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Hydrodynamics can be formulated in terms of a perturbative series in derivatives of the temper-
ature, chemical potential, and flow velocity around an equilibrium state. Different formulations for
this series have been proposed over the years, which consequently led to the development of various
hydrodynamic theories. In this work, we discuss the relativistic generalizations of the perturbative
expansions put forward by Chapman and Enskog, and Hilbert, using general matching conditions in
kinetic theory. This allows us to describe, in a comprehensive way, how different out-of-equilibrium
definitions for the hydrodynamic fields affect the development of the hydrodynamic perturbative se-
ries. We provide a perturbative method for systematically deriving the hydrodynamic formulation
recently proposed by Bemfica, Disconzi, Noronha, and Kovtun (BDNK) from relativistic kinetic
theory. The various transport coefficients that appear in BDNK (at first-order) are explicitly com-
puted using a new formulation of the relaxation time approximation for the Boltzmann equation.
Assuming Bjorken flow, we also determine the hydrodynamic attractors of BDNK theory and com-
pare the overall hydrodynamic evolution obtained using this formulation with that generated by the
Israel-Stewart equations of motion and also kinetic theory.

I. INTRODUCTION

Hydrodynamics is an effective theory constructed to describe the near-equilibrium dynamics of a many-body system
in the regime where the time and length scales associated with microscopic interactions are much smaller than those
defined by the variation of conserved quantities. In the context of kinetic theory, hydrodynamics is expected to emerge
when the evolution of the system can be reasonably well described in terms of the few moments of the single-particle
distribution function directly associated with conservation laws [1]. Understanding how this truncation in the number
of degrees of freedom takes place, and how that process depends on the strength of the interactions, define a very
active area of research especially in the relativistic regime [2–4].

Throughout the years, these questions have been investigated in kinetic theory using mainly three approaches. The
oldest method, pioneered by D. Hilbert more than a century ago [5, 6], was the first to recognize that hydrodynamic
behavior could be systematically investigated via a perturbative expansion. However, even though the lowest order
truncation of the Hilbert series led to the Euler equations, it was soon realized that this method did not lead to the
celebrated non-relativistic Navier-Stokes equations [6]. The derivation of the latter from kinetic theory was achieved
only later by S. Chapman [7, 8] and D. Enskog [9], using a nontrivial modification of Hilbert’s ideas. Their method
has become the standard way to derive hydrodynamics from the Boltzmann equation [6, 10]. Grad [11] formulated the
third way within which such a reduction of degrees of freedom can take place in kinetic theory. Different than Hilbert
or Chapman and Enskog, in Grad’s approach the Boltzmann equation is converted into an infinite set of coupled
equations of motion for the moments of the distribution function. Hydrodynamics then emerges from a truncation of
such an infinite set of equations in terms of the lowest order moments, whose evolution equations are given by the
conservation laws. The generalization of the moments method to relativistic kinetic systems can be found, e.g., in
[4, 12–17].

Even though the Chapman-Enskog approach can be formulated in a relativistic covariant manner [4, 13, 14],
fundamental issues appear after truncation — the corresponding relativistic generalization of Navier-Stokes equations
derived from this approach are incompatible with relativistic causality [18, 19] and small perturbations around global
equilibrium are unstable [20]. A solution to these problems was put forward by Müller [21] and Israel and Stewart
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[12, 22]. In this approach, instead of using the constitutive relations characteristic of the Navier-Stokes formulation,
the dissipative currents are promoted to independent variables that, in turn, obey additional equations of motion
that describe how those variables relax towards their Navier-Stokes values. Then, causality and stability constrain
the possible values of relaxation times and coupling constants between the dissipative currents [20, 23–27]. Recently,
it has been rigorously proven that stability in a causal theory is a Lorentz invariant statement [28, 29] and conditions
under which thermodynamic stability imply causality in relativistic fluids have been derived [30]. The Israel-Stewart
(IS) formulation can be derived from the Boltzmann equation by truncating an infinite tower of equations obeyed by
irreducible moments of the single-particle distribution function generalizing Grad’s [11] moments method [12, 15–17]
or by power-counting schemes [31, 32].

A new solution to the causality and stability problems was recently proposed by Bemfica, Disconzi, Noronha, and
Kovtun (BDNK) [28, 33–36]. This formulation, which is deeply rooted on effective field theory arguments, when
truncated to first-order in derivatives also leads to constitutive relations for the dissipative currents as in Navier-
Stokes theory, but with the important difference that it includes time-like derivatives in these relations (i.e., time
derivatives of the hydrodynamic fields are present in the constitutive relations even in the local rest frame of the
fluid). Conditions that ensure causality, strong hyperbolicity, and well-posedness of solutions of the equations of
motion, which are valid even in the full nonlinear regime and when the fluid is coupled to Einstein’s equations,
were derived in [28, 33, 35, 37, 38] and stability was proven to hold [28, 33–36]. BDNK theory also motivates the
investigation of alternative definitions of the hydrodynamic variables out of equilibrium, the so-called hydrodynamic
frames [39], due to the fact that causality in this framework requires that some of the coefficients associated with
energy diffusion and the non-equilibrium correction to energy density must be nonzero in the first-order theory.
This framework has also been explored numerically in Refs. [40–42], where it was compared to other hydrodynamic
formulations.

Matching conditions define the local equilibrium state, which serve as starting point of hydrodynamic expansions.
Consequently, they define the temperature T , chemical potential µ, and fluid 4-velocity uµ of non-equilibrium systems.
In kinetic theory, these definitions are implemented by constraints in the moments of the single-particle distribution
function. Even though they have a significant effect on the truncation procedures leading to different formulations of
hydrodynamics, the interplay between these definitions and hydrodynamic attractors [43] are far from understood. In
fact, Ref. [43] proposed that hydrodynamics should be seen as an attractor which determines the late-time behavior
of many-body systems and, thus, dictates their approach towards equilibrium. This has been confirmed in Bjorken
[44] and Gubser [45] flow backgrounds (see, e.g., Refs. [43, 46, 47] and [48, 49]), and this topic remains under active
investigation (for reviews, see [2, 50–52]).

In this work, we provide a systematic perturbative procedure for the derivation of BDNK theory starting from the
relativistic Boltzmann equation. The various transport coefficients that appear in BDNK (at first-order) are explicitly
determined, for the first time, using the new formulation of the relaxation time approximation for the Boltzmann
equation proposed in [53]. For completeness, we also provide a comprehensive review of the relativistic Hilbert series
and formulate Chapman-Enskog theory for general matching conditions. Focusing on Bjorken flow, we determine the
hydrodynamic attractors of BDNK theory and compare the evolution obtained using this approach with that obtained
using Israel-Stewart equations of motion and also kinetic theory (in the relaxation time approximation).

This paper is organized as follows. In Sec. II we review the formulation of hydrodynamic equations using general
matching conditions. Next, in Sec. III, we show how this general procedure is implemented within kinetic theory. In
Sec. IV, we discuss the various perturbative procedures used to derive hydrodynamic equations of motion from the
Boltzmann equation. We implement the well-known Chapman-Enskog expansion, used to derive relativistic Navier-
Stokes theory, using general matching conditions and provide formulas that can be used to determine its transport
coefficients. We then proceed to discuss the Hilbert expansion, which leads to another perturbative hydrodynamic
formulation. Afterwards, we introduce the perturbative procedure suitable for the derivation of BDNK formalism
in kinetic theory. In Sec. V, we use the new relaxation time approximation for the relativistic Boltzmann equation
proposed in Ref. [53] to explicitly compute the transport coefficients present in first-order BDNK, and also those
present in the Hilbert series, in the case of an ultrarelativistic gas. In Sec. VI we initiate our discussion of Bjorken
flow. We first discuss the behavior of Hilbert’s equations of motion and compare their exact solution in Bjorken with
the solution of relativistic Navier-Stokes theory. For completeness, we also outline the corresponding Israel-Stewart
equations of motion in Bjorken flow under general matching conditions, following [17]. We present numerical and also
exact solutions of BDNK theory for different matching prescriptions and investigate the corresponding hydrodynamic
attractor. Comparisons between solutions of BDNK, Israel-Stewart, and kinetic theory (obtained by solving a system
of moment equations) are also made. Sec. VII summarizes the main text and states our conclusions and future plans.
Appendix A summarizes the 19 moments truncation procedure used to obtain the IS equations of motion under
general matching conditions, originally performed in Ref. [17]. Appendix B shows the procedure necessary to derive
the Chapman-Enskog constitutive relations when the basis contains the zero modes of the collision term. Appendix
C gives further details on the choice of basis used to compute transport coefficients. Finally, Appendix D gives the
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details concerning the moment equations in Bjorken flow.
Notation: We use a mostly minus metric signature and natural units, ~ = c = kB = 1.

II. FLUID DYNAMICAL VARIABLES

The main dynamical equations in hydrodynamics come from the local conservation of energy, momentum, and net
charge,

∂µN
µ = 0,

∂µT
µν = 0,

(1)

where Nµ is the net-charge 4-current and Tµν is the energy-momentum tensor. Without any loss of generality, these
tensors can be decomposed in terms of a time-like normalized 4-vector uµ, uµuµ = 1, in the following way

Nµ = nuµ + νµ,

Tµν = εuµuν − P∆µν + hµuν + hνuµ + πµν .
(2)

The 4-vector uµ is identified as the fluid 4-velocity and will be formally defined after the imposition of the so-called
matching conditions – a procedure that will be discussed later. Above, we also defined the projection operator
∆µν = gµν − uµuν . Each term introduced in the decomposition done above can be expressed in terms of projections
and contractions of the conserved currents,

n ≡ uµNµ, ε ≡ uµuνTµν , P ≡ −
1

3
∆µνT

µν ,

νµ ≡ ∆µ
νN

ν , hµ ≡ ∆µ
νuλT

νλ, πµν ≡ ∆µν
αβT

αβ ,
(3)

which are identified as the total particle density, the total energy density, the total pressure, the particle diffusion
4-current, the energy diffusion 4-current, and the shear-stress tensor, respectively. We note that we have introduced
above the doubly-symmetric traceless tensor ∆µναβ =

(
∆µα∆νβ + ∆να∆µβ

)
/2−∆µν∆αβ/3.

Next, we introduce a reference local equilibrium state [22] and separate the particle density, energy density, and
pressure into equilibrium and non-equilibrium parts. In general,

n ≡ n0(α, β) + δn,

ε ≡ ε0(α, β) + δε,

P ≡ P0(α, β) + Π,

(4)

where α and β are the thermal potential and inverse temperature of this (fictitious) reference equilibrium state. The
densities n0, ε0 and P0 are the local equilibrium net-charge density, energy density, and pressure, respectively, and
are determined in terms of the temperature and thermal potential using an equation of state. The variables α and β
are determined by the matching conditions. The variables δn, δε, and Π represent the corresponding non-equilibrium
corrections for the net-charge density, energy density, and pressure, respectively.

The most widely employed matching condition imposes that the particle and energy densities are completely de-
termined by α and β alone as if the fluid were in local equilibrium. That is, in this case we have the constraints

n ≡ n0(α, β)⇐⇒ δn ≡ 0,

ε ≡ ε0(α, β)⇐⇒ δε ≡ 0.
(5)

Then, the temperature and thermal potential are determined by inverting the thermodynamic functions n0(α, β) and
ε0(α, β). In order to complete the matching procedure, we must also define the local rest frame of the fluid, i.e.,
we have to define the 4-velocity introduced in the tensor decomposition of the conserved currents. In this case, two
different constraints are widely employed in the field. The first is the so-called Landau matching condition (or Landau
picture) which stipulates that no energy diffusion should occur in the rest frame of the fluid [54],

Tµνu
ν ≡ εuµ ⇐⇒ hµ ≡ 0. (6)

This condition is frequently used in fluid-dynamical simulations of ultrarelativistic heavy-ion collisions, see [55–58].
The second is the Eckart matching condition (or Eckart picture) which imposes that no particle diffusion should occur
in the rest frame of the fluid [59],

Nµ ≡ nuµ ⇐⇒ νµ ≡ 0. (7)



4

This condition is commonly used in astrophysics applications [60, 61].
It is important to remark that different matching conditions, which differ from Landau or Eckart’s, can in principle

be chosen [62–65]. Indeed, this choice reflects the fact that there is no unique definition of temperature, chemical
potential, and flow velocity in an out of equilibrium state. However, different choices of such matching conditions do
affect the properties of the hydrodynamic equations of motion – for instance, some choices can lead to well-defined
behavior while for others causality may be lost.

In the following, we shall perform our calculations assuming a wide set of matching conditions, which will be defined
in the next section in the context of kinetic theory. In this general case, the conserved currents have the form

Nµ = (n0 + δn)uµ + νµ

Tµν = (ε0 + δε)uµuν − (P0 + Π)∆µν + hµuν + hνuµ + πµν .
(8)

Substituting this expression into the conservation laws (1), we obtain the following equations of motion (already
projected into their components parallel and orthogonal to uµ),

Dn0 +Dδn+ (n0 + δn)θ + ∂µν
µ = 0, (9a)

Dε0 +Dδε+ (ε0 + δε+ P0 + Π)θ − πµνσµν + ∂µh
µ + uµDh

µ = 0, (9b)

(ε0 + δε+ P0 + Π)Duµ −∇µ(P0 + Π) + hµθ + hα∆µν∂αuν + ∆µνDhν + ∆µν∂απ
α
ν = 0, (9c)

where we make use of the irreducible decomposition of the 4-derivative, ∂µ = uµD + ∇µ, with D ≡ uν∂ν being
the comoving time derivative and ∇µ = ∆ ν

µ ∂ν the 4-gradient, while θ ≡ ∂µu
µ is the scalar expansion rate and

σµν ≡ ∆µν
αβ∂αuβ is the shear tensor.

Different approaches can be used to supplement the equations of motion (9a)-(9c) with information about viscous
effects. One may provide constitutive relations satisfied by the non-equilibrium fields and express them in terms of
derivatives of the fluid-dynamical variables that already appear in equilibrium. This is the case of the relativistic
formulation of Navier-Stokes (NS) theory [54] and of the recently proposed BDNK theory [28, 33–36] – both these
frameworks will be discussed in detail in the remainder of this paper in the context of kinetic theory. As mentioned
in the previous section, another way to describe viscous effects consists in postulating that the non-equilibrium fields
are independent dynamical variables which obey their own equations of motion (this can be achieved using entropy
arguments or the moments method in kinetic theory). That is the case of the Israel-Stewart [22] and the Denicol-
Niemi-Molnar-Rischke (DNMR) [31] formulations of relativistic hydrodynamics, where the non-equilibrium variables
relax asymptotically to Navier-Stokes-like constitutive relations. In this regard, a generalized version of the moments
method [15] has been recently proposed to consider the case of general matching conditions in Ref. [17]. Second-
order theories have also been derived under general matching conditions using entropy arguments in [66]. One of the
goals of this paper is to compare the fluid-dynamical solutions that emerge from all these different formalisms and
better understand their differences and domain of applicability, in particular when uncommon matching conditions
are employed.

III. BOLTZMANN EQUATION AND FLUID-DYNAMICAL VARIABLES

The relativistic Boltzmann equation is a non-linear integro-differential equation for the single-particle momentum
distribution function f(x,p) ≡ fp [13]. Assuming that we have a one-component gas composed of classical particles
that only interact through binary collisions, the relativistic Boltzmann equation becomes,

pµ∂µfp =

∫
dQ dQ′ dP ′Wpp′↔qq′(fqfq′ − fpfp′) ≡ C [fp] , (10)

where pµ = (
√
m2 + |p|2,p) is the 4-momentum of the particle and we introduced the transition rate Wpp′↔qq′ and

the phase space integration measure dP = d3p/[(2π)3p0].
The particle 4-current and energy-momentum tensor can be expressed as integrals of fp. Multiplying Eq. (10) by

1 or pν and integrating it in momentum-space, one obtains the conservation laws (1) and identifies

Nµ =

∫
dP pµfp,

Tµν =

∫
dP pµpνfp.

(11)
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Hence, from the tensor decomposition (8), it follows that,

n ≡
∫
dP Epfp, ε ≡

∫
dP E2

pfp, P ≡ −
1

3

∫
dP ∆µνp

µpνfp,

νµ ≡
∫
dP p〈µ〉fp, h

µ ≡
∫
dP Epp

〈µ〉fp, π
µν ≡

∫
dP p〈µpν〉fp

δn ≡
∫
dP Epδfp, δε ≡

∫
dP E2

pδfp, Π ≡ −1

3

∫
dP ∆µνp

µpνδfp,

(12)

where δfp ≡ fp − f0p is the non-equilibrium component of the distribution function, with f0p being the distribution

function in local equilibrium. Above, we introduced the `-th rank projection operator p〈µ1 · · · pµ`〉 ≡ ∆µ1···µ`
ν1···ν` p

ν1 · · · pν` ,
given in terms of the 2`-rank projection tensor ∆µ1···µ`

ν1···ν` . The latter is constructed from the ∆µν projectors in such a way
that it is completely symmetric with respect to permutations in any of the indices µ1 · · ·µ` and ν1 · · · ν`, separately,
and also traceless within each subset of indices [13]. For classical particles, the local equilibrium distribution function
is given by

f0p ≡ exp (α− βEp). (13)

It is also convenient to introduce the deviation function

φp ≡
δfp
f0p

, (14)

which will be widely employed in the remainder of this paper.
As already mentioned, the local thermodynamic variables α, β, and uµ are defined by matching conditions. In

kinetic theory, these definitions act as constraints on the deviation function φp. For instance, the Landau matching
conditions, Eqs. (5) and (6), lead to the following constraints

〈Epφp〉0 = 0, 〈E2
pφp〉0 = 0,

〈
Epp

〈µ〉φp

〉
0

= 0, (15)

where we make use of the notation 〈· · · 〉0 =
∫
dP (· · · )f0p to denote integrals with respect to the equilibrium distri-

bution. The Eckart prescription, Eqs. (5) and (7), differs from the Landau one only in the vector constraint, which is
replaced by 〈

p〈µ〉φp

〉
0

= 0. (16)

Recent developments have created the demand for more general definitions of the reference equilibrium state [28,
33, 35]. And indeed, in kinetic theory, these constrains can be readily generalized with the usage of arbitrary moments
of the single-particle distribution function. These can be written in general as

〈 gpφp〉0 = 0, 〈hpφp〉0 = 0,
〈
qpp
〈µ〉φp

〉
0

= 0, (17)

where gp and hp are linearly independent functions and qp is a generic function of the microscopic energy. In this
work, we shall use

gp = Eqp, hp = Esp, qp = Ezp, (18)

which reduce to Landau matching conditions when (q, s, z) = (1, 2, 0) while Eckart matching is recovered when
(q, s, z) = (1, 2, 1). We note that, from the point of view of the Boltzmann equation, the choice of matching conditions
is arbitrary.

IV. PERTURBATIVE EXPANSIONS

The long wavelength, long time behavior of a microscopic theory, the hydrodynamic limit, can be implemented in
kinetic theory as a truncation of a perturbative series [6, 13, 14]. The perturbative parameter is the ratio between
typical microscopic and macroscopic scales, e.g. the mean free path and the length scale at which the hydrodynamic
fields vary significantly, respectively. The first implementation of such an expansion was developed by Hilbert in the
non-relativistic case [5, 6, 67]. The lowest order truncation of the Hilbert expansion leads to the Euler equations,
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which provided the first microscopic derivation of a fluid-dynamical theory. Nevertheless, its higher order truncations
failed to reproduce any reliable dissipative fluid-dynamical theory [6]. Afterwards, an improved perturbative series
expansion was put forward by Chapman and Enskog [7–9], independently. Chapman and Enskog’s approach was
broadly favored, since it led to Navier-Stokes theory – the most widely employed fluid-dynamical theory in the non-
relativistic regime.

In this section, we discuss the relativistic generalizations of the Chapman-Enskog and Hilbert series. We then
present a novel perturbative scheme that can be used to systematically derive the BDNK equations from kinetic
theory. We present microscopic expressions for the transport coefficients appearing in all fluid-dynamical theories
emerging from each perturbative scheme, for arbitrary matching conditions.

A. Chapman-Enskog expansion

The most widespread formalism used in the derivation of relativistic fluid dynamics from kinetic theory is the
Chapman-Enskog expansion [13]. In the relativistic regime, this formalism leads to equations of motion for the
macroscopic quantities which violate causality and are linearly unstable around global equilibrium [18–20, 24, 26, 30,
33, 68] and, for this reason, such theory cannot be applied to determine the spacetime evolution of relativistic fluids.
Nevertheless, Chapman-Enskog theory illustrates the basic aspects of the derivation of fluid dynamics from kinetic
theory and shall be discussed in this section assuming general matching conditions.

In this formalism, a perturbative solution of the Boltzmann equation is constructed in terms of an expansion in
powers of gradients of the fluid-dynamical fields. In practice, one converts the original Boltzmann equation into the
following perturbative problem, introducing the book-keeping (dimensionless) parameter ε,

εEpDfp + εpµ∇µfp = C[fp]. (19)

Conservation of particle number (in binary collisions), energy, and momentum in microscopic collisions guarantee that
the first two moments of the collision term vanish [13, 14],∫

dP C[fp] = 0,

∫
dP pµC[fp] = 0. (20)

This leads to the general conservation laws (1), which are actually non-perturbative in the parameter ε,

∂µ

∫
dP pµfp = 0, ∂ν

∫
dP pµpνfp = 0. (21)

We then consider the following asymptotic solution for fp,

fp =

∞∑
i=0

εif (i)p . (22)

The Boltzmann equation is solved order by order in ε [13, 14], leading to equations that can be solved to obtain

the expansion coefficients f
(i)
p . A solution of the original equation is then recovered by setting ε = 1. Since ε is

inserted multiplying a gradient of fp, it effectively serves as a book-keeping parameter to count powers or/and order
of gradients. As we shall demonstrate in the following, the zeroth-order solution of this series will lead to ideal fluid
dynamics and the first order solution to Navier-Stokes theory. In practice, it is extremely complicated to obtain any
solution beyond first-order.

To zeroth-order in ε one obtains the following nonlinear equation for f
(0)
p ,

0 = C[f (0)p ]. (23)

The solution to this equation is well-known and one readily identifies f
(0)
p as the local equilibrium distribution function.

In the classical limit, this amounts to

f (0)p = exp (α− βuµpµ) ≡ f0p, (24)

with α and β being Lorentz scalars and uµ a unitary time-like 4-vector (uµuµ = 1). These quantities, are at this
point, arbitrary functions of spacetime coordinates. We naturally identify β as the inverse temperature, α as the
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thermal potential, and uµ as the 4-velocity. As already stated, these quantities are formally defined by the matching
conditions introduced in Eq. (17).

The algebraic equations obtained from the higher-order terms in ε are obtained by expanding the collision term
and the comoving time derivative of fp in powers of ε,

Dfp = D(0)fp + εD(1)fp + ε2D(2)fp + . . . ,

C[f ] = εC(1) + ε2C(2) + . . . ,
(25)

where D(n)fp and C(n) denote the n-th order contribution in ε of the comoving derivative of fp and the collision term,
respectively. The expansion of the collision term is simply obtained by replacing the expansion of the single-particle
distribution into the expression for the collision term. We have already used that the zeroth-order contribution of
the collision term is zero, see Eq. (23). The expansion of the comoving derivative is more convoluted and shall be
explained later. Then,

EpD
(n−1)fp + pµ∇µfn−1p = C(n), n ≥ 1. (26)

The first order solution satisfies

EpD
(0)fp + pµ∇µf0p = f0pL̂φp, (27)

where φp ≡ f
(1)
p /f0p defines the first correction to the local equilibrium distribution and L̂ is the linearized collision

operator

L̂φp ≡
∫
dQ dQ′ dP ′W̃pp′↔qq′f

eq
p′ (φp + φp′ − φq − φq′). (28)

The first order solution φ
(1)
p is obtained by inverting the linear operator L̂. Before doing so, let us discuss how to

compute D(0)fp. Naively, one would identify this quantity as Df0p (as was done by Hilbert, see the next subsection).
However, Chapman and Enskog argued that the conservation laws introduce higher order contributions in ε into this
derivative. This can be seen using that

Df0p =
(
Dα− EpDβ − βDuµp〈µ〉

)
f0p. (29)

Then, with the conservation laws (9), we re-express this term as

Df0p =

[
Apθ −

β

ε0 + P0
p〈µ〉∇µP0

]
f0p +O(δn, δε,Π, νµ, hµ, πµν), (30)

where we introduced the function

Ap =
−I3,0I1,0 + I2,0(I2,0 + I2,1)− EpI1,0I2,1

I3,0I1,0 − I22,0
, (31)

which is written in terms of the thermodynamic integrals

In,q =
1

(2q + 1)!!

∫
dP
(
−∆λσpλpσ

)q
En−2qp f0p. (32)

Note that the dissipative currents δn, δε,Π, νµ, hµ, πµν vanish in equilibrium and, thus, they are at least of O(ε).
D(0)f is the zeroth-order contribution of Dfp and, hence, we can identify it as the zeroth-order contribution in ε of
Df0p,

D(0)fp =

[
Apθ −

β

ε0 + P0
p〈µ〉∇µP0

]
f0p. (33)

Thus, the equation above is a constraint that must be enforced when determining the first-order solution of the
Chapman-Enskog expansion. In practice, it guarantees that any time-like derivative of a fluid-dynamical field must
always be replaced by space-like derivatives of these fields. It is this feature that will make the Chapman-Enskog
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series an expansion solely in powers of space-like gradients (i.e., there are no time derivatives in the local rest frame
of the fluid). Afterwards, we use the identity

∇µβ =
1

ε0 + P0
(n0∇µα− β∇µP0) , (34)

which can be derived directly from Gibbs-Duhem relation, and Eq. (27) becomes(
Ap −

β

3
∆λσpλpσ

)
θ +

(
1− n0Ep

ε0 + P0

)
p〈µ〉∇µα− βp〈µpν〉σµν = L̂φp. (35)

The linear operator L̂ satisfies several fundamental properties that are relevant to our discussion. First, it is
self-adjoint, ∫

dPf0pApL̂Bp =

∫
dPf0pBpL̂Ap, (36)

with Ap and Bp being arbitrary functions of momentum (modulo some assumptions to ensure convergence). Fur-
thermore, this operator has 5 degenerate eigenfunctions (the five microscopic quantities that are conserved in binary
elastic collisions) with a vanishing eigenvalue,

L̂1 = 0, L̂pµ = 0. (37)

The self-consistency aspect of this approach may be demonstrated by multiplying Eq. (35) by 1 or pν and verifying
if these compatibility conditions are indeed satisfied. Using properties (36) and (37) of the linear collision operator,
one finds the equations∫

dP

[(
Ap −

β

3
∆µνpµpν

)
θ +

(
1− n0Ep

ε0 + P0

)
p〈µ〉∇µα− βp〈µpν〉σµν

]
= 0,∫

dP pλ
[(
Ap −

β

3
∆µνpµpν

)
θ +

(
1− n0Ep

ε0 + P0

)
p〈µ〉∇µα− βp〈µpν〉σµν

]
= 0.

(38)

These conditions are automatically satisfied without imposing any further constraints to the solution since∫
dP

(
Ap −

β

3
∆µνpµpν

)
= 0,

∫
dP Ep

(
Ap −

β

3
∆µνpµpν

)
= 0,

∫
dP∆µνpµpν

(
1− n0Ep

ε0 + P0

)
= 0, (39)

and the tensors 1, p〈µ〉, and p〈µpν〉 are elements of an orthogonal basis [31]. This demonstrates that the approximation
is consistent with the fundamental properties of the linearized collision term. Note that if the time-like derivatives of
the distribution function were not properly evaluated within the perturbative scheme, this would not be the case.

Equation (35) is an inhomogeneous linear integral equation for φp. The general solution of this equation is written
as

φp = φhomp + φpartp , (40)

where φhomp is the solution to the homogeneous equation, L̂φp = 0, and φpartp is a particular solution to the inhomo-
geneous equation. Given the zero-modes of the collision operator, the homogeneous component is

φhomp = a+ bµp
µ, (41)

where a and bµ are arbitrary real-valued constants, which will be determined by imposing the matching conditions
(17) and (18). The arbitrariness in the choice of these constants is reflected on the fact that the choice of matching
conditions is also arbitrary in kinetic theory.

Since L̂ is a linear operator, the particular solution φpartp must have the general form

φpartp = Spθ + Vpp〈µ〉∇µα+ Tpp〈µpν〉σµν , (42)

where Sp, Vp, and Tp are unknown functions of Ep. The next step is to replace the particular solution (42) into
Eq. (35), [(

Ap −
β

3
∆λσpλpσ

)
θ +

(
1− n0Ep

ε0 + P0

)
p〈µ〉∇µα− βp〈µpν〉σµν

]
f0p

= θf0pL̂ [Sp] +∇µαf0pL̂
[
Vpp〈µ〉

]
+ σµνf0pL̂

[
Tpp〈µpν〉

]
.

(43)
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This results in coupled integral equations for S, V, and T . We now expand these functions using a complete basis of

functions of Ep, P
(`)
n , n, ` = 0, 1, · · · ,

Sp =

∞∑
n=0

snP
(0)
n , Vp =

∞∑
n=0

vnP
(1)
n , Tp =

∞∑
n=0

tnP
(2)
n . (44)

Equation (43) can be decoupled by multiplying it by the basis elements P
(`)
n p〈µ1 · · · pµ`〉 and then integrating over

momentum. This leads to the following systems of equations,∑
n

Srnsn =

∫
dPP (0)

r

(
Ap −

β

3
∆λσpλpσ

)
f0p ≡ Ar, , (45a)

∑
n

Vrnvn =

∫
dP (∆µνpµpν)P (1)

r

(
1− n0Ep

ε0 + P0

)
f0p ≡ Br, (45b)

∑
n

Trntn = −β
∫
dP (∆µνpµpν)

2
P (2)
r f0p ≡ Cr, (45c)

where we defined the following integrals of the linearized collision term

Srn ≡
∫
dPP (0)

r L̂
[
P (0)
n

]
f0p,

Vrn ≡
∫
dPP (1)

r p〈µ〉L̂
[
P (1)
n p〈µ〉

]
f0p,

Trn ≡
∫
dPP (2)

r p〈µpν〉L̂
[
P (2)
n p〈µpν〉

]
f0p.

(46)

Equations (45) can be schematically inverted as

sn =
∑
m

[S−1]nmAm, vn =
∑
m

[V −1]nmBm, tn =
∑
m

[T−1]nmCm. (47)

We note that, if the basis contains parts of the homogeneous solution, the corresponding terms must be removed from
the inversion procedure. We discuss an example of this procedure in Appendix B. Nevertheless, we remark that this
will not be the case for the basis employed in this work.

The coefficients of the homogeneous solution are obtained from the matching conditions (17) and (18), which when
substituted in Eq. (40) lead to the conditions

Iq,0a+ Iq+1,0bµu
µ = −

〈
EqpSp

〉
θ,

Is,0a+ Is+1,0bµu
µ = −

〈
EspSp

〉
θ,

Iz+2,1b〈µ〉 =
1

3

〈
(∆µνpµpν)EzpVp

〉
0
∇µα,

(48)

where it was used that pµ = Epu
µ + p〈µ〉. These are solved with

a =
Iq+1,0〈EspSp〉0 − 〈EqpSp〉0Is+1,0

Gs+1,q
θ,

bµuµ =
〈EqpSp〉0Is,0 − Iq,0〈EspSp〉0

Gs+1,q
θ,

b〈µ〉 =
1

3

〈
(∆µνpµpν)EzpVp

〉
0

Iz+2,1
∇µα,

(49)

where Gn,m = In,0Im,0 − In−1,0Im+1,0.
Finally, combining the results displayed above, we obtain the solution for the first order Chapman-Enskog deviation

function

φp = S̃pθ + Ṽpp〈µ〉∇µα+ Tpp〈µpν〉σµν , (50)
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where we defined the scalar functions of Ep

S̃p =
∑
n≥0

∑
m≥0

[Ŝ−1]nmAm

(
P (0)
n +

Iq+1,0I(0)sn − I(0)qn Is+1,0

Gs+1,q
+
I(0)qn Is,0 − Iq,0I(0)sn

Gs+1,q
Ep

)
,

Ṽp =
∑
n≥0

∑
m≥0

[V̂ −1]nmBm

(
P (1)
n − I(1)zn

Iz+2,1

)
,

Tp =
∑
n≥0

∑
m≥0

[T−1]nmCmP
(2)
n ,

(51)

and the following thermodynamic integral

I(`)mn =
(−1)`

(2`+ 1)!!

〈
(∆µνpµpν)

`
Emp P

(`)
n

〉
0
. (52)

This solution can then be used to obtain the constitutive relations satisfied by the non-equilibrium corrections under
general matching conditions. Indeed, definitions (12) yield

Π = −ζθ, δn = −ξθ, δε = χθ,

νµ = κ∇µα, hµ = −λ∇µα,
πµν = 2ησµν ,

(53)

with transport coefficients given by

ζ =
∑
n≥2

∑
m≥2

[Ŝ−1]nmAmH
(ζ)
n , ξ =

∑
n≥2

∑
m≥2

[Ŝ−1]nmAmH
(ξ)
n , χ = −

∑
n≥2

∑
m≥2

[Ŝ−1]nmAmH
(χ)
n ,

κ =
∑
n≥1

∑
m≥1

[V̂ −1]nmBmJ
(κ)
n , λ =

∑
n≥1

∑
m≥1

[V̂ −1]nmBmJ
(λ)
n ,

η =
∑
n≥0

∑
m≥0

[T−1]nmCmI(2)0n ,

(54)

where

H(ζ)
n = −1

3

(
m2I(0)0n − I

(0)
2n

)
− 1

3

m2Gq+1,0 −Gq+1,2

Gs+1,q
I(0)sn +

1

3

m2Gs+1,0 −Gs+1,2

Gs+1,q
I(0)qn ,

H(ξ)
n = I(0)1n +

Gq+1,1

Gs+1,q
I(0)sn −

Gs+1,1

Gs+1,q
I(0)qn ,

H(χ)
n = I(0)2n +

Gq+1,2

Gs+1,q
I(0)sn −

Gs+1,2

Gs+1,q
I(0)qn ,

J (κ)
n = −I(1)0n +

I2,1
Iz+2,1

I(1)zn ,

J (λ)
n = I(1)1n −

I3,1
Iz+2,1

I(1)zn .

(55)

The transport coefficients are in general quite involved functions of temperature and chemical potential. Some
simplification can be made with the usage of phenomenological approximations of the collision term, such as the
relaxation time approximation [53, 69]. It is also relevant to point out that the choice of matching conditions affect
greatly some of the transport coefficients, which explicitly depend on the parameters q, s, and z necessary to define
the matching conditions. Indeed, if we use the Landau prescription, (q, s, z) = (1, 2, 1), we have ξ = χ = λ = 0. If,
instead, we use the Eckart prescription, then ξ = χ = κ = 0. Alternatively, in a matching condition defined such
that q = 0 and s = 2, we would have ζ = 0. It should also be noted that, in the massless limit, due to the fact
that Ap = −β3E

2
p and ∆µνpµpν = E2

p, we have that Sp = 0, implying that all transport coefficients related to scalar
non-equilibrium fields must vanish, i.e., ζ = ξ = χ = 0. Moreover, we note that the combinations

ζ +

(
∂P0

∂n0

)
ε0

ξ +

(
∂P0

∂ε0

)
n0

χ =
∑
n≥2

∑
m≥2

[Ŝ−1]nmAmHn,

κ+
n0

ε0 + P0
λ =

∑
n≥1

∑
m≥1

[V̂ −1]nmBmJn,
(56)
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are matching-invariant. In the above equations,(
∂P0

∂n0

)
ε0

=
I3,1I2,0 − I2,1I3,0
I22,0 − I1,0I3,0

,

(
∂P0

∂ε0

)
n0

=
I2,1I2,0 − I3,1I1,0
I22,0 − I1,0I3,0

,

Hn = −1

3

(
m2I(0)0n − I

(0)
2n

)
+

(
∂P0

∂n0

)
ε0

I(0)1n +

(
∂P0

∂ε0

)
n0

I(0)2n ,

Jn = −I(1)0n +
n0

ε0 + P0
I(1)1n .

(57)

These expressions can be derived using (39) with the identification of the In,m expressions with the thermodynamic
derivatives above.

The equations of motion are obtained replacing the first order solution for fp in the exact conservation laws (9),
where the non-equilibrium corrections above, {δε, δn,Π, νµ, hµ, πµν}, are determined in terms of the hydrodynamic
variables by the constitutive relations in Eq. (53). Using the results in [28], it is straightforward to demonstrate that
the resulting equations of motion are acausal for any choice of matching condition. Therefore, one can see that the
choice of matching condition cannot render the hydrodynamic theory emerging from the first-order truncation of the
Chapman-Enskog expansion causal and (linearly) stable.

B. Hilbert expansion

In this section we discuss the other perturbative formalism used to derive a fluid-dynamical framework from kinetic
theory: the Hilbert expansion [1, 5, 6]. This approach was originally developed by D. Hilbert in the non-relativistic
context, prior to the Chapman-Enskog theory. As previously mentioned, the Hilbert approach is not as widely
employed as the former since it does not lead to Navier-Stokes theory, and has not been worked out in detail in the
relativistic regime. Nevertheless, understanding the Hilbert expansion allows us to comprehend basic aspects and
assumptions made in perturbative derivations of fluid dynamics and, for this reason, we find it useful to work out the
details of this formalism (including its transport coefficients) in this section.

The starting point of the Hilbert expansion is identical to that of Chapman-Enskog theory, where one introduces a
perturbative parameter into the Boltzmann equation,

εpµ∂µfp = C[fp]. (58)

As shown in the last section, fundamental properties of the full collision integral (20) lead to non-perturbative
conservation laws (see Eq. (21)), which act as constraints on fp. Also similarly to Chapman-Enskog theory, we
impose a perturbative solution for the single-particle distribution function, as in Eq. (22),

fp =

∞∑
i=0

εif (i)p . (59)

Then, solutions are found order by order iteratively. After this task is performed, the book-keeping parameter ε is set
to one.

The zeroth order solution is identical to the one found in Chapman-Enskog theory, and satisfies

0 = C[f (0)p ], (60)

leading to the local equilibrium distribution function, already displayed in Eq. (24). Thus, the Hilbert expansion
also recovers ideal fluid dynamics as its zeroth-order solution. The next order solutions will differ from those of
Chapman-Enskog theory and are obtained from the equations

pµ∂µ

(
f0pφ

(n−1)
p

)
= f0pL̂[φ(n)p ] +

n−1∑
j=1

J [f (n−j)p , f (j)p ], n ≥ 1, (61)

where we defined the bilinear form of the collision operator

J [fp, gp] =

∫
dQ dQ′ dP ′Wpp′↔qq′(fpgp′ − gqfq′), (62)
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and introduced the notation φ
(0)
p = 1, φ

(n≥1)
p = f

(n)
p /f0p. We note that the equations above are different than the

equations resulting from Chapman-Enskog theory. In the former, time-like and space-like derivatives of the single-
particle distribution function are explicitly separated on the left-hand side of the equation. Such time-like derivatives
of the distribution function are then expanded in ε, leading to a rearrangement of the perturbative series, see Eqs. (25),
(26), and (27). This expansion of the time-like derivatives is then determined systematically using the zero modes of
the linear collision operator, as shown in (33). Historically speaking, this approach was understood as a correction
to the Hilbert series. As already mentioned, Chapman and Enskog’s approach was broadly favored, since it led to
Navier-Stokes theory and, thus, provided the first microscopic derivation of this widely employed fluid-dynamical
theory. In the remainder of this section we discuss the original framework proposed by Hilbert and its implications.

The main feature of the Hilbert expansion is the emergence of an infinite set of conservation laws that must be
solved independently order by order. This can be seen by multiplying Eq. (61) with 1 and pµ and integrating it in
momentum space, leading to∫

dP
[
pµ∂µ

(
f0pφ

(n−1)
p

)]
= 0,

∫
dP pα

[
pµ∂µ

(
f0pφ

(n−1)
p

)]
= 0, n ≥ 1 (63)

where we used properties (36) and (37) of the collision operator, L̂, and the following property of the bilinear collision
term, J [f, g], [1], ∫

dP J [fp, gp] = 0,

∫
dP pµJ [fp, gp] = 0. (64)

This implies that the conservation laws of particle number, energy, and momentum obtained from (58) must be solved
independently order by order in the perturbative parameter ε,

∂µN
µ
(k) = 0, ∂µT

µν
(k) = 0, k ≥ 0. (65)

It is then convenient to decompose this set of conserved currents in terms of the 4-velocity, as explained in Sec. II,

Nµ
(k) ≡

∫
dPpµf (k)p = n(k)u

µ + νµ(k) (66a)

Tµν(k) ≡
∫
dPpµpνf (k)p = ε(k)u

µuν −Π(k)∆
µν + hµ(k)u

ν + hν(k)u
µ + πµν(k), k ≥ 0, (66b)

where n(k), ε(k), Π(k), ν
µ
(k), h

µ
(k), and πµν(k) denote, respectively, the k-th order contribution to particle density, energy

density, bulk viscous pressure, particle diffusion 4-current, energy diffusion 4-current, and shear-stress tensor. Fur-
thermore, at zeroth order, n(0) = n0, ε(0) = ε0, Π(0) = P0, νµ(0) = 0, hµ(0) = 0, and πµν(0) = 0. As we shall see later, this

will be essential in determining the free parameters that appear in the homogeneous solutions for φ
(n)
p in Eq. (61).

For the sake of completeness, we derive the fluid-dynamical equations stemming from the Hilbert expansion trun-

cated at first order. First, we note that the five unknown fields contained in f
(0)
p , i.e., the temperature, thermal

potential, and 4-velocity, must be determined. In the Hilbert expansion this task is performed by deriving equations
for these variables. Using Eq. (63) with n = 1 or, equivalently, Eq. (65) with k = 0, one finds the conservation laws,

Dn0 + n0θ = 0, (67a)

Dε0 + (ε0 + P0)θ = 0, (67b)

(ε0 + P0)Duµ −∇µP0 = 0, (67c)

where, as already explained in Sec. II, ε0, P0, and n0 are functions of α and β. We note that the conservation laws
above are identical to those obeyed by an ideal fluid, even when the actual system described is out of equilibrium.

We now proceed to determine the first order correction. First, we take Eq. (61) for n = 1, which reduces to

pµ∂µf0p = f0pL̂[φ(1)p ]. (68)

The left-hand side of Eq. (68) can be irreducibly written as

pµ∂µf0p =

[
EpDα− E2

pDβ −
β

3
∆λσpλpσθ + p〈µ〉∇µα− Epp

〈µ〉 (βDuµ +∇µβ)− βp〈µpν〉σµν
]
f0p. (69)

Note that the time-like derivatives of temperature, thermal potential, and 4-velocity can be substituted by space-like
ones analogously to what occurred in Chapman-Enskog theory. Nevertheless, here we have the fundamental difference
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that this substitution is exact, and not perturbative, since α, β, and uµ satisfy the ideal fluid-dynamical equations,
see Eqs. (67). Hence, Eq. (68) becomes[(

Ap −
β

3
∆λσpλpσ

)
θ +

(
1− n0Ep

ε0 + P0

)
p〈µ〉∇µα− βp〈µpν〉σµν

]
f0p = f0pL̂φ

(1)
p , (70)

which is mathematically equivalent to Eq. (43) obtained in Chapman-Enskog theory, with Ap already being defined in
Eq. (31). This allows us to proceed with the same steps performed from Eq. (40) to Eq. (47), leading to the particular
solution

φpartp = Spθ + Vpp〈µ〉∇µα+ Tpp〈µpν〉σµν , (71)

where S, V, and T are given in Eqs. (44) and (47).
As before, this solution must be complemented by a homogeneous solution, constructed from a linear combination

of the zero-modes of the collision operator

φhomp = a+ bµp
µ. (72)

The five unknown fields that appear in the homogeneous solution will be determined in the same way as done
previously for the temperature, thermal potential, and 4-velocity at zeroth order. We derive equations of motion for
these quantities using Eq. (63) with n = 2 or, equivalently, Eq. (65) with k = 1. We note that this procedure is carried
out order by order, always determining the free parameters of the homogeneous solution using the constraints from
Eq. (65). This guarantees that the energy-momentum tensor and the particle 4-current are always exactly conserved,
even when truncated at a given order. We note that this is a crucial difference with respect to the traditional
Chapman-Enskog theory, where the undetermined coefficients of the homogeneous solution, a and bµ, are determined
using matching conditions.

Then, using decomposition (66) for k = 1 and taking into account that the zeroth order currents obey the zeroth
order conservation laws (67) separately, we have

Dn(1) + n(1)θ + ∂µν
µ
(1) = 0, (73a)

Dε(1) + (ε(1) + Π(1))θ − πµν(1)σµν + ∂µh
µ
(1) + uµDh

µ
(1) = 0, (73b)

(ε(1) + Π(1))Du
µ −∇µΠ(1) + hµ(1)θ + hα(1)∆

µν∂αuν + ∆µνDh(1)ν + ∆µν∂απ
α
(1)ν = 0. (73c)

These equations are complemented with the constitutive relation satisfied by the shear-stress tensor,

πµν(1) = 2ησµν , (74)

where the transport coefficient η is identical to the one obtained in Chapman-Enskog theory, see Eq. (54). Furthermore,
the variables n(1), ε(1), Π(1), ν

µ
(1), and hµ(1) can be expressed in terms of the fields a and bµ and gradients of α and uµ.

Using the decomposition (66) and definitions (12), we have

n(1) = aI1,0 + (bµu
µ)I2,0 − ξHθ,

ε(1) = aI2,0 + (bµu
µ)I3,0 + χHθ,

Π(1) = aI2,1 + (bµu
µ)I3,1 + ζHθ,

νµ(1) = −I2,1b〈µ〉 + κH∇µα,

hµ(1) = −I3,1b〈µ〉 − λH∇µα,

(75)

where we defined the following transport coefficients

ξH = −〈EpSp〉0 , χH =
〈
E2

pSp
〉
0
, ζH = −1

3

〈(
∆αβpαpβ

)
Sp
〉
0
,

κH =
1

3

〈(
∆αβpαpβ

)
Vp
〉
0
, λH = −1

3

〈(
∆αβpαpβ

)
EpVp

〉
0
.

(76)

These transport coefficients depend on the temperature and thermal potential, which are determined by the zeroth
order equations of motion (67). We note that the homogeneous solution has five independent degrees of freedom while
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n(1), ε(1), Π(1), ν
µ
(1), and hµ(1) define a total of nine degrees of freedom. Using (75), we can derive the constraints

which relate the three scalar fields and the two vector fields, which are given by

G3,1Π(1) = (I2,1I3,0 − I3,1I2,0)(n(1) + ξHθ) + (I2,1I2,0 − I3,1I1,0)(ε(1) − χHθ) + ζHθ, (77a)

1

I2,1
νµ(1) −

1

I3,1
hµ(1) =

(
κH
I2,1

+
λH
I3,1

)
∇µα. (77b)

In the massless limit, ζH = χH = ξH = 0 and the first constraint reduces to Π(1) = (1/3)ε(1), which is consistent with
the tracelessness property of the of the energy-momentum tensor in this case. As for the second constraint, it reduces
to νµ − (β/4)hµ = (n0/12)∇µα.

The system formed by the partial differential equations (67) and (73), together with the constraints (77) correspond
to the fluid-dynamical equations that emerge from the first-order truncation of the Hilbert expansion. These equations
are not of the form of Navier-Stokes theory and, for this reason, were readily abandoned for applications in the non-
relativistic regime. In the relativistic regime they are not often employed as well even though they do not appear to
display the same pathologies of relativistic Navier-Stokes theory.

C. New perturbative expansion

In the previous sections we discussed two traditional perturbative frameworks that can be employed to derive
fluid dynamical equations in relativistic kinetic theory. Nevertheless, both frameworks have fundamental flaws that
must be addressed. As mentioned before, the Chapman-Enskog expansion leads to fluid-dynamical equations in the
relativistic regime that are acausal and linearly unstable around global equilibrium. On the other hand, the Hilbert
expansion leads to an infinite set of conservation laws, overestimating the number of conserved quantities in the fluid.
Therefore, it cannot correctly describe the type of collective excitations that appear near equilibrium. In this section,
we discuss another perturbative procedure that leads to relativistic fluid-dynamical equations that do not contain the
above mentioned undesired and unphysical features: the BDNK equations [28, 33, 35, 36, 70].

For the practical purposes discussed in this paper, the main difference between the BDNK equations and relativistic
Navier-Stokes theory is that the former is built upon constitutive relations for the dissipative currents that do not
only contain space-like derivatives of the fluid-dynamical variables. Alternatively, one can say that the Navier-Stokes
formulation did not include all the possible terms that appear in a first-order formulation. Even though this may
appear to be a minor difference, it has been proven that the addition of time-like derivatives of the fluid-dynamical
variables to the constitutive relations can change the character of the equations of motion in such a way that causal
and stable formulations of hydrodynamics computed at first-order in derivatives can be be obtained [28, 33, 35, 36, 70],
as long as a judicious choice for the definition of the hydrodynamic variables out of equilibrium are employed.

The main reason the Chapman-Enskog expansion leads to Navier-Stokes theory and not to BDNK theory is the
replacement of time-like derivatives by space-like ones that occurs when obtaining the perturbative solution for the
time-like derivatives of the distribution function (cf. Eq. (33), for instance). As already discussed, this replacement is
essential to guarantee the validity of the compatibility conditions (38) in Chapman-Enskog theory. As for the Hilbert
expansion, the time-like derivatives are exactly substituted by space-like ones due to the fact that the equations of
motion include the Euler equations explicitly. In both cases, the zero modes of the linearized collision operator lead
to conditions that force the replacement of time-like derivatives of the fluid-dynamical variables by space-like ones.

In the following we construct a perturbative solution using moments of the Boltzmann equation and not the
Boltzmann equation itself. We first integrate the Boltzmann equation with the complete and irreducible basis

P
(`)
n (βEp)p〈µ1

· · · pµ`〉 used in the last sections (the functions P
(`)
n are not necessarily orthogonal). The perturba-

tive book-keeping parameter ε is then inserted on the left-hand side of all moment equations,

ε

∫
dPP (`)

n (βEp)p〈µ1
· · · pµ`〉p

µ∂µfp =

∫
dPP (`)

n (βEp)p〈µ1
· · · pµ`〉C[fp]. (78)

Naturally, if the basis elements correspond to 1, pµ, we obtain the usual conservation laws already displayed in (21).
These conservation laws will be treated non-perturbatively, as was the case of Chapman-Enskog theory. Thus, from
now on, we shall only consider the remaining basis elements in our analysis.

Then, as usual, one assumes an asymptotic series solution for fp,

fp =

∞∑
i=0

εif (i)p , (79)
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and Eq. (78) is solved order-by-order in the perturbative parameter. Indeed, at O(ε0), we have

0 =

∫
dPP (`)

n (βEp)p〈µ1
· · · pµ`〉C[f (0)p ]. (80)

The fact that integrals over arbitrary basis elements all vanish implies that C[f
(0)
p ] = 0 and, thus, f

(0)
p = f0p. Next,

collecting all terms of first order in ε, we obtain∫
dPP (`)

n (βEp)p〈µ1
· · · pµ`〉p

µ∂µf0p =

∫
dPP (`)

n (βEp)p〈µ1
· · · pµ`〉f0pL̂φ

(1)
p . (81)

Here, we emphasize that the zero modes of the linearized collision operator do not enter this set of equations, i.e., the
basis elements 1 and pµ are not present in this equation. This implies that the compatibility conditions that require
the exchange of time-like derivatives of fp by space-like ones in Chapman-Enskog theory, see Eqs. (38), do not appear
in this case. This is a consequence of performing the perturbative procedure on moments of the Boltzmann equation
and not on the Boltzmann equation itself. The term inside each integral on the left-hand sides can be irreducibly
written as

pµ∂µf0p =

[
EpDα− E2

pDβ −
β

3
∆λσpλpσθ + p〈µ〉∇µα− Epp

〈µ〉 (βDuµ +∇µβ)− βp〈µpν〉σµν
]
f0p. (82)

Since L̂ is a linear operator, Eq. (81) implies that the solution for φp can be expressed as the sum of a homogeneous
and a particular solution,

φp = φhomp + φpartp , (83)

where the homogeneous has the usual form

φhomp = a+ bµp
µ. (84)

Since we do not have any self-consistency or compatibility conditions that impose the replacement of time-like deriva-
tives of fluid-dynamical variables by space-like ones, the particular solution has the general form

φpartp = S(α)p Dα+ S(β)p Dβ + S(θ)p θ + V(α)
p p〈µ〉∇µα+ V(β)

p p〈µ〉(∇µβ + βDuµ) + Tpp〈µpν〉σµν . (85)

The following steps are essentially the same as those applied in Chapman-Enskog and Hilbert procedures, and involve
the inversion of the linearized collision operator (in the subspace excluding its zero modes). We assume that the

functions S, V, and T can be expanded in the complete basis P
(`)
n ,

S(α,β,θ)p =
∑
n≥0

s(α,β,θ)n P (0)
n , V(α,β)

p =
∑
n≥0

v(α,β)n P (1)
n , Tp =

∑
n≥0

tnP
(2)
n , (86)

which leads to the following system of linear equations,∑
n

Srns
(α,β,θ)
n = A(α,β,θ)

r ,∑
n

Vrnv
(α,β)
n = B(α,β)

r ,∑
n

Trntn = Cr,

(87)

to be solved for the coefficients s
(α,β,θ)
n , v

(α,β)
n , and tn. The matrices S, V , and T were already defined in (46). We

further define the thermodynamic integrals,

A(α)
r = I(0)1r , A(β)

r = −I(0)2r , A(θ)
r =

β

3

(
I(0)2r −m2I(0)0r

)
,

B(α)
r = −3I(1)0r B(β)

r = 3I(1)1r ,

Cr = −15βI(2)0r .

(88)
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Equations (87) can be schematically inverted as

s(α,β,θ)n =
∑
m

[S−1]nmA
(α,β,θ)
m v(α,β)n =

∑
m

[V −1]nmB
(α,β)
m tn =

∑
m

[T−1]nmCm. (89)

Then, we proceed to obtain the homogeneous solution φhomp . This is made by substituting Eqs. (83) and (84) in the
general matching conditions (17) and (18), in complete analogy with Eq. (48) in the Chapman-Enskog expansion. In
the present case, this procedure yields

Iq,0a+ Iq+1,0bµu
µ = −

〈
EqpS(α)p

〉
Dα−

〈
EqpS(β)p

〉
Dβ −

〈
EqpS(θ)p

〉
θ

Is,0a+ Is+1,0bµu
µ = −

〈
EspS(α)p

〉
Dα−

〈
EspS(β)p

〉
Dβ −

〈
EspS(θ)p

〉
θ

Iz+2,1b〈µ〉 =
1

3

〈
(∆µνpµpν)EzpV(α)

p

〉
0
∇µα+

1

3

〈
(∆µνpµpν)EzpV(β)

p

〉
0

(∇µβ + βDuµ) ,

(90)

where we used again that pµ = Epu
µ + p〈µ〉. The equations above can be solved for a, bµuµ, and b〈λ〉, which gives

a =
Iq+1,0〈EspS

(α)
p 〉0 − 〈EqpS

(α)
p 〉0Is+1,0

Gs+1,q
Dα+

Iq+1,0〈EspS
(β)
p 〉0 − 〈EqpS

(β)
p 〉0Is+1,0

Gs+1,q
Dβ +

Iq+1,0〈EspS
(θ)
p 〉0 − 〈EqpS

(θ)
p 〉0Is+1,0

Gs+1,q
θ,

bµuµ =
〈EqpS

(α)
p 〉0Is,0 − Iq,0〈EspS

(α)
p 〉0

Gs+1,q
Dα+

〈EqpS
(β)
p 〉0Is,0 − Iq,0〈EspS

(β)
p 〉0

Gs+1,q
Dβ +

〈EqpS
(θ)
p 〉0Is,0 − Iq,0〈EspS

(θ)
p 〉0

Gs+1,q
θ,

b〈λ〉 =
1

3

〈
(∆µνpµpν)EzpV

(α)
p

〉
0

Iz+2,1
∇λα+

1

3

〈
(∆µνpµpν)EzpV

(β)
p

〉
0

Iz+2,1
(∇λβ + βDuλ) .

(91)
Finally, combining the homogeneous solution found above with the particular solution derived in Eq. (89), we obtain

the complete first-order solution of the modified perturbative procedure introduced in this section. The solution can
be expressed as,

φp = S̃(α)p Dα+ S̃(β)p Dβ + S̃(θ)p θ + Ṽ(α)
p p〈µ〉∇µα+ Ṽ(β)

p p〈µ〉(∇µβ + βDuµ) + Tpp〈µpν〉σµν , (92)

where we define the momentum-dependent functions

S̃(α,β,θ)p =
∑
n

∑
m

[S−1]nmA
(α,β,θ)
m

(
P (0)
n +

Iq+1,0I(0)sn − I(0)qn Is+1,0

Gs+1,q
+
I(0)qn Is,0 − Iq,0I(0)sn

Gs+1,q
Ep

)
,

Ṽ(α,β)
p =

∑
n

∑
m

[V −1]nmB
(α,β)
m

(
P (1)
n − I(1)zn

Iz+2,1

)
,

Tp =
∑
n

∑
m

[T−1]nmCmP
(2)
n .

(93)

Replacing the solution in (92) into the definition of the dissipative currents (12), we obtain the following constitutive
relations

Π = ζ(α)Dα− ζ(β)Dβ
β
− ζ(θ)θ, δn = ξ(α)Dα− ξ(β)Dβ

β
− ξ(θ)θ, δε = χ(α)Dα− χ(β)Dβ

β
− χ(θ)θ,

νµ = κ(α)∇µα− κ(β)
(

1

β
∇µβ +Duµ

)
, hµ = λ(α)∇µα− λ(β)

(
1

β
∇µβ +Duµ

)
,

πµν = 2ησµν ,

(94)
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where the microscopic expressions for the fourteen transport parameters introduced above are given by

ζ(α) =
∑
n,m

[S−1]nmA
(α)
m H(ζ)

n , ζ(β) = −β
∑
n,m

[S−1]nmA
(β)
m H(ζ)

n , ζ(θ) = −
∑
n,m

[S−1]nmA
(θ)
m H(ζ)

n ,

ξ(α) =
∑
n,m

[S−1]nmA
(α)
m H(ξ)

n , ξ(β) = −β
∑
n,m

[S−1]nmA
(β)
m H(ξ)

n , ξ(θ) = −
∑
n,m

[S−1]nmA
(θ)
m H(ξ)

n ,

χ(α) =
∑
n,m

[S−1]nmA
(α)
m H(χ)

n , χ(β) = −β
∑
n,m

[S−1]nmA
(β)
m H(χ)

n , χ(θ) = −
∑
n,m

[S−1]nmA
(θ)
m H(χ)

n ,

κ(α) =
∑
n,m

[V −1]nmB
(α)
m J (κ)

n , κ(β) = −β
∑
n,m

[V −1]nmB
(β)
m J (κ)

n ,

λ(α) =
∑
n,m

[V −1]nmB
(α)
m J (λ)

n , λ(β) = −β
∑
n,m

[V −1]nmB
(β)
m J (λ)

n ,

η =
∑
n,m

[T−1]nmCmI(2)0n .

(95)

The functions H(ζ,ξ,χ), J (κ,λ) were already defined in Eqs. (55). We further notice that the shear coefficient has the
same expression as in Chapman-Enskog and Hilbert expansions. Furthermore, in the massless limit, since δTµµ =

δε − 3Π = 0, we have that 3ζ(α) = χ(α), 3ζ(β) = χ(β), and 3ζ(θ) = χ(θ). Also in this limit, since ∆λσpλpσ = −E2
p,

we have that 3ξ(θ) = ξ(β) and 3χ(θ) = χ(β), even though they are in general not zero. This is in contrast to what
happened in the traditional Chapman-Enskog expansion where ζ, ξ, and χ vanish identically in the m→ 0 limit. The
constitutive relations (94), combined with the conservation laws (1), lead to the BDNK equations [28, 33–36].

We also note that, as in Navier-Stokes theory (see Eq. (54)), the majority of the coefficients are strongly dependent
on the parameters q and s that specify the matching conditions employed. In fact, for Landau matching conditions,
(q, s, z) = (1, 2, 1), we have ξ(α,β,θ) = χ(α,β,θ) = λ(α,β) = 0, while for Eckart matching conditions, (q, s, z) = (1, 2, 0),
one finds ξ(α,β,θ) = χ(α,β,θ) = λ(α,β) = 0. Furthermore, for matching conditions that respect (q, s) = (0, 2) we have
that ζ(α,β,θ) = 0.

The approach presented in this section provides a systematic way to derive the BDNK equations from kinetic theory
at nonzero chemical potential. Early work in this direction was presented in Refs. [33, 35], but the latter did not
employ an irreducible basis nor gave explicit expressions for all the transport parameters that are valid at zero and
nonzero chemical potential.

Furthermore, we point out that Navier-Stokes theory can be obtained from the BDNK equations by replacing the
time-like derivatives of β, α, and uµ in the constitutive relations (94) using a first-order truncation of the conservation
laws. Performing this substitution, we find the relation between the transport coefficients appearing in BDNK theory
and those of Navier-Stokes theory. The result is,

ζ =

(
∂P0

∂n0

)
ε0

βζ(α) +

(
∂P0

∂ε0

)
n0

ζ(β) + ζ(θ), (96a)

ξ =

(
∂P0

∂n0

)
ε0

βξ(α) +

(
∂P0

∂ε0

)
n0

ξ(β) + ξ(θ), (96b)

− χ =

(
∂P0

∂n0

)
ε0

βχ(α) +

(
∂P0

∂ε0

)
n0

χ(β) + χ(θ), (96c)

κ = κ(α) − P0

ε0 + P0
κ(β), (96d)

λ = −λ(α) +
P0

ε0 + P0
λ(β). (96e)

This implies that, in general, ζ 6= ζ(θ) and κ 6= κ(α), for example. This mapping between the coefficients was first
derived via hydrodynamic frame transformations in [34], with the important difference that, in that reference, the
relation is between the Navier-Stokes coefficients in Landau matching conditions (only in this particular matching, ζ
and κ coincide, respectively, with the matching-invariant coefficients derived in Eqs. (56)) and the BDNK matching-
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invariant coefficients [88]

ζ(i) +

(
∂P0

∂n0

)
ε0

ξ(i) +

(
∂P0

∂ε0

)
n0

χ(i) =
∑
n≥2

∑
m≥2

[Ŝ−1]nmA
(i)
mHn, i = α, β, θ,

κ(i) +
n0

ε0 + P0
λ(i) =

∑
n≥1

∑
m≥1

[V̂ −1]nmB
(i)
m Jn i = α, β,

(97)

where Hn and Jn were defined in Eq. (57).
We would like to close this section with a brief comment on previous works where a derivation of BDNK theory from

a microscopic description was investigated. As mentioned above, the first derivation of BDNK theory from kinetic
theory was done in the original works [33, 35]. After that, other approaches were pursued in [71, 72]. Reference
[71] discussed how BDNK may be derived from holography, using the fluid/gravity correspondence [73]. They also
provided a derivation of BDNK from kinetic theory using ideas from the Hilbert series. Reference [72] focused on the
effects of a momentum-dependent relaxation time coefficient on the calculation of transport coefficients.

V. TRANSPORT COEFFICIENTS IN THE RELAXATION TIME APPROXIMATION

In order to provide some intuition on the constitutive relations derived in the previous sections, we calculate all
transport coefficients using a simplified version of the linearized collision term: the relaxation time approximation
(RTA). Here, since it is essential to consider unconventional matching conditions (Landau or Eckart matching condi-
tions render the BDNK equations acausal), it is not possible to employ the relaxation time approximation proposed
by Anderson and Witting [69]. In Ref. [53], a novel RTA for the relativistic Boltzmann equation was proposed,

f0pL̂φp ≈ −
Ep

τR
f eqp

φp −
(
φp,

Ep

τR

)
0

(1,
Ep

τR
)0
−

(
φp,

Ep

τR
P̃1

)
0(

P̃1,
Ep

τR
P̃1

)
0

P̃1 −

(
φp,

Ep

τR
p〈µ〉

)
0(

1,
Ep

τR

)
1

p〈µ〉

 , (98)

where the first term on the right-hand side amounts to the traditional RTA. The remaining terms are inserted so that
particle number, energy, and momentum are conserved regardless of the matching condition or energy dependence of
the relaxation time employed.

The counter-terms, in their turn, denote a projector in the linear subspace of conserved quantities, which is spanned
by the orthogonal basis {1, P̃1, p

〈ν〉}. The polynomial P̃1 is constructed so that it is orthogonal to 1,(
P̃1,

Ep

τR

)
0

= 0, (99)

where we defined the following scalar product

(φ, ψ)` =
`!

(2`+ 1)!!

∫
dP (∆µνp

µpν)
`
φpψpf0p. (100)

In general, we consider that the relaxation time depends on the microscopic energy through a power law,

τR = tR

(
Ep

T

)γ
, (101)

which introduces the phenomenological parameter γ. In Ref. [17], it was shown that this parameter significantly
affects the transient evolution of the dissipative currents calculated using Israel-Stewart theory. Using the Ansatz
(98), the computation of transport coefficients is significantly simplified and explicitly calculations are carried out in
the next subsection.

Transport coefficients: massless gas with constant relaxation time

Now we apply the relaxation time approximation, Eq. (98), to compute the matrix elements that appear in all
perturbative schemes discussed so far, see Eqs. (46). In the RTA, the scalar, vector, and tensor sector matrix elements
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become

Srn ≡
∫
dPP (0)

r L̂
[
P (0)
n

]
f0p ≈ −

(
P (0)
r , P (0)

n

Ep

τR

)
0

+

(
P

(0)
r ,

Ep

τR

)
0(

1,
Ep

τR

)
0

(
P (0)
n ,

Ep

τR

)
0

+

(
P

(0)
r ,

Ep

τR
P̃1

)
0(

P̃1,
Ep

τR
P̃1

)
0

(
P (0)
n ,

Ep

τR
P̃1

)
0

,

− 1

3
Vrn ≡ −

1

3

∫
dPP (1)

r p〈µ〉L̂
[
P (1)
n p〈µ〉

]
f0p ≈ −

(
P (1)
r , P (1)

n

Ep

τR

)
1

+

(
P

(1)
r ,

Ep

τR

)
1(

1,
Ep

τR

)
1

(
P (1)
n ,

Ep

τR

)
1

,

1

15
Trn ≡

1

15

∫
dPP (2)

r p〈µpν〉L̂
[
P (2)
n p〈µpν〉

]
f0p ≈ −

(
P (2)
r , P (2)

n

Ep

τR

)
2

.

(102)
As shown in the last section, the computation of transport coefficients requires the inversion of matrices of infinite

dimension. In practice this is performed by considering successive finite truncations of these matrices until the result
converges. In this case, the choice of basis plays an important role. Indeed, the existence of convergence and its speed
may depend on the choice of basis. In the present section, we use the set of functions

P (`)
m (x) =

xm−m`

(1 + x)N−n`
, m = 1, · · ·N (103)

as our basis in the N -th truncation step. The parameters m` and n` are judiciously chosen so that convergence is
achieved. This basis set is inspired by Refs. [74, 75], where a similar set was used to perturbatively compute transport
coefficients in gauge theories at high temperature using an effective kinetic theory approach. In the massless limit,
the matrix elements then become

Srn = − eα

2π2tRβ3

{
F (r + n− 2m0 + 2− γ, 2N − 2n0)− F (r −m0 + 2− γ, 2N − 2n0)

Γ(3− γ)
F (n−m0 + 2− γ, 2N − 2n0)

− [(3− γ)F (r −m0 + 2− γ, 2N − 2n0)− F (r + 3− γ, 2N − 2n0)]

Γ(4− γ)

×[(3− γ)F (n−m0 + 2− γ, 2N − 2n0)− F (n−m0 + 3− γ, 2N − 2n0)]} ,

Vrn =
eα

2π2tRβ5

[
F (r + n− 2m1 + 4− γ, 2N − 2n1)− F (r −m1 + 4− γ, 2N − 2n1)

Γ(5− γ)
F (n+ 4− γ, 2N − 2n1)

]
,

Trn = − eα

2π2tRβ7
F (r + n− 2m1 + 6− γ, 2N − 2n1),

(104)
where we defined

F (M,N) =

∫ ∞
0

dx
xM

(1 + x)N
e−x = Γ(M + 1)U(N,N −M, 1), (105)

with U(a, b, z) denoting the confluent hypergeometric function U(a, b, z) = [1/Γ(a)]
∫∞
0

2τ̂ e−ztta−1(1 + t)b−a−1, and
Γ(z) the Gamma function [76]. Moreover, the source term integrals in Eqs. (88) are

A(α)
r =

eα

2π2β2
F (r −m0 + 2, N − n0) A(β)

r = − eα

2π2β3
F (r −m0 + 3, N − n0)

B(α)
r =

eα

2π2β4
F (r −m1 + 3, N − n1) B(β)

r =
eα

2π2β5
F (r −m1 + 3, N − n1)

Cr =
eα

2π2β5
F (r −m2 + 5, N − n2),

(106)

where we note that A
(θ)
r = (1/3)A

(β)
r in the massless limit. For the sake of simplicity, we take a constant relaxation

time in the following calculations, i.e., we set the parameter γ = 0.
We compute the transport coefficients using two sets of matching conditions in which the particle diffusion 4-current

is set to zero. We shall refer to these types of frames as exotic Eckart matching conditions [17]. In the first type, we
use Eqs. (17) and (18) imposing (q, z) = (1, 0) and s 6= 1, 2 so that νµ ≡ 0 and δn ≡ 0. The corresponding results for
the transport coefficients of the BDNK equations can be seen in Table I, where we also indicate the values of n` and
m` chosen. In the second type of matching conditions, we use (q, z) = (2, 0) and s 6= 1, 2, so that νµ ≡ 0 and δε ≡ 0.
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The corresponding results for the transport coefficients of the BDNK equations are listed in Table II. In these tables,
we see that the normalized shear viscosity coefficient, η/(P0τR), which is matching independent, converges steadily
to 0.8. All other transport coefficients seem to be exactly obtained at each order, as long as an appropriate choice
of basis is employed. The reason for this behavior is clarified in Appendix C. It is also clear that ξ(α,β) and χ(α,β)

depend on the parameter s employed to define the matching condition. The results for ξ(θ) and χ(θ) are omitted due
to the fact that, in the massless limit, 3ξ(θ) = ξ(β) and 3χ(θ) = χ(β). Finally, we remark that the transport coefficients
of Navier-Stokes theory can be obtained from the results in Tables I and II using relations (96).

Transp. coeff. / Trunc. ord. 1 2 3 5 10
η/(P0τR) (m2 = 0, n2 = 1) 0.428571 0.741457 0.795862 0.799938 0.7999998

λ(α)/(P0τR) (m1 = 2, n1 = 1) 1.33333 1.33333 1.33333 1.33333 1.33333

λ(β)/(P0τR)(m1 = 2, n1 = 1) 4.00 4.00 4.00 4.00 4.00

χ(α)/(P0τR) (m0 = −1, n0 = 1,s = 3) 1.50 1.50 1.50 1.50 1.50

χ(β)/(P0τR) (m0 = −1 , n0 = 1, s = 3) 7.50 7.50 7.50 7.50 7.50

χ(α)/(P0τR) (m0 = −2 , n0 = 1, s = 4) 1.00 1.00 1.00 1.00 1.00

χ(β)/(P0τR) (m0 = −2 , n0 = 1 , s = 4) 6.00 6.00 6.00 6.00 6.00

TABLE I: BDNK transport coefficients for Exotic Eckart frames with (q, z) = (1, 0) and γ = 0. The numbers 1, 2, 3,
5, and 10 on each column mean the first, second, third non-trivial truncation order, respectively.

Transp. coeff. / Trunc. ord. 1 2 3 5 10

ξ(α)/(P0τR) (m0 = −1 , n0 = 1, s = 3) -1.00 -1.00 -1.00 -1.00 -1.00

ξ(β)/(P0τR) (m0 = −1, n0 = 1, s = 3) -5.00 -5.00 -5.00 -5.00 -5.00

ξ(α)/(P0τR) (m0 = −2 , n0 = 1, s = 4) -0.50 -0.50 -0.50 -0.50 -0.50

ξ(β)/(P0τR) (m0 = −2, n0 = 1, s = 4) -3.00 -3.00 -3.00 -3.00 -3.00

TABLE II: BDNK transport coefficients for Exotic Eckart frames with (q, z) = (2, 0) and γ = 0. The numbers 1, 2,
3, 5, and 10 on each column mean the first, second, third non-trivial truncation order, respectively.

The transport coefficients in Hilbert theory do not depend on any matching conditions and are listed in Table III. As
already mentioned, the shear viscosity coefficient is the same in both BDNK, Navier-Stokes, and Hilbert formulations.
We also remind the reader that the coefficients ζH , ξH , χH all vanish in the massless limit. Then, in this regime, the
only new coefficients to be computed are κH and λH , which converge to n0τR/3 and −P0τR, respectively.

Transp. coeff. / Trunc. ord. 1 2 3 5 10
κH/(n0τR) (m1 = 2, n1 = 1) 0.33333 0.33333 0.33333 0.33333 0.33333

λH/(P0τR) (m1 = 2, n1 = 1,s = 3) -1 -1 -1 -1 -1

TABLE III: Hilbert theory transport coefficients for γ = 0. The numbers 1, 2, 3, 5, and 10 on each column mean the
first, second, third non-trivial truncation order, respectively.

VI. COMPARISON BETWEEN EQUATIONS OF MOTION: EXOTIC ECKART FRAMES IN
BJORKEN FLOW

In this section we compare the solutions that emerge from each perturbative scheme discussed in the previous
sections with solutions of Israel-Stewart theory and exact solutions of the Boltzmann equation in the relaxation time
approximation. We assume that the system is composed of massless classical particles with a constant relaxation
time. We shall further assume that the system undergoes a highly symmetric flow configuration – Bjorken flow [44].
In this case, we have a longitudinally boost-invariant expanding fluid with a homogeneous transverse profile. In this
setting, it is convenient to work with hyperbolic coordinates, τ =

√
t2 − z2 and η = tanh−1(z/t). Then, the line

element of Minkowski space reads ds2 = dτ2 − dx2 − dy2 − τ2dη2 and the only non-vanishing Christoffel symbols are
Γτηη = τ , Γητη = Γηητ = 1/τ . In this coordinate system, the fluid 4-velocity becomes trivial, uµ = (1, 0, 0, 0), and the
fluid-dynamical equations simplify considerably. One further assumes that the system is invariant under reflections
around the z–axis and, thus, any space-like vector such as νµ, hµ, ∇µP0, and ∇µα vanishes identically. Finally, in
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Bjorken flow the shear tensor, the shear-stress tensor, and the expansion rate are expressed as

σµν = diag

(
0,− 1

3τ
,− 1

3τ
,

2

3τ

)
,

πµν = diag
(

0,−π
2
,−π

2
, π
)
,

θ =
1

τ
.

(107)

A. Hilbert equations of motion

In Section IV B we derived the fluid-dynamical equations that emerge from the first order truncation of the Hilbert
expansion. We found that the equilibrium fields n0, ε0, and uµ satisfy the relativistic Euler equation (67), while the
dissipative currents obey the linear differential equations (73), with the constrains given by Eqs. (77). In the massless
limit the coefficients ξH and χH vanish and constraint (77a) reduces to Π(1) = (1/3)ε(1). Since all irreducible first
rank tensors vanish in Bjorken flow, the remaining constraint (77b) is trivially satisfied. With this information in
mind and, using the notation δε ≡ ε(1), the equations of motion obtained from the Hilbert series in Bjorken flow are

ṅ0 +
n0
τ̂

= 0, (108a)

˙δn+
δn

τ̂
= 0, (108b)

ε̇0 +
4ε0
3τ̂

= 0, (108c)

δ̇ε+
4δε

3τ̂
− 16ε0

45τ̂2
= 0, (108d)

where we defined the normalized time coordinate, τ̂ = τ/τR, and denoted Ȧ = dA/dτ̂ . The above equations are solved
by

n0(τ) = n0(τ0)
τ0
τ
, δn(τ) = δn(τ0)

τ0
τ
,

ε0(τ) = ε0(τ0)
(τ0
τ

)4/3
, δε(τ) =

(τ0
τ

)4/3 [
δε(τ0) +

16

45τ0
ε0(τ0)

]
− 16ε0(τ0)τ̂

4/3
0

45τ̂7/3
.

(109)

Hence, it can be seen that the ratio δn/n0 is time-independent, whereas the ratio δε(τ)/ε0(τ) becomes constant
asymptotically, with a transient component that decays as 1/τ . This is quite different than what happens to solutions
of Navier-Stokes theory, which can also be solved analytically in this simplified scenario [4],

εNS(τ) = εNS(τ0)
(τ0
τ

)4/3
exp

[
−16

45

(
1

τ
− 1

τ0

)]
. (110)

This leads to a qualitative difference in the 1/τ expansion for the normalized total energy. Indeed, for the Navier-Stokes
solution, one finds the following terms when τ̂ � 1

εNS(τ)

εNS(τ0)
=
(τ0
τ

)4/3
exp

(
16

45τ̂0

)[
1− 16

45τ̂
+ · · ·

]
. (111)

On the other hand, from Eq. (108), we have for the Hilbert solution

ε0(τ) + δε(τ)

ε0(τ0) + δε(τ0)
=
(τ0
τ

)4/3 [
1 +

16

45

ε0(τ0)

ε0(τ0) + δε(τ0)

(
1

τ̂0
− 1

τ̂

)]
. (112)

Hence, the 1/τ̂ term of the Hilbert solution still displays a dependence on the initial condition, something that is not
observed for the Navier-Stokes solution. This indicates that there are no attractor solutions for δε/ε in Hilbert theory.
One may see this as a consequence of the infinite set of conservation laws that appear in this formalism. Finally, we
note that for the Hilbert solution the series in square brackets ends at first order in 1/τ̂ , which is formally different
than the Navier-Stokes solution.
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B. Israel-Stewart equations of motion

In this subsection, we write the Israel-Stewart equations of motion for massless particles undergoing Bjorken flow
with a constant relaxation time. These equations were recently derived using general matching conditions in Ref. [17]
and, for the sake of completeness, the derivation procedure is summarized in Appendix A. In the following, we consider
two sets of matching conditions.

1. Exotic Eckart matching condition I: δn = 0, δε 6= 0 (q = 1, s 6= 2)

In this case, the continuity equation related to particle number conservation,

ṅ0 +
n0
τ̂

= 0, (113)

decouples from the rest of the equations of motion. The remaining dynamical equations can be written as,

ε̇0 +
4

3τ̂
ε0 − δε−

Γ(s+ 4)

20Γ(s+ 2)

π

τ̂
= 0,

δ̇ε+

(
1 +

4

3τ̂

)
δε+

[
Γ(s+ 4)

20Γ(s+ 2)
− 1

]
π

τ̂
= 0,

π̇ − 16

45τ̂
(ε0 + δε) +

(
1 +

38

21τ̂

)
π = 0.

(114)

2. Exotic Eckart matching condition II: δn 6= 0, δε = 0 (q = 2, s 6= 1)

In this case, the equation of motion related to particle number conservation does not decouple from the remaining
equations of motion. The dynamical equations can be expressed in terms of the variables n0, ε0, δn, and π as follows

ṅ0 +
n0
τ̂
− δn−

[
Γ(s+ 4)

60Γ(s+ 2)
− 1

3Γ(s+ 2)

]
(s− 1)

(s− 2)

3n0
ε0

π

τ̂
= 0,

˙δn+

(
1 +

1

τ̂

)
δn+

[
Γ(s+ 4)

60Γ(s+ 2)
− 1

3Γ(s+ 2)

]
(s− 1)

(s− 2)

3n0
ε0

π

τ̂
= 0,

ε̇0 +
4

3τ̂
ε0 −

π

τ̂
= 0,

π̇ − 16

45τ̂
(ε0 + δε) +

(
1 +

38

21τ̂

)
π = 0.

(115)

C. BDNK equations of motion

Now we proceed to write the BDNK equations of motion, derived in Sec. V, in Bjorken flow. As above, this is done
assuming a gas composed of massless particles with a constant relaxation time and assuming two sets of matching
conditions. First with δn = 0 and δε 6= 0, then δn = 0 and δε 6= 0. We also discuss the corresponding attractor
solutions of the BDNK equations.

1. Exotic Eckart matching condition I: δn = 0, δε 6= 0 (q = 1, s 6= 2)

For this matching condition, the equation of motion for the particle density decouples and is given by (113). The
remaining equations of motion are,

ε̇0 + δ̇ε+
4

3τ̂
(ε0 + δε)− 16ε0

45τ̂2
= 0, (116a)

ε̇0 +
4ε0
3τ̂
− δε = 0. (116b)
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The first equation of motion corresponds to the continuity equation related to energy conservation (9b) while the
second equation of motion corresponds to the constitutive relation (9b). The latter was re-written in terms of time
derivatives of ε0 using the equation of state and the equation of motion for particle density. It is important to notice
that the equations of motion above do not depend on the matching parameter s, even though the transport coefficients
themselves (cf. Eq. (C5)) do depend on s. This happens due to a fortuitous cancellation in the last two terms of
Eq. (116b), where we used 1 + (χ(α) + χ(θ))/(3χ(α) − χ(β)) = 4/3 and ε0/(3χ

(α) − χ(β)) = −1, respectively.
The coupled ordinary first order differential equations (116a) and (116b) can be solved analytically for ε0 and δε.

This task can be performed by first converting these equations into a first order ordinary differential equation for
δ̃ε ≡ δε/ε0,

˙̃
δε+ δ̃ε

2
+ δ̃ε− 16

45τ̂2
= 0, (117)

which is a Ricatti differential equation [77] that can be solved with the Ansatz δ̃ε ≡ ẏ/y, leading to

ÿ + ẏ − 16

45τ̂2
y = 0, (118)

whose general solution is y(τ) = τ1/2e−τ/2 [aIν (τ/2) + bKν (τ/2)], where Iν (x) and Kν (x) are the modified Bessel

functions [76, 78] and, in the present case, ν =
√

109/180 ≈ 0.778175. Then, we have

δ̃ε(τ̂) =
(2− 2τ̂)Iν

(
τ̂
2

)
+ τ̂ Iν+1

(
τ̂
2

)
+ τ̂ Iν−1

(
τ̂
2

)
+ a

[
(2− 2τ̂)Kν

(
τ̂
2

)
− τ̂Kν−1

(
τ̂
2

)
− τ̂Kν+1

(
τ̂
2

)]
4τ̂
[
Iν
(
τ̂
2

)
+ aKν

(
τ̂
2

)] . (119)

As τ̂ goes to infinity, Kν(τ̂) ∼
√
π/2 τ̂−1/2e−τ̂ and Iν(τ̂) ∼ (2π)−1 τ̂−1/2eτ̂ [76]. Hence, the terms of Eq. (119)

corresponding to the Iν ’s dominate and any information about the initial condition is erased. The late time behavior
of the solution becomes

δ̃εatt =
(2− 2τ̂)Iν

(
τ̂
2

)
+ τ̂ Iν−1

(
τ̂
2

)
+ τ̂ Iν+1

(
τ̂
2

)
4τ̂ Iν

(
τ̂
2

) . (120)

We note that this also corresponds to the solution of (117) with a = 0 and, thus, it is referred to as an attractor
solution. On the other hand, as τ̂ approaches zero, Iν(τ̂) ∼ (1/2)Γ(ν)−1(τ̂ /2)ν and Kν(τ̂ /2) ∼ Γ(ν + 1)(2τ̂)−ν , the
Kν terms in Eqs. (119) dominate and, once more, any information about any boundary condition is erased. Hence,
the early-time solution is also universal and becomes

δ̃εpb =
(2− 2τ̂)Kν

(
τ̂
2

)
− τ̂Kν−1

(
τ̂
2

)
− τ̂Kν+1

(
τ̂
2

)
4τ̂Kν

(
τ
2

) . (121)

This can be identified as the solution of (117) with a→∞ and is referred to as a pullback attractor (see [79]). Results
for the evolution with various initial or boundary conditions, compared to the corresponding attractor solutions, can
be seen in Fig. 1. There, we further normalize δε/ε0 with 1/τ .

2. Exotic Eckart matching condition II: δn 6= 0, δε = 0 (q = 2, s 6= 1)

For the present matching conditions it is convenient to use n0 and δn as dynamical variables. The equations of
motion are obtained from Eqs. (9a) and (9b) assuming an equation of state of a gas of massless particles, ε0 = 3n0/β =
3eα/(π2β4) , and constitutive relations (C6). Then, we have

ṅ0 + ˙δn+
1

τ̂
(n0 + δn) = 0, (122a)

ṅ0 +
n0
τ̂
− (s− 2)

(s− 1)
δn− 16n0

45τ̂2
= 0. (122b)

In contrast to the previous class of matching conditions, now the equations of motion depend explicitly on the matching
parameter s. In a direct analogy with the previous case, we can derive an analytical solution for δ̃n ≡ δn/n0 that
obeys

˙̃
δn+

(s− 2)

(s− 1)
δ̃n

2
+

(s− 2)

(s− 1)
δ̃n+

16

45τ̂2

(
δ̃n+ 1

)
= 0, (123)
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FIG. 1: (Color online) Comparison between various solutions of BDNK theory, Eq. (117), and the attractor
solutions. (a) The black curves represent solution (119) with a = 1, 2, 4, 6, 8, 10, 14, 18, 22, 26, 30, 36, 42, 48, 54 and are
shown in comparison with the hydrodynamic attractor (120). (b) The black curves represent the solutions of (119)

with a = 1, 1/2, 1/3, · · · , 1/10 shown in comparison with the early time attractor (121).

which is also a Ricatti differential equation. The latter can be solved using the changes of variable δ̃n ≡ ẏ/(Asy) and
z ≡ ẏ +Asy, with As ≡ (s− 2)/(s− 1), leading to the simple differential equation for z,

ż +
16

45τ̂2
z = 0, (124)

which is solved by z(τ̂) = ae−Asτ̂ + be−Asτ̂
∫ τ̂
τ̂0
eAsτ̂+

16
45τ̂ dτ̂ and, thus,

δ̃n =
1

As

eAsτ̂+
16
45τ̂∫ τ̂

τ̂0
eAsτ̂+

16
45τ̂ dτ̂ + a′

− 1, (125)

where the only independent integration constant a′ = a/b has been chosen. The non-analytic behavior is evident and
we can express the late-time attractor as

δ̃nat =
1

As

eAsτ̂+
16
45τ̂∫ τ̂

τ̂0
eAsτ̂+

16
45τ̂ dτ̂

− 1, (126)

which corresponds to the solution with a′ = 0 displayed in Fig. 2, compared with solutions (125) for various initial
conditions, i.e., for several values of a′.

D. Matching condition influence on evolution

Now we are in position to compare the solutions of BDNK’s and Israel-Stewart’s equations of motion and the
corresponding exact solutions from the Boltzmann equation in Bjorken flow. Here, we also assess the effect that
matching conditions can have on such solutions. Due to the fact that any space-like 4-vector is identically zero in
Bjorken flow, this analysis will be limited to the parameters q and s which define temperature and chemical potential
(cf. (17) and (18)). In the present section, we shall only use type I and type II Exotic Eckart matching conditions.

1. Exotic Eckart matching conditions I: δn = 0, δε 6= 0 (q = 1, s 6= 2)

In this subsection we plot solutions of fluid-dynamical theories considering matching conditions in which δn ≡ 0, but
δε 6= 0 (q = 1, s 6= 2). Unless stated otherwise, we consider initial conditions in which the dynamical variables are in
local thermodynamic equilibrium (note that, in BDNK theory, the shear-stress tensor is not an independent dynamical
variable and is determined by constitutive relations). Figures 3 and 4 portray the evolution of the (normalized)
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FIG. 2: (Color online) Comparison of hydrodynamic attractor solutions for different matching conditions, with
matching parameter s = 3 (a) and s = 4 (b).

dissipative currents δε/(ε0 + δε) and 3π/[4(ε0 + δε)]. In Fig. 3, we employ s = 3, while in Fig. 4 we display results
for s = 4. The corresponding solution obtained from the Boltzmann equation using the method of moments [4] (see
Appendix D for details) is displayed in solid black lines, for the sake of comparison.

We find that at late times (τ̂ & 3) all three solutions have approximately the same evolution for the shear-stress
tensor. The difference observed among the solutions at early times comes mostly from the fact that we imposed
equilibrium initial conditions for the solutions of Israel-Stewart theory and the Boltzmann equation, something that
is not possible to implement for the shear-stress tensor in BDNK theory. On the other hand, the evolution of δε
is very different in all three cases. The Israel-Stewart formalism yields a negative sign for this quantity, which is in
qualitative agreement with the solution of the Boltzmann equation for this variable. However, Israel-Stewart theory
clearly overpredicts the magnitude of this non-equilibrium correction. As already pointed out in Ref. [17], in the Israel-
Stewart formalism, this happens due to the dominance of the δε-π coupling coefficient (the last term in the second
equation of (114), see also Table IV), which yields a negative contribution to δε, for s = 3 or 4. In contrast, the BDNK
formalism yields a positive sign for δε, due to the fact that it is driven by the shear term 16/(45τ̂2) in Eq. (116a).
The matching condition has a significant effect in solutions of the linearized Boltzmann equation and Israel-Stewart
theory, increasing the non-equilibrium correction as one goes from s = 3 to s = 4. We have already demonstrated
that, for this set of matching conditions, the solutions of BDNK theory for the normalized non-equilibrium energy
density have no dependence on s.

We now consider solutions of Israel-Stewart, BDNK, and the Boltzmann equation for several initial values of δε.
The remaining dynamical variables of each theory are still set to their respective local equilibrium values. The idea
is to visualize the attractor dynamics that each formalism displays. The results are shown in Fig. 5, where we
considered simulations with τ̂0δε(τ̂0)/ε(τ̂0) = 0, 0.2, and 0.4. As expected, we see that the solutions of each theory
display universal behavior at late times (τ̂ & 5), indicating the existence of late-time attractor solutions. We note
that such attractor solutions were already explicitly derived for BDNK theory in Sec. VI C. We also note that the
late time solutions of Israel-Stewart theory and the Boltzmann equation for δε are qualitatively similar, in particular
when it comes to the sign of the energy density non-equilibrium correction. The quantitative agreement between these
solutions is not very good and worsens as one increases s. The BDNK formalism, on the other hand, clearly has a
different attractor solution, which always displays a positive energy density non-equilibrium correction.

2. Exotic Eckart matching conditions II: δn 6= 0, δε ≡ 0 (q = 2, s 6= 1)

Now we investigate the solutions of fluid-dynamical theories for the matching conditions where δn 6= 0 but δε ≡ 0
(q = 2, s 6= 1). In Figs. 6 and 7, we depict the evolution of the dissipative currents assuming local equilibrium
initial conditions for the corresponding dynamical variables of each framework. As it happened in the last section, for
late times (τ̂ & 3) the shear-stress tensor evolution coincides for all three formalisms. However, for the evolution of
the non-equilibrium component of the particle number density, δn, we see that the three formulations display rather
different solutions.
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FIG. 3: (Color online) Evolution of the non-equilibrium fraction of the energy density (right) and the normalized
shear-stress tensor, π/(ε0 + P0 + δε+ Π) = 3π/[4(ε0 + δε)] (left), for the Boltzmann equation (RTA), Israel-Stewart

(IS) and BDNK for type I exotic Eckart and s = 3 and equilibrium initial conditions.
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FIG. 4: (Color online) Evolution of the non-equilibrium fraction of the energy density (left) and the normalized
shear-stress tensor, π/(ε0 + P0 + δε+ Π) = 3π/[4(ε0 + δε)] (right), for the Boltzmann equation (RTA),
Israel-Stewart (IS), and BDNK for type I exotic Eckart and s = 4 and equilibrium initial conditions.
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FIG. 5: (Color online) Comparison between the time evolution (for various initial conditions) of the non-equilibrium
correction for the energy density found by solving the RTA Boltzmann equation, Israel-Stewart (IS), and BDNK

using type I exotic Eckart for s = 3 (left) and s = 4 (right). The initial conditions are so that
δε(τ̂0)/[(ε0 + δε)(τ̂0)] = 0, 0.2, 0.4, and, when applicable, π(τ̂0) = 0.
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In the present case, solutions of both Israel-Stewart and BDNK theories are qualitatively similar, displaying negative
values for δn. In Israel-Stewart theory, this happens because of the δn-π coupling term in the second equation displayed
in Eq. (115). In contrast to the previous matching condition, the evolution of δn in the BDNK formalism also yields
negative values due to the dominance of the n0/τ term in Eq. (122a). Finally, we note that solutions of the Boltzmann
equation for δn differ significantly and always display positive values for this quantity.

We now consider solutions of Israel-Stewart, BDNK, and the RTA Boltzmann equation for several initial values of
δn. The remaining dynamical variables of each theory are still set to their respective local equilibrium values. As in
the previous subsection, the goal is to gain some intuition on the attractor dynamics that each formalism may display.
The results are shown in Fig. 8, where we considered simulations with δn(τ̂0)/[(n+ δn)(τ̂0)] = 0, 0.2, and 0.4. We see
that the solutions of each theory display universal behavior at late times (τ̂ & 10), indicating the existence of late-time
attractor solutions. Again, we note that such attractor solutions were already explicitly derived for BDNK theory in
Sec. VI C. For these matching conditions, one sees that the late time solutions of Israel-Stewart theory and BDNK
theory for δn are qualitatively similar, even though the quantitative agreement between these solutions is not very
good. Both fluid-dynamical frameworks appear to be unable to describe the solutions for δn found in the Boltzmann
equation in the relaxation time approximation.
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FIG. 6: (Color online) Evolution of the non-equilibrium fraction of the particle density (left) and the normalized
shear-stress tensor, π/(ε0 + P0) = 3π/(4ε0) (right), found by solving the RTA Boltzmann equation, Israel-Stewart

(IS), and BDNK for type II exotic Eckart with s = 3 and equilibrium initial conditions.
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FIG. 7: (Color online) Evolution of the non-equilibrium fraction of the particle density (left) and the normalized
shear-stress tensor, π/(ε0 + P0) = 3π/(4ε0) (right), found by solving the RTA Boltzmann equation, Israel-Stewart

(IS), and BDNK for type II exotic Eckart with s = 4 and equilibrium initial conditions.
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FIG. 8: (Color online) Comparison between time evolution of the non-equilibrium correction to the particle density
found by solving the RTA Boltzmann equation, Israel-Stewart (IS), and BDNK for type II exotic Eckart with s = 3

(left) and s = 4 (right) and various initial conditions. The initial conditions are such that
δn(τ̂0)/[(n+ δn)(τ̂0)] = 0.0, 0.2, 0.4 and π(τ̂0) = 0, when applicable.

VII. FINAL REMARKS AND DISCUSSION

In this paper we discussed how relativistic fluid-dynamical theories can be derived from the Boltzmann equation
by imposing different perturbative schemes. First, we showed how the traditional Chapman-Enskog and Hilbert
expansions are used to obtain macroscopic solutions of the Boltzmann equation for arbitrary matching conditions.
We then introduced a novel perturbative scheme to microscopically derive the BDNK equations of fluid dynamics
from the Boltzmann equation, also considering arbitrary matching conditions. The main difference between our
approach and the traditional Chapman-Enskog expansion is to construct a perturbative scheme using moments of
the Boltzmann equation (for a given basis) instead of the Boltzmann equation itself. With this prescription, the
compatibility conditions for the inversion of the linearized collision operator are avoided and one is not required to
replace time-like derivatives of the fluid-dynamical variables by space-like ones – a feature of the traditional gradient
expansion that is not present and imposed in the BDNK equations.

We obtained microscopic expressions for all the transport coefficients of relativistic Navier-Stokes theory, Hilbert
theory, and the BDNK equations. As far as the authors know, this is the first time such full expressions are obtained
for arbitrary matching conditions. We remark that the transport coefficients were calculated assuming a system
composed of classical particles that only interact through binary collisions. However, we note that our approach can
be generalized to compute the transport coefficients in more realistic systems of phenomenological interest, such as
QCD effective kinetic theory [75]. We then explicitly calculated these transport coefficients imposing the relaxation
time approximation for the linearized collision term and assuming that the particles are massless. This was done
using the transport coefficients calculated within the relaxation time approximation, considering relaxation times
that are energy independent. In this setting, we were able to obtain analytical solutions of Hilbert theory and
the BDNK equations. We further argued that there are no attractor solutions of Hilbert theory for the normalized
nonequilibrium energy density fraction. On the hand, we showed that the BDNK equations display attractor solutions
for this quantity.

We then investigated and compared the solutions of these fluid-dynamical frameworks with exact solutions of the
Boltzmann equation for a gas of massless classical particles undergoing Bjorken flow. One of our goals was to compare
solutions obtained with different matching conditions and understand the effect of the latter on such rapidly expanding
systems. Investigating the solutions of BDNK theory, we found that the attractor structure is largely affected by the
matching conditions. Indeed, for matching conditions such that δn ≡ 0 and δε 6= 0, we found that both the late-time
(hydrodynamic) and early-time attractors can be analytically obtained. This class of matching conditions is physically
motivated by causality [35], and we have seen that the evolution does not depend on the parameter s, and neither do
the attractors, which is a surprising feature. As for matching conditions such that δn 6= 0 and δε ≡ 0, there is only a
hydrodynamic attractor and it depends on the matching parameter s.

For the sake of completeness, we compare the evolution and the attractor structure obtained by solving the BDNK
equations of motion with those found by solving Israel-Stewart theory under general matching conditions and also
the full moment equations of the RTA Boltzmann equation. The dynamics of the latter two equations of motion is
also affected by matching conditions, with the 19-moments truncation explicitly depending on the parameter s and
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the slight change of variables of the moment equations in the RTA. At sufficiently late times, we found that the
shear tensor (which in Bjorken flow is reduced to only one independent function π(τ)) evolves similarly in BDNK,
Israel-Stewart, and the RTA moment equations. In contrast, the time evolution profiles displayed by δε and δn are
very different among the three formulations.

The attractors are also quite different in the three approaches. This is in contrast to other results obtained using
Landau matching conditions [43, 52, 80–83], where the attractors of the hydrodynamic theory match the one from
kinetic theory. This suggests that the truncation method employed in the alternative matching conditions for the IS
formalism has to be improved beyond the moments approximation implemented in Ref. [17]. Moreover, the attractor
mismatch may evidence that other implementations of the alternative matching conditions may be more adequate to
perform the analysis.

In future works, it would be relevant to analyze the effects from assuming momentum-dependent relaxation times
into account. Furthermore, an obvious next step is the calculation of BDNK transport coefficients for massive particles
and also other type of interactions.
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Appendix A: Moments method and Israel-Stewart theory under general matching conditions

In this Appendix we summarize the truncation procedure to obtain Israel-Stewart [12, 22] equations of motion
under general matching conditions used in Sec. VI B and proposed in Ref. [17]. In the Israel-Stewart formalism,
non-equilibrium dissipative currents are considered as fields with independent dynamics. Thus, for general matching
conditions, none of the hydrodynamic fields (n0, δn, ε0, δε,Π, u

µ, νµ, hµ, πµν) are zero and 19 equations of motion are
required to have a closed system in terms of these variables. Five equations are given by the conservation laws (9).
The remaining equations of motion are obtained by truncating the exact equations for the irreducible moments (C2)
of the Boltzmann equation, which can be seen in Refs. [17, 31].

To truncate this infinite system of partial differential equations, in Ref. [17] we followed a generalization of the
ideas put forward by Grad [10, 11] in the non-relativistic case, and later on by Israel and Stewart [22] under general
matching conditions. Then, we consider the expansion of the deviation function φp = (fp−f0p)/f0p in an irreducible
and orthogonal basis. This expansion is truncated by consistently constraining the deviation function with the
definitions of the hydrodynamic fields (12) and the matching conditions (17) and (18). Effectively, this implies that
all non-hydrodynamic moments ρµ1···µ`

r vanish for ` ≥ 3 and that the moments coefficients ρr, ρ
µ
r and ρµνr are linear

combinations of the hydrodynamic fields (δn, δε,Π, νµ, hµ, πµν). This leads to a closed system of coupled relaxation
equations for the dissipative currents that depend on the parameters q, s, and z. These equations greatly simplify in
the massless limit and in the case of Bjorken flow.

Bjorken flow

For Bjorken flow, in the massless limit, and using exotic Eckart matching conditions such that δn ≡ 0 and ρs ≡ 0,
the equations of motion, which include the conservation laws and the relaxation equations, can be cast in the form ε̇0

δ̇ε
π̇

+

 4
3τ − 1

τδε
− 1
τ

(
λδεπ
τδε

+ 1
)

0 4
3τ + 1

τδε
1
τ
λδεπ
τδε

− 16
45τ − 16

45τ
38
21τ + 1

τπ


 ε0
δε
π

 =

 0
0
0

 , (A1)

where τδε and τπ denote the relaxation times associated with δε and πµν , respectively. For a constant relaxation time,
τδε = τπ = τR. We also have the matching-dependent coupling constant λδεπ, which is expressed as

λδεπ
τδε

=
Γ(s+ 4)

20Γ(s+ 2)
− 1. (A2)
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whereas for exotic Eckart matching conditions such that δε ≡ 0 and ρs ≡ 0, the equations of motion are
ṅ0
˙δn
ε̇0
π̇

+


1
τ − 1

τδn
0 −λδnπτ

0 1
τ + 1

τδn
0 λδnπ

τ

0 0 4
3τ − 1

τ
0 0 − 16

45τ
38
21τ + 1

τπ


 n0
δn
ε0
π

 =

 0
0
0
0

 , (A3)

where we have the relaxation time τδn related to the dissipative current δn. For a constant relaxation time τδn = τR.
We also have the matching-dependent coupling

λδnπ
τδn

=
s− 1

(s− 2)Γ(s+ 2)

(
Γ(s+ 4)

60
− 1

3

)
. (A4)

In this particular background, the dynamics of n0 + δn and ε0 + δε are matching invariant. Indeed, summing the
two first rows of Eq. (114) and (115), the result does not depend on the matching-dependent coefficients τδn, τδε,
λδnπ, and λδεπ. Values for the couplings can be seen in Table IV for the values of s used in the main text.

s = 3 s = 4
λδεπ[τδε] 1/2 11/10
λδnπ[τδn] 35/36 251/240

TABLE IV: Couplings in units of τδε and τδε for s = 3, 4 exotic Eckart matching conditions.

Appendix B: Basis with zero modes

In this Appendix, we show the procedure that can be performed in order to compute transport coefficients in the
Chapman-Enskog expansion in a basis that contains zero modes. We note that the methods outlined here can be
extended to the modified expansion used to derive BDNK hydrodynamics. To this end, we use the basis

P (`)
n = Enp , n = 0, 1, · · · . (B1)

Once again, since the linearized collision term L̂ is a linear operator, the particular solution φpartp must have the
general form (42),

φpartp = Spθ + Vpp〈µ〉∇µα+ Tpp〈µpν〉σµν , (B2)

The next step is to replace the particular solution Eq. (42) into Eq. (35), and then we obtain again Eq. (43), which is
a coupled integral equation for S, V, and T . We proceed by multiplying this equation by Erp, Erpp

〈µ〉 and Erpp
〈µpν〉

and integrating in over momentum. Then, after expanding Sp, Vp, and Tp as polynomials in Ep such that

Sp =
∑
n≥0

snE
n
p , Vp =

∑
n≥0

vnE
n
p , Tp =

∑
n≥0

tnE
n
p , (B3)

we have the following systems of equations, which are analogous to Eqs. (45)∑
n

S
′

rnsn = A
′

r, (B4a)∑
n

V
′

rnvn = B
′

r, (B4b)∑
n

T
′

rntn = C
′

r, (B4c)

where

S
′

rn ≡
∫
dPErpL̂

[
Enp
]
f0p, A

′

r =

∫
dPErp

(
Ap −

β

3
∆λσpλpσ

)
f0p,

V
′

rn ≡
∫
dPErpp

〈µ〉L̂
[
Enpp〈µ〉

]
f0p, B

′

r =

∫
dP (∆µνpµpν)Erp

(
1− n0Ep

ε0 + P0

)
f0p,

T
′

rn ≡
∫
dPErpp

〈µpν〉L̂
[
Enpp〈µpν〉

]
f0p, C

′

r = −β
∫
dP (∆µνpµpν)

2
Erpf0p.

(B5)
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Equations (B4c) can be schematically inverted as

tn =
∑
m

[T
′−1]nmC

′

m. (B6)

As for equations (B4a) and (B4b), the inversion process is not so simple due to the presence of zero modes. In fact,
these systems of equations have the matrix forms

0 0 0 0 0 · · ·
0 0 0 0 0 · · ·
0 0 S22 S23 S24 · · ·
0 0 S32 S33 S34 · · ·
...

...
...

...
...

...



s0
s1
s2
s3
...

 =


0
0
A2

A3

...

 ,


0 0 0 0 · · ·
0 V11 V12 V13 · · ·
0 V21 V22 V23 · · ·
...

...
...

...
...



v0
v1
v2
...

 =


0
B1

B2

...

 ,

(B7)

where the vanishing of the first (the first and the second) line(s) of the matrix V (S) stems from the self-adjoint
property (36). Additionally, A0 = A1 = B0 = 0 due to property (39).

Hence, to solve the related linear equations, it is necessary to remove linear sub-spaces corresponding to the zero-
modes. Then, denoting the submatrices of S′ and V ′ as Ŝ and V̂ , respectively, we have as a result of the schematic
inversion

vn =
∑
m≥1

[V̂ −1]nmBm, n = 1, 2, · · · ,

sn =
∑
m≥2

[Ŝ−1]nmAm, n = 2, 3, · · · .
(B8)

The coefficients related to the zero modes, s0, s1, and v0 cannot be obtained. Nevertheless, this is not a problem
since they can be incorporated into the homogeneous solution by a redefinition of the a and bµ coefficients in φhomp .
They are then obtained from the matching conditions (17) and (18), which when substituted in Eq. (40) lead to the
conditions

Iq,0a+ Iq+1,0bµu
µ = −

〈
EqpSp

〉
θ,

Is,0a+ Is+1,0bµu
µ = −

〈
EspSp

〉
θ,

Iz+2,1b〈µ〉 =
1

3

〈
(∆µνpµpν)EzpVp

〉
0
∇µα,

(B9)

where it was used that pµ = Epu
µ + p〈µ〉. These are solved with

a =
Iq+1,0〈EspSp〉0 − 〈EqpSp〉0Is+1,0

Gs+1,q
θ,

bµuµ =
〈EqpSp〉0Is,0 − Iq,0〈EspSp〉0

Gs+1,q
θ,

b〈µ〉 =
1

3

〈
(∆µνpµpν)EzpVp

〉
0

Iz+2,1
∇µα.

(B10)

Finally, we have as the solution for the first order Chapman-Enskog deviation function

φp = S̃pθ + Ṽpp〈µ〉∇µα+ Tpp〈µpν〉σµν . (B11)
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with

S̃p =
∑
n≥2

∑
m≥2

[Ŝ−1]nmAm

(
Enp +

Iq+1,0Is+n,0 − Iq+n,0Is,0
Gs+1,q

+
Iq+n,0Is,0 − Iq,0Is+n,0

Gs+1,q
Ep

)
,

Ṽp =
∑
n≥1

∑
m≥1

[V̂ −1]nmBm

(
Enp −

Iz+n+2,1

Iz+2,1

)
,

Tp =
∑
n≥0

∑
m≥0

[T−1]nmCmE
n
p .

(B12)

From this solution, constitutive relations for the non-equilibrium corrections can be obtained. Indeed, definitions (12)
yield

Π = −ζθ, δn = −ξθ, δε = χθ,

νµ = κ∇µα, hµ = −λ∇µα,
πµν = 2ησµν ,

(B13)

with transport coefficients given by

ζ =
∑
n≥2

∑
m≥2

[Ŝ−1]nmAmH
(ζ)
n , ξ =

∑
n≥2

∑
m≥2

[Ŝ−1]nmAmH
(ξ)
n , χ = −

∑
n≥2

∑
m≥2

[Ŝ−1]nmAmH
(χ)
n ,

κ =
∑
n≥1

∑
m≥1

[V̂ −1]nmBmJ
(κ)
n , λ =

∑
n≥1

∑
m≥1

[V̂ −1]nmBmJ
(λ)
n ,

η =
∑
n≥0

∑
m≥0

[T−1]nmCmIn+4,2,

(B14)

where

H(ζ)
n = In+2,1 − Iq+n,0

I2,1Is+1,0 − Is,0I3,1
Gs+1,q

+ Is+n,0
I2,1Iq+1,0 − Iq,0I3,1

Gs+1,q
,

H(ξ)
n = In+1,0 − Iq+n,0

Gs+1,1

Gs+1,q
+ Is+n,0

Gq+1,1

Gs+1,q
,

H(χ)
n = −In+2,0 + Iq+n,0

Gs+1,2

Gs+1,q
− Is+n,0

Gq+1,2

Gs+1,q
,

J (κ)
n = −In+2,1 +

I2,1
Iz+2,1

Iz+n+2,1,

J (λ)
n = In+3,1 −

I3,1
Iz+2,1

Iz+n+2,1,

(B15)

where the conclusions of the end of Section IV A are also valid here. The inversion procedure described here also has
consequences for the perturbative procedure outlined in Section IV C. In that case, the zero modes must be explicitly
excluded from the expansion of the functions S(α,β,θ), V(α,β), and T .

Appendix C: Choice of basis for the computation of transport coefficients

In this Appendix we show the reason for the specific choice of the parameters m` and n` which define the bases used
to compute the transport coefficients in Tables I and II. To this end, we digress to the exact derivation of transport
coefficients using the basis constructed using powers of energy. In the particular case of RTA, Eq. (98), we employ

the basis so that P
(0)
n = En+2

p , P
(1)
0 = E−1p , P

(1)
1 = Ep, P

(1)
2 = E−1p , . . ., and P

(2)
n = En−1p so we have

DαIr+1,0 −DβIr+2,0 + βIr+2,1θ = − 1

τR

{
ρr+1 +

Γ(r + 3)

βrΓ(3)

[
(r − 1)δn− β r

3
δε
]}

, r = 2, 3, 4, · · · , (C1a)

−∇µαIr+2,1 + (∇µβ + βDuµ) Ir+3,1 = − 1

τR

[
ραr+1 −

1

βr
Γ(r + 5)

Γ(5)
hα
]
, r = 1, 2, 3, · · · , (C1b)

− 2βIr+4,2σ
αβ = − 1

τR
ραβr+1, r = 0, 1, 2, · · · , (C1c)
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where we defined the irreducible moments

ρµ1···µ`
r =

∫
dPErpp

〈µ1 · · · pµ`〉φpf0p. (C2)

The hydrodynamic fields correspond to particular instances of these general moments such that δn = ρ1, δε = ρ2,
νµ = ρµ0 , hµ = ρµ1 , and πµν = ρµν0 . The particular case of a constant relaxation time allows us to express the collision
integrals solely in terms of a few integer moments. Thus, to obtain the constitutive relations, one can simply use the
appropriate value of r in Eqs. (C1) and use the information contained in the matching conditions. In terms of the
irreducible moments (C2), the matching conditions of the type (18) are

ρq = ρs = 0, q 6= s, (C3a)

ρµz = 0. (C3b)

We start with the coefficients related to scalar hydrodynamic fields. In this case we use type I exotic Eckart, q = 1,
s 6= 2, to obtain the transport coefficients, we take r = s− 1 in Eq. (C1a), then we have

δε = χ(α)Dα− χ(β)

(
Dβ

β
− 1

3
θ

)
, (C4)

with

χ(α) =
τR

(s− 1)
ε0,

χ(β) =
(s+ 2)τR
(s− 1)

ε0,
(C5)

which is consistent with the results of Table I. Otherwise, if we use type II exotic Eckart matching conditions, we have
q = 2, s 6= 1. Again, we take r = s− 1 in Eq. (C1a) to obtain

δn = ξ(α)Dα− ξ(β)
(
Dβ

β
− 1

3
θ

)
, (C6)

with

ξ(α) = −τR
n0

(s− 2)
,

ξ(β) = −τR
n0(s+ 2)

(s− 2)
,

(C7)

which is consistent with the results of Table II. Now it is possible to explain the behavior seen in Tables I and II:
we obtain the exact values from the matrix inversion procedure because the power which was used in Eq. (C1a) to
obtain the transport coefficients, Es−1p , can be exactly expanded as the finite sum of basis elements. For instance, for
s = 3 we have chosen the basis (103) with n0 = −1 m0 = 1, and in this case

x2 = 1
x2

1 + x
+ 1

x3

1 + x
+ 0

x4

1 + x
,

x2 = 1
x2

(1 + x)3
+ 3

x3

(1 + x)3
+ 3

x4

(1 + x)3
+ 1

x5

(1 + x)3
,

(C8)

for the second and fourth order truncation orders, respectively.
Similarly, for the vector dissipative currents constitutive relations, the transport coefficients depend explicitly on

the parameter z used to define the velocity 4-vector uµ. Indeed, if we use Eckart matching conditions, νµ = 0 (z = 0),
then, we choose r = −1 in Eq. (C1b) and we readily obtain the constitutive relation for the energy diffusion vector

hµ = λ(α)∇µα− λ(β)
(

1

β
∇µβ +Duµ

)
(C9)

with

λ(α) =
4

9
τRε0, λ(β) =

4

3
τRε0. (C10)
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In the case where Landau matching conditions are used, hµ = 0 (z = 1), then we choose again r = −1 in Eq. (C1b)
and we readily obtain the constitutive relation for the particle diffusion vector

νµ = κ(α)∇µα− κ(β)
(

1

β
∇µβ +Duµ

)
, (C11)

where

κ(α) =
n0
3
τR, κ(β) = n0τR. (C12)

Once again, the power of Ep which was used to obtain the transport coefficients from Eq. (C1b), E−1p can be exactly
expanded as the finite sum of basis elements. Indeed,

1

x
= 1

1

x(1 + x)
+ 1

1

1 + x
+ 0

x

1 + x
,

1

x
= 1

1

x(1 + x)3
+ 3

1

x(1 + x)3
+ 3

x

x(1 + x)3
+ 1

x2

x(1 + x)3
,

(C13)

for the second and fourth order truncation orders, respectively.
The constitutive relations for the rank-two tensors can be readily obtained, as they do not depend on matching

conditions and the RTA collision term is diagonal. In this case, to obtain the constitutive relation for the shear-stress
tensor, we integrate Eq. (98) with E−1p p〈µpν〉. Then, we have the familiar constitutive relation

πµν = 2ησµν , (C14)

with

η = βτRI2,2, (C15)

which coincides with the expression for the shear viscosity within the Chapman-Enskog expansion in RTA [53] and is
also consistent with the results of Table I.

Appendix D: Boltzmann’s moment equations of motion in Bjorken flow

In this Appendix we discuss the set of moment equations of the Boltzmann equation within the relaxation time
approximation (98) in Bjorken flow [4, 48]. In curved spacetime, the on-shell Boltzmann equation is expressed as
[84–86]

pµ∂µfp + Γαµipαp
µ ∂fp
∂pi

= C[fp]. (D1)

In Bjorken flow, the only non-vanishing components of the Christoffel symbols are Γτηη = τ Γητη = 1/τ , hence,

pτ∂τfp = C[fp]. (D2)

The Boltzmann equation can be re-expressed in terms of an infinite set of coupled differential equations for the
irreducible moments of fp. The underlying symmetries of Bjorken background imply that fp = f(τ, pη, p

τ ) and also
that it is possible to expand f in terms of Legendre polynomials and powers of pτ . This motivates the use of the
moments

ρn,m =

∫
dP (pτ )

n+1
P2m(cos Θ)fp, (D3)

to describe the dynamics. In the equation above, P2m(cos Θ) denotes the Legendre polynomial [78] in the variable
cos Θ ≡ pη/(p

ττ). We further notice that parity symmetry implies that moments constructed from Pn(cos Θ) with
odd n are zero. If the distribution is that of particles in local equilibrium (13), then the moments reduce to

ρ(0)n,m =

∫
dP (pτ )

n+1
P2m(cos Θ)f0p = eα

Γ(n+ 3)

2π2βn+3
δm,0. (D4)
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The relevant hydrodynamic variables can be expressed in terms of the moments in Eqs. (D3) and (D4)

n0 = ρ
(0)
0,0 δn = ρ0,0 − ρ(0)0,0,

ε0 = ρ
(0)
1,0 δε = ρ1,0 − ρ(0)1,0,

π = −2

3
ρ1,1,

(D5)

where the latter identification can be performed from the fact that π ≡ πηη can be written as

π =

∫
dP (pτ )

2

[(
pη
τpτ

)2

− 1

3

]
fp. (D6)

The matching conditions (17) and (18) are expressed as [87]

ρq−1,0 ≡ ρ(0)q−1,0,

ρs−1,0 ≡ ρ(0)s−1,0.
(D7)

Then, after some algebraic steps, one obtains that the equations of motion for the moments of (D3) in RTA for
constant relaxation time, γ = 0, are

ρ̇n,m +
ρn,m
τ̂

+
2m(2m− 1)(n+ 2m+ 1)

16m2 − 1

ρn,m−1
τ̂

+
2m(2m+ 1) + (8m2 + 4m− 1)n

(4m− 1)(4m+ 3)

ρn,m
τ̂

+
(n− 2m)(2m+ 1)(2m+ 2)

(4m+ 1)(4m+ 3)

ρn,m+1

τ̂

= −(ρn,m − ρ(0)n,m) +
Γ(n+ 3)

Γ(3)βn
(1− n)δn δm,0 + βn

Γ(n+ 3)

βnΓ(4)
δε δm,0, n = 0, 1, · · · , m = 0, 1, · · · ,

(D8)

where δn,m denotes the Kronecker delta. The equations above form an infinite system of first-order coupled differential
equations. The symmetry assumptions lead to the fact that moments with different values of n decouple, and only
trios of consecutive moments couple for the Legendre index m. For computation purposes this tower is truncated at
some high moment m = Mtrun. In the computations of the main text we chose Mtrun = 25 (we checked that our
results are robust with respect to variations of this quantity). It should also be noticed that the counter-terms which
are characteristic of the novel RTA formulation only have an effect for scalar (m = 0) moments.
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