
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Effects of cosine tapering window on quantum phase
estimation

Gumaro Rendon, Taku Izubuchi, and Yuta Kikuchi
Phys. Rev. D 106, 034503 — Published  9 August 2022

DOI: 10.1103/PhysRevD.106.034503

https://dx.doi.org/10.1103/PhysRevD.106.034503


Effects of Cosine Tapering Window on Quantum Phase Estimation

Gumaro Rendon,1, ∗ Taku Izubuchi,1, 2 and Yuta Kikuchi1
1Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA

2RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

We provide a modification to the quantum phase estimation algorithm (QPEA)[1–3] inspired on
classical windowing methods for spectral density estimation. From this modification we obtain an
upper bound in the cost that implies a cubic improvement with respect to the algorithm’s error
rate. Numerical evaluation of the costs also demonstrates an improvement. Moreover, with similar
techniques, we detail an iterative projective measurement method for ground state preparation that
gives an exponential improvement over previous bounds using QPEA. Numerical tests that confirm
the expected scaling behavior are also obtained. For these numerical tests we have used a Lattice
Thirring model as testing ground. Using well-known perturbation theory results, we also show how
to more appropriately estimate the cost scaling with respect to state error instead of evolution
operator error

I. INTRODUCTION

In recent years, there has been increased interest in
quantum computing techniques from the high-energy and
nuclear physics community. Traditionally, physical sys-
tems that cannot be accessed through perturbative meth-
ods are studied through a combination of a Wick rotation
and Monte Carlo methods [4] to perform observables es-
timation in the Lagrangian formalism. This approach
amounts to estimating the path integral in Euclidean
space time. Working in Euclidean space time ensures the
integrand, which is the Boltzmann weight used to sample
Field configurations, is strictly positive and thus can be
assigned to the probabilistic weight in Monte Carlo meth-
ods. However, this excludes systems that have topolog-
ical terms [5], non-zero chemical potentials [6], or limits
the study of real-time dynamics in general [7, 8]. These
particular cases spoil the positiveness of the sampling
weight and can no longer use the probabilistic interpreta-
tion. Switching altogether to the Hamiltonian formalism
avoids the requirement of probabilistic interpretation of
Monte Carlo methods. The main drawback of working
in the Hamiltonian formalism is the exponential growth
of the Hilbert space dimension with respect to the sys-
tem size. This renders most classical methods unfeasible
even at relatively small system sizes. Quantum comput-
ing promises to bypass this problem [9] in a general sense.
Thus, it will be of importance to further develop quan-
tum algorithms so we are ready on the arrival of proper
quantum hardware.

In quantum computing, state preparation is an essen-
tial part in the process of estimating observables. Here,
we propose an iterative approach for state preparation
which exponentially improves over previous bounds pro-
vided in [10] when using the quantum phase estimation
algorithm (QPEA) [1]. We also introduce a minimal
modification to the truncation window from the origi-
nal QPEA [1] for which we also provide cost estimates
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for state preparation and phase estimation.
This work is organized as follows: In Section II, we ex-

plain the original QPEA algorithm and the effects that
time-domain truncation has on spectral estimation. In
Section III we introduce the modified window function
and its effects on the costs of QPEA itself. In Sec-
tion IV, we detail the iterative approach involving projec-
tive measurements that exponentially improves the cost
scaling with respect to the state error over previous es-
timates [10]. Moreover, we study the effects of using
the QPEA modifications proposed in Section III for state
preparation. This modification to the time window is also
seen in Ref [11], and we present here a circuit to prepare
such state at a cost scaling linearly with the number of
ancillary qubits. Finally, in Section V, we show some
state preparation tests using a lattice implementation of
the Thirring model [12], and provide the tools to estimate
excited state contamination.

II. SPECTRAL DENSITY ESTIMATION AND
THE EFFECTS OF WINDOWING

When calculating a spectral density numerically, we
are bounded by the resources available, both classi-
cally or quantum mechanically. We cannot calculate the
continuous-time Fourier transform, defined

F(f)(q) =

∫ ∞

−∞
f(x)e−2πixqdq, (1)

of a signal over an infinite time domain. Be it a sound
recording, DC Voltage signal, or the Hamiltonian evolu-
tion of a quantum system, we must choose a finite sample
rate and time domain.

Classically, one method to estimate the spectral den-
sity is to use instead the discrete Fourier transform
(DFT) [13, 14]. It is defined as follows:

Fk =

N−1∑

n=0

fn · e−
i2π
N kn, (2)
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where {fn}n is a set of discrete samples of a continu-
ous signal. There is an implementation of the DFT as
a quantum algorithm, called the quantum Fourier trans-
form (QFT)[15]. In this section, we will demonstrate its
usage for spectral estimation on a quantum computer.

There are two effects to consider when estimating the
spectral density from the discrete and finite samples of
a signal. The two effects are aliasing (due to frequency
domain truncation), and spectral-leakage (due to time
domain truncation). About aliasing we do not have to
worry since the spectrum of our Hamiltonian is going to
be bounded. However, spectral leakage has the effect of
increasing costs in quantum computing as it reduces the
certainty that each spectral estimation experiment pro-
vides. Now, we will exemplify this effect on the original
quantum phase estimation algorithm [1–3, 16].

In the original algorithm (See Figure 3), we assume
that we start with the state

|k = 0〉a ⊗ |ψj〉, (3)

where |ψj〉 is an eigenstate of H, i.e., H |ψj〉 = Ej |ψj〉.
The ancilla register, labeled by a, consists of m-qubits
which is able to store 2m elements (samples). The ancilla
states are labelled through |k〉a := |km−1〉⊗|km−2〉⊗· · ·⊗
|k0〉 with ki ∈ {0, 1} and k = −km−12m−1 +km−22m−2 +
km−32m−3 · · ·+k020. One then applies the inverse quan-
tum Fourier transform operator

QFT−1 :=
1√
2m

2m−1−1∑

x=−2m−1

2m−1−1∑

k=−2m−1

e
2πixk

2m |x〉a 〈k| , (4)

after which we are left with the uniform superposition on
the ancillary register

(
1√
2m

∑

x

|x〉a

)
⊗ |ψj〉. (5)

Now, we want to store the phases of Hamiltonian evo-
lution on the ancilla register such that we have

(
1√
2m

∑

x

ei2πyλEj |x〉a

)
⊗ |ψj〉. (6)

To achieve that, first consider the `th-qubit-controlled
operation

Ca,` (W ) = |0〉a,` 〈0| ⊗ I + |1〉a,` 〈1| ⊗W, (7)

where U = ei2πλH . Thus, we can store 2m samples in
the ancillary register by applying m similar operations
for each ancillar qubit

(
Ca,m−1

(
U−2m−1

)m−2∏

`=0

Ca,`

(
U2`

))

·
(

1√
2m

∑

x

|x〉a

)
⊗ |ψj〉

=

(
1√
2m

∑

x

ei2πyλEj |x〉a

)
⊗ |ψj〉. (8)

Finally, we apply QFT =
(
QFT−1

)† on the ancillary
register which leaves us with

2m−1−1∑

k=−2m−1

G (k − 2mθj) |k〉a ⊗ |ψj〉, (9)

where

G(q) =
e
iπq
2m sin(πq)

2m sin
(
πq
2m

) = e
iπq
2mD2m

( q

2m

)
, (10)

and

DM (x) =
sin (Mπx)

M sin (πx)
. (11)

Here, spectral leakage manifests itself as probability leak-
age displayed by |G(k)|2. This means that when we mea-
sure the ancillary register at the end of Figure 3 we will
not obtain the nearest integer to 2mλEj with absolute
certainty. Instead, there is a probability leak whose de-
cay can be upper bounded by

|G(k)|2 ≤ 1/(22m+2k2). (12)

We have plotted |G(k)|2 on the first row, second column
of Figure 1 where the probability spread is evident. In
Equation (5), by preparing a uniform superposition we
have implicitly used a rectangular window to truncate
the evolution samples. In the next section, we seek to
improve the leakage through another truncation window
using minimal modifications to the original circuit imple-
mentation.

III. COSINE TAPERING WINDOW IN
QUANTUM PHASE ESTIMATION

For the modified phase estimation with cosine tapering
window, we again assume that we start with the state
(See Figure 4)

|0〉a ⊗ |ψi〉, (13)

where the subscript a indicates that the first register is
the ancillary register. Since the subsequent quantum op-
erations does not alter the state on the target register, we
suppress |ψi〉 in what follows. We first start by creating
a super position of |0〉a and |1〉a on the ancillary regis-
ter by applying a Hadamard gate on the least significant
qubit

|0〉a + |1〉a√
2

. (14)
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FIG. 1: Here we showcase the two different window functions and their corresponding filter functions, connected by
DFT (QFT) and its inverse (QFT−1). On the left, the black dots represent the discrete node points at which the

window function is sampled. For example, these black dots represent the distribution of the ancillary register at the
black dashed line on Figure 3 for the rectangular window and on Figure 4 for the cosine window. On the right, the
red marks represent the distributions that we use to generate the windows through the inverse DFT (QFT) (these
ancillary register distributions are marked with a red dashed line in Figures 3 and 4 for the cosine and rectangular

windows respectively).

After performing this QFT−1 operation we obtain

QFT−1

( |0〉a + |1〉a√
2

)
=

2m−1−1∑

x=−2m−1

f(x)|x〉a, (15)

where

f(x) =
1 + e

2iπx
2m√

2m+1
. (16)

That is not the cosine window just yet. In order to obtain
the cosine window, we must apply the phase e−

iπx
2m . This

is equivalent to centering the corresponding spectral filter
seen on the lower right of Figure 1. This can be done

through applying

Rφ,m−1

(
π2m−1

2m

)
⊗
m−2⊗

l=0

Rφ,l

(
−π2l

2m

)
. (17)

We are left with

2m−1−1∑

x=−2m−1

f̃(x)|x〉a, (18)

where

f̃(x) = f(x) exp

(
−πix

2m

)
=

√
2 cos

(
πx
2m

)
√

2m
. (19)

Thus, we have obtained the desired time-domain window.
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FIG. 2: Comparison of the filter functions in Figure 1. We have shifted the cosine filter function in order for it to be
centered at q = 0. The filter corresponding to the cosine window has a wider main lobe, but it has a faster decaying
behavior outside of that. As a consequence, when binning the probabilities, we get a higher peak for the cosine filter.
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FIG. 3: Circuit to implement an m-qubit phase estimation algorithm. U is e2πiλH . The QFT−1 applied on |0〉⊗m
can be simplified to H⊗m acting on |0〉⊗m as is typically shown. The red dashed line marks the samples of the filter
function stored in the ancillary register and the black dashed line the samples of the corresponding window function.

Performing the controlled evolution operations as dis- played in Figure 4 we obtain
2m−1−1∑

k=−2m−1

f̃(x)e
i2πxλEi

2m |x〉a. (20)
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corresponding window function.

Note that the input state |ψ〉, which is suppressed here, is
the target register of these controlled operations. Finally,
we apply the QFT on the ancilla register to find,

QFT

2m−1−1∑

x=−2m−1

f̃(x)e
i2πxλEi

2m |x〉a

=

2m−1−1∑

k=−2m−1

F (k − 2mλEi)|k〉a,
(21)

where the coefficient F (k) takes the form,

F (k) =
1√
2m

2m−1−1∑

x=−2m−1

f̃ [x]e
−2πixk

2m

=
sin
(
π

2m

)
cos(πk) csc

(
π−2πk
2m+1

)
csc
(

2πk+π
2m+1

)
√

22m
,

(22)

which is the almost-centered DFT of f(x). Thus, the
probability of measuring each value of k on the ancillary
register is

P (k) = |F (k − 2mθi)|2, (23)

with θi := λEi. We now approximate 2mθi to the nearest
integer. That is, 2mθi = z + 2mδ, where z is the nearest
integer to 2mθi and |2mδ| ≤ 1

2 .
We find that the lowest probability of measuring z on

the ancillary register is when |2mδ| = 1
2 and that corre-

sponds to minδ Pr(z) = minδ|F (−2mδ)|2 = 1
2 . There-

fore,

Pr(z) ≥ 1

2
. (24)

That is an improvement of worst-case probability from
Pr(z) ≥ 4

π2 from the phase estimation in [1–3].
In order to amplify the probability of success of ob-

taining an estimate of θi, we must sacrifice in precision
or cost [2]. This can be understood as coarsening the
data by summing the probabilities of k = 2p−1 results
to the left and to the right (including z) of the nearest
integer, z. That is,

P (−k ≤ l < k) =
∑

z−k≤l<z+k
|αlz|2, (25)

where

αlz = F (l − δ2m). (26)

Equivalently, we can define the complementary error rate
e = 1− P (−k ≤ l < k), which is

e =
∑

k≤l<2m−1

|αlz|2 +
∑

−2m−1≤l<−k
|αlz|2. (27)

Summing up the probabilities (coarsening the data) has
the effect of raising the tolerance in precision from
1/2m+1 to k/2m = 1/2m−p+1. Therefore, it is convenient
to define a new variable t through the following

m = t+ p, (28)

such that the target precision to which we estimate the
phase θi is 1/2t+1. This way the number of qubits t deter-
mines the target precision and the number of extra qubits
p determines the probability of failure of the method, e.

We can obtain an upper bound on e as done in Refs. [2,
3]. In these references, authors obtain this upper bound
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on the error rate, but for the circuit in Figure 3 ( with αlz
corresponding to rectangular window). With this, they
then solve for the number of summed-up qubits prect, and
obtain that the minimum requirement for a certain target
rate e is

prect =

⌈
log2

1

2e
+

1

2

⌉
. (29)

In Appendix A 5, we derive an analogous upper bound
on e for the cosine-window filter from which we obtain
the minimum number of extra qubits

p =

⌈
log2

(
π2/3

481/3e1/3
+ 2

)⌉
(30)

for a target error rate e.
The cost in the gate complexity increases multiplica-

tively by 2p. This means a constant improvement in the
minimum bound for p, but a cubic improvement in gate
complexity compared to Refs. [1–3] with respect to e.
This can be also seen from the shape of both filters su-
perposed in Figure 2, the amplitude appears to be more
concentrated for the cosine-window filter than for the
rectangular-window one.

Since we have only obtained a bound, we also perform
numerical tests and plot e against p for m = 10 on Fig-
ure 5 for different values of 2mδ. The cases 2mδ = 0 and
−0.5 are exceptional because we expect the error rate
to be zero for the rectangular-window filter for 2mδ = 0
for any value of p, and zero for the cosine-window filter
for |2mδ| = 0.5 and for p ≥ 1. In the corresponding
plots in Figure 5 we see that those cases expected to be
zero are of the order ∼ 10−30 due to numerical precision.
We can see that the cosine-window filter outperforms the
rectangular-window filter as we increase p, except for the
particular case 2mδ = 0.

In the following section, we will estimate the circuit
depth for state preparation using the rectangular-window
filter as well as the cosine-window filter in order to com-
pare.

IV. ITERATIVE STATE PREPARATION AND
THE EFFECTS OF COSINE TAPERING

WINDOW

The phase estimation algorithm can also be used for
state preparation. Here, we will detail how that is ac-
complished. First, using the rectangular-window varia-
tion (Figure 6), and finally comparing with our cosine-
window version (Figure 7). First, we assume the target
register starts with the state

|φ〉 =
∑

i

φi |ψi〉 , (31)

where |ψi〉 are the eigenstates of the Hamiltonian in ques-
tion and φi are the overlap factors of the initial guess with
those eigenstates.

In the broad sense, the state preparation method de-
tailed here consists of applying the phase estimation cir-
cuit in Figure 6 on the state |0〉a |φ〉. This is done mul-
tiple times until the resulting state, |ψ〉, is ε-close to the
ground state |ψ0〉,

‖|ψ〉 − |ψ0〉‖ ≤ ε. (32)

It is only through using this iterative approach that we
achieve a logarithmic cost scaling with respect to 1/ε as
explained below.

The phase estimation algorithm in Figure 6 is an ap-
proximate implementation of the projection operator on
the ground state. We assume here that we can simu-
late the Hamiltonian evolution exactly. Therefore, ap-
plying the phase estimation circuit Figure 6, just before
the measurement on |0〉a |φ〉, leaves us with the state

∑

i

2m−1−1∑

q=−2m−1

G
(
q − (2mθi − 2mθ

(ξ)
0 )
)
φi|q〉a ⊗ |ψi〉,

(33)

which up to this point is a unitary operation. In the last
expression, θi represents λEi and θ

(ξ)
0 is our best estimate

of θ0 = λE0, where ξ is the precision to which we know θ0.
Here, we have usedG(q) corresponding to the rectangular
window instead of F (q) for the cosine window. We can
check that the rectangular-window filter takes the form,

G(q) =
e
iπq
2m sin(πq)

2m sin
(
πq
2m

) = e
iπq
2mD2m

( q

2m

)
. (34)

The Rφ gates in Figure 6 provide the shift θ(ξ)
0 to the

filter function in Equation (33).
Measuring the ancillary register and post-selecting |0〉a

results in the state,
∑

i

G
(

2mθ
(ξ)
0 − 2mθi

)
φi|0〉a ⊗ |ψi〉. (35)

The whole circuit (with measurement included) is equiv-
alent to applying the following filter or approximate pro-
jector on the target register

P̃ψ0 =
∑

i

γi |ψi〉 〈ψi| , (36)

where

γi = G
(

2mθ
(ξ)
0 − 2mθi

)
. (37)

We can also recast the approximate projector to the form

P̃ψ0
=
√

1− ρ0 |ψ0〉 〈ψ0|+ R̂, (38)

where ‖R̂‖ = O (ε′) (‖·‖ stands for the spectral norm) for
some value of ε′ and we also have that R̂ |ψ0〉 = 0, thus,

(
P̃ψ0

)r
= (1− ρ0)

r/2 |ψ0〉 〈ψ0|+ R̂r. (39)
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FIG. 5: Here we plot the error rate e defined in Equation (27) against the extra number of qubits p in
Equation (28). We have chosen t = 10 and 2mδ ∈ {0.0,−0.1,−0.2,−0.3,−0.4,−0.5}. It is clear that, except for the

exceptional cases 2mδ = 0, the filter function coming from the cosine window outperforms the one from the
rectangular window as we increase p.

Therefore,

‖R̂r‖ = O(ε′r). (40)

Here, we have illustrated that by applying this projec-
tor r times we obtain a smaller projector residue that
decreases exponentially with r.

Now, we will estimate an upper bound on r. The state
on the target register after r iterations of the filtering
operation from Equation (36) is

|ψ〉 =

∑
i φiγ

r
i |ψi〉

‖∑i φiγ
r
i |ψi〉‖

. (41)

In Appendix A 4 we derive

ε = Θ

(‖∑i 6=0 φiγ
r
i |ψi〉‖

‖∑i φiγ
r
i |ψi〉‖

)
, (42)

where
(‖∑i6=0 φiγ

r
i |ψi〉‖

‖∑i φiγ
r
i |ψi〉‖

)2

=

∑
i6=0|φi|2|γi|2r∑
i|φi|2|γi|2r

. (43)

For i 6= 0, we have (see Appendix A 2 for bounds)

|γi| ≤
1

2m+1∆
(44)
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where ∆ is the lower bound on the spectral gap,

∆0 = θ1 − θ0 = λE1 − λE0. (45)

Now, we derive an inequality for the quantity in Equa-
tion (43):

∑
i6=0|φi|2|γi|2r∑
i|φi|2|γi|2r

≤ 1

|φ0|2|γ0|2r
(

1

2m+1∆

)2r

. (46)

In deriving this we have used Equation (44),
∑
i6=0|φi|2 ≤

1, and |φi|2 ≥ 0. We would like to replace the term |γ0|2r
in Equation (46) with some more meaningful parameters
like the probability of success,

Pr = ‖P̃ rψ0
|φ〉‖2. (47)

As explained in Appendix A3, Pr approaches |φ0|2 from
below as ε → 0. Thus, it is more convenient to
parametrize Pr the following way:

Pr = (1− ρ)|φ0|2, (48)

where ρ ≥ 0. Also, in Appendix A 3 we derive

|γ0|2r = (1− ρ0)r = Θ (1− ρ) . (49)

Thus, Equation (46) can be rewritten in terms of ρ the
following way
∑
i6=0|φi|2|γi|2r∑
i|φi|2|γi|2r

≤ 1

|φ0|2Ω (1− ρ)

(
1

2m+1∆

)2r

. (50)

We can now relate ε to other relevant quantities through
Equation (42) or more specifically

ε2 = O

(∑
i 6=0|φi|2|γi|2r∑
i|φi|2|γi|2r

)
. (51)

Solving for r, we get

r ≤
logO

(
1

ε|φ0|
√

1−ρ

)

log 2m+1∆
. (52)

Now, in order to ensure that the relative (to the over-
lap) error rate ρ introduced by the r filter operations is
constant, we have to calculate the precision to which the
ground energy has to be known. Using Equation (49)
and the bound

(1− ρ0)r ≤ e−ρ0r (53)

we can write

ρ0 ≤
1

r
ln Ω

(
1

1− ρ

)
. (54)

Provided that 2ξ is less than the width of the main lobe
from the base, we can bound |γ0| from above with a
parabola. That is,

|γ0|2 = (1− ρ0) ≤ 1− a22mξ2. (55)

Finally, this means that

ξ ≤ 1

2m

√
1

ar
ln Ω

(
1

1− ρ

)

≤ 1

2m

√√√√1

a

log 2m+1∆

logO
(

1
ε|φ0|

√
1−ρ

) ln Ω

(
1

1− ρ

)
,

(56)

where a has to be chosen such that the parabola has
the same zero crossings as filter’s main lobe. For the
rectangular-window filter, a = 1.
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0

. . .
0
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...
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...
...

...

. . .
0

. . .
0

. . .

|0〉⊗m QFT−1

Rφ

(
2π2m−1θ

(ξ)
0

)

QFT

Rφ

(
−2π2m−2θ

(ξ)
0

)

Rφ

(
−2π21θ(ξ)0

)

H Rφ

(
−2π20θ(ξ)0

)
H

|ψ〉 U20 U21 U2m−2

U−2m−1

FIG. 7: Circuit to implement projection with peak centered at the estimate of the ground state energy. The
resulting filter is the DFT of a cosine tapering window. The last Hadamard gate is there to create a coherent

binning of odd and even x states.

If we use the same method but applying the cosine-
window filter in Equation (22), we run into a problem:
ρ0 is prohibitively large. To see this, first consider that
instead of Equation (37) we have

γi = F (2mθ
(ξ)
0 − 2mθ0), (57)

The maximum possible γ0 is when θ(ξ)
0 = θ0 at which

|γ0|2 ∼ 0.8, (58)

which in turn gives us a minimum ρ0 of ∼ 0.2. Therefore,
according to Equation (53), the exponential suppression
becomes important at r ∼ 5. This severely limits the
number of iterations that one can practically do. Thus,
we propose the modified circuit projection in Figure 7
in order to solve this. From the projection circuit in

Figure 7 we have that

γi = F+(2mθ
(ξ)
0 − 2mθi), (59)

where

F+(q) =
F (q − 1/2) + F (q + 1/2)√

2
. (60)

An upper bound was derived for this function in Ap-
pendix A 1, similar to the one in Equation (44) for Equa-
tion (34). With this bound, we repeated the same pro-
cedure as above. Through this, we obtained analogous
inequalities for the number of iterations:

rcos ≤
logO

(
1

ε|φ0|
√

1−ρ

)

log 23m+3∆(∆+2−m)(∆−2−m)
π2

, (61)

and required precision:

ξcos ≤
1

2m

√√√√√
1

acos

log 23m+3∆(∆+2−m)(∆−2−m)
π2

logO
(

1
ε|φ0|

√
1−ρ

) ln Ω

(
1

1− ρ

)
. (62)

Here, a similar bounding parabola was used for Equa-
tion (59), but with acos = 1/4.

It would appear that the required precision for the
ground state energy value scales polylogarithmically with
respect to all relevant quantities; however, we should no-

tice the 1/2m factor always appearing in front. For the
case of the rectangular window, we have the condition
2m+1∆ > 1, which means that the required precision
scales Õ(∆) (We adopt the Õ notation from [10]). We
have pointed out this fact in Table I, where the other
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methods show a similar scaling for the required ground
state energy precision.

One way of estimating the ground state energy with
the required precision is to perform the state preparation
algorithm with an initial guess of the ground state energy
θ

(ξ)
0 = −0.5. If not successful, we increase θ(ξ)

0 by the
target precision ξ = Õ(∆) and repeat the algorithm. The
search can stop when one succeeds the state preparation
algorithm at a rate that is not exponentially suppressed.
This classical search method is something similar to what
is proposed in Ref [10] when the ground state energy is
not known a priori.

So far in this section, we have shown that the iterative
approach of state preparation through QPE has an expo-
nential speed up over the single-iteration approach. As
shown in Table I, the scaling with respect to the required
precision, ε, and the overlap, |φ0|−1, has been improved
exponentially.

Now, we will account for the error incurred by approx-
imating the Hamiltonian evolution. Consider a Hamilto-
nian with Γ non-commuting terms

H =

Γ∑

γ=1

Hγ (63)

for which we will approximate the Hamiltonian evolution
through Ũ , where

∥∥∥Ũ − U
∥∥∥ = ε′. (64)

Most methods of approximation for Hamiltonian simula-
tion give their cost estimates through the operator error
ε′; however, what we care about is the vector error, i.e.,
the error on the state. To evaluate the source of vector
error coming from using Ũ , first consider the effective
Hamiltonian

H̃ = −i 1

2πλ
log Ũ (65)

for which, through Taylor expansion, the operator error
is

‖H − H̃‖ = O

(
ε′

2πλ

)
. (66)

Finally, we can relate this Hamiltonian error to the vector
state error through Matrix perturbation theory [17]:

‖|ψ̃0〉 − |ψ0〉‖ ≤
‖P1(H̃ −H) |ψ0〉‖

E1 − E0

≤ λ‖H̃ −H‖
∆

, (67)

where P1 is
∑
i6=0 |ψi〉 〈ψi| and |ψ̃0〉 is the ground state

of the effective Hamiltonian H̃. Thus,

‖|ψ̃0〉 − |ψ0〉‖ = O

(
ε′

∆

)
. (68)

With this, we can now correctly estimate the cost of
preparing the ground state. We have made a more pre-
cise treatment of the cost by looking how the ground
state of the effective Hamiltonian perturbs the ground
state. This introduces a modified cost factor 1/(∆ε) as
opposed to just 1/ε. This is an aspect that only until re-
cently [18] was taken into account for estimating ground
state energy using QPEA and preparing states using dig-
ital adiabatic simulation.

All of this means that an algorithm which can simu-
late a Hamiltonian evolution ei2πλH with an error ε′ that
costs O(polylog(2n, 1/ε′)) will be sufficient to obtain a
polylogarithmic cost in 1/(∆ε) with our state preparation
method. Any algorithm in Refs [19–22] fulfills these re-
quirements. The implied costs of using these algorithms
for state preparation using the algorithms presented here
are shown on the second row of Table I.

Generally speaking, methods based on product formu-
las alone do not meet the requirements. For example,
in Ref [23] authors used the kth-order product formulas
provided by Suzuki in Ref [24]. The authors find that,
in general, the number of product terms in the product
expansion is Nexp = O

(
52k/(ε′)1/2k

)
. From this formula,

it is evident that we cannot increase k arbitrarily as the
cost increases exponentially with respect to k. The scal-
ing of the cost with respect to ε and ∆, using the Suzuki
formulas, is reflected on the first row of Table I.

V. NUMERICAL TESTS OF STATE
PREPARATION

The theory that will serve as a test ground will be the
(1 + 1)-dimensional massive Thirring model

STh[ψ, ψ̄] =

∫
d2x

[
ψ̄iγµ∂µψ −mψ̄ψ

−g
2

(
ψ̄γµψ

) (
ψ̄γµψ

)]
, (69)

For our simulations, we use the lattice Hamiltonian
derived in [12],

H̄sim = −1

2

N−2∑

n

(
S+
n S
−
n+1 + S+

n+1S
−
n

)

+ am̃0

N−1∑

n

(−1)
n

(
Szn +

1

2

)

+ ∆(g)

N−1∑

n

(
Szn +

1

2

) (
Szn+1 +

1

2

)
. (70)

In order to boost the overlap of our initial guess with
the ground state we use a variational approach. The
ansatz for the ground state consists of alternating non-
commuting operators that comprise the Hamiltonian [26–
30]:

|φ(α,β,γ)〉 = e−iγpHγe−iβpHβe−iαpHα · · ·
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Preparation (ground energy known) Gates Qubits Required precision

This paper + Product formulas [23, 24] Õ
(

1

|φ0|2∆1+1/2kε1/2k

)
O

(
logN + log

1

∆

)
Õ(∆)

This paper +
LCU/Qubitization/Interp. [19–22, 25]

Õ

(
1

|φ0|2∆

) O

(
logN + log log

1

∆ε

+ log
1

∆

) Õ(∆)

Ge et al. [10] Õ

(
1

|φ0|2∆

) O

(
logN + log log

1

∆ε

+ log
1

∆

) Õ(∆)

Single-round Phase estimation + amp.
amplif. [10]

Õ

(
1

|φ0|3∆ε

) O

(
logN + log

1

ε

+ log
1

∆

) O (|φ0|ε∆)

TABLE I: Algorithms for ground state preparation for the case when the ground energy is known beforehand to the
required precision. For simplicity of comparison, we have omitted speed-ups in |φ0| through amplitude amplification.
We have also omitted some overhead costs, like for example the base oracle gate cost in the oracle based approach of

Hamiltonian simulation [19, 20].

e−iγ1Hγe−iβ1Hβe−iα1Hα |φ0〉, (71)

where

Hα = −1

2

∑

n=0

(
S+

2nS
−
2n+1 + S+

2n+1S
−
2n

)
(72)

Hβ = −1

2

∑

n=1

(
S+

2n−1S
−
2n + S+

2nS
−
2n−1

)

Hγ = am̃0

N−1∑

n

(−1)
n

(
Szn +

1

2

)

+ ∆(g)

N−1∑

n

(
Szn +

1

2

)(
Szn+1 +

1

2

)
. (73)

We proceed to minimize

〈φ(α,β,γ)| H̄sim |φ(α,β,γ)〉 (74)

With these new |φ(α,β,γ)〉 states we then follow the
state preparation procedure in the last section for both
the cosine window and rectangular window.

We would like to corroborate the bounds from the pre-
vious section. Two things are important to us: an ex-
ponential decay in the error with respect to the number
of iterations, and an improvement by using the cosine
window.

We also wish to separate the error from the implemen-
tation of the Hamiltonian evolution and the error from
the projection procedure. As mentioned in the last sec-
tion, we perform the projection procedure with respect to
the effective Hamiltonian resulting from approximating
the Hamiltonian evolution. In order to perform a demon-
stration, we choose Suzuki’s second-order formula [24] to
approximate Hamiltonian evolution:

Ũstep = U i
∆t
2 HαU i

∆t
2 HβU i∆tHγU i

∆t
2 HβU i

∆t
2 Hα , (75)

where Ũ = Ũdstep. Here, ∆t = 2πλ/d and d is an integer
equal or greater to 1.

In order to estimate the error ε we evolve the final state
|ψ〉 and measure the expectation value of an operator of
interest Ô. That is,

O =
{
〈λ| (U†step)nÔUnstep |λ〉 : n = {1, 2, 3 . . . , N}

}

(76)

We then estimate a central value defined as the mean:

Ō = E [O] (77)

and a standard deviation

σO =

√
E
[(
O− Ō

)2] (78)

For this numerical test we have chosen the chiral conden-
sate as our observable.

χ̂ =
1

n

∑

i=0

(−1)i+1Zi (79)

In Figure 8 we show a comparisons of σχ versus the num-
ber of iterations, r, for both the rectangular and the co-
sine window. This comparison is done for d ∈ {1, 2, 3}
and system sizes N ∈ {4, 6, 8}. We would also like to
stress that σχ estimates the excited state contamina-
tion with respect to the effective Hamiltonian in Equa-
tion (65). The two main takeaways of these numerical
tests are that: σχ appears to decay exponentially with
respect to the number of iterations, and that the cosine
window outperforms the rectangular window.

VI. CONCLUSION

In this work, we have presented the effects of using a
cosine tapering window on the quantum phase estimation
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FIG. 8: Here we show comparisons of the excited state contamination, σχ, in the chiral condensate for the values
d ∈ 1, 2, 3 and N ∈ 4, 6, 8. The excited state contamination is plotted against the number of iterations, r, showing

that the cosine-window filter achieves an improvement over the rectangular-window one.

algorithm. It was demonstrated that one obtains a cubic
improvement in gate complexity scaling with respect to
the error rate, e. It is left to future research the explo-
ration of other windows, their optimization with respect
to other metrics, as well as the exploration of possible
hybrid quantum-classical approaches.

We also showed the effects of this window when the
phase estimation algorithm is re-purposed for quantum
state preparation. Simultaneously, we showed that us-
ing repeated blunted filter operations was more efficient
than performing a single sharper filter operation. The
improvements were exponential in ε−1, the state error,
over previous estimates. Nevertheless, the linear scaling
with respect to ∆−1 remains.
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Appendix A: Detailed derivations of some formulas

1. F+(x) and its upper bound

We convert the filter function, F+(q) (60), to upper-
bound its magnitude.

F+(q) =
F (q − 1/2) + f(q + 1/2)√

2

=
sin
(
π

2m

)
cos(πq − π

2 )

2m+1 sin
(

2π−2πq
2m+1

)
sin
(

2πq
2m+1

)

+
sin
(
π

2m

)
cos(πq + π

2 )

2m+1 sin
(−2πq

2m+1

)
sin
(

2π+2πq
2m+1

)
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=
sin
(
π

2m

)
sin(πq)

(
sin
(
π+πq

2m

)
+ sin

(
π−πq

2m

))

2m+1 sin
(
πq
2m

)
sin
(
π−πq

2m

)
sin
(
π+πq

2m

)

=
sin
(
π

2m

)
sin(πq) sin

(
π

2m

)
cos
(
πq
2m

)

2m sin
(
πq
2m

)
sin
(
π−πq

2m

)
sin
(
π+πq

2m

)

=
sin2

(
π

2m

)
sin(πq) cot

(
πq
2m

)

2m sin
(
π−πq

2m

)
sin
(
π+πq

2m

) . (A1)

Hence, the absolute value of F+(q) is upper-bounded as,

|F+(q)|

≤ sin2
(
π

2m

)

2m|sin
(
πq
2m

)
||sin

(
π−πq

2m

)
||sin

(
π+πq

2m

)
|

≤
(
2m−1

)3
sin2

(
π

2m

)

2m|q||q − 1||q + 1| , for 0 ≤ 1 + |q| ≤ 2m−1

≤ π2

8|q||q − 1||q + 1| , for 0 ≤ 1 + |q| ≤ 2m−1.

(A2)

2. Some useful bounds

Using the inequality,

∣∣ sin x
2

∣∣ ≥ |x|
π

for 0 ≤ |x| ≤ π, (A3)

we provide an upper bound on the Dirichlet kernel from
Equation (11).

Its magnitude bounded as

|DM (x)| = 1

M

| sinMπx|
| sinπx|

≤ 1

M

1

| sinπx| ≤
1

2M |x| , (A4)

for 0 ≤ |x| ≤ 1/2.

3. Useful relations of success rate

The probability of successfully applying the filter in
Equation (36) r times is

Pr = ‖P rψ0
|φ〉‖2

= ‖
∑

i

φiγ
r
i |ψi〉‖2 =

∑

i

|φi|2|γi|2r

= |γ0|2r|φ0|2 +
∑

i 6=0

|φi|2|γi|2r

= |γ0|2r|φ0|2 + Pr
‖∑i6=0 φiγ

r
i |ψi〉‖2

‖∑i φiγ
r
i |ψi〉‖2

= |γ0|2r|φ0|2 + PrO(ε2) (A5)

To get to the last line we have used Equation (A11).
Solving for Pr, we obtain that

Pr =
|γ0|2r

1−O(ε2)
|φ0|2 (A6)

It is clear that Pr approaches |φ0|2 from below as ε→ 0.
Therefore, we find it convenient to parameterize Pr the
following way

Pr = (1− ρ)|φ0|2, (A7)

where ρ ≥ 0. From this definition and Equation (A6), it
immediately follows that

|γ0|2r ≤ (1− ρ) (A8)

More generally,

|γ0|2r →
Pr
|φ0|2

, as ε→ 0. (A9)

Equivalently, using definition in Equation (A6),

|γ0|2r = Θ (1− ρ) . (A10)

4. Asymptotic expression for ε

First, we assume that we can choose |ψ0〉 such that the
product γr0φ0 is always real and positive. Thus, we can
obtain the following bound for ε

ε ≡ ‖|ψ〉 − |ψ0〉‖

=

∥∥∥∥
∑
i φiγ

r
i |ψi〉

‖∑i φiγ
r
i |ψi〉‖

− |ψ0〉
∥∥∥∥

=
‖(γr0φ0 −

√
Pr) |ψ0〉+

∑
i 6=0 φiγ

r
i |ψi〉‖

‖∑i φiγ
r
i |ψi〉‖

≥
‖∑i6=0 φiγ

r
i |ψi〉‖

‖∑i φiγ
r
i |ψi〉‖

. (A11)

Now, if we use Equation (A10) we also obtain that

‖|ψ〉 − |ψ0〉‖ = Θ

(‖∑i6=0 φiγ
r
i |ψi〉‖

‖∑i φiγ
r
i |ψi〉‖

)
(A12)

5. Inequalities for Phase Estimation

Here, we find an upper bound on the amplitude
F (q) Equation (22):
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|F (q;m)| ≤ sin
(
π

2m

)
√

2|sin
(
π+2πq
2m+1

)
|

1

2|1/2− q| for 0 ≤ |1/2− q| ≤ 2m−1

≤ sin
(
π

2m

)
√

2| 1+2q
2m |

1

2|1/2− q| for 0 ≤ |1/2− q| ≤ 2m−1, and for 0 ≤ |1/2 + q| ≤ 2m−1

≤ sin
(
π

2m

)
2m√

24

1

|1/2 + q||1/2− q| for 0 ≤ |q|+ 1/2 ≤ 2m−1 (A13)

where we have used the fact that |sin (x)| is π-periodic in
order to get a similar inequalities when |x|+1/2 > 2m−1.

Therefore, the probability of getting an error greater
than k

2m is

e =
∑

k≤l<2m−1

|αlz|2 +
∑

−2m−1≤l<k
|αlz|2 ≤ c2

∑

k≤l<2m−1

(
1

(l − δ2m + 1/2)(l − δ2t − 1/2)

)2

+ c2
∑

−2m−1<l<−k

(
1

(l − δ2m + 1/2)(l − δ2m − 1/2)

)2

+ c2
(

1

|−2m−1 − δ2m + 1/2||2m−1 + δ2m + 1/2)|

)2

= c2
2m−1−2∑

l=k−1

(
1

(l − δ2m + 1/2 + 1)(l − δ2m − 1/2 + 1)

)2

+ c2
2m−1−2∑

l=k−2

(
1

(l + δ2m − 1/2 + 1)(l + δ2m + 1/2 + 1)

)2

+ c2
(

1

|2m−1 + δ2m − 1/2||2m−1 + δ2m + 1/2)|

)2

≤ c2
2m−1−2∑

l=k−1

1

l4
+ c2

2m−1−1∑

l=k−2

1

l4
≤ 2c2

2m−1−1∑

l=k−1

1

l4
≤ 2c2

∫ 2m−1−1

l=k−2

dl

l4

=
2c2

3(k − 2)3
<

π2

48(k − 2)3
. (A14)

For the term in the fourth line, we have used the
fact that |sin (x)| is π-periodic to find a bound when
l = −2m. Therefore, to get an estimate that is within
k/2m = 2p−1/2m = 1/2t+1 of the value of θi with an
error rate of at most e, we need the total number qubits
m to be

m = t+ p = t+

⌈
log2

(
π2/3

481/3e1/3
+ 2

)⌉
. (A15)

Appendix B: Ancillary Circuits

Figures 9 and 10 provide ancillary circuits for the
preparation of the filter distributions. Figure 11 just es-
tablishes the convention for QFT .
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...
...|0〉⊗m QFT−1

(a) Unsimplified circuit

...|0〉⊗m

H

H

H

H

(b) Simplified circuit

FIG. 9: Here, we have taken the circuit up to the black dashed line in Figure 3 and simplified it given the initial
state; same goes for Figure 6.

...
...|0〉⊗m QFT−1

H

(a) Unsimplified circuit

. . . . . .

. . . . . .

...

. . . . . .

. . . . . .

|0〉⊗m

H H

H R2

H Rm−1

H Rm

(b) Simplified circuit

FIG. 10: Here, we have taken the circuit up to the black dashed line in Figure 4 and simplified it given the initial
state; same goes for Figure 7.

. . . . . . . . . . . .

. . . . . . . . . . . .

...

. . . . . . . . . . . .

. . . . . . . . . . . .

H R2 Rm−1 Rm

H Rm−2 Rm−1

H R2

H

FIG. 11: Our convention for QFT−1. The corresponding QFT can be obtained by simply inverting the circuit. This
circuit is most widely labeled as QFT due to conventions in quantum computing literature [2, 3].
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