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Redundant calibration is a technique in radio astronomy that allows calibration of radio arrays
whose antennas lie on a lattice by exploiting the fact that redundant baselines should see the same
sky signal. Because the number of measured visibilities scales quadratically with the number of
antennas but the number of unknowns describing the individual antenna responses and the available
information about the sky scales only linearly with the array size, the problem is always over-
constrained as long as the array is big and dense enough. This is true even for non-lattice array
configurations. In this work we study a generalized algorithm in which a per-antenna gain is replaced
with a number of gains. We show that it can successfully fit data from an approximately redundant
array on square lattice with pointing and geometry errors, but that the models parameters are
difficult to link to the quantities of interest. We discuss the parameterization, limitations, and
possible extensions of this algorithm.

I. INTRODUCTION

The 21 cm emission from neutral hydrogen is promising
to transform our understanding of the universe across the
ages: from low-redshift observations of neutral hydrogen
in galaxies through the epoch of reionization all the way
to the dark ages at redshift z ∼ 100 in the future.

The field received a major boost when it was real-
ized that developments in computing and RF technol-
ogy allow telescopes to be build almost entirely in soft-
ware. A number of experiments were born, some al-
ready operating, such as CHIME[1], Tianlai[2], HERA[3],
MWA[4], PAPER[5], GMRT[6], some are under construc-
tion, including HIRAX[7], BINGO[8],SKA-low[9], and
CHORD[10] and some proposals for future very large fa-
cilities, such as PUMA [11].

Large interferometric radio arrays require a large num-
ber of calibration parameters. It was soon noticed that
arrays of indistinguishable elements on regular lattice
possess strong redundancy. The total number of possible
pairs of antennas, corresponding with the total number of
measured visibilities, scales with the square of the num-
ber of elements in the array. On the other hand the num-
ber of unique baselines (given by the number of unique
separation vectors between all possible pairs of antennas)
scales only linearly with the number of elements. Since
all baselines made of identical elements and spanning the
same distance vector should measure the same signal, we
can use this to back out calibration factors of individ-
ual antennas, without ever knowing anything about the
actual sky signal. The solution is unique up to intrinsic
degeneracies of the system corresponding to the overall
shift, scaling in amplitude, and translation of the sky sig-
nal (i.e. applying a phase gradient across the u-v plane).
This calibration procedure is known as redundant cali-
bration and has been worked in detail in [12] and [13].

Unfortunately, it soon became clear that real arrays
are much less redundant for the simplest form of redun-
dant calibration to be sufficient. For example [14] stud-
ied redundancy in HERA and found that real-life non-

redundancy produces spurious temporal structure in gain
solutions. Other works such as [15–20] discuss the short-
comings and possible solutions of redundant calibration
in both real telescope arrays and simulations.

In some sense, these findings indicate that redundant
calibration is the victim of its own success. A possible
way to look at the problem is that it is not that the arrays
are too non-redundant, but that they are too sensitive.
They are sensitive enough that the particularities of indi-
vidual elements produce big enough effects that a good fit
cannot be found for the data. One possible approach has
been studied in [21]: a pair of nearly, but not perfectly, re-
dundant baselines will have very strong, but not perfect,
correlation between measured visibilities. These slight
decorrelations can be propagated self-consistently using
a quadratic estimator formalism to allow stable solutions
and almost by construction, a good fit. This process has
the advantage of gracefully dealing with outlier antennas:
there is no need to cut them out if we can instead model
them as such. A more recent paper [22] proposed a uni-
fied approach to sky-based and redundant calibration, in
which both can be used concurrently in a self-consistent
Bayesian model, assuming we have a model of the tele-
scope and its calibration uncertainties.

In this paper we take a different approach: instead of
describing every single antenna with one complex num-
ber, a single gain, we are looking for a description in
terms of multiple numbers per element that can be ad-
justed in order to achieve a good fit as well as give some
physical insight into the type of imperfections. Note that
this does not break the basic premise of redundant cali-
bration: the number of unknowns still scales linearly with
the number of antennas, while the number of measure-
ments scales quadratically. So, for arbitrarily complex
description of per-antenna non-idealities, the system will
be over-constraint for large enough array (as long as the
number of free parameters per antenna is finite).

We will focus on two of the canonical errors in a re-
dundant radio array, pointing errors and geometric er-
rors. Some of the other canonical errors include beam
shape and beam size. The pointing errors refer to the
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fact that the beams of individual element are not aligned
(i.e the telescope points away from the zenith in a transit
array configuration) and geometric errors, which means
that the entire dish is displaced from its nominal lattice
positions affecting the effective baseline lengths. These
are the kinds of errors that we study, but we do not
explicitly fit for them. Instead, we build a general pix-
elized description of the response of each element that
is arbitrarily fine-resolved given by a tunable parameter
M . Ideally, our scheme would also be able to deal with
beam shape and beam size issues, however we focus on
geometric and pointing errors.

II. PROBLEM SET-UP

Let us consider a general interferometric array observ-
ing, for simplicity, in a single polarization mode. We
consider a pair of antennas pointing at the zenith and
observing in a narrow frequency range. The noiseless
observed visibility for pairs of antennas i and j in the
flat-sky approximation is given by

Vij =

∫
I(θ)e−2πi(xi−xj)·θBi(θ)B

∗
j (θ)d2θ =

FT [IBiB
∗
j ](xi − xj) (1)

where xi is the geometric position of antenna i measured
in wavelengths, I(θ) is the intensity signal coming from
the sky as a function of angle on the sky, θ and Bi is
the beam of antenna i. The operator FT [X] denotes
the Fourier transform of X. The signal I(θ) is real and
in principle spans the entire sky. The beams Bi are in
general complex and compact in Fourier space (i.e. on the
u-v plane). They correspond to the complex amplitude
response to an incident uniform plane wave just above
the aperture.

Multiplication in real space corresponds to convolution
in Fourier space. Addition of the random noise compo-
nent ε gives the general equation for the observed visibil-
ity for a pair of antennas

V oij =

∫
U(xi − xj + u)(B̃i ~ B̃†j )(−u)d2u + ε (2)

Where the uv-plane U = FT [I] contains the image of the

sky (in Fourier space), and B̃i = FT [Bi] are beams repre-
sentation in this domain. Variable ε is a random variable
describing the noise realization. We have used notation
B̃†(u) = FT [B∗](u) = FT [B](−u), i.e. complex conju-
gation of a real space quantity results in mirroring across
the origin in the Fourier domain. The crucial insight is
that beams are compact in Fourier space, essentially cor-
responding to the physical extent of the dishes and thus

B̃i~ B̃
†
j is also compact. Therefore, the limits of integra-

tion in Equation 2 need to extend only as far as support

of B̃i ~ B̃†j .

It is instructive to compare this equation with the one
that is typically used to set-up redundant calibration:

V oij = Ui−jgig
∗
j + ε, (3)

where i−j indexes redundant baselines corresponding to
the baseline vector xi − xj . If we set our beams to be
the same, scaled by only a complex gain factor for each
dish, namely Bi(θ) = giB(θ), we find that the Equation
2 reduces to the Equation 3 with

Ui−j =

∫
U(xi − xj + u)(B̃ ~ B̃†)(−u)d2u (4)

In other words, the redundant calibration assumes that
all dishes have exactly the same sky response that are
only allowed to vary by an overall complex gain, which
is assumed to be coming from electronics, amplifiers, etc.
It reconstructs these gains, but also the uv-plane infor-
mation, after the beam convolution.

But in general, massive redundancy in compact arrays
allows us to go beyond this approximation (we will quan-
tify this in the next section). The main idea is to start
with Equation 2 as the main ingredient and reconstruct
both B̃ for each antenna and the uv-plane U . It is impor-
tant to note, from the beginning, that we cannot unpick
the variations in complex gain coming from electronics
from those arising from the imperfect dish. Therefore,
action of a gain gi is equivalent to multiplying the entire
beam by the same factor.

A. Discretization

We will try to build an intuition that will prepare us
for formulation of general redundant calibration in steps.
In short, we will try to build a redundant calibration
that will replace the parameters Ui−j and gi for the stan-
dard redundant calibration in the Equation 3 with a new,
larger, but still finite number of parameters that can still
be solved for by using the inherent redundancy in the sys-
tem but can allow for some freedom in non-redundancy.

In order to proceed, we need to express the integral of
the Equation (2) as a sum over a finite number of degrees
of freedom. Our approach is to pixelize the beam maps
B̃i and choose the pixelization in the uv-plane U that
matches the beam pixelization in a way that expresses
Equation (2) as a sum that is cubic in input parameters
without entailing any interpolation.

For concreteness, let us consider an interferometric ar-
ray on regular square grid of size Ns×Ns with a total of
Na = N2

s antennas. We will measure all distances in the
units of wavelength and take the lattice spacing to be L.
We start by introducing the “oversampling” parameter
M . The beam map is pixelized in (2M + 1)2 pixels, ie. a
central pixels and M additional pixels on each side. For
M = 0 the beam is reduced to a single pixel and the
method reduces to a redundant calibration. The require-
ment on the odd number of pixels in the beam description
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is there to ensure that a single pixel description of each
beam is a natural limit of the problem.

FIG. 1. Illustration of the pixelization scheme for M = 1. La-
beled points illustrate the lattice points on the u−v plane for
a square close-packed array. For example (1, 0) corresponds
to baselines one lattice spacing apart in the E-W direction
and (0, 1) is the same for N-S baslines. (0, 0) is the origin
of the u − v plane and corresponds to single-dish observa-
tions. Individual beam is described by 3×3 pixelized grid, so
(B̃~B̃†) is the 5×5 pixelized grid shown in blue around (1, 0).
Making prediction for a particular (1, 0) baseline amounts to
multiplying the values of the blue beam convolved map on
the blue grid and the corresponding points in the u− v plane
and summing them up. See text for further discussion.

The convolution of two beams (B̃i ~ B̃†j ) is of the size

(4M + 1)× (4M + 1), which sets the natural pixel size to
be L/(2M + 1) for both the beam grid and the U grid.
We can therefore re-write the Equation 2 in a pixelized
form schematically as

Vij =

+2M∑
m=−2M

2M∑
n=−2M

Uio+m;jo+n(B̃i ~ B̃†j )mn, (5)

where io and jo are the grid offsets corresponding to the
i − j redundant baseline (the baseline probed by beam

B̃i and B̃j) on the uv-plane, and m, n are the pixel in-
dices over the convolved beam. Note that the sum is over
(4M + 1) × (4M + 1) corresponding to the convolution
of two (2M + 1) × (2M + 1) sized beam maps. This is
illustrated in the Figure 1. We urge reader to spend some
time trying to understand this Figure as this pixelization
is essential for the understanding of our approach. Con-
sider the shortest E-W baseline of a closely-packed dish
array. Dishes have diameter D so the distances between
pieces of reflector surface on the same dish vary between 0
and D. The possible distances between pairs of pieces of
reflector surface on two dishes vary between 0 (at points
where the dishes nominally touch) and 2D. In the for-
malism, this is encoded by the beam being (2M + 1)2

pixels in size for an individual beam and (4M + 1)2 for
the convolution of the two beams. This then defines the
extent on the u − v plane to which this particular base-
line is sensitive to. In the limit of large M it comes

arbitrarily close, but never reaches the origin of the u−v
plane (corresponding to the monopole signal) and simi-
larly gets arbitrarily close but never reaches two lattice
spacings (corresponding to sensitivity doe to pieces of re-
flector surface that are furthest apart). In Figure 1 this
is illustrated with the blue grid. This is the correct and
expected behavior for the flat sky approximation. We
discuss the non-flat sky case further below.

In Figure 1 we also show squares around other nominal
lattice pointings. We see that most u−v points are being
probed by multiple baselines, except those on precise grid
spacings. This severely limits the degeneracies present
in the problem which we will further comment on in a
later section. We also note that we need to describe just
one half of the u-v plane with other half given by the
reality of the observed field. Together with rules about
Fourier transforms of conjugated fields, this ensures that
prediction for the antenna pair i, j is always a complex
conjugate of the prediction for the antenna pair j, i.

B. Phased-up array interpretation

To continue building intuition about the pixelization,
consider the pixel m in the antenna i and pixel n in the
antenna j. The visibility for the pairs of dishes i and j
is given by

Vij =
∑

m∈ Beam i
n∈ Beam j

U∆(i,m)−(j,n)B̃i;mB̃
∗
j;n, (6)

where the index to U schematically implies the u − v
plane distance between pixel m on antenna i and pixel n
on antenna j. This equation now has the form of Equa-
tion 3 (with gains replaced by pixels inside the beam re-
sponse), but added over all the pixel pairs formed by the
two beams. In other words, the pixelization is in effect
modelling the redundant array made of Ns×Ns antennas
as a grid of Neff = (2M + 1)Ns × (2M + 1)Ns indepen-
dent antenna elements which are phased up in blocks of
(2M + 1)× (2M + 1).

We can now return to the question of the applicabil-
ity of this technique to the flat sky approximation. The
redundant calibration is typically derived without consid-
ering going beyond the flat sky approximation, but it is
clear that it applies generally. An identical pair of anten-
nas will see nominally the same signal and so the values
on the u−v plane can be thought as simply keeping track
of the true visibility corresponding to a certain baseline
orientation without specifying how these are related to
the actual sky emissions. The same argument applies to
our case, but now involves an approximation. Our model
implies that the individual beam can be composed from
a phased up elements of equivalent antennas. Consider
two sub-baselines of one such baseline pair of the same
length, one stretching from central to central pixel and
one stretching from two side pixels. While the model can
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account for different gains, it cannot account for differ-
ent “primary fields of view” of two such finite size sub-
elements, especially far away from the pointing centre.
Therefore, this description will be necessarily approxi-
mate. At the same time, it is also true that in the limit
of arbitrary fine pixelization, where the sub-elements are
smaller than the wavelength, the “primary fields of view”
of imagined sub-elements encompass the entire sky and
can thus describe a general beam profile. However, the
number of unknowns in that case will explode beyond
what can be reasonably fit.

C. Redundancy factor

The total number of unknowns to be determined is
thus given by i) the total number of pixels required to
describe all the beams Na(2M + 1)2 and ii) the pixels
required to describe uv-plane, which are given by the
number of redundant baselines in the effective phased-up
array 2Neff(Neff−1) = 2Ns(2M+1)(2MNs+Ns−1). The
total number of measurements, on the other hand goes as
the total number of baselines with measured visibilities,
which is given by Na(Na− 1)/2. Thus, we can construct
the redundancy factor for a square close-packed array

r =

√
Na (Na − 1)

2
[
(2M + 1)

(
6M
√
Na + 3

√
Na − 2

)] (7)

which describes the ratio of the number of measured
quantities divided by the number of unknowns. The
M = 0 case reduced to the standard redundant calibra-
tion scheme. Note that since we are assuming a square
array, the

√
Na is always an integer. When r ≥ 1, the

system is over-constrained and we can hope to constrain
it, subject to known degeneracies. Also, note that the
ratio in Equation (7) is for the particular case of square
lattice. For an imperfectly filled array or a hexagonal
close-packing, the ratio would be different. But note that
this formalism does not even require antennas to be on
the lattice. It can be calculated for any array and even
an irregular but sufficiently packed array will have r > 1.

In Figure 2 we plot r as a function of Na for a couple
of values of M . We see that the for the traditional redun-
dant calibration, even very small arrays containing tens
of antennas are sufficiently redundant. HIRAX, with a
32 × 32 array can theoretically model to up to M = 5
but realistically more likely up to M = 2. In what fol-
lows we will focus on the M = 1 case which is perhaps
sufficient for the current arrays such as HERA. In this ex-
ploratory work, we have not done an explicit calculation
for a cylinder array configuration like that of CHIME,
although that would be a straightforward generalization.

D. Comparison with other approaches

We are not the first paper to extend the minimal re-
dundant calibration. In fact, in the seminal paper [12]

FIG. 2. Redundancy ratio as a function of Na with varying
M. Solid black line is r = 1 and dashed black line is r = 5
corresponding to significant redundancy.

they considered an option to Taylor expand the u − v
plane to first order around the lattice positions. In other
words, the model for visibilites is expanded from Equa-
tion 3 to

V oij = (Ui−j +∇Ui−j ·∆xi,j) gig
∗
j + ε, (8)

where ∆xi,j = xi − xj is the vector difference between
the nominal and actual baseline length, so that the term
in brackets corrects for the slightly non-redundant base-
line length. One can then self-consistently fit for all the
derivatives ∆Ui−j and individual antenna positions.

Given the discussion above (see Equation 3), the stan-
dard redundant calibration assumes the primary beams
to be perfectly aligned and so the quantity Ui−j is the
actual u − v plane after the convolution with primary
beams. Therefore the Taylor expansion method can deal
with geometrical errors (see below) exactly (within the
limits of Taylor expansion), but not with pointing er-
rors. We see that an almost natural extension of this
approach is to extend the Taylor expansion in the beam
mis-pointing direction as follows:

V oij = (Ui−j +∇Ui−j ·∆bi,j + Φi−j ·∆pi,j) gig
∗
j + ε,

(9)
where Φ is a 2D field defined on the grid points that
represents a response of the system to mis-pointing and
∆pi,j = (pi + pj)/2 is the mean mis-pointing1. The
system will still be over-constrained for a sufficiently large

1 While seemingly counter-intuitive, the mispointing goes with the
mean displacement, not the difference. If one dish points off-
centre to the north, while the other off-centre to the south, then
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array. We have not pursued this approach in the name
of generality. Since sufficiently big arrays can be very
redundant, the idea is to let the system be capable of
absorbing arbitrary imperfections, even those that fall in
the standard expectation of geometry, pointing and beam
size errors.

An alternative approach has also been described in
[21]. The idea here is to deal with imperfect redundancy
by sweeping it under the rug, statistically. The main
idea is that in a perfectly redundant array, the redun-
dant baselines would measure the same number; as we
dial up the array imperfections, the nominally redundant
arrays will not measure the same values, but only highly
correlated ones. One can self-consistently write a statis-
tical quadratic model that tracks those correlations and
is able to gracefully describe the array non-redundancy.
The main issue with this approach is that the differences
are not exploited for their information content, they are
simply treated as random fields rather than information
that can be used to understand in precisely what way the
array is imperfect.

III. NUMERICAL IMPLEMENTATION

In previous sections we have presented a general
method for modeling the signals from an imperfect in-
terferometer. The methods contains the “resolution”
parameter M which controls how fine are the pixels
which describe the response of each individual beam.
M = 0 corresponds to standard redundant calibration
and M → ∞ is a completely general description. The
hope is that a relatively small M will be sufficient to de-
scribe typical level of non-redundancy. The purpose of
this section is to what extent this is true and our logic is
to attempt to use M = 1 on relatively small arrays to fo-
cus on pointing and geometry errors. The path we follow
is to assume a concrete perfectly redundant array observ-
ing a given sky and then see how the general redundant
calibration performs compared to a standard redundant
calibration as we introduce beam non-redundancies.

A. Model Beam and its Imperfections

Our model beam is a circularly symmetric tapered
filled circle in the Fourier space:

B̃c(r) = 1− 1

1 + e−2· r−r0
∆r

. (10)

This is a more realistic than the usual approximations
which usually assume a purely Gaussian or purely Airy

to first order they will see the same signal, which is suppressed
by factor that is quadratic in mispointing. If they both mispoint
north, the signal will change in proportion to the mean mis-
pointing.

FIG. 3. Radius response function with R = 0.4L and taper=
0.05L.

FIG. 4. 2D visualization of the beam B̃ used on the left
and its Fourier transform, the actual primary beam B, on the
right. The left image spans the uv-plane while the right is in
the x-y plane. In the limit of no taper, the beam on the right
would be an Airy disc pattern.

disc beams and suffices for this exploratory work. Note
that this is description of the Fourier transform of the
beam, rather than the beam itself, i.e the real space beam
becomes an Airy disc in the limit of ∆r going to zero.
The reason why we specify the beam in Fourier space
is partly because this is the input quantity we need for
making predictions, but also more importantly it cor-
responds to space with a compact beam representation.
Since antenna is physically compact, the complex elec-
tric field in a plane just above the antenna is compact.
This approximation breaks down in two ways in realistic
instruments. First, when we Fourier transform this to
obtain the shape of the beam on the sky we are implic-
itly making a flat-sky approximation. Second, coupling
to neighbouring elements will make the antenna physical
size bigger than what we mechanically consider to be the
antenna element.

We use units of lattice spacing, so radius r0 = 0.5L
would correspond to dishes that just touch. In our sim-
ulation we use r0 = 0.4L and ∆r = 0.05L. We show the
beam in real and Fourier space in Fig 3. The beam shows
the expected sidelobes in real space.

In this work we focus on to most common types of



6

errors encountered in redundant arrays: the pointing er-
rors (the center of the beam of the dish is misplaced) and
geometry errors (the dish is not at its nominal location
on the lattice). Pointing errors are displacement of the
beam in the Fourier space and thus correspond to apply-
ing a phase gradient across the complex beam response
of a single dish. The geometry errors on the other hand
and just simple displacement of the dish in the Fourier
domain. A full expression for the beam is thus given by

B̃(x, y) = AB̃c

(√
(x− xo)2 + (y − yo)2

)
e−i(pxx+pyy),

(11)
where A corresponds to the overall complex gain factor,
(xo, yo) is the geometric error and (px, py) is the point-
ing error. We draw both the overall complex gains from
a Gaussian distribution centered around 1 + 0i with a
variance of σg. Geometric and pointing errors are drawn
from 2D Gaussians with 1D variances of σg and σp re-
spectively.

In Figure 5 we illustrate a perfect and an imperfect
array with the types of errors discussed above.

B. Simulating Signal

We simulate the signal relying on a flat sky approx-
imation. We do so using two approaches. In the first
approach, we simply generate data using a large value
of M . We use M = 14 (corresponding to beam images
of 29×29 pixels). In this case we take the true values of
the u−v plane as random gaussian variates, correspond-
ing to a white-noise signal on the sky. We have checked
that increasing M beyond the chosen value used does not
affect our results.

In this approach, the code using for generating the sig-
nal and fitting is essentially the same with only the value
of M being different. On one hand this is elegant, but it
is also prone to potential bug inadvertently canceling out
between data generation and fitting. Moreover, the real-
istic skies are often dominated by a few bright sources.

In the second approach we generate the signal as a
sum over discrete sources. This is to take into account
the fact that some sources are considerably brighter than
the others. For each source and baseline we:

• Calculate the primary beam response at the loca-
tion of the source for both dishes. Given pointing
errors this is different for each baseline.

• Directly calculate the response of the interferome-
ter for the baseline length spanned by a given pair
of dishes (taking into account geometry errors).

We use sources whose fluxes are randomly drawn uni-
formly in log from 1 to 1000. A comparison between
the two methods can be found in Fig 6 . Aside from an
overall scale factor the two are quite similar.

In both approaches, once the noiseless visibilities are
calculated, we multiply visibility by the total complex

gain contribution gig
∗
j , where gi is the gain for dish i.

Note that the method is completely general with respect
to individual gains, i.e. they can be perfectly absorbed
into beam description. Therefore we keep the variance
small to avoid dealing with solver falling into a local min-
ima.

Finally, we add complex noise ε drawn from a Gaussian
with variance σ2

ε . Since the only quantity that matters is
the level of noise compared to the level of signal, we will
report our results in terms of signal-to-noise ratio (SNR).
We define the SNR per visiblity as

SNR2 =
1

Nvisibilities

∑
baselines i−j

(
|V 2
i−j |
σ2
ε

)2

(12)

There are thus 6 additional degrees of freedom per each
dish: 2 for pointing error, 2 for geometry error and 2 for
overall gain. Even with M = 1, each beam is described
by 9 complex numbers (i.e. 18 degrees of freedom) so
there is reasonable hope that the description is sufficient.
However, on purpose, we decided to consider the types of
errors that are not perfectly reproducible by our model to
asses its flexibility. Had we instead decided to model dish
imperfections as random deviations the size of a pixel on
our (2M + 1)2 grid, say as dirt 1/9th the size of our dish
for M = 1, our model would be guaranteed to perform
better compared to redundant calibration.

IV. SOLVING FOR B̃i AND U

In this work we use simple iterative solvers for beams
B̃i and the true u− v plane U . Since we are focusing on
the modelling side, i.e. how well the solutions perform,
these solvers are not designed to be either particularly
stable or fast. That being said, some notes and improve-
ments are listed in the relevant sections below.

In general, we are trying to maximize the log likelihood
of the model, which is equivalent to minimizing the χ2,
given by

χ2 =
∑

all pairs i,j

(V oij − V
p
ij(B̃, U))2

σ2
ε

, (13)

where V pij denotes the predicted visibilities which are a
function of all beam parameters and u− v plane values.
At each step we optimize for either visibilities or beam
parameters.

A. Visibility

To solve for visibilities, U , we rely on the fact that
observed visibilities are linear in the input visibilities.

V oi = MikUk + ε (14)
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FIG. 5. Example image of a 4 × 4 array in uv-space with a perfectly redundant system on the left and a perturbed version of
the same systems on the right. The top images are generated using M = 30 and bottom are the same system but downscaled
to M = 1 resolution. The complex gain of each pixel in the telescope dish is turned into an RGB value for this image with
the color bar referring to the overall amplitude ranging from 0 to slightly greater than 1. The perturbations for the right-side
graphs were generated with geometric errors at σg = .1L and pointing errors at σp = .5. Pointing errors which lead to phase
changes are modeled as a gradient on each beam and geometry errors are modeled as circle offsets.

Here, i iterates over observed visibilities and k over
the input, or true, visibilities. While the specific val-
ues will depend on the geometry of the array, i ∼ N2

a

and k ∼ N2
aM

2. The matrix M is quite sparse, but
because beams overlap, it is not a block matrix. In
other words, neighbouring baselines do probe some of
the same sky signals as illustrated in the Figure 1. Ma-
trix M depends on all beams and so we assume the
current best guess for the beams (which improve with
every iteration). We rely on Scipy[23] for actual cal-

culations. Specifically, to calculate (B̃i ~ B̃†j ). we use
scipy.signal.convolve and to solve the sparse sys-
tem we rely on scipy.sparse.linalg.lsqr. The rest is
rather painful but otherwise straightforward housekeep-
ing. For interested reader we point at some of the more
subtle technical issues in Appendix A.

At this point we can use any number of methods to
solve a linear equation with scipy.sparse.linalg.lsqr
being the most direct in application. We can also em-
ploy any number of tools to better solve our linear sys-
tem such as the Wiener filter which we motivate in
the Regularization section. Using Equation 19 we can

use scipy.sparse.linalg.spsolve to solve the sys-
tem, avoid any tough inversions, and although there is
more overhead, it is ultimately faster than directly solv-
ing Equation (14). Notably, employing a Wiener filter
is also considerably better at reducing χ2 per iteration
over scipy.sparse.linalg.lsqr which makes the fil-
ter a worthwhile implementation.

B. Beams

While Equation 2 is nominally quadratic in the beams,
this is not an issue in our actual problem, because we
do not consider auto-correlation signal. To solve for the
beam Bi, we fix all the remaining beams and the solved
u− v plane U , so that

V ok = MklB̃i,l + ε (15)

Here index k runs over all visibilities that depend on the
beam i (i.e all baselines that contain antenna i) and l

over all pixels of beam B̃i. This is a dense system that
we solve using scipy.optimize.lsq_linear separately
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FIG. 6. Histogram comparing the magnitude of observed vis-
ibilities generated between the two methods. There are 100
discrete sources used to model the sky. The overall statistics
of the two are comparable alleviating concern about the sky
simulation with M .

for each beam i. While this can be embarrassingly par-
allel, we found improvements to χ2 per iteration when
done sequentially. After solving for B̃i, the updated so-
lution is used when writing down Mkl for B̃i+1 and so
on. Of course this can be circumvented with some clever
distributed computing which we leave for the future.

V. PERFECT DEGENERACIES

The standard redundant calibration has perfect degen-
eracies spanning 4 degrees of freedom:

• Multiply gains by complex factor α and divide sky
signal by αα∗ (this is often split into the overall
amplitude degeneracy and the overall phase degen-
eracy);

• Translate the sky by a vector p and apply a con-
sumerate phase gradient across the gain solution;

The same degeneracies continue to exist in our case.
One would naively expect that we also have a similar
set of per-element degeneracies, however, these are not
present, in general, because neighbouring antennas actu-
ally measure the many of the same points in the u − v
plane, thus introduce “interlocking” of the u − v plane
solutions.

However, we have a different kind of degeneracy
present. We know that if an array is truly redundant,

then one needs only ∼ 3N2
s numbers to describe the data.

So if the array is actually fully redundant, we are free to
pick any “shape” of the beam B̃ for M > 0 and still
have sufficient freedom in the U array to form a model
that gives precisely the same predictions. In the other
limit, if the array is really non-redundant then this de-
generacy disappears. Therefore this is not really a model
degeneracy, but a degeneracy associated with a perfectly
redundant array solutions which are, from a mathemati-
cal perspective, pathological. This is analogous to solving
a matrix equation Mx = y, which for a general matrix
M is solvable by x = M−1y, unless matrix M is singular.
Removing these degeneracies using polarization data, as
suggested by [24] should be plausible but tenuous with
non-redundant arrays. With our array formalism it is
possible to tackle this issue but left as a future endeav-
our.

In practice, the presence of noise will instead use the
extra model freedom to “fit the noise” and find a nom-
inally better solution as we will describe in the Results
section. A formally correct way would be to perform a
strict Bayesian model comparison, where we weight the
solutions by the Bayesian evidence in favor of a certain
model: if the model with M > 0 can fit the data equally
well as the standard redundant calibration, then the stan-
dard redundant calibration would be strong favored due
to having many fewer priors.

VI. REGULARIZATION

To prevent overfitting, we implement 2 regularization
schemes as follows. We first introduce a prior on the
beam parameters that attempts to pull the beam solution
back to the fiducial, redundant beams, and also include
an option to minimize the variance on solved visibilities.
The total likelihood with the beam prior is thus given by

logL = −1

2
χ2+

∑
beam i

∑
pixel k

(
−2 log σB −

|(B̃ik − B̃0
k)|2

2σ2
B

)
, (16)

where χ2 is given by Equation 13 and B̃0 corresponds to
the beam prior. As stated above we choose this to be the
perfect, unperturbed beam.

The σB describes typical deviation from perfect beams.
Taking derivative of the logL with respect to to σB (with
other parameters fixed), one gets

σB =

√
1

2N

∑
beam i

∑
pixel k

(
|(B̃ik − B̃0

k)|2
)

(17)

with N being the total number of pixels over all beams,
(2M + 1)2Na.

If the array is close to truly redundant, the system
can achieve a good fit by floating beams towards nom-
inal beam values and lowering σB (and thus achieve a
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large likelihood improvement through the normalization
term − log σB). However, for a non-redundant array, it
is better to raise σB and instead improve the χ2. This
prior will bias the beams towards having a magnitude of
1, or whatever the normalization of the perfect beam is
set to. To counteract this bias, we introduce an overall
gain for each dish which applies to each pixel. Our solver
implements the omnical [14] method to iteratively solve
for overall gains.

Finally, we put a prior on visibilities. In a more com-
plete treatment, we would solve for the visibilities power
spectrum at the same time as we solve for the visibilities
map, similar to the Gibbs’ sampling approach to CMB
(see [25]). In our case we just add a penalty term to the
solved visibilities in the form of

f = ‖Σ−1
b · (MikUk − V oi ) + Σ−1

v · Uk‖ (18)

with respect to Uk where Σ−2
b = N−1 is the noise co-

variance and Σ−2
v = S−1 is the data covariance. In our

simulations we assume both are diagonal to simplify cal-
culations. This leads to a Wiener filter. Following the
form written in [26] we specifically solve for visibilities
using the following linear equation[

S−1 + (Mik)†N−1Mik

]
Uk =

(
(Mik)†N−1

)
V oi . (19)

VII. RECAP OF THE ITERATIVE SOLVER

To recap, we maximize the likelihood with iterative
steps. In order, each step involves fitting for:

1. The visibilities by solving either Equation 14 or 19.

2. The beam shape by solving 15 and incorporating
the prior parameter, σB , by adding rows to the
bottom of our linear system.

3. The overall per-antenna gain parameters Ai via
omnical [14].

4. Finally, the beam parameter σB which amounts to
calculating the variance of beam solutions with re-
spect to their nominal values as written in 17.

VIII. RESULTS

The purpose of telescopes is to image the sky. If we
have an imperfect description of the physical effects that
affect the instrument’s response and calibration vectors
that are only approximately correct and whose values are
“effective”, it should not matter as long as the map of the
sky is faithfully reproduced. Therefore the method that
will best recover the input uv-plane is the most successful
method.

We have condensed our results into two Figures 7 and
8 that succinctly summarize our results regarding the

method. For both Figures, the upper-row of plots corre-
sponds to rather modest geometry and pointing errors,
while the bottom row contains considerably worse errors.
All figures show various quantities plotted as a function
of per-visibility SNR (see Equation 12). The left col-
umn shows the values of χ2: high values of χ2 indicate
a poor fit, while lower values a better fit; values below
the shaded region indicating the expected χ2 given de-
grees of freedom indicate over-fitting. The central left
column shows the goodness of the uv-plane recovery as
measured by the variance between the true and recovered
uv-plane, labelled σV . This is only done for the uv-plane
pixels that lie on the nominal beam array lattice positions
where the SNR is concentrated. The lower the value, the
more faithful recovery of the uv-plane a certain method
is giving. The central right column plots show the vari-
ance of the recovered beams relative to the true beams
which we call ΣB , while the variance between recovered
beams and prior beams, σB , is plotted in the right-most
column. The lower the ΣB the closer we are in recov-
ering the true values of the beam. The value of σB on
the other hand tells us not only how far the beams are
from their nominal (unperturbed) values but also how
far our method thinks they are in average, since σB is at
the same time a regularization parameters (see Section
V). Remember that the overall phase factor is set in a
separate parameter and that the central beam pixels was
set to unity – central pixels are not used in the variance
calculation.

Three different colors correspond to three different
methods. In blue we plot the standard redundant cal-
ibration which we implement by simply forcing beams
to be at their nominal, un-perturbed values and recover
just the gains and the uv-values. Note that it is still not
exactly the same as standard redundant calibration, be-
cause the recovery is on the uv-plane quantities before
convolution with the beam. In orange we plot the same,
but this time we instead fix the beams to their true value
by assuming that somehow these were independently cal-
ibrated with infinite precision. This sets the upper limit
of how well a generalized redundant calibration should
perform. Finally in green we show the results of our
method in its full self-calibrating glory.

We start with a simplified case, Figure 7, in which we
generate the data using exactly the same theory as we fit
(the data is generated with M = 1 and fit with M = 1).
In this case, the fitted theory is by construction a perfect
description of the data. The purpose of this exercise is
to isolate the effects of overfitting from effects of using
an approximate theory.

At low signal-to-noise, the method cannot really detect
with certainty that the beams are different from their
unperturbed values. The regularization thus follows the
beam prior, resulting in a small σB and a relatively large
ΣB .

As the signal-to-noise increases, the tension becomes
significant, and the method relaxes σB , allowing beams
to unstick from their unperturbed prior values. ΣB there-
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FIG. 7. Comparison of our algorithm (green) against perfect knowledge of beam shape (orange) and also against an assumption
of a perfectly redundant array (blue). Blue and orange have fixed beams, at the prior and truth respectively, and can only
vary the visibilities and overall gain factors. As such these two methods are forms of standard redundant calibration. Our
algorithm solves using M=1 and the data is generated with M=1, meaning that the model is a perfect description of the data.
The top row corresponds to a weak departure from perfect redundancy with the geometric and pointing errors set to .01, while
the bottom row is for relatively strong departure from redundancy with geometric and pointing errors set to 0.1. The plots in
the first column show χ2 for each model to see if we can recreate the data. The purple dashed box is the 5 percentile to 95
percentile bound of the expected χ2 for generalized redundant calibration with no regularization. χ2 below this box is indicative
of overfitting. The second column plots the variance between the solved and true visibilities, σV , to see if we are accurately
recovering the true sky – since we are generating and solving using M=1 we can compare the solved to true values directly.
The third column plots the variance between the solved and true beam shapes, labelled ΣB , to see if we recover the correct
array. As the blue and orange lines use a fixed beam shape (the beam prior and true beams respectively), their values for ΣB

are constant. The fourth column plots the variance between the solved and prior beam shape, σB from the Equation (17).

fore undergoes a transition to smaller values with beam
values moving towards their true values. In the bottom
panel, as SNR increases, our algorithm asymptotes to-
wards ΣB = 0, matching the orange line. The process
works better for the more non-redundant array, because
while non-redundancy is a source of noise generically, in
our case it is also a source of signal. In χ2 this is man-
ifested as χ2 increasing with signal-to-noise and then
“snapping” down towards lower values when σB is re-
laxed. We find that even in this case the statistical sys-
tem is prone to over-fitting. This indicates that further
regularization is likely warranted in the uv-plane sector.
At the same time, we see the redundant calibration sim-

ply unable to explain the data with the χ2 monotonically
increasing away from good fit with either increasing SNR
or the non-redundancy of the array.

In the second column we see consistent behaviour. The
orange line with known beams performs best and its vari-
ance on the visibilities monotonically decreases as the
SNR increases – the fidelity of the solution increases. The
standard redundant calibration is systematically limited
and as the χ2 increases it is simply unable to improve its
solution. Overall, the generalized redundant calibration
is between the blue and orange lines with issues of falling
into local minima at low SNR. But for sufficiently high
SNR it out-performs the standard redundant calibration
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FIG. 8. Same as Figure 8 but with data generated using M = 14 which is essentially indistiguishable from the continuous
model. The data were still fitted using M = 1 model, which is now an approximate model. For σv, the central pixels from the
fitted uv data have been compared with the averaged uv-plane pixels from the corresponding area from the model representing
the truth. See text and caption to Figure 8 for complete description.

as expected. In never performs quite as well as the case
with known beams, because the latter utilizies significant
extra amounts of information.

In Figure 8 we show the same set of plots for a more
realistic cases where we simulated data with M = 14
and recover them with M = 1 theory as before. Here
the beam are described in a true theory by a 29x29 ma-
trix which we average to a 3x3 matrix in cells in order
to get “true” beams. Similarly we average the true uv-
plane into a reduced resolution uv-plane that we com-
pare with recovered values. The details of how this is
performed matter, but largely do not affect our results.
The right hand side plots showing the σB behaviour are
largely unchanged. However, we see that the χ2 plot
keeps increasing as the SNR increases. This indicates
that we are fitting a model that is actually unable to fit
the data. The main assumption of this paper, namely
that a low number of extra degrees of freedom in indi-
vidual beams parameterized as pixels will be sufficiently
flexible to describe a general geometrical and pointing
errors has proven to be insufficient at SNR per measure-
ment of over ∼10. As we increase the signal-to-noise, the

recovery of the map (second panel) first improves, but
then starts to get worse. Interestingly we find that for
large level of array non-redundancy all methods perform
worse at higher SNR; this is possible when methods fall
into the wrong local minima or where the imperfections
of the model are such that better formal fits actually per-
forms worse in the quantities of interest. But it is also
possible that our recipe to convert the M = 14 truth into
M = 1 pixelized uv-plane are just too simplistic. In this
case, the implication is that we have a solution that is
formally good but with a poorly understood relation to
the underlying truth.

IX. CONCLUSIONS

We have presented a new method for calibrating imper-
fect redundant arrays. The method is a derivative of re-
dundant calibration and models each independent beam
element as a phased-up array of (2M + 1) × (2M + 1)
sub-elements, each with its own complex gain factors. In
the limit of large M , the method is capable of modeling
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any array, by having a complete freedom to represent the
response of each dish as pixelized (2M + 1) × (2M + 1)
complex beam response. In the limit of M = 0, the
method reduces to the standard redundant calibration.

To avoid fitting for the noise we have attempted a reg-
ularization scheme that models the departures from the
perfect beams using a Guassian with diagonal scatter.
The magnitude of scatter σB is a fitted parameter. As
expected, we found that when signal-to-noise is low, and
the data is sufficiently well described by the standard re-
dundant calibration, the beams solutions relax to their
priors and σB becomes essentially zero. In this limit, the
system has less tendency to fit for the noise, although we
find that the χ2 remains too low and and noise fitting
remains an issue. When the signal-to-noise is sufficient
to detect non-redundancy, the value of σB rises and for
sufficiently non-redundant array, the solutions approach
those without regularization.

In this paper we have focused on methodological as-
pects of this method, namely, is the method capable of
producing good fits to the data. In practice, while this
might be true, the very high dimensionality of this prob-
lem makes finding of these solutions difficult. We found
that, unless we start with a good approximate guess, the
method is likely to fall into a local minima. Therefore, in
order to make this method practically usable, it is nec-
essary to first find efficient minimizers. Moreover, the
method currently works with a single sky snap-shot and
should be generalized to time-stream data.

Unfortunately, we have found that low M configura-
tions are not good at describing generic array errors. The
high M configurations will likely perform considerably
better, however, given the increased model complexity
in that case is even more likely to suffer from overfit-
ting and preponderance of local minima. The correct
solution to these issues is to employ a much more so-
phisticated marginalization scheme than the maximum
likelihood scheme employed in this work.

While we have focused on nearly redundant-arrays, our
method is in trivially generalizable to only partially re-
dundant arrays in arbitrary configuration. A fixed value
of M defines a grid with D/(λM) in the u − v plane.
Any array containing dishes (even heterogeneous ones!),
whose response with respect to some arbitrary original
can be satisfactorily described on the u− v plane in this
grid can be in general fit with generalized redundant cal-
ibration. Of course, this model is interesting only if the
array has a sufficient redundancy that the number of un-
knowns does not exceed the number of observed visibil-
ities, since otherwise it is capable of trivially explaining
any measurement.

We found that the main downside of this method is
that it is non-trivial to connect the measured values to
the underlying quantities of interest. We have seen that
the central uv-plane pixels (i.e. those on the nominal
lattice positions) are well recovered, but this has not
been investigated in any detail. In comparison, in the
standard redundant calibration, the interpretation of the

fitted uv-values is clear: they are exactly the values of
the true uv-plane convolved with the appropriate beam
responses. Unfortunately, in generalized redundant cali-
bration however, the actual beams are not made up from
identical sub-beams. Therefore, it is non-trivial to pre-
cisely connect the recovered (2M+1)×(2M+1) pixelized
beam back to actual pointing and geometric offsets.

The beauty of the proposed scheme is that is it very
general, especially for large array that could afford to go
beyond M = 1. On the other hand, if we did know that
the dominant errors are pointing and geometry errors,
one could design a model that would fit explicitly for
those. In that case, the contents of the u-v plane could
be modeled by the values and its spatial derivatives at the
lattice points. We leave extended comparisons of these
methods for the future.
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Appendix A: Technical considerations in fitting

Since we are probing nearby baselines, it is possible
that we probe the conjugate of a known visibility, i.e.
while looking at the baseline (0, 1) we will pick up some
amount of signal from the baseline (− 1

3 , 1). It is impor-
tant that we are careful to enforce that

U(− 1
3 ,1) =

(
U( 1

3 ,−1)

)∗
. (A1)

This means that even if we construct a large sparse ma-
trix M (from Equation 14) with each row corresponding
to the probed baseline α = (i, j) with coefficients from
Pij (the convolution of two beams), we cannot simply

solve for ~U using this system.
Thus the correct way to implement Equation 14 would

be to split our ~U into real and complex components and
doing the same with our data. Explicitly, given a generic
a, b ∈ C, with a = a1 + a2i and similarly for b, we can
say

a · b = (a1b1 − a2b2) + (a1b2 + a2b1)i, (A2)

a∗ · b = (a1b1 + a2b2) + (a1b2 − a2b1)i. (A3)

So it simply comes down to flipping the sign on a few
of the coefficients of our convolution, Pij for some of the
baselines.

While the housekeeping for visibility solving boils down
to changing signs and splitting our complex data into two
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parts, writing out Equation 15 to solve for the beams is
a bit more involved.

To write our 2D convolution as a matrix product we
can use a blocked Toeplitz matrix. For each B̃i we can
write it’s effect in convolution as a matrix βi by writing

it as a blocked Toeplitz matrix, and for B̃†j we simply

have β†j . Then our data can be written as

Vij =
(
B̃†j ~ B̃i

)
· ~Uα (A4)

= ~Uα ·
(
β†j B̃i

)
(A5)

=
(
~UTα β

†
j

)
· B̃i (A6)

= MijB̃i (A7)

Here we have a fixed i and iterate over the other beams j.
Unlike the visibility solver, there is no relation between
any of the beams and thus we are able to solve each one
as an independent linear system.
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