adiabatic everywhere if Rh � 1.

In our Fokker-Planck treatment it was possible to
choose the flux in energy space to make f(Ecut) = 0.
In the two-fluid approach it is tempting to adjust the

mass-flux (or, equivalently, Rh) to make ρ(rcut) = 0.
While Eq. (35) shows that ρ(r) at fixed r decreases as
Rh increases, it cannot be shown to make ρ vanish within
the perturbation theory, which assumes that Rh is small.
But even if we were able to solve the present fluid equa-
tions without approximation, such a boundary condition
would be problematic: requiring ρ(rcut) = 0 with a non-
zero mass flux contradicts our assumption that the flow
is very subsonic.

To summarise at this point: we note that the two-fluid
approach, in contrast to our Fokker-Planck treatment,
does not yield a unique value for the DM mass accre-
tion rate, Ṁ . This fact is reminiscent of steady-state,
adiabatic Bondi flow, for which Ṁ is a free parameter
that yields viable accretion solutions for all values up to
a maximum, Ṁmax, that depends on γ. We will return
to this issue in the next section, once we have solved the
fluid equations without simplifying approximations.

Before proceeding, however, we make one further ob-
servation. One way to impose a reduction in the fluid
density at rcut, having imposed boundary conditions at
rh, would be to add a sink term on the right-hand side
of Eq. (23) to effectively cut down the DM density inside
rcut. While the DM density and flux are not reduced at
rmb when DM is treated as a fluid, they can be reduced
by annihilations. Hence one could introduce a collision
term on the right-hand side to account for annihilations
that would become important inside r <∼ rann, or even
a sink term to model the effect of the loss cone, analo-
gous to that introduced in the isotropic Fokker-Planck
equation in [10, 43]. However, implementing these mod-
ifications is beyond the scope of this paper, and we shall
leave it for a future investigation.

B. Exact Numerical Solution

The basic fluid equations (26)-(28) are recognized as
the usual steady-state, spherical Bondi flow equations
with a heating term on the right-hand side of (28). We
recently have worked with a similar set of equations, but
in a different context [55], namely the accretion of bary-
onic gas accreting onto a SMBH (e.g. Sgr A*) heated by
DM annihilation. Adapting that “heated Bondi accre-
tion” formalism to the problem at hand, we can recast
the nonadiabatic fluid equations as follows:

dKD

dr
= − (γ − 1)Γ

ργu
, (36)

dρ

dr
= −ρD2 +H

D
, (37)

u =
Ṁ

4πρr2
, (38)
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where

D2 =
2u2

r
− Mbh

r2
, (39)

D = u2 − a2, (40)

H =
(γ − 1)Γ

ρu
, (41)

and where a is the sound speed, P = ρv̂2 = KDρ
γ , γ =

5/3, and Γ is again given by Eq. (25).
In the absence of heating, Γ = 0, KD = constant, and

the solution reduces to steady-state, adiabatic Bondi flow
onto a point mass Mbh for γ = 5/3. In this case Ṁ is
an eigenvalue which yields valid solutions for all values
in the range 0 ≤ Ṁ ≤ Ṁmax, where

Ṁmax = 4πρhuhr
2
h = 4πλM2

bhρ∞a
−3
∞ , λ = 1/4. (42)

and where the second equality assumes that the fluid is
at rest and homogeneous at infinity. The solution with
Ṁ = Ṁmax is the only one with γ = 5/3 that passes
through a critical transonic point, at which u = a. This
point is only reached at r = 0, while for all r > 0 the
flow remains subsonic. For all other Ṁ < Ṁmax the flow
is subsonic everywhere.

As described above, the Newtonian, adiabatic, steady-
state Bondi equations do not determine Ṁ uniquely.
However, the general relativistic analogue of these equa-
tions for spherical flow onto a Schwarzshild black hole
shows that the flow must pass through a critical point
to preserve the causality constraint a2 < 1 and hence
this constraint singles out flow with Ṁ = Ṁmax as the
unique solution for steady-state flow [56]. Furthermore,
typical time-dependent integrations for adiabatic, spher-
ical accretion (i.e. Eqs. (23)-(25) with Γ = 0) settle on

Ṁ = Ṁmax when allowed to reach steady-state, even in
the Newtonian case.

We have integrated Eqs. (36)-(37) inward numerically
from r = rh, adopting the same physical values used
in Section IIB in our Fokker-Planck treatment for the
(outer) boundary conditions required by the ODEs for
the variables Kh and ρh that we set at r = rh. We
set β = 1.4 for the background stellar density profile,
ρ∗ ∼ r−β and vh = v0 = v∗h.

1. Flux

We have considered four cases for the mass accretion
rate Ṁ , which, as in the case for adiabatic Bondi flow, is
not determined uniquely in steady-state. In particular,
we treat

Ṁ = q
MDM

trh
(43)

where tr is defined in Eq. (19), MDM is defined just below
Eq. (20) and where we considered four values of q in the

range 0.1 ≤ q ≤ 100. The chosen range for Ṁ was moti-
vated by the (unique) value expected from a fundamental

Fokker-Planck treatment of the problem that solves for
f(E, J), as discussed in Section IID (see Eq. (22)).

Comparison of Eq. (42) and (43) shows that

Ṁ

Ṁmax

∼ q tdynh
trh

, (44)

where tdynh = rh/vh is defined as the dynamical (cross-

ing) timescale at rh. Evaluating Ṁmax here and be-
low we set a∞ ∼ ah and ρ∞ ∼ ρh, as in the Bondi
solution. The computed values for the adopted Galac-
tic parameters (Sec.IIB) are tdynh ∼ 2.8 × 103 yrs,

tdynh/trh ∼ 2 × 10−6 and Ṁ/Ṁmax ∼ q × 1.1 × 10−6.
Thus the anticipated Fokker-Planck accretion rate for
which q ∼ 1 is six orders of magnitude smaller than the
likely maximum fluid rate.

2. Density

Results for the DM density profile are plotted in Fig. 3
for all four cases. The density satisfies ρ ∼ r−3/2 for
r � rh in all cases. Moreover, for high values of q and
Ṁ the profile obeys this power-law for almost all r. This
result is not surprising, since Fig. 4 shows that the nondi-
mensional heating ratio R ∼ r(3−β) � 1 for r � rh in
all cases. Since Rh = 3.0/q, for sufficiently high q � 1,

and thus high Ṁ , the ratio is small everywhere, even at
r = rh. In the latter case the flow is essentially adiabatic
and reduces to the standard adiabatic Bondi solution for
γ = 5/3. Our approximate analytic profile (34) repro-
duces this behavior in the perturbative regime.

3. Velocity Dispersion

The DM velocity dispersion is plotted in Fig. 5 for the
cases shown in Fig. 3. As expected (Sec.IIC), well inside
the outer boundary we find v2/(Mbh/r) ≈ 6/5. Near
rh the role of heating is reflected in the higher values
of v2 for cases with lower accretion rates. As the accre-
tion rate is chosen smaller and the corresponding ratio R
increases well above unity, the higher heating rate may
subsequently unbind the outer regions of the cusp al-
together. These solutions may then be unstable and a
time-dependent integration of the equations might then
drive the flow to smaller accretion values before settling
into steady-state.

4. Mean Flow Velocity

All of our solutions are highly subsonic, as shown in
Fig. 6. This behavior is expected since even in adia-
batic Bondi flow when γ = 5/3, the mean inflow veloc-

ity is everywhere subsonic, except when Ṁ = Ṁmax, in
which case u/a reaches unity, but only at the origin. As
shown in Fig. 6, the lower the rate of accretion and the
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FIG. 3: Two-component fluid solution for the DM steady-
state density profile ρ(r) in the spike around a massive black
hole, allowing for background stars. The stellar density is
given by ρ∗ ∼ r−β , with β = 1.4. Four accretion rates are
chosen according to Eq. (43), with q =0.1 (solid, red); 1 (dot-
ted, blue); 10 (dashed, green); 100 (dot-dashed, magenta).
The densities and radii are normalized to their values at the
spike outer boundary at rh. Parameters are chosen that char-
acterize a spike around Sgr A* in the Galactic center (see
text).

higher the corresponding value of R, the more important
heating becomes and the lower the Mach number u/a.
Here a/v = (γ/3)1/2 ≈ 0.745 while for r � rh we have
u/a ∼ few×q(tdynh/trh) ∼ few×10−6q, which is roughly
consistent with Fig. 6.

IV. DISCUSSION

Spherical accretion onto a BH by collisionless matter
undergoing repeated, small-angle, gravitational scatter-
ing is qualitatively different from accretion of fluid mat-
ter. In the former case most of the captured particles
move on highly eccentric orbits that have apocenters far
from the central hole and are scattered into a loss-cone
and captured in one period. In the latter case, the cap-
tured gas moves radially as a continuous fluid, becoming
tightly bound to the black hole before plunging in. All
nonradial motion is damped in the case of spherical fluid
flow [56]. Not surprisingly, the accretion rates calculated
by treating DM by these two different descriptions result
in two different answers.

The steady-state rate of accretion anticipated from a
Fokker-Planck treatment of f(E, J), i.e. Eq. (43) with

q ∼ 1, is orders of magnitude less than Ṁmax for adi-
abatic Bondi flow given by Eq. (42). The simple flux
ratio given by Eq. (44) highlights this fact. Yet heating
is likely to be unimportant (R � 1) well inside the spike.

FIG. 4: Two-component fluid solution for the DM steady-
state dimensionless heating parameter R(r) in the spike
around a massive black hole, allowing for background stars
(see Eq. (29)). Results are plotted for the cases shown in
Fig. 3 and the labelling is the same as in that figure.

FIG. 5: Two-component fluid solution for the DM steady-
state velocity dispersion profile v(r) in the spike around a
massive black hole, allowing for background stars. Results are
plotted for the cases shown in Fig. 3 and the labelling is the
same as in that figure. The velocity dispersion is normalized
to the square of the local circular velocity Mbh/r.



10

FIG. 6: Two-component fluid solution for the DM steady-
state Mach number u(r)/a(r) in the spike around a massive
black hole, allowing for background stars. Results are plotted
for the cases shown in Fig. 3 and the labelling is the same as
in that figure.

Hence we anticipate that as the flow approaches the BH,
a general relativistic treatment will likely pick out Ṁmax

as the steady-state solution, just as it does for the equa-
tions describing adiabatic Bondi flow, to which the DM
fluid equations reduce deep inside the spike and near the
black hole. Even a time-dependent Newtonian integra-
tion of the equations is likely to relax to this solution.
However, this difference in the predicted accretion rate
should not lead to a major discrepancy in the computed
DM density or velocity dispersion profiles. We have al-
ready seen that we obtain the same basic power-law pro-
files well inside the spike when comparing the two-fluid
solution to the Fokker Planck profiles associated with an
isotropic f(E). Similar agreement is expected when we
compare with the profiles assciated with an anisotropic
f(E, J), up to slowly varying logarithmic factors, as was
proven to be the case for stars in a BW cusp around a
BH.

The agreement between Fokker-Planck and fluid pro-
files breaks down only near the outer boundary when-
ever we have Rh >∼ 1, as well as near the inner boundary,
since there additional conditions can be imposed as in-
ner boundary conditions in the Fokker-Planck solution
to constrain the distribution function. Constraining the
fluid profile similarly requires the addition of sink terms
in the continuity equation, a departure from the standard
two-fluid equations.

Generalizing from this and earlier analyses (e.g. [37–
39]), of multi-component, large N -body dynamical
systems undergoing secular evolution on relaxation
timescales due to gravitational scattering, we infer that
the multi-component fluid approach yields similar results
to a fundamental Fokker-Planck treatment in many im-

portant aspects, but not all, depending on the system.
One must bear this in mind when adopting what is often
a computationally simpler fluid description to describe
such a system.

Acknowledgments: It is a pleasure to thank R. Spurzem
for useful discussions. This paper was supported in
part by NSF Grant PHY-2006066 and NASA Grant
80NSSC17K0070 to the University of Illinois at Urbana-
Champaign.

Appendix A: Solution of perturbed fluid equations

The purpose of this appendix is to derive Eq. (34) for
the density in the case of weak heating. The equations to
be solved are Eqs. (28) and (30), and the right side of the
former represents heating. We regard this term as a per-
turbation of the no-heating exact solutions of Eq. (31),
which we denote by ρ0, v̂0, respectively. Thus we write
the perturbed solution as ρ = ρ0(1 + f), v̂ = v̂0(1 + g),
where f, g are functions of order R. Substituting into
Eq. (28), and retaining terms only up to first order in R,
we have

− d

d ln r

(
ln

(
v̂30
ρ0

)
+ 3g − f

)
=

3

2
R. (A1)

The 0-order term vanishes, as the functions ρ0, v̂0 solve
the unheated equation exactly, which leads to

− r(3g′ − f ′) = (3/2)Rh(r/rh)3−β , (A2)

where we have used Eq. (29), and a prime denotes an
r-derivative. This integrates to

3g − f = − 3Rh
2(3− β)

(
r

rh

)3−β

+ C, (A3)

where C is a constant of integration.
In much the same way, Eq. (30) gives

f + 2g +
ρ0v̂

2
0

(ρ0v̂20)
′ (f
′ + 2g′) = f, (A4)

and so, by Eq. (31),

− 5

r
g + f ′ + 2g′ = 0. (A5)

Next, Eqs. (A2) and (A3) let us remove g and g′ from
Eq. (A5), whence

f ′ − f

r
=

3(1− 2β)

10(3− β)

Rh
rh

(
r

rh

)2−β

+
C

r
. (A6)

By trying power-law solutions f ∝ rλ for λ = 3− β, 0
and 1 and superposing, we obtain the general solution

f =
3

10

1− 2β

(3− β)(2− β)
Rh
(
r

rh

)3−β

− C +Dr, (A7)
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where D is another constant. The two constants C and
D can be chosen so that both f and g vanish at r = rh,
which yields

C =
3

2(3− β)
Rh, D =

6(2 + β)

10(3− β)

Rh
rh
, (A8)

obtaining Eq. (34).
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