
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Convolutional neural network for gravitational-wave early
alert: Going down in frequency

Grégory Baltus, Justin Janquart, Melissa Lopez, Harsh Narola, and Jean-René Cudell
Phys. Rev. D 106, 042002 — Published 2 August 2022

DOI: 10.1103/PhysRevD.106.042002

https://dx.doi.org/10.1103/PhysRevD.106.042002

LIGO DCC number LIGO-P2200119

Convolutional neural network for gravitational-wave early alert:

Going down in frequency

Grégory Baltus1,∗ Justin Janquart2,3,† Melissa Lopez2,3,‡ Harsh Narola2,3,§ and Jean-René Cudell1¶
1 STAR Institute, Bâtiment B5, Université de Liège, Sart Tilman B4000 Liège, Belgium

2 Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands and
3 Institute for Gravitational and Subatomic Physics (GRASP),

Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands

We present here the latest development of a machine-learning pipeline for pre-merger alerts

from gravitational waves coming from binary neutron stars (BNSs). This work starts from the

convolutional neural networks introduced in [1] that searched for the early inspirals in simulated

Gaussian noise colored with the design-sensitivity power-spectral density of LIGO. Our new network

is able to search for any BNS with a chirp mass between 1 and 3 M�, it can take into account all

the detectors available, and it can see the events even earlier than the previous one. We study the

performance of our method in three different scenarios: colored Gaussian noise based on the O3

sensitivity, real O3 noise, colored Gaussian noise based on the predicted O4 sensitivity. We show

that our network performs almost as well in non-Gaussian noise as in Gaussian noise: our method

is robust w.r.t. glitches and artifacts present in real noise. Although it would not have been able to

trigger on the BNSs detected during O3 because their signal-to-noise ratio was too weak, we expect

our network to find around 3 BNSs during O4 with a time before the merger between 3 and 88 s in

advance.

I. INTRODUCTION

Multi-messenger astrophysics (MMA) makes use of

messengers from different forces of the Universe to pro-

vide a wealth of information about various astrophysical

processes. From previous investigations it is well-known

that the combination of at least two of these signals

gives qualitatively different and complementary types

of information, capable of probing down to the dens-

est and most energetic regions of cosmic objects, which

were hidden from astronomers’ sight up until now [2–4].

In the context of gravitational waves (GW) combined

with other astrophysical signals, it has long been sug-

gested that short gamma ray burst (GRB) might be

related to binary neutron star mergers [5], which fall in

the sensitivity band of second generation ground based-

detectors [6–8]. Several studies investigated the expec-

tations of electromagnetic (EM) follow-up efforts during

the Advanced LIGO and Virgo era of compact binary

coalescence (CBC) [9, 10]. On August 17, 2017 the

Fermi Gamma-ray Burst Monitor [11] announced the

detection of a GRB, later designated as GRB170817A

[12].

Approximately 6 minutes later, a GW candidate,

later re-labeled as GW170817, was registered in low

latency based on a single-detector analysis of the Ad-

∗ gbaltus@uliege.be
† j.janquart@uu.nl
‡ m.lopez@uu.nl
§ h.b.narola@uu.nl
¶ jr.cudell@uliege.be

vanced Laser Interferometer Gravitational-wave Obser-

vatory (LIGO) Hanford data and disseminated through

a Gamma-ray Coordinates Network (GCN) Notice. A

rapid re-analysis of data from Hanford, Livingston, and

Virgo confirmed a highly significant, coincident signal

[13]. An extensive observing campaign was launched

across the electromagnetic spectrum in response to the

Fermi-GBM and LIGO–Virgo triggers, which led to the

detection of the kilonova associated with GW170817,

later called AT 2017gfo [14].

In recent times, there has been a sparkling interest in

early warning (or pre-merger) alerts of BNS in the field

of GW for EM and astro-particle follow-ups [1, 15–24],

since the radiation emitted from these systems enters

the sensitive region of the interferometers during the

inspiral phase [25, 26]. Assuming all BNS’s produce a

short GRB with an X-ray, optical and radio afterglow,

an LVK network, and a top-hat jet model, Ref. [27] pre-

dicts rates for the joint detections of 0.02− 27 per year

for X-ray band, 0.01−19 per year for optical band, and

0.02−25 per year for radio band, respectively, at design

sensitivity for a three detector network [27]. It is rele-

vant to note that the large uncertainty is due to the fact

that BNS merger rate is not well constrained. The im-

proving sensitivity of second-generation detectors and

the even better sensitivity for the third-generation de-

tectors, such as Cosmic Explorer and the Einstein Tele-

scope [28, 29] will lead, via an increase in the signal-to-

noise ratio (SNR), to a major improvement in the early-

detection and sky-localization capabilities [21, 22, 30].

Another key element to develop MMA further is the de-

sign of low-latency pipelines for the production of real-

mailto:gbaltus@uliege.be
mailto:j.janquart@uu.nl
mailto:m.lopez@uu.nl
mailto:h.b.narola@uu.nl
mailto:jr.cudell@uliege.be

2

time GW alerts, or even pre-merger alerts. The current

state-of-the-art employs matched filtering techniques [9]

to perform online analyses via the pipelines GstLAL [31–

34], PyCBC [19, 35–40], MBTAOnline [41, 42], cWB

[43–45], and SPIIR [46]. We refer the reader to [47]

and [48–50] for a summary of the low-latency efforts

carried out by the LIGO-Virgo collaboration during the

second and third observing runs. Recent investigations

in the GW field have focused on Machine Learning (ML)

algorithms, due to their success in different tasks and do-

mains. The main advantage of ML techniques is their

rapidity because most of the computations are made

during the training stage. A widely used ML method

for pattern recognition is based on convolutional neu-

ral networks (CNNs) [51], in the context of GW it has

been applied to different tasks such as CBC identifica-

tion [52–56], burst detection [57–60], sky localization

[61–63], glitch classification [64, 65] and synthetic data

generation [66, 67]. See [68] for a review on this topic.

ML methods have also emerged as a new tool in the

context of early warning [1, 16], allowing us to flag

prompt triggers for GW candidates. The final goal of

this work is to detect BNS signals before the merger.

To do that, we have design a single CNN that takes as

input the time-series data from all the online detectors

and returns a classification between two classes: pure

noise or noise plus inspiral. In this paper, we build

on our previous work [1], improving on the techniques

previously developed, and testing them on more realistic

scenarios: we use real O3 noise, as well as the data

from all available detectors. In addition, we retrained

our network on predicted O4 noise and give expected

efficiencies for this run.

The details of the differences with [1] are as follows:

– the addition of the spin effect to the BNS wave-

forms;

– a uniform sky location of the injections;

– the injection of simulated BNS signals in simu-

lated O3 noise, real O3 noise and simulated O4

noise;

– a decrease of the minimal cutoff frequency from

20 Hz to 10 – 15 Hz;

– a fixed input-signal duration of 300 s with a sam-

pling frequency of 512 Hz that allows to anal-

yse any BNS signal for all allowed neutron star

masses;

– the implementation of curriculum learning [69].

This paper is organized as follows: in Section II, the

method is explained. Subsection II A introduces the

definition of the SNR and the partial inspiral signal-to-

noise ratio (PISNR) used in this work, as well as the

relation between the frequency of a waveform and the

time before the merger. The description of the data gen-

eration and the training strategy is made in Subsection

II B. The last part of this section, II C, describes the

architecture of the CNN used in this paper. Section III

presents the results and the performance of our method

in the three types of noise, as well as studying the num-

ber of BNS that are expected to be found in advance

by our network in O4. Finally, we give our conclusions

in section IV.

II. METHOD

A. Loudness and frequency evolution of the signal

In GW-searches, the matched-filtering SNR (ρ) [19,

70] is used to verify how well a template matches the

data. The SNR definition follows that of the FIND-

CHIRP algorithm [35] as implemented in PyCBC [71].

One first transforms the signal s(t) and templates h(t)

to frequency space:

h̃(f) =

∫ ∞
−∞

h(t)e−2πiftdt (1)

and similarly for s̃(f). One can define the matched

filtering output [70]

x(t) = 4R
∫ ∞
0

s̃(f)∗h̃(f)

Sn(f)
e2πiftdf (2)

where Sn(f) is the one-sided noise strain power spectral

density (PSD) of the detector and the * superscript

denotes complex conjugation. One can show that this

matched filtering output still depends on the phase at

a reference time of the signal, for instance at the time

when it enters the frequency band of the interferometer.

It is possible to minimize x(t) analytically w.r.t. that

phase [35, 72] and express the result via the complex

z(t):

z(t) = 4

∫ ∞
0

s̃(f)∗h̃(f)

Sn(f)
e2πiftdf (3)

as

min(x(t)) = |z(t)|

The variance of |z(t)| is given by:

σ2 = 4

∫ ∞
0

h̃(f)∗h̃(f)

Sn(f)
df. (4)

The signal-to-noise ratio is then taken to be [72]

ρ(t) =
|z(t)|
σ

. (5)

3

For a network of N detectors, identified by an index

i = 1...N , one defines the network SNR as

ρnet(t) =

√√√√ N∑
1

ρ2i (t). (6)

The SNR is a key quantity for the searches based

on matched filtering, since it describes the amount of

overlap between a template and an unknown signal. In

these searches, the strategy is to create a template bank

of pre-computed waveforms and use it to calculate the

SNR over all the data strain. As a first step, a trigger

is created when the SNR reaches a maximum value

higher than a given threshold. After that, it undergoes a

statistical treatment to be confirmed as a GW candidate

[19]. As we are interested in searching for the early

inspiral, a more meaningful indicator will be the partial-

inspiral signal-to-noise ratio. It is defined as the SNR

in which the template h is the partial template that

contains only the fraction of the inspiral part of the

waveform that our network tries to identify. For more

details about the PISNR, and how it evolves depending

on the length of the template, we refer to section II. A.

of Ref. [1].

At the lowest order in velocity, the frequency f at a

time t depends on the chirp massMc of the system and

the merger time tm:

f(t) =
1

π

(
GMc

c3

)−5/8(
5

251

1

(tm − t)

)3/8

. (7)

So for a given chirp mass, if we say that we can de-

tect an event (tm − t) seconds before the merger, it is

equivalent to say that we detect the signal when the

maximum frequency is f(t). Fig. 1 represents the time

and frequency evolution for a GW.

600 400 200 0
Time (s)

5

0

5

St
ra

in

×10 22

600 400 200 0
Time (s)

10

100

103

Fr
eq

ue
nc

y (
Hz

)

FIG. 1: The top figure represents a GW signal

corresponding to two objects of mass 1.8 M�. The

bottom figure represents the evolution in frequency for

this binary.

B. Data and training strategies

In our previous work [1], we have shown the possi-

bility to detect the early inspiral of a BNS injected in

Gaussian noise. In this work, we want to turn to a more

realistic scenario, using real O3 noise. To investigate

the difference in performance between Gaussian and

real noise, we also inject the signals in colored Gaus-

sian noise generated from the O3 representative PSD.

In addition, to assess the performance of our network in

future observation runs, we consider colored Gaussian

noise generated from the predicted O4 PSD.

The corresponding PSDs are represented in Fig. 2.

To generate a frame of simulated O3 Gaussian noise, we

use the PSDs from [73], provided by PyCBC [71]1. To

obtain data of O3, we directly download the strain of

the detectors [48–50] using the GWpy package [74]. To

be closer to a real time search, these downloaded strains

are the ones recorded in low-latency, meaning that they

are not filtered and cleaned as extensively as the final

noise 2. To generate the O4 Gaussian noise, we use the

predicted O4 PSD coming from the observing scenarios

[75, 76]3.

1 The PSD used for Gaussian O3 LIGO is

aLIGOaLIGO140MpcT1800545, the one for Virgo is

aLIGOAdVO3LowT1800545, both are provided by LIGO and

Virgo and implemented via PyCBC [71].
2 To download the real O3 data, we use the channels

H1:GDS-CALIB STRAIN, L1:GDS-CALIB STRAIN,

V1:Hrec hoft 16384Hz, and the frame type: H1 llhoft,

L1 llhoft, V1Online in GWpy.
3 The LIGO and Virgo PSDs used for O4 correspond to the ones

shown in Fig. 1 of [75], with the BNS detector horizon at 160

Mpc for the LIGO detectors and the horizon at 120 Mpc for

the Virgo detector.

4

FIG. 2: Representation of the different PSDs, for the

Livingston detector, used to generate the different

data sets. We also show the design sensitivity PSD

provided by PyCBC [71] used in [1].

Since the problem at hand can be solved as a classifi-

cation task, we need a data set containing two classes:

noise and noise plus inspiral, also known as injections.

For the injections, we generate waveforms using the

approximant SpinTaylorT4 [77]. We choose the compo-

nent masses to be uniformly distributed between 1 and

3 solar masses to cover all the possible BNS systems [78].

The sources are uniformly distributed over the sky, and

we also include the spin effects. With these parameters

and a lower frequency of 10 Hz, the simulated signal

is always longer than 300 seconds. In such a way, the

inputs of the network contain only the early inspiral

part (see Fig. 3 for an illustration). After injecting the

simulated signal into the noise the frames are whitened,

and we apply a low-pass filter at 100 Hz and a high-pass

filter at 10 Hz. For O3 real noise, some significant peaks

can appear in the whitened strain due to non-Gaussian

effects. In our approach, these effects are vetoed by

zeroing them out, see appendix A. Afterwards, the fi-

nal frame is renormalized, making all the values in the

frame between −1 and 1. This will be the input data of

the network, and we refer to a single sample as a frame.

For the training and testing, we choose a distribu-

tion in distance such that the distribution in PISNR is

an inverse Gaussian with a mean of thirty-five and a

scale of one hundred 4. Despite having a large data set

containing one million frames, we have observed a low

performance when we decrease the maximum frequency

to ∼ 25 Hz. This is because the CNN is good to detect

4 We found that the inverse Gaussian (Wald) distribution fits

better our goal. Indeed, this distribution gives a few very high

PISNR events that enable the network to start its learning

process.

FIG. 3: Representation of the different types of noises

for the Handford detector used together with an

injection similar to GW170817, i.e. with neutron star

masses of 1.46 and 1.27 M� [79]. Note that only the

part in the rectangle is passed to the network.

a variation of frequency, and for earlier inspiral phase,

the signal becomes more monochromatic.

To be able to detect events earlier, it is key to decrease

the maximum frequency seen by our model. For this

aim, we change the training strategy and use curricu-

lum learning [69] as a function of the maximal frequency

seen by the network, as it has shown an increase of the

performance as a function of the SNR in previous works

[59]. The principle of curriculum learning is to train the

network first on easier data (on data with a high max-

imum frequency), and then gradually increasing the

difficulty (on data with a lower maximum frequency).

The network is then iteratively trained on each training

set. To prevent the network from forgetting what it has

learned, we keep all the data of the previous steps while

adding the new ones. To that effect, we generate five

different training sets. The parameter distributions for

the injections stay the same, except for the maximal

frequency seen by the network. This parameter is now

chosen as a Gaussian distribution with a standard de-

viation of 2.5 Hz, and different mean depending on the

data sets. More information about these data sets can

be found in table I. Each training set contains 20000

frames and half of them contain an injection. Note that

20 % of each training set was used for validation during

the training. For each step, we train for six epochs as

it was enough to make the loss converge without facing

over-fitting. The use of curriculum learning allows to

improve the performance on data set 3, 4, 5 with max-

imum frequency of, respectively, 30, 25, 20 Hz, while

maintaining the performance at higher frequencies.

The training on the real noise data was done in a

5

Data set Max Freq Min Freq Min TBM Max TBM

Data set 1 40 Hz 12.9 Hz 7 s 44 s

Data set 2 35 Hz 12.8 Hz 10 s 63 s

Data set 3 30 Hz 12.6 Hz 15 s 95 s

Data set 4 25 Hz 12.3 Hz 24 s 115 s

Data set 5 20 Hz 11.7 Hz 45 s 280 s

TABLE I: Each data set corresponds to a value for

the maximum frequency seen by the networks, which

in turn leads to a minimum frequency and a Time

Before the Merger (TBM). The numbers shown for the

maximum and minimum frequency are the mean value

in each data set. The maximum and minimum TBMs

are the TBM for two objects of respectively 3 M� and

1 M�.

similar way. Note that we have done the training with

noise coming only from O3a, meaning the first half of

O3 [48]. We have vetoed the time of the real events

from the GWTC-2.1 catalog [48] not to train on them,

as most of them were BBH. For all the testing, we used

noise coming from O3b, the second half of O3 [49, 50].

During O3 there are times when not all detectors are

online. To take this fact into account, when a certain

detector is offline, we fill the CNN entry corresponding

to the detector with a vector of zeros. In this way, our

network is able to perform the search regardless of the

number of detectors available.

For the training parameters, we use a batch size of

50. For each step of curriculum learning we train for 6

epochs, it was enough to make the loss converge. The

learning rate is 8×10−5 and the optimizer is ADAMAX

with a weight decay of 10−5. ADAMAX is a variant of

ADAM, based on the infinity norm [80]. In our previous

work [1], we have seen that using ADAMAX leads to a

faster the convergence of the training.

We use the weighted cross-entropy loss [81]. At first,

we employed the cross-entropy loss, which is standard

for classification problems. However, this led to a large

number of false positives. To remedy that we decided

to weigh this loss [59] by a factor 0.4 for the frames with

an injection. This reduces the chances that the network

classifies a frame containing only noise as an event, so it

reduces the number of false positives. We tried multiple

values for the weight and found that for the task at hand

a factor of 0.4 translates into a reduction of the number

of false positive while maintaining the number of true

positive. The duration of the training is about one day

on a NVIDIA Tesla V100-PCIE-16Gb GPU.

C. Description of the network

The architecture of the network is similar to the one

in Ref. [1], where multiple trial and errors were made to

end up with the architecture. A representation of the

neural network is given in Fig. 4, we use the Pytorch

package to create the architecture [82]. The network

takes 300 seconds of data for each available detector.

In other words, it has three input channels, each corre-

sponding to one of the three detectors (Hanford, Liv-

ingston, and Virgo)5. It is composed of a batch nor-

malisation layer, followed by 5 blocks composed of a

convolution layer, a ReLU activation, and a pool layer.

For the convolution, the kernel sizes are successively 16,

8, 4, 8, 16. For the pool layers, the kernel size is always

set to 4. The stride is set to 1 for the convolution layers

and 4 for the pool layers. After these blocks, we add

two linear layers with sizes of respectively 128 and 2

interspersed by a ReLU activation. The final layer is a

softmax layer that returns a probability vector.

III. RESULTS

A. Performance of the network

After the training, the testing sets come from the

same distribution as the training sets, see table I. The

other parameter distributions are the same as for the

training sets. Each of the test sets contains 4400 frames,

half of which are pure noise and half noise plus injection.

The total size of the test sets for a type of noise is then

22000 frames.

The efficiency of our network for the different steps

of curriculum learning can be seen in Fig. 5. We de-

fine the True Alarm Probability (TAP) and the False

Alarm Probability (FAP) as equation 7 in our previ-

ous work [1]. In Fig. 5, we represent the three lowest

maximum frequencies data set of curriculum learning,

as the higher maximum frequencies have performances

similar to the 30 Hz data set. For the data sets with

a maximum frequency > 25 Hz, an efficiency of 50% is

obtained at ∼ 15 PISNR, while the efficiency reaches

100% at 30 PISNR. This is not the case for the data set

with a maximum frequency of 20 Hz, where the TAP

is lower. This is expected since the sensitivity of the

detectors becomes worse at lower frequencies, typically

under 20 Hz, see Fig. 2. In all the figures shown in this

work, the FAP is fixed at 1%.

5 The Conv1D layer as implemented in PyTorch allow us to give

as input any number of channels, see https://pytorch.org/

docs/stable/generated/torch.nn.Conv1d.html [82]

https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html

6

V1L1H1

32

Conv1 ReLU Pool1

64

Conv2 ReLU Pool2

128

Conv3 ReLU Pool3

256

Conv4 ReLU Pool4

256

Conv5 ReLU Pool5

FC1

12
8

ReLU

FC2

2

SoftMax

FIG. 4: Representation of the CNN architecture, the yellow layers are the convolutions, the blue ones are the

ReLU activation, the red ones are the pool layers, the purple ones are the dense layers, and the dark purple is the

final softmax layer. The number under each layer represents the number of channels.

FIG. 5: The True Alarm Probability as a function of

the PISRN for the O3 Gaussian noise case. Each curve

represents a different test set with a different

maximum frequency seen by the CNN.

Similarly, we have done the same test for the real

O3 noise and the simulated O4 Gaussian noise. The

different tests are summarised in Fig. 6, where each

curve represents the results for the whole test set. In

terms of PISNR, the efficiencies for O3 Gaussian noise

and O4 Gaussian noise are very similar. However, since

the noise floor is lower in the O4 case, the network can

probe higher distances in this case. The performance for

real noise is a bit worse than for the two Gaussian cases.

The network needs a slightly larger PISRN to achieve

the same performance. For example, the network needs

a PISNR of 20 to have an efficiency of 50% in the case

of real O3, whereas it only needs a PISNR of 17 to

reach the same sensitivity in the two other cases. Even

if some glitches and non-Gaussian features are present

in the data, the network is still able to reach a high

performance provided that the PISNR is high enough.

To be more realistic with a real time search, the noise

is downloaded from strains recorded at the time of low-

latency. Therefore, it has a low quality, explaining the

reduced performance.

FIG. 6: The True Alarm Probability as a function of

the PISRN for the O3 Gaussian noise, real O3 noise,

and O4 Gaussian noise.

After testing the network on independent 300 seconds-

long frames, we generate longer frames of 1000 seconds,

and we inject a complete GW signal into them. Then,

we slide a 300 seconds window over the frame, pass the

data in the window to the CNN for each step and make

a prediction. From one step to the next, the window is

shifted by 5 seconds. This is repeated until the full 1000

seconds are covered. Note that the step of 5 seconds is

arbitrary and can be reduced, since for a realistic early-

alert pipeline the length of the minimum step should be

equal to the time required to load 300 seconds of data,

pre-process it, and predict it with our network. The

deep-learning algorithm is fast and takes about 0.5 s

on a CPU and 0.01 s on a GeForce GTX 750 GPU,

the pre-processing is also fast: about 0.13 s to compute

the PSD with Pycbc, 0.01 s to perform the whitening

and 1 s to remove the peaks and do the renormalization.

The limiting factor is to load 300 seconds of data for

7

3 detectors with GWpy 6, which takes around 2 s on

an Intel Xeon E5-2650 v4 CPU. Note that the PSD

used for the whitening is computed each time we load

the 300s frame. To reduce further this time, one can

compute the PSD at regular intervals and use the result

for multiple steps.

Fig. 7 illustrates the time left before merger when

our approach is able to detect the event for the different

noise types. Each point contains 1000 frames with a

duration of 1000 seconds and each frame has a different

noise realisation. In each frame, we inject a BNS signal

with component masses similar to those detected for

GW170817 [79]. We choose fixed masses to keep the

total duration of the signal fixed. The sky position of

the signal is changed for each frame. We then slide a

300 seconds window over the 1000 seconds as described

above. The process is then repeated for injections cor-

responding to a larger distance. Fig. 7 shows that, for

a given distance, the events are detected the earliest in

O4 Gaussian noise. It is also interesting to note that the

time before merger for real O3 noise and Gaussian O3

noise are similar, even if the Gaussian case is slightly

better. An event like GW170817 at a distance of 40

Mpc can be detected by our method 25 s in advance in

real O3 noise, 35 s in advance in Gaussian O3 noise, and

50 s in advance for Gaussian O4 noise, showing quite

good trigger capabilities in future observations runs.

FIG. 7: The time before merger at which the event is

detected as a function of the distance. These curves

are made for a BNS with component masses similar to

those of GW170817.

For an online matched filtering search, the perfor-

mance is often evaluated by a false alarm rate (FAR). It

represents the probability that a trigger occurs because

of the noise for a given period of time [41]. The matched

filtering FAR is computed for each event and represents

6 Using the built-in function gwpy.timeseries.TimeSeries.get()

how often the noise is expected to produce a trigger

with a ranking statistic value at least as high as the one

of the event. With our method, we can not compute

such a FAR, but it is possible to compute, what we call

the False Positive Over Time (FPt), which is defined as

the number of false positives by a given period of time.

To compute the FPt, we run our network over the en-

tire O3b data using the same setup as the one described

previously. We shift the observation windows by 5 sec-

onds for each step, and veto the times corresponding

to events reported in the GWTC-3 catalog [49] and as-

sume that there are no other detectable events in the

data7. The FPt is then defined as the number of trig-

gers divided by the total observation time. For O3b,

we obtain a FPt of 277.54 per day, which is too high to

be used for online searches. To decrease its values, we

can consider that an event is present when our network

gives multiple triggers in a row, as shown in Fig. 8. If

we keep detections with 5 consecutive triggers, the FPt
goes down to 12.31 per day, and it goes to 1.71 per day

if we consider 10 triggers in a row. The use of multiple

triggers implies larger waiting times before producing

an alert, and reduces the time before merger for the

detection. For example, considering 5 triggers leads to

a delay of 20 seconds as we consider steps of 5 seconds

when sliding the window. In the end, this shows that we

would need to find a trade-off between the time before

merger and the desired FPt.

Another way to decrease the FPt is to use coherent

triggers between two or more detectors. The training

strategy for the network does not make it favor coherent

triggers. Indeed, since it is trained for one, two, or three

detectors available, it learns to trigger even if only one

detector is online. Furthermore, even if more than one

detector is online, we do not use a minimum SNR in each

detector for the training set. Hence, the network learns

to trigger even if only one interferometer is picking up

the signal. In the end, this means that as soon as the

CNN sees something remotely close to a signal in one

of the detectors, it triggers, leading to a relatively high

FPt.

B. Number of BNS inspirals detectable in O4

To estimate the number of BNSs that our network

could detect in O4, we simulate a population of BNSs.

It is generated using the method described in [83] and

the BNS merger rate is normalised so that the local

7 This assumption is reasonable since our network needs rela-

tively high SNRs to detect the inspiral, and the event would

therefore have been detected.

8

Time before merger Mc (M�) network SNR net PISNR at detection Maximum frequency

88 s 1.19 71.87 15.32 25.45 Hz

59 s 1.08 63.77 23.43 31.35 Hz

58 s 1.26 53.01 16.63 28.75 Hz

25 s 1.16 28.72 16.31 41.39 Hz

22 s 1.95 64.07 19.8 31.45 Hz

22 s 2.06 54.88 18.01 30.42 Hz

19 s 2.15 30.55 10.37 31.29 Hz

14 s 1.69 31.26 14.42 40.75 Hz

11 s 1.98 27.68 13.63 40.43 Hz

10 s 2.0 28.95 16.28 41.58 Hz

10 s 1.79 25.04 12.9 44.52 Hz

7 s 2.01 20.47 11.87 47.48 Hz

7 s 1.72 34.21 25.71 52.2 Hz

3 s 2.12 28.28 20.68 63.01 Hz

TABLE II: The time before merger, the maximum frequency seen by the network at detection, the chirp mass of

the event, the network SNR, and the PISNR at the moment of the detection for all the detected BNSs in five

years of simulated O4 data.

FIG. 8: Top: Representation of a signal and the

noise it is injected in. Bottom: Representation of the

output of the CNN. Each point represents the

probability to have an inspiral in the 300 seconds of

data. By convention, the time of a point represents the

end of the time window. The network does not trigger

on the early inspiral because the PISNR is too low.

When it becomes high enough, the networks produces

a trigger until the injection leaves the frame, giving

multiple points with a high probability in a row.

rate is equal to the median rate given in [84]. The

only difference with [83] is that we adapt the detection

thresholds and the PSDs to our O4 scenario. We keep

the BNS events with a network SNR higher than 13 and

discard all the others. This threshold is chosen as we

expect our network to find only BNSs that are clearly

visible in the detector network and a global SNR of

13 corresponds approximately to an SNR of 8 in each

detector.

To have more statistics, we compute the equivalent

of 5 years of data, and we consider a duty cycle of 100%

for all the detectors. Our simulations predict that, on

average, around twenty BNSs per year will have a net-

work SNR over 13 for O4 sensitivity. Our network can

detect around three of those BNSs in advance. Fig. 9

represents the time before the merger of all the BNSs de-

tected by our network for the 5 years of generated data.

Even if our network is able to detected only three events

out of twenty, it is important to note that these events

are seen in advance and would therefore not be seen at

that stage by the unmodified matched filtering searches.

Nevertheless, matched filtering pipelines adapted to the

early detection of long inspirals are also being developed

[18, 20]. Those are also able to detect BNS mergers in

advance. Even if the comparison between these works

and ours is difficult (partially because of the difference

in noise, but also in performance evalution), we can men-

tion that times before merger of these algorithms are

comparable to those obtained by our network, ranging

from O(10) to O(100) seconds. An advantage of these

early-warning matched filtering searches is that their

FAR is lower than our FPt (around one per month) but

they require more computational ressources during the

search as the highest cost for machine learning is moved

to the training step. During the search, our method can

run on a single GPU or even on a single CPU, while

most of the standard matched filtering methods require

parallelization on multiple CPUs.

Table II shows the different characteristics of the de-

tected BNSs. The network can see an event when the

net PISNR is between 10 and 25, which is expected ac-

cording to Fig. 6. The time before the merger at which

the CNN can detect a signal depends on two factors:

9

FIG. 9: The number of BNSs detected in advance by

our network for a simulated population of BNSs in five

years of O4 data.

a) the network PISNR and b) the length of the signal.

The PISNR can be seen as a fraction of the SNR and its

exact value depends on which part of the signal we are

considering (hence the maximum frequency see by the

CNN). Therefore, for a fixed signal duration, if the net-

work SNR is high, the network can detect an event at

a lower maximum frequency, corresponding to a longer

duration before the merger. However, if we fix the SNR

and the maximum frequency while increasing the dura-

tion of the signal (for example by decreasing both the

chirp mass and the luminosity distance to compensate),

the event will be detected with a larger duration before

the merger. This behavior is well represented in Fig. 9,

where events with a light chirp mass and a high SNR are

detected the earliest. It also explains why some events

with a lower chirp mass can be detected earlier, even if

the network SNR is smaller than for other events.

IV. CONCLUSION

This work builds upon the framework developed in [1].

We implement several upgrades and modifications to

the CNN-based pipeline designed to detect the early

inspiral phase of BNS events. A major upgrade is the

increased duration of the frames passed to the network.

That allows us to search for smaller frequencies and

opens the door to earlier detections. Another benefit

of this increased duration is that we can use a single

network to look for all type of BNSs, which was not the

case in our previous work. The detection of events for

a smaller maximum frequency is not easy and required

an adapted training methodology: curriculum learning.

We consider realistic observation scenarios, including

all the detectors of the LIGO-Virgo network and use

realistic noise realisations: O3 and O4 Gaussian noises,

as well as real O3 noise. We have also demonstrated

that even in the real O3 noise our network is able to

detect GW signals in advance. We expect our network

to detect some BNSs in O4, up to minutes in advance

if the SNR of the event is high enough. In future works,

we will upgrade our method to search for neutron-star-

black-hole mergers as well. As discussed in section III,

we will also develop methods to decrease the FPt. Fi-

nally, we will investigate a way to infer the sky position

with only the early inspiral part.

ACKNOWLEDGMENTS

The authors thank Thomas Dent and Srashti Goyal

for their useful comments, as well as Maxime Fays,

Vincent Boudart, Sarah Caudill and Chris Van Den

Broeck for useful discussions. G.B. is supported by a

FRIA grant from the Fonds de la Recherche Scientifique-

FNRS, Belgium. J.R.C. acknowledges the support of

the Fonds de la Recherche Scientifique-FNRS, Belgium,

under grant No. 4.4501.19. M.L. H.N., and J.J are

supported by the research program of the Netherlands

Organisation for Scientific Research (NWO). The au-

thors are grateful for computational resources provided

by the LIGO Laboratory and supported by the National

Science Foundation Grants No. PHY-0757058 and No.

PHY-0823459. This material is based upon work sup-

ported by NSF’s LIGO Laboratory which is a major

facility fully funded by the National Science Founda-

tion.

Appendix A: Details on the veto of peaks for real noise

After the noise has been downloaded and whitened, large peaks can still be present in the data (see Fig. 10).

This behavior only appears for real O3 noise, and leads to a problem for the normalisation. Indeed, before passing

the data to the network, we normalise them to be between -1 and 1. To do so, we find the maximum absolute

value of the strain and divided each point by that value. When a large peak is present, the maximum absolute

value is the value of the peak and it makes the rest of the time series too small. That confuses the neural network,

and we decided to veto these peaks. The vetoing is done according to the z-score, which is defined as:

Zi =
xi − µ
σ

(A1)

10

where xi is the value of a point i in the time series, µ and σ are respectively the mean and the variance of the

time series. We then compute the standard deviation of the z-score and put all the points with a z-score larger

than 5 times the standard deviation to zero, allowing to remove large peaks such as those seen in Fig. 10. The

normalisation is then done on the vetoed frame.

FIG. 10: The blue curve represents O3a noise after application of the whitening, the low-pass filter, and the

high-pass filter. The orange curve shows the part which will be vetoed.

[1] G. Baltus et al., Physical Review D 103, 102003 (2021).

[2] P. Mészáros et al., Nature Rev. Phys. 1, 585 (2019),

1906.10212.

[3] W. Arnett et al., Annual Review of Astronomy and

Astrophysics 27, 629 (1989), URL https://doi.org/

10.1146/annurev.aa.27.090189.003213.

[4] S. Ansoldi et al. (MAGIC), Astrophys. J. Lett. 863,

L10 (2018), 1807.04300.

[5] J. Goodman, The Astrophysical Journal 308, L47

(1986).

[6] J. Aasi et al. (LIGO Scientific), Class. Quant. Grav. 32,

074001 (2015), 1411.4547.

[7] F. Acernese et al. (VIRGO), Class. Quant. Grav. 32,

024001 (2015), 1408.3978.

[8] T. Akutsu et al. (KAGRA), Nature Astron. 3, 35 (2019),

1811.08079.

[9] K. Cannon et al., Astrophys. J. 748, 136 (2012),

1107.2665.

[10] L. P. Singer et al., The Astrophysical Journal

795, 105 (2014), URL https://doi.org/10.1088/0004-

637x/795/2/105.

[11] C. Meegan et al., The Astrophysical Journal 702, 791

(2009).

[12] A. Goldstein et al., The Astrophysical Journal

848, L14 (2017), URL https://doi.org/10.3847/2041-

8213/aa8f41.

[13] B. P. Abbott et al., Astrophys. J. Lett. 848, L12 (2017),

1710.05833.

[14] A. Perego et al., Astrophys. J. Lett. 850, L37 (2017),

1711.03982.

[15] S. Sachdev et al., Astrophys. J. Lett. 905, L25 (2020),

2008.04288.

[16] H. Yu et al., Phys. Rev. D 104, 062004 (2021),

2104.09438.

[17] T. Tsutsui et al., arXiv preprint arXiv:2107.12531

(2021).

[18] A. H. Nitz et al., The Astrophysical Journal Letters

902, L29 (2020).

[19] A. H. Nitz et al., Physical Review D 98, 024050 (2018).

[20] S. Sachdev et al., The Astrophysical Journal Letters

905, L25 (2020).

[21] M. L. Chan et al., Physical Review D 97, 123014 (2018).

[22] Y. Li et al., Physical Review D 105, 043010 (2022).

[23] M. Kovalam et al., The Astrophysical Journal Letters

927, L9 (2022).

[24] R. Magee and S. Borhanian, arXiv preprint

arXiv:2201.11841 (2022).

[25] L. Nuttall et al., Astronomy & Geo-

physics 62, 4.15 (2021), ISSN 1366-8781,

https://academic.oup.com/astrogeo/article-

pdf/62/4/4.15/38891656/atab077.pdf, URL

https://doi.org/10.1093/astrogeo/atab077.

[26] R. Magee et al., Astrophys. J. Lett. 910, L21 (2021),

2102.04555.

[27] M. Saleem et al., Mon. Not. Roy. Astron. Soc. 475, 699

(2018), 1710.06111.

[28] D. Reitze et al., Bull. Am. Astron. Soc. 51, 035 (2019),

1907.04833.

[29] M. Punturo et al., Class. Quant. Grav. 27, 194002

(2010).

https://doi.org/10.1146/annurev.aa.27.090189.003213
https://doi.org/10.1146/annurev.aa.27.090189.003213
https://doi.org/10.1088/0004-637x/795/2/105
https://doi.org/10.1088/0004-637x/795/2/105
https://doi.org/10.3847/2041-8213/aa8f41
https://doi.org/10.3847/2041-8213/aa8f41
https://doi.org/10.1093/astrogeo/atab077

11

[30] A. H. Nitz and T. Dal Canton, The Astrophysical Jour-

nal Letters 917, L27 (2021).

[31] C. Messick et al., Phys. Rev. D 95, 042001

(2017), URL https://link.aps.org/doi/10.1103/

PhysRevD.95.042001.

[32] S. Sachdev et al., arXiv preprint arXiv:1901.08580

(2019).

[33] C. Hanna et al., Physical Review D 101, 022003 (2020).

[34] K. Cannon, S. Caudill, C. Chan, B. Cousins, J. D.

Creighton, B. Ewing, H. Fong, P. Godwin, C. Hanna,

S. Hooper, et al., SoftwareX 14, 100680 (2021).

[35] B. Allen et al., Phys. Rev. D 85, 122006

(2012), URL https://link.aps.org/doi/10.1103/

PhysRevD.85.122006.

[36] B. Allen, Physical Review D 71, 062001 (2005).

[37] T. Dal Canton et al., Physical Review D 90, 082004

(2014).

[38] S. A. Usman et al., Classical and Quantum Gravity 33,

215004 (2016).

[39] A. H. Nitz et al., The Astrophysical Journal 849, 118

(2017).

[40] G. S. Davies et al., Physical Review D 102, 022004

(2020).

[41] T. Adams et al., Classical and Quantum Gravity 33,

175012 (2016).

[42] F. Aubin et al., Classical and Quantum Gravity 38,

095004 (2021).

[43] S. Klimenko et al., Physical Review D 93, 042004

(2016).

[44] S. Klimenko and G. Mitselmakher, Classical and Quan-

tum Gravity 21, S1819 (2004).

[45] S. Klimenko et al., Physical Review D 83, 102001

(2011).

[46] Q. Chu et al., Physical Review D 105, 024023 (2022).

[47] B. P. Abbott et al. (LIGO Scientific, Virgo), Astrophys.

J. 875, 161 (2019), 1901.03310.

[48] R. Abbott et al., arXiv preprint arXiv:2108.01045

(2021).

[49] R. Abbott et al. (LIGO Scientific, VIRGO, KAGRA),

arXiv preprint arXiv:2111.03606 (2021).

[50] D. Davis et al., Classical and Quantum Gravity 38,

135014 (2021).

[51] I. Goodfellow et al., Deep Learning (MIT Press, 2016),

http://www.deeplearningbook.org.

[52] H. Gabbard et al., Phys. Rev. Lett. 120, 141103 (2018),

1712.06041.

[53] T. Gebhard et al., in

Workshop on Deep Learning for Physical

Sciences (DLPS) at the 31st Conference on Neural

Information Processing Systems (NIPS) (2017), pp.

1–6.

[54] T. D. Gebhard et al., Phys. Rev. D 100, 063015 (2019),

1904.08693.

[55] P. G. Krastev, Physics Letters B 803,

135330 (2020), ISSN 0370-2693, URL https:

//www.sciencedirect.com/science/article/pii/

S0370269320301349.

[56] M. B. Schäfer et al., Physical Review D 102, 063015

(2020).

[57] P. Astone et al., Phys. Rev. D 98, 122002 (2018),

1812.05363.

[58] A. Iess et al., Machine Learning: Science and Technol-

ogy 1 (2020).

[59] M. López et al., Phys. Rev. D 103, 063011 (2021),

2011.13733.

[60] V. Boudart et al., arXiv preprint arXiv:2201.08727

(2022).

[61] S. R. Green et al., Phys. Rev. D 102, 104057 (2020),

2002.07656.

[62] M. J. Williams et al., Phys. Rev. D 103, 103006 (2021),

2102.11056.

[63] A. Kolmus et al., arXiv preprint arXiv:2111.00833

(2021).

[64] M. Zevin et al., Class. Quant. Grav. 34, 064003 (2017),

1611.04596.

[65] S. Soni et al., Class. Quant. Grav. 38, 195016 (2021),

2103.12104.

[66] J. McGinn et al., Class. Quant. Grav. 38, 155005 (2021),

2103.01641.

[67] M. Lopez et al., arXiv preprint arXiv:2203.06494

(2022).

[68] E. Cuoco et al., Mach. Learn. Sci. Tech. 2, 011002

(2021), 2005.03745.

[69] Y. Bengio et al., in Proceedings of the 26th annual

international conference on machine learning (2009),

pp. 41–48.

[70] C. Cutler and E. E. Flanagan, Physical Review D 49,

2658 (1994).

[71] C. M. Biwer et al., Publ. Astron. Soc. Pac. 131, 024503

(2019), arXiv:1807.10312.

[72] W. G. Anderson and J. D. E. Creighton (2007),

0712.2523.

[73] B. P. Abbott et al., Living reviews in relativity 23, 1

(2020).

[74] D. M. Macleod et al., SoftwareX 13, 100657

(2021), ISSN 2352-7110, URL https://

www.sciencedirect.com/science/article/pii/

S2352711021000029.

[75] B. P. Abbott et al., Living reviews in relativity 23, 1

(2020).

[76] P. Petrov et al., The Astrophysical Journal 924, 54

(2022).

[77] B. A. et al., Phys. Rev. D 67, 104025 (2003), [Erratum:

Phys.Rev.D 74, 029904 (2006)], arXiv:gr-qc/0211087.

[78] B. Kiziltan et al., The Astrophysical Journal 778, 66

(2013).

[79] B. P. Abbott et al., Physical review letters 119, 161101

(2017).

[80] D. Kingma and J. A. Ba, arXiv preprint

arXiv:1412.6980 434 (2019).

[81] P. T. De Boer et al., Annals of operations research 134,

19 (2005).

[82] A. Paszke et al. (Curran Associates, Inc., 2019),

pp. 8024–8035, URL http://papers.neurips.cc/

paper/9015-pytorch-an-imperative-style-high-

performance-deep-learning-library.pdf.

[83] A. Samajdar et al., arXiv preprint arXiv:2102.07544

(2021).

https://link.aps.org/doi/10.1103/PhysRevD.95.042001
https://link.aps.org/doi/10.1103/PhysRevD.95.042001
https://link.aps.org/doi/10.1103/PhysRevD.85.122006
https://link.aps.org/doi/10.1103/PhysRevD.85.122006
http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/S0370269320301349
https://www.sciencedirect.com/science/article/pii/S0370269320301349
https://www.sciencedirect.com/science/article/pii/S0370269320301349
https://www.sciencedirect.com/science/article/pii/S2352711021000029
https://www.sciencedirect.com/science/article/pii/S2352711021000029
https://www.sciencedirect.com/science/article/pii/S2352711021000029
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

12

[84] R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J.

Lett. 913, L7 (2021), 2010.14533.

	 Convolutional neural network for gravitational-wave early alert: Going down in frequency
	Abstract
	Introduction
	Method
	Loudness and frequency evolution of the signal
	Data and training strategies
	Description of the network

	Results
	Performance of the network
	Number of BNS inspirals detectable in O4

	Conclusion
	Acknowledgments
	Details on the veto of peaks for real noise
	References

