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The fast flavor instability (FFI) is expected to be ubiquitous in core-collapse supernovae and
neutron star mergers. It rapidly shuffles neutrino flavor in a way that could impact the explosion
mechanism, neutrino signals, mass outflows, and nucleosynthesis. The variety of initial conditions
and simulation methods employed in simulations of the FFI prevent an apples-to-apples comparison
of the results. We simulate a standardized test problem using five independent codes and verify that
they are all faithfully simulating the underlying quantum kinetic equations under the assumptions
of axial symmetry and homogeneity in two directions. We quantify the amount of numerical error
in each method and demonstrate that each method is superior in at least one metric of this error.
We make the results publicly available to serve as a benchmark.

I. INTRODUCTION

Neutrinos energize the explosions of massive stars and
drive outflows from neutron star mergers and proto-
neutron stars. In both systems, interactions between
neutrinos and outflows determine the elements that form
and enrich the universe [1–4]. Furthermore, electron fla-
vor neutrinos and antineutrinos interact more strongly
with matter than other flavors due to the large masses
of muons and taons, and it is effectively only this flavor
of neutrino that is able to convert neutrons to protons
and vice versa. The fact that neutrinos can change their
flavor in-flight yields a complicated relationship between
neutrino flavor and observable properties of supernovae
and compact object mergers (see [5] for a recent review).

Interactions between neutrinos and other neutrinos are
expected to drive rapid and nonlinear evolution of neu-
trino flavor in these extreme astrophysical environments.
A rich variety of flavor transformation phenomena have
been found resulting from the mean-field neutrino quan-
tum kinetic equations, including collective flavor trans-
formations [6], the matter-neutrino resonance [7], the
neutrino halo effect [8], collisional instability [9], and
more. In this work we focus on the fast flavor instability
(FFI) [10, 11], another flavor transformation mechanism
that has the potential to drive neutrino flavor change
in particularly important regions that are inaccessible to
other flavor transformation phenomena. In a supernova,
this instability is expected to be present above the shock
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front, beneath the shock front, and in the convecting pro-
toneutron star ([12] and references therein). Following a
neutron star merger, the FFI is expected to be ubiqui-
tous near and inside the resulting accretion disk, precisely
where the generation of the universe’s heavy elements is
thought to occur [13–16].

While instability of a distribution can be determined
analytically [17–25], numerical simulations are as of yet
required to determine the fate of the distribution after
the instability saturates (though see [26–28] for analyti-
cal work on restricted classes of models). Unfortunately,
the spatial and time scales on which the instability op-
erates (sub-cm, sub-nanosecond) are much shorter than
the scales of the explosive processes they affect (tens of
kilometers and seconds), so direct global simulation of
the neutrino quantum kinetics in the full system is, to
put it lightly, presently not possible. In order to begin
searching for a solution to this conundrum, one can pluck
out a small piece of the explosion, i.e., small enough that
the neutrino and matter fields look approximately ho-
mogeneous, and simulate the instability in that domain
only.

To this end, several methods of simulating the FFI
have arisen in recent years, each carrying their own set
of assumptions and numerical techniques. For simplicity,
many calculations impose symmetries in spatial, momen-
tum, or flavor degrees of freedom. Since the neutrino-
neutrino interactions driving the FFI do not depend on
neutrino energy, it is overwhelmingly common to inte-
grate out the neutrino energy so that the momentum
space has at most two direction dimensions. Many early
calculations were performed in a beam model, in which
all neutrinos are moving in one of two directions [29–
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31]. The neutrino line model, useful for its geometric
simplicity, is a initial-value problem that assumes ho-
mogeneity and isotropy in one Cartesian direction and
allows inhomogeneity and anisotropy in the other (the
third spatial dimension is the direction along which the
calculation progresses) [32–35]. One can alternatively as-
sume that the neutrino distribution remains axially sym-
metric around some direction, usually taken to be the ra-
dial direction for application to a core-collapse supernova,
and impose homogeneity or periodic boundary conditions
[26, 27, 36–52]. Most methods assume two neutrino fla-
vors for simplicity, but there are a growing number of
three-flavor simulations of the FFI [48, 52–55]. There
are relatively few methods that account for all of the
angular degrees of freedom [53, 55, 56] (though see simi-
lar calculations of the Multi-Azimuthal-Angle Instability
[57–59]), and this has only recently been combined with
a treatment of two [60] and three [54] spatial dimensions.

There are as many choices of initial conditions as there
are codes. Given the increasing complexity of the codes,
there is a need to understand which aspect of the re-
sults are a result of numerical approximations and which
are physical results of the evolution equations. Lacking
physical data against which to directly validate results,
a common approach is to verify that each code is faith-
fully solving the differential equations via a comparison
between codes (e.g., [61–65]). Such comparisons will be
increasingly important in the future as the physics in-
cluded in simulations becomes more sophisticated (e.g.
collisions [9, 31, 47, 66] and matter inhomogeneities [49]).

In this work we demonstrate good agreement between
several codes in the literature on a standardized test
problem in one spatial dimension, axial symmetry in mo-
mentum space, and two neutrino flavors. In Section II we
summarize the salient features of each simulation method
compared in this work. We describe our carefully-defined
test problem in Section III and show the results of the
simulations in Section IV. Finally, we summarize and pro-
vide some discussion in Section V. The numerical data
presented here are available at [67].

II. METHODS

In this work we assume the mixing of two neutrino
flavors, e and x. The flavor state of a neutrino can
be described either in terms of the polarization vector
P = (P1, P2, P3) or the density matrix ρ, where the po-
larization vector components are defined as

P1 := Tr(ρσx) = 2Re(ρex),

P2 := Tr(ρσy) = −2Im(ρex),

P3 := Tr(ρσz) = ρee − ρxx,
(1)

and σi are Pauli matrices. We collectively refer to the
flavor-coherent components of the polarization vector
with the complex quantity S = P1 − iP2.

For the sake of a common test problem, we assume the
neutrino distributions remain axially symmetric around

ẑ and are homogeneous along x̂ and ŷ. The direction
of a neutrino with velocity ~v is then specified by u =
v̂ · ẑ. Under these assumptions, the neutrino distribution
evolves according to the quantum kinetic equation

(∂t + u∂z)ρ = −i [H, ρ] , (2)

or equivalently,

(∂t + u∂z)P = H×P . (3)

We neglect contributions from non-neutrino interaction
sources and from the neutrino mass to focus on the pure
FFI. Furthermore, we assume ρ̄ = ρ∗ for antineutrinos
(discussed below) so that

H(z, u) =

∫ 1

−1
du′(1− uu′) [µg(u′)− µ̄ḡ(u′)] ρ(z, u′) .

(4)

In the above expression, µ =
√

2GFnν is the characteris-
tic strength of the Hamiltonian, where GF is the Fermi
coupling constant and nν is the total number density of
all neutrino flavors (and similarly for µ̄ for antineutri-
nos). g(u) and ḡ(u) describe the angular distribution
of the neutrinos and antineutrinos with normalization∫
du g(u) =

∫
du ḡ(u) = 1. H follows the same vector

representation as the density matrix in Eq. (1).
Although not all of the codes in this work make all

of these assumptions, the initial conditions are carefully
constructed such that the simulations are logically equiv-
alent to this form of the equations. In particular, the
self-interaction contribution to the Hamiltonian consid-
ered here obeys H̄ = −H∗, implying that ∂t(ρ− ρ̄∗) = 0.
If ρ = ρ̄∗ is true in the initial conditions, it remains true
throughout the simulation up to numerical error. Ax-
ial symmetry is also enforced in the initial conditions for
codes that do not assume it.

A. Emu

Emu is a particle-in-cell method for simulating neu-
trino flavor transformation in a periodic box. The neu-
trino radiation field is represented by a large number of
individual computational particles. Each particle car-
ries with it the number of physical neutrinos N and an-
tineutrinos N̄ it represents, the density matrix ρab (ρ̄ab)
common to each (anti-)neutrino in the computational
particle, the position ~r, and the momentum ~p of each
anti/neutrino. Each particle contributes to the num-
ber density and number flux vector stored on a back-
ground Cartesian grid, which is then used to determine
the Hamiltonian for each individual particle. The parti-
cles are integrated forward in time using that Hamilto-
nian and translating at the speed of light. The full PIC
implementation uses of a second order shape function and
an unsplit forth-order Runge Kutta time integrator. Fur-
ther details are described in [53] and the code is publicly
available [68].
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B. NuGas

NuGas is a Python package that computes collec-
tive flavor oscillations of dense neutrino media. The
f2e0d1a module, which is used in this comparison, im-
plements simple quadrature rules (composite Simpson’s
rule in this case) for the integration over the neutrino
angular distributions and the Lax42 algorithm, a high-
precision variant of the two-step Lax-Wendroff method
developed by Joshua Martin [40, 69], for spatial differ-
entiation and temporal integration. The details of the
Lax42 algorithm is explained in [42]. NuGas is publicly
available through GitHub [70].

C. Coseν

The Coseν code used in [50] evolves the compo-
nents of the density matrix discretized in space and po-
lar angle assuming azimuthal symmetry with two dif-
ferent methods for the advection. The Coseν-FD ver-
sion evaluates advection terms using a fourth-order fi-
nite difference method with third-order Kreiss-Oliger ar-
tificial dissipation. The Coseν-FV version adopts a fi-
nite volume method with seventh order WENO recon-
struction to evaluate advection terms. In both ver-
sions, the time evolution is performed with a fourth-order
Runge-Kutta scheme. The code is publicly available at
https://github.com/COSEnu/COSEnu, and detailed de-
scription of the code structure, test results, and perfor-
mance is documented in [71].

D. Bhattacharyya et al.

The Bhattacharyya code used in [27, 60, 72] is writ-
ten in Python. The main principle behind this numeri-
cal setup is to convert a set of coupled nonlinear partial
differential equations to a set of coupled nonlinear or-
dinary differential equations. The code discretizes space
(~r) and momentum direction (~v) into equally spaced bins
and thus converts the set of coupled nonlinear partial
differential equations into a same set of ordinary differ-
ential equations (ODE) as a function of time for each
(~r,~v) pair. The number of discretized bins are chosen
to obtain sufficient accuracy and precision as well as to
trigger as many fourier modes as possible especially the
unstable ones within limited CPU hours. The total set
of ODE’s are solved in a finite spatial domain as a func-
tion of time using Zvode solver, a variable coefficient
differential equation solver in SciPy [73], which imple-
ments the backward differentiation formula for numerical
integration. The code uses the Fast Fourier Transform
method implemented in scipy.fftpack.diff package to
calculate the gradient term at each spatial location. The
differential equation solver adapts the timestep based on
target relative and absolute errors. The integrator in
this simulation was allowed a relative and absolute error

Flavor
√

2GFnνi/µ σ A
νe 1 0.6 1.33095
ν̄e 0.9 0.53 1.50568
νx 0 – –

TABLE I. Parameters for the initial angular distribution of
neutrinos as used in Eq. (5).

of 10−12 for 0 ≤ t ≤ 1474µ−1 and a relative and abso-
lute error of 10−9 for 1474 ≤ t ≤ 5000µ−1. The change
was made to speed up the calculation while maintaining
acceptably low errors.

E. Zaizen et al.

The Zaizen code evolves the Fourier components of the
polarization vector discretized in wavenumber and neu-
trino direction with a fourth-order Runge-Kutta scheme
in time. This code adopts a pseudo-spectral method
in evaluating the advection term and computes the
nonlinear mode-coupling term in the Hamiltonian us-
ing the Fast Fourier Transformation implemented in the
FFTW3 library [74] according to the convolution theo-
rem. To align the simulation setup with others, initial
conditions are first built on configuration space and then
converted into Fourier space. The spatial Fourier modes
are discretized by the inverse of the simulation box size
L in this work (by vacuum frequency in a recent appli-
cation [52]). Also, this code adopts the Gauss-Legendre
quadrature for the angular integration and arranges the
angular distribution on the roots of Legendre polynomi-
als.

III. PROBLEM DESCRIPTION

Here we define a common test problem to simulate
based on the neutrino distributions in [40, 50] and spec-
ify initial perturbations with a random spectrum in or-
der to seed the growth of the fast flavor instability. All
codes use the same spatial and angular resolution and
the same domain size. We do not control the size of the
timesteps, as some methods are adaptive and others limit
the timestep using a Courant factor.

A. Electron Lepton Number Distribution

We adopt an electron lepton number (ELN) distribu-
tion corresponding to the G3a distribution in [40]. That
is, the angular distribution of each neutrino flavor is ini-
tially described by

g(u) = Ae−(u−1)
2/2σ2

. (5)

https://github.com/COSEnu/COSEnu
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The normalization constant A is determined by requiring
that

∫
du g(u) = 1. Specifically,

1

A
= σ

√
π

2
erf

(√
2

σ

)
(6)

The parameters we use are listed in Table I. We choose
this ELN distribution because it has already been stud-
ied by multiple groups, allowing this verification effort to
directly impact those works as well.

B. Perturbations

The fast flavor instability amplifies unstable modes
seeded by perturbations in the initial conditions. We
perturb P1 and P2 (or equivalently, ρex) according to

S(t = 0, z) =

amax∑

a=−amax

Bae
i(kaz+φa) (7)

where ka = 2πa/L with L being the length of the periodic
box along z. We cut off the spectrum of the perturba-
tions at amax = Nz/20, where Nz is the number grid
cells along z, in order to avoid small-scale structure in
the perturbations that might induce numerical errors in
some methods. This causes the smallest wavelength of
perturbations to be resolved by 20 grid cells. The ampli-
tudes of each sinusoid are arbitrarily chosen to be

Ba=0 = 0 and Ba6=0 = 10−7|a|−1 . (8)

We also choose the phase φa to be uniformily random,
sampled independently for each a, and not synchronized
between the different simulations. The perturbations are
isotropic in that Ba and φa are the same for all u. Follow-
ing perturbations to P1 and P2, P3 is adjusted to preserve
|P| = 1.

C. Simulation Grid

In order to come as close as possible to the calcu-
lations of [40, 50], we adopt a simulation box of size
L = 10240µ−1 spanned by a uniform grid of Nz = 10240
cells. This choice of simulation domain, together with the
above perturbation amplitude and ELN distribution, al-
low the instability to saturate long before neutrinos are
able to wrap around the simulation domain. In addi-
tion, we use 200 polar angular bins (or 201 bins in the
case of NuGas) uniformily-spaced in u. In the Zaizen
code, angular bins are not uniform but set on the roots
of Legendre polynomials. The PIC calculations do not
have angular bins, per se, but instead distribute 400 par-
ticles around the equatorial direction, which results in
approximately 200 polar angles (i.e., 400 particles are
needed to represent the single direction u = 0 in other
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FIG. 1. Domain-integrated survival property (top panel) and
transition probability (bottom panel) as a function of time.
The initial perturbations grow exponentially until the insta-
bility saturates at t ≈ 1300µ−1. All simulations show the
same instability growth rate, saturation time, saturation am-
plitude, and late-time equilibrium.

methods). We assume homogeneity in the x̂ and ŷ direc-
tions, and impose periodic boundary conditions in the
ẑ direction. We limit the duration of the simulations
to tmax = 5000µ−1 in order to prevent potential conse-
quences of the periodic boundary conditions. This reso-
lution was chosen based on a resolution study using the
NuGas and Coseν-FV codes; doubling the spatial reso-
lution caused the polarization vector to be different by
at most 0.12 (NuGas) or 0.0035 (Coseν) anywhere on
the domain at the end of the simulation. The excellent
agreement between methods with different convergence
properties (and therefore different amounts of numerical
error) suggests that the results are not significantly in-
fluenced by the resolution.

IV. RESULTS

We first show good agreement in the average amount
of flavor transformation over time. The fraction of neu-
trinos that remain in the electron flavor state (i.e. the
survival probability) can be expressed as

Psurv(t) =

∫ 1

−1
gνe(u)

〈P3(t, u)〉+ 1

2
du, (9)
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where the spatially-averaged polarization vector is

〈P(t, u)〉 =
1

L

∫ L

0

P(t, z, u)dz . (10)

We plot the survival probability and the transition prob-
ability Ptrans = 1− Psurv in Fig. 1 with a different color
for each method. The results are remarkably similar be-
tween simulations, especially given the very different nu-
merical methods and different realizatins of the random
perturbations. The survival probability has a value close
to 1 during 0 < t . 1300µ−1 as the perturbations grow.
This can be seen in the bottom panel, which shows a
transition probability growing exponentially during that
timeframe. The differing floor values of Psurv near t = 0
are a result of differing amounts of floating-point error
realized in the different methods, but once the transi-
tion probabilities rise above this floor, they line up very
closely and grow with an indistinguishable rate. We will
discuss numerical error in more detail below.

Once the instability saturates at t ≈ 1300µ−1, the
survival probability oscillates for a few cycles with ap-
proximately the same amplitude and frequency in all
of the simulations. The oscillations damp out as the
distribution decoheres, and after t & 3000µ−1 the sur-
vival probability in all of the simulations fluctuate about
Psurv ≈ 0.82. By this time, the different simulations
are in very different microscopic realizations of the same
macroscopic state as a result of the randomized initial
conditions.

Fig. 2 shows the spatial average of the flavor vector
components at t = 5000µ−1. The top panel shows the
magnitude of the flavor-coherent (i.e., transverse) com-
ponents of the polarization vector. The small values indi-
cate that by this point the flavor-coherent components of
the polarization vectors at different locations largely can-
cel each other because of a persisting wave-like pattern
in space (see below). The bottom panel shows that the
polarization vectors have settled to a well-defined flavor
distribution to the left of the crossing (vertical dashed
line). To the right of the crossing the neutrinos are fluc-
tuating just below 〈P3〉 = 0, or complete flavor mixing.
All of this is in good agreement with [50, 53].

The Fourier spectrum of the distribution also shows
excellent agreement throughout the simulation. We
compute the number-weighted direction-averaged power
spectrum given by

〈S̃(t, k)〉 =

∫ 1

−1
g(u)du

∫ L

0

e−ikzS(t, z, u)dz . (11)

The power spectrum of the initial perturbation com-
mon to all simulations and described in Eq. (7) is ap-
parent in the dotted curves in Fig. 3. The solid curves
show the power spectrum at the end of the simulation
(t = 5000µ−1). By this point, the unstable modes have
already grown and saturated. Even at this late time, all
methods show excellent agreement. The horizontal bands
in both the initial and final spectra are a result of numer-
ical errors, and the Zaizen code shows the smallest error
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FIG. 2. Space-integrated polarization vector components as a
function of direction at t = 5000µ−1. The vertical dashed line
at u = 0.786 shows the location of the ELN crossing in the
initial distribution. All simulations agree on the distribution
of neutrino flavor to the left of the crossing and show near
complete mixing to the right of the crossing. All simulations
agree on the magnitude the flavor off-diagonal components at
the end of the simulation.

in this metric. As suggested in [53] (for different choices
of neutrino distribution), the resulting power spectrum
is static, with exponential tails away from the peak. The
peak of the equilibrium spectrum is not at k = 0, re-
flecting the presence of long-lived coherent wave-like pat-
tern in the spatial distribution of the polarization vectors
as demonstrated by [42] and observed in the TwoThirds
simulation of [54]. This coherent wave structure is not
apparent in the upper panel of Fig. 2 because the data
there are spatially integrated over many periods, yielding
a number close to 0. Although the exponential tails seem
to be a robust feature of these simulations, we still lack
a satisfactory explanation for them.

The SU(2) symmetry of the neutrino self-interaction
Hamiltonian should preserve the net electron lepton num-
ber (ELN) of the neutrino distribution. As a test of the
quality of the numerical scheme, we show the violation
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t = 0 (dotted) and t = 5000 (solid). All simulations are
seeded with the same spectrum of perturbations but with ran-
dom phases, and all simulations agree on the location of the
peak and the slope of the exponential tails at late times. The
horizontal bands are a result of numerical error.
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FIG. 4. Deviation of the domain-integrated electron lepton
number from its initial value, as defined in Eq. (12). The
SU(2) symmetry of the Hamiltonian guarantees this remain
at zero, so nonzero values reflect numerical error. All codes
exhibit excellent ELN conservation to better than one part in
106.

of this constraint in Fig. 4. Specifically, we define

ELN Error =
1

nνe + n̄νe

∣∣∣∣∣

∫ 1

−1
[nνegνe(u)− n̄νe ḡνe(u)]

×
(

1− 〈P3(t, u)〉
2

)
du

∣∣∣∣∣ . (12)

where nνe and n̄νe are the initial electron neutrino and
antineutrino number densities listed in Table I. This
quantity probes the self-interaction term in Eq. (3) more
strongly than the advection term. In all cases, the error
remains smaller than one part in 106. The error grows
most significantly during the linear growth phase, even
growing exponentially with the perturbation amplitude
in some codes. After saturation, the error continues to
grow sub-linearly with time at a rate that is not visible
on this plot for most codes. Although Emu (green) has
the lowest error for the first 1200µ−1 time units, the er-
ror then quickly grows above both of the Coseν codes,
which maintain remarkably low ELN error throughout
the duration of the simulation.

We found that in general using an angular integra-
tion method during post-processing that is inconsistent
with that used to model the evolution equations shows
significantly and artificially large ELN errors. For in-
stance, artificially large error is reported if during the
simulation angular integrals are performed with Simp-
son’s rule but in post-processing the integrals are per-
formed with the pyramid rule. Similarly, artificially
large errors can be reported if the code does not restrict
P3 = P̄3 but assumes so in post-processing. The con-
tinuous and finite-difference evolution equations based
on only the neutrino-neutrino potential (in combination
with our choice of initial conditions) both guarantee that
P3 = P̄3, but only up to floating-point precision, allow-
ing finite precision errors that violate this guarantee to
accumulate in time. Finally, errors can be introduced by
assuming that P 2

3 = 1 − P 2
1 − P 2

2 , which is numerically
true only up to floating point precision. Each code made
a particular combination of choices, and we found that
errors are minimized when the post-processing methods
make the same assumptions as the underlying code.

The Hermitian nature of the Hamiltonian also guaran-
tees that the length of the physical polarization vector
does not change length. Since all polarization vectors
start with unit magnitude, the deviation from this at a
given space-direction bin is

δ|P| =
∣∣∣∣
√
P 2
1 + P 2

2 + P 2
3 − 1

∣∣∣∣ . (13)

In Fig. 5 we show the evolution of the maximum of this
quantity over all direction bins and spatial grid cells as
a probe of numerical error. Once again, all codes show
excellent results. The vector length error grows exponen-
tially during the linear growth phase, following the expo-
nential growth of the perturbations. After saturation, the
error grows super-linearly in time. These errors are most
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FIG. 5. Maximum deviation of the flavor vector length from
unity. The Hermitian nature of the Hamiltonian guarantees
that this remain at zero. Nonzero values reflect numerical
error, especially in the advection terms. There are few Emu
data points resulting from infrequent output of the storage-
intensive particle data.

strongly affected by the advection term in Eq. (3). Here
the Bhattacharyya, NuGas and Coseν codes, which
evaluate the advection terms with discretized spatial
grids, yield relatively larger errors compared to the Za-
izen code and Emu. In particular, the Emu results show
the lowest error because the particle nature of the code
eliminates advection errors, and the errors shown are a
result of only the self-interaction term.

V. CONCLUSIONS

All of the codes presented robustly predict the insta-
bility growth rate, saturation amplitude, angular dis-
tribution, and post-saturation Fourier spectrum of the
neutrino distribution. As suggested by [27, 28, 50, 53],
the neutrinos within the ELN crossing (i.e., directions
dominated by the less abundant species) undergo near
complete flavor mixing, while neutrinos outside the ELN
crossing only exhibit partial transformation. As demon-
strated by [42] and observed in the TwoThirds simulation
of [54], the post-saturation distribution maintains modes
that do not decay away. The exponential tail of the post-
saturation spectrum observed in [54] is robustly produced
by all codes.

Each simulation exhibits small numerical errors,
though no method is consistently better or worse than
others in all metrics. As one might expect, the La-
grangian method in Emu yields small advection errors,
and the Zaizen code, which operates fully in the Fourier
domain, has the smallest errors in Fourier space. The
Coseν code, which actively enforces ELN conserva-

tion, maintains low ELN error. We naturally find that
timestep size and integration method impact the magni-
tude of the errors, though the adaptive nature of some
codes precluded a uniform timestep choice. We also find
that it is particularly important to use a post-processing
integration method that is consistent with that used to
evolve the distribution in order to accurately report er-
rors.

Since global simulations of neutrino quantum kinetics
are currently not possible, practitioners of local simula-
tions are forced to pick their poison when it comes to ini-
tial conditions and boundary conditions. One approach,
as we have done here, is to perturb the entire domain
and assume periodic boundary conditions. This choice
reflects an expectation that the background distribution
is homogeneous on the scale of the simulation domain and
that perturbations in adjacent domains look like those in
the simulated domain. Another approach is to provide a
single local perturbation and end the simulation before
the boundary conditions come into play, thereby ensur-
ing that any results are not a consequence of the choice
of artificial boundary conditions. Both are unrealistic,
because a supernova is not infinitely periodic and na-
ture is unlikely to ensure that perturbations in different
locations never interact with each other. [50] takes the
middle ground and provide a local perturbation, but sim-
ulate with periodic boundary conditions for more than a
domain traversal time. The results look similar to but
distinct from the same simulations with random pertur-
bations. This work lends confidence to the robustness
of simulation results given artificial initial and bound-
ary conditions, setting the stage for work toward more
realistic simulations.
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