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In the context of testing general relativity with gravitational waves, constraints obtained with
multiple events are typically combined either through a hierarchical formalism or though a combined
multiplicative Bayes factor. We show that the well-known dependence of Bayes factors on the analysis
priors in regions of the parameter space without likelihood support can lead to strong confidence in
favor of incorrect conclusions when one employs the multiplicative Bayes factor. Bayes factors O(1)
are ambivalent as they depend sensitively on the analysis priors, which are rarely set in a principled
way; additionally, combined Bayes factors > O(103) can be obtained in favor of the incorrect
conclusion depending on the analysis priors when many O(1) Bayes factors are multiplied, and
specifically when the priors are much wider than the underlying population. The hierarchical analysis
that instead infers the ensemble distribution of the individual beyond-general-relativity constraints
does not suffer from this problem, and generically converges to favor the correct conclusion. Rather
than a naive multiplication, a more reliable Bayes factor can be computed from the hierarchical
analysis. We present a number of toy models showing that the practice of multiplying Bayes Factors
can lead to incorrect conclusions.

I. INTRODUCTION

With an increasing number of LIGO-Virgo [1, 2] grav-
itational wave (GW) observations, we can leverage the
collective set of measurements to study the properties of
the astrophysical objects that generate GWs [3, 4] and the
validity of general relativity (GR) [5–7]. Two broad and
complementary approaches exist for drawing inferences
from sets of detections. The first relies on the posterior
distribution for some model and its continuous parameters
whose range of possible values encapsulates the different
physics we would like to study. The second phrases a
question of interest in the language of model selection
between two discrete hypotheses to compute Bayes factors
(BFs). The latter approach is common in the context of
testing GR where one introduces a parametrized devia-
tion of the signal as predicted by GR [8–13], but further
examples relate to black hole mimickers [14, 15], higher-
order modes of the radiation [16], GW memory [17], the
neutron star equation of state [18–23], gravitational lens-
ing [24, 25], the association between GWs and potential
electromagnetic counterparts [26], GW ringdowns [27],
and the signal detection problem in general [28–34].

Although posteriors and BFs are mathematically re-
lated, in practice approaches focusing on one or the other
can come to seemingly different, and even contradictory,
conclusions. For example, Ref. [35] considers the case
of testing the no-hair theorem with GW ringdowns and
shows that BFs can favor the incorrect conclusion even
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in cases where the posterior has minimal support for it.
The alternative of working directly with the posterior and
hierachical inference has been introduced in the context
of tests of GR [5–7] after the limitations of using BFs to
combine information from multiple events were pointed
out in [36]. Specifically, multipyling BFs corresponds to
assuming that a GR deviation will manifest independently
and distributed according to the underlying prior in each
observation [36]. In this paper, we further this line of
argument to highlight issues with the use of BFs in the
context of nested models and show that the hierarchical
modeling of population distributions offers a more flexible
and reliable alternative.

BFs, or marginalized-likelihood ratios, provide a suc-
cinct way to compare the likelihood of two models in light
of some data. The BF comparing a hypothesis H0 to
another H1 for some data d is given by

B0
1 ≡

P (d | H0)

P (d | H1)
=

∫
p(d | θ0,H0) p(θ0|H0) dθ0∫
p(d | θ1,H1) p(θ1|H1) dθ1

, (1)

where the likelihoods are marginalized over some (po-
tentially different) sets of parameters θ0/1 for the H0/1

hypotheses respectively. The definition of the hypotheses
encompasses the choice of parameter priors p(θ | H), as
well as any other assumptions built into the functional
form of the likelihoods p(d | θ,H). A larger value of B0

1

(or, equivalently, its natural logarithm, lnB0
1) indicates

a preference for H0 over H1. When enhanced with prior
weights for each hypothesis, P (H0/1), this returns the bet-
ting odds in favor of one model over the other, conditional
on the observed data—namely,

O0
1 ≡

P (H0)P (d | H0)

P (H1)P (d | H1)
=
P (H0)

P (H1)
B0

1 . (2)

mailto:misi@flatironinstitute.org
mailto:will.farr@stonybrook.edu
mailto:kchatziioannou@caltech.edu


2

To avoid expressing an a priori preference for either model,
it is common to set P (H0) = P (H1), and so O0

1 = B0
1.

BFs reduce the complicated problem of selecting be-
tween two models of reality to a single number—a feature
which lies at the core of its appeal, but also of its short-
comings. Like other scalar statistics, interpreting this
one number is usually far from straightforward, leading
to somewhat ad hoc scales such as [37]. This difficulty
is worsened by the fact that BFs necessarily are affected
by all aspects of a model, including those correspond-
ing to less interesting regions of the parameter space
like regions of the prior space for which the likelihood
offers no support. Consequently, BFs can vary wildly
with different choices of prior bounds, which are often
set arbitrarily. Since priors can rarely be set from first
principles, calibrating BFs tends to require large scale
injection campaigns [31]—although this is only possible
when the injections themselves can be designed in a prin-
cipled way (i.e., when we actually know how to simulate
expected astrophysical distributions). Even when the
model is specified correctly and we can take BFs at face
value, the result offers no insight as to why exactly one
model is to be preferred.

All these drawbacks compound when one attempts to
combine multiple observations by multiplying BFs com-
puted with a fixed prior, which enhances the sensitivity
to prior choices. Moreover, naive BF computations from
collections of events impose strong, generally unrealistic
assumptions [36]. Multiplying BFs obtained from indi-
vidual events results in a collective BF that assumes the
targeted effect (say, a deviation from GR) manifests in-
dependently for each observation. On the other hand,
generating a collective BF from the product of likelihoods
from multiple measurements presumes that the effect man-
ifests identically for all observations. Neither of these are
valid assumptions in general [36]. In general the degree
to which a targeted effect appears independently versus
identically in each observation is something that should
be leared from the data; this insight leads directly to
hierarchical modeling [38–41].

Rather than assuming a fixed and known distribution
(e.g., all events are the same, or all the events are different),
a hierarchical analysis works by inferring the underlying
distribution of the parameter whose values encode the
targeted hypotheses. For example, in the context of tests
of GR, a parameter x may represent the magnitude of
a GR violation, so that the GR (non-GR) hypothesis
implies x = 0 (x 6= 0); likewise, when searching for GW
memory, this could be the amplitude of the effect in
question. Once this parameter is identified, we can use
hierarchical inference to characterize its values across the
observed events—using the collection of measurements
holistically to infer the distribution of x. The challenge
here lies in choosing a suitable parametrization for this
underlying distribution.

We can circumvent this through a moment expansion:
as a first approximation, we will only be interested in
recovering the mean and standard deviation of the un-

known distribution, so we can parametrize it as a Gaus-
sian, whose mean and standard deviation (µ, σpop) we are
to measure from the data [5]; the null hypothesis will often
be constructed so that it is recovered for µ = σpop = 0.
This approach allows us to study the population of mea-
surements without assuming the targeted effect manifests
either identically or distinctly for all events, learning more
about the population distribution with each observation.
In this way, the population model now plays the role of a
prior in the analysis of any individual event.

In this paper, we compare the BF and hierarchical
approaches directly in the context of multiple GW obser-
vations, and argue that BFs are unreliable in any context
in which the prior does not adapt to the observations at
hand. We show that in such context, BFs do not have the
right scaling with the number of events, even in simple sit-
uations, due to their inherently strong dependence on the
(fixed) priors in regions of no likelihood support. We show
that hierarchical posteriors do not suffer from such limi-
tations as they rely on “priors” that are inferred from the
data, and have a weaker dependence on hyperparameter
assumptions.

We begin in Sec. II by reviewing some basic properties of
BFs obtained from single observations and their interplay
with Occam penalties. Then, in Sec. III, we study the
scaling of BFs when combining multiple observations
under two example distributions for the true parameters
under consideration; we show that this approach can often
lead to the incorrect conclusion. We also consider the same
scenarios under the hierarchical approach, showing that
it does not suffer from the same drawbacks. In Sec. IV,
we consider a final model that cannot be obtained as a
special case of the distribution assumed by the hierarchical
analysis, showing that the hierarchical approach yields
the correct result even then. We conclude in Sec. V.

II. SINGLE EVENT: OCCAM PENALTY VS
GOODNESS-OF-FIT

Before tackling the problem of multiple observations,
we first review the behavior of BFs computed from a single
event. A typical situation that is simple to understand
analytically is that of nested models, i.e., two models
constructed so that one can be recovered as a special case
of the other. Parametrized tests of GR, for example, typi-
cally involve nested hypotheses wherein the non-GR model
is characterized by all the usual GR signal parameters
plus one or more additional variables xnGR that quantify
the deviation from GR [42–50]. These parametrizations
are usually constructed so that GR is recovered when the
deviation parameters vanish. Then, to determine whether
GR is favored, the data are analyzed with some broad
(typically flat) prior on the deviations in order to compute
BFs comparing xnGR = 0 to xnGR 6= 0.

In that spirit, consider some real-valued parameter x
and two related hypotheses Hx=0 and Hx6=0, respectively
defined to imply x = 0 and x 6= 0, with some prior over
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FIG. 1. Bayes factor computation as a Savage-Dickey density
ratio. The BF (B) comparing a model in which some parameter
x takes the value x = 0 to one in which x 6= 0 is given by the
ratio of the posterior to the prior evaluated at x = 0. The
main panel shows the case of a normal posterior truncated
by a broad prior (half-width ∆ = 10, in blue) and a narrow
prior (∆ = 1, in orange). The inset shows the scaling of B as
a function of ∆ (solid curve); for broad priors, B ∝ ∆ (dashed
line). In this toy example, we assume the posterior peaks
always at x = 0.

x and any other relevant parameters. Since x = 0 is a
special case of the model in which x is allowed to vary over
a broad range including the origin, we say the hypotheses
are nested.1 In that case, the BF comparing the two is
given exactly by the Savage-Dickey ratio [51, 52],

Bx=0
x 6=0 =

p(x = 0 | d)

p(x = 0)
, (3)

where p(x = 0 | d) is the marginal posterior and p(x = 0)
is the prior, both evaluated at x = 0. In other words, the
BF in favor of x = 0 is simply the ratio of the posterior
to the prior evaluated at the origin.

We can elucidate the role of the prior in Eq. (3) by
considering a specific functional form. For simplicity,
assume the marginal posterior is given by a standard
normal distribution, truncated symmetrically around the
origin by some uniform prior of half-width ∆ (i.e., flat
in −∆ < x < ∆). Then, the BF can be computed
analytically to yield

Bx=0
x 6=0 =

1√
2π

2∆

Φ(∆)− Φ(−∆)
=

√
2

π

∆

erf(∆/
√

2)
, (4)

in terms of the standard cumulative distribution func-
tion Φ(x) ≡

(
1 + erf(x/

√
2)
)
/2 and the error function

1 Here we are identifying Hx 6=0 with the model in which x is allowed
to vary freely; this is legitimate because the point x = 0 is a set
of measure zero, so it does not need to be explicitly excised from
the arbitrary-x model.

erf(x) ≡ (2/
√
π)
∫ x

0
exp(−y2) dy. Since erf(∆/

√
2) → 1

for large ∆, the BF can be made to favor x = 0 with
arbitrarily-high confidence by sufficiently broadening the
prior—in fact, Bx=0

x 6=0 ∝ ∆ in the large ∆ limit. We illus-
trate this in Fig. 1.

The dependence on the prior range is a general feature
not specific to our example: the same data can produce
arbitrary odds in favor of a specific value of a parameter
(x = 0 here) relative to a model with increasing prior
volume (proxied by ∆). This is related to the concept of
the Occam penalty in Bayesian inference: BFs do not only
favor the model that fits the data best, but also the one
that is simplest—where simplicity is defined as a model’s
ability to fit the data without having to significantly
constrain its parameters relative to their a priori allowed
values. The interplay between goodness of fit and Occam
penalty creates the possibility of a BF that strongly favors
the incorrect conclusion. In the context of testing GR,
if the theory is indeed violated, then some observation
can give p(x = 0 | d)� 1 in Eq. (3); yet, this can always
be countered with a wide enough prior that makes the
Occam penalty 1/p(x = 0) so large that goodness of fit
cannot overcome it. This is the expected manifestation
of the Occam penalty in BFs; the failure is symptomatic
of a mismatch between the implemented prior and the
observer’s expectation.

Since we generally have little a priori information about
the nature of possible beyond-GR effects, and these ef-
fects are not strongly constrained by the likelihood of
an individual measurement, a natural inclination is to
make the prior much wider than the likelihood. However,
the argument above shows that a broad prior prevents
us from detecting small deviations from GR, which is an
important regime for tests of GR [53]—either because
GR is close to correct or because of selection effects that
disfavor the detection of signals with morphology far from
GR. The same tension arises in other contexts where BFs
are used without a principled prior. In the next section,
we show that this behavior is not unique to single-event
analyses but carries over to combined constraints.

III. COMBINING EVENTS UNDER A BROAD
PRIOR

We now turn to collections of measurements and show
that the “combined” multiplicative BF does not have the
correct scaling in the regime of interest, with support
accumulating in favor of the null hypothesis even when
this conclusion is incorrect. Combining BFs from multiple
events will only lead to the right conclusion when the
deviation (e.g., the deviation from GR) is large enough
to be apparent in individual posteriors, negating the need
for combining observations in the first place. We then
show that the hierarchical approach is not susceptible to
this issue.

Again, consider a single parameter, x, that stands in
for the magnitude of the GR deviation or any other effect
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of interest, and let x = 0 be our null hypothesis (e.g.,
GR is correct). We conduct experiments to measure x,
and assume additive Gaussian noise so that the observed
value xobs is normally distributed about the true value x
with standard deviation (measurement noise) σobs:

p (xobs | x) =
1√

2πσ2
obs

exp

(
− (xobs − x)

2

2σ2
obs

)
. (5)

In the previous section, we considered a simplified case of
this model, in which we had a single measurement with
xobs = 0 and σobs = 1.

We consider two “populations” for the true values of x
under repeated measurements, i.e., the true magnitude
of the GR deviation for each observed GW event. In
the first the true value of x is fixed to some value x0 for
each measurement so that the population distribution is
a Dirac delta,

p1 (x) = δ (x− x0) . (6)

In the second, the value of x is randomly distributed with
mean zero and standard deviation σ0 for each measure-
ment, so that the population distribution is

p2 (x) =
1√

2πσ2
0

exp

(
− x2

2σ2
0

)
. (7)

In the language of tests of gravity, the two models recover
GR (our null hypothesis) when x0 = 0 or σ0 = 0, respec-
tively. In the second model, the mean deviation from GR
vanishes, but the actual variation in a given measurement
fluctuates. In both cases the deviation parameter x is
assumed independent and identically distributed (iid) for
each measurement, so there is some prior choice such
that multiplying BFs for repeated measurements is op-
timal [36].2 However, that prior is unknown in realistic
situations because the true distribution of GR deviations
is not known a priori. Rather, in all cases we assume a
measurement is analyzed with a flat prior on −∆ < x < ∆,
following common practice.

A. Bayes factors

With that prior, the BF between the null and general-
ized hypotheses (for concreteness, “GR” and “non-GR”)
for a given observation xobs is a generalization of Eq. (4)

BGR
nGR =

2∆
√

2πσ2
obs

(
Φ
(

∆−xobs

σobs

)
− Φ

(
−∆−xobs

σobs

))

× exp

(
− x2

obs

2σ2
obs

)
. (8)

2 The optimal prior is the actual population from which the true
parameters controlling the measurements are iid draws.

When the prior is very broad, ∆� xobs, and the Gaussian
posterior on x is not meaningfully truncated by the prior,
then the BF simplifies to

BGR
nGR '

2∆√
2πσ2

obs

exp

(
− x2

obs

2σ2
obs

)
, (9)

corresponding to the Bx=0
x 6=0 ∝ ∆ limit discussed in the pre-

vious section. Ensuring ∆� xobs is a common analysis
choice because this prior permits the true value of x to
correspond to the observed value xobs which is the value
of x that maximizes the likelihood in each observation. A
broad prior is also desired when combining multiple ob-
servations in order to accommodate the expected scatter
in the individual likelihoods.

If we choose to combine observations by adding log
BFs3 (equivalently, multiplying BFs), it is sufficient to
compute the expected value of an individual log BF under
the true deviations; the expected total log BF will then be
the expected individual log BF times the number of events.
The expected value of the log of Eq. (8) is not expressible
in closed form, but can be straightforwardly computed
numerically. In the limit that ∆� xobs, the expected log
BFs under our two populations of GR deviations become

〈
lnBGR

nGR

〉∣∣
x0
' ln

2∆√
2πσ2

obs

− σ2
obs + x2

0

2σ2
obs

' ln
∆

σobs
− 0.23− σ2

obs + x2
0

2σ2
obs

, (10)

and

〈
lnBGR

nGR

〉∣∣
σ0
' ln

2∆√
2πσ2

obs

− σ2
obs + σ2

0

2σ2
obs

' ln
∆

σobs
− 0.23− σ2

obs + σ2
0

2σ2
obs

. (11)

From the above, we can see that, whenever the GR de-
viation is nonzero but small enough to be undetectable
in a single observation (0 < x0, σ0 � σobs), then for
∆ & 2σobs the expected log BF is positive, and evidence
accumulates in favor of GR even though there is a devia-
tion. For deviations that are marginally detectable in a
single observation x0, σ0 ' σobs, choosing a wide, uninfor-
mative prior ∆ & 3.5σobs (which, recall, is necessary to
ensure that all observations xobs in a modest-sized catalog
of observations are within the prior range) will result in
evidence that accumulates against modifications to GR.

An exact calculation of the expected log BF without the
assumption that ∆� xobs appears in Fig. 2. Interestingly,
any value of ∆ will accumulate evidence for GR when
x0 = 0 or σ0 = 0; but if x0 > 0 or σ0 > 0, so that
the GR model is incorrect, prior choices that encompass
deviation parameter values comparable to those observed,

3 In this paper, all logarithms are natural logarithms.
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i.e., ∆ ' few×σobs, accumulate evidence for the incorrect
GR model unless the deviation parameter is comparable
to or larger than the observational uncertainty. In this
regime, either the BF fails to select the correct theory
(non-GR) on average (with more and more certainty as
the number of observations grows); or the deviation is so
large that it is marginally detectable (i.e., “∼1σ”) with a
single observation. Multipliying BFs in this situation is
counter-productive, and the best constraint is achieved
with a single measurement.

Even when the log BF is expected to take the correct
sign on average, the result will vary for any given set
of detections. In the regime where ∆ � xobs, we can
quantify this through the variance associated with the
means in Eqs. (10) and (11). For the former, this is just

var
(
lnBGR

nGR

)∣∣
x0
'
(
x0

σobs

)2

+
1

2
, (12)

while for the latter we have

var
(
lnBGR

nGR

)∣∣
σ0
'
(
σ2

0 + σ2
obs

)2

2σ4
obs

. (13)

These scalings are illustrated in Fig. 3 for ∆ = 5σobs. On
the left hand side, the variance asymptotes to 1/2 for
decreasing σobs and fixed intrinsic scatter σ0; on the right
hand side, the BF variance keeps increasing as we make
the individual measurements more precise (decreasing
σobs) because for narrower posteriors the value at x = 0
varies more drastically from event to event. In the case
where GR is correct (x0 = σ0 = 0), the scatter in the
single-event log BF is large enough that it is not extremely
uncommon for moderately large catalogs to yield evidence
for the wrong hypothesis, even when the null hypothesis
is correct (Fig. 4).

The qualitative behavior here can be understood in the
context of [36]. The flat prior on x implicitly assumes
that each observation has a true x parameter that is inde-
pendent of other observations and uniformly distributed
on (−∆,∆). If one chooses ∆ large enough to include
all event likelihoods and not truncate them, then the
flat prior for the true parameter implicitly demands that
most of the true deviation parameters are comparable to
∆. If, instead, the deviation parameters are considerably
smaller than the observational uncertainty σobs—which
is the regime where stacking multiple events should be
the most beneficial—then the assumption is so badly
violated that pooling observations prefers the incorrect
model where the deviation parameters are zero to the
even-less-correct model where the deviation parameters
are iid uniform on (−∆,∆).

The solution to this problem is to allow the assumed
population to adapt its properties to the stacked set of
observations, for example by allowing its location and
scale to fit the set, as suggested in [5]. This effectively
constructs a model that better represents our beliefs about
the combined data set.

B. Hierarchical treatment

We now revisit the two experiments above using a
hierarchical model for the distribution of GR deviations,
instead of computing BFs with a uniform prior. Assuming
we are only interested in the first two moments of the
distribution, we parametrize the true deviations as drawn
from a Gaussian such that x ∼ N (µ, σpop) [5]. The
goal will be to infer the µ and σpop hyperparameters
from the collection of measurements, and to quantify
agreement with the null hypothesis µ = σpop = 0 based
on the corresponding 2D posterior. The two non-GR
models we considered above are encompassed within this
parametrization when (µ = x0, σpop = 0) and (µ =
0, σpop = σ0).4

As before, we assume that the observed value xobs in an
individual event is normally distributed around the true
value per Eq. (5), and we take the true values themselves
to be distributed normally given µ and σpop. In that
case, the likelihood for a given observation becomes (see
Appendix A)

p(xobs | µ, σpop, σobs) =
1√

2πσ2
tot

exp

(
− (xobs − µ)

2

2σ2
tot

)
,

(14)
where σ2

tot ≡ σ2
obs + σ2

pop is the total variance arising
from the combination of statistical uncertainty and the
intrinsic population scatter. Unlike in Eq. (5), the true
value x for the individual measurement does not appear
in this likelihood because we have marginalized over it
and replaced it with the hyperparameters µ and σpop.

Consider the same two true distributions for x above,
which depart from GR as given by Eqs. (6) and (7). We
simulate catalogs of detections following these distribu-
tions and analyze them hierarchically with the likelihood
of Eq. (14), and Gaussian priors on µ and σpop (with
zero mean and standard deviation equal to σobs, restrict-
ing to positive values for σpop). Although other choices
are possible, it is natural to tie the scale of the hyper-
prior to the measurement uncertainty because this is the
only scale built into the problem a priori. Furthermore,
this choice is guaranteed to be sufficiently broad in the
small-deviation regime (x0, σ0 < σobs) in which we are
interested, and smooth enough to accommodate larger
deviations if needed.

We quantify agreement with the null hypothesis through
the marginal posteriors for µ and σpop, as well as the
credible level at which GR is recovered in the 2D posterior
for those two quantities (the 2D quantile, QGR in [6]),
defined as

QGR ≡
∫

p<p(0,0)

p(µ, σpop | xobs, σobs) dµdσpop , (15)

4 The next section examines a non-GR model that is not fully
encompassed in the Gaussian hierarchical model.
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FIG. 2. The expected log BF in favor of GR from the toy model discussed in Sec. III (color) as a function of the prior width ∆
(ordinate) and the true deviation parameter x0 (abscissa left) or the scatter in the zero-mean deviation parameter σ0 (abscissa
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the case where the null hypothesis (GR) is correct, and where
∆ = 2σobs, for 200 simulations (represented by each thin gray
trace). On average, the log BF favors the right hypothesis
(blue line), but there is enough variance in this quantity that
some of the individual catalogs favor the wrong hypothesis,
even for a moderately high number of detections (traces below
the dashed line).

where the shorthand “p < p(0, 0)” stands in for values
of µ and σpop such that p(µ, σpop | xobs, σobs) < p(µ =
0, σpop = 0 | xobs, σobs). Given this definition, a value of
QGR = 1 means that the posterior peaks at the origin
µ = σpop = 0, while QGR = 0 means that the posterior
offers no support for that point (i.e., a higher value of
QGR implies better agreement with GR). In all cases, we
simulate each catalog of N observations 50 times and
report medians over the ensemble.

Unlike with BFs, there are no values of x0 or σ0 for
which the hierarchical analysis converges to the wrong
answer given enough observations. This is apparent from
Fig. 5, which shows the value of QGR as a function of the
deviation magnitude (x0/σobs or σ0/σobs) and the number
of observations: even for deviations small relative to
the individual-measurement uncertainty, QGR approaches
zero for large N—indicating that the posterior offers
little support for µ = σpop = 0, in tension with GR.
For small catalogs (N ≤ 10), the value of QGR is more
strongly influenced by the prior, to a greater or lesser
extent depending on the magnitude of the deviation.

Besides indicating that the data are inconsistent with
the null hypothesis, the hierarchical analysis provides
descriptive information about the nature of the deviation.
With enough observations, the measurements of µ and
σpop converge to the x0 and σ0 values respectively for
the two models with increasing precision for larger N . In
Fig. 6, we show this behavior explicitly for two example
magnitudes of the GR deviation. As expected, we can
detect larger deviations with fewer detections, and need
more observations to notice a nonzero scatter than a
nonzero mean.

Prior choices play a lesser role in the hierarchical ap-
proach than in BF computations. The hierarchical anal-

ysis takes as input the likelihoods for individual events,
so the prior used to initially analyze the data is largely
irrelevant as long as it offers the likelihood ample support
(e.g., ∆� σobs in the notation of the previous section).
The choice of prior is, instead, transferred to the µ and
σpop hyperparameters; however, any reasonably smooth
choice will work assuming we have a enough events for
the hierarchical measurement to be informative. If obser-
vations are not sufficiently numerous, the result will be
influenced by the µ and σpop prior.

In the case of our idealized examples, we can analyt-
ically predict the number of detections needed for the
hierarchical measurement to be informative. As we show
in Appendix A, the variance of the marginalized hierar-
chical likelihood is expected to scale as

var (µ) =
σ2

obs + σ2
0

N
(16)

for the inferred population mean and

var
(
σ2

pop

)
=

2

N

(
σ2

obs + σ2
0

)2
(17)

for the inferred population variance, assuming the true
population variance is σ2

0 and irrespective of the true
mean. As a rule of thumb, the hierarchical measurement
will become informative once the characteristic width of
the likelihood of Eq. (14) becomes smaller than the scale
imposed by the prior. With hyperpriors of scale σprior, this
implies that the µ measurement should start becoming
informative (in the sense that we obtain a hyperposterior
narrower than the prior) once we accumulate

N &
σ2

obs + σ2
pop

σ2
prior

=

(
σtot

σprior

)2

(18)

measurements; meanwhile, for σpop, the equivalent re-
quirement is

N &

(
σ2

obs + σ2
pop

)2

σ4
prior

=

(
σtot

σprior

)4

, (19)

as we show in Appendix A.
We demonstrate these scalings in Fig. 7, where we show

the variance in the inferred population mean and vari-
ance from simulated populations of measurements with
σ0 = σobs/2 and no mean, and setting σprior = σobs

for concreteness. For increasing number of measure-
ments N , the posterior converges to the true values
(µ = 0, σpop = σobs/2). For small catalogs, i.e., for N
comparable or smaller than the thresholds above, the
average uncertainty in these measurements is broad but
smaller than expected simply from Eqs. (16) and (17)
because it is dominated by the prior. As the number of
detections increases, the posterior variance becomes well
described by Eqs. (16) and (17), meaning that the data
become informative and the likelihood dominates over the
prior.
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FIG. 5. The GR quantile QGR (color) obtained in a hierarchical analysis of data in which there is a fixed deviation for all
events (x0, ordinate left) or a scatter across events (σ0, ordinate right), as a function of the number of events (N , abscissa).
The reported value of QGR is the median over 50 simulated catalogs with N -events. Low values of QGR indicate that the null
hypothesis (µ = σpop = 0) is disfavored; for reference, the dashed line marks the point at which GR is disfavored at 1σ, i.e.,
QGR = exp(−1/2) ≈ 0.61. Unlike in Fig. 2, given enough N we always detect the deviation, even when x0, σ0 < σobs.

FIG. 6. Recovered population mean (µ, left) and standard deviation (σpop, right) as a function of catalog size (N , abscissa), for
our two toy models: a fixed deviation x0 for all events (left) and a deviation scatter σ0 across events (right). In each case, we
show two values for the true deviation: x0, σ0 = 0.1σobs (blue) and x0, σ0 = 0.8σobs (red). The measurement is represented by
posterior median (solid lines) surrounded by 68% and 90% highest-density credible bands (shading); we also show the true value
(dotted lines) and the null expectation (dashed gray line). Smaller deviations require more observations to be detected—for
example, we only need N & 3 events to notice µ > 0 at 1σ (68% credibility) if x0 = 0.8σobs, but N & 100 if x0 = 0.1σobs.

Alternately, we may ask how many measurements would
be required to establish a non-vanishing population mean
or variance. This requires var (µ) . x2

0 or var
(
σ2

pop

)
. σ4

0 .
The former would imply

N &

(
σtot

x0

)2

(20)

and the latter

N & 2

(
σtot

σ0

)4

. (21)

IV. FENCEPOST MODEL

In the examples above, the simulated populations could
be perfectly reproduced as special cases of the hierarchical
population model—that is, there existed a choice of µ
and σpop for which the hierarchical model reduced exactly
to the true distribution we simulated. Of course, we do
not necessarily expect this to be the case in reality: a
deviation from GR could manifest as a nontrivial function
of the source parameters and the coupling constants in the
theory; similarly, for other effects such as memory, it is
not realistic to expect the true population of parameters
to be fully described by a simple Gaussian if the null
hypothesis is incorrect. In light of that, one might worry
that the hierarchical method only outperformed BFs in
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FIG. 7. Scaling of the uncertainty in the recovered hyperparameters µ (left) and σ2
pop (right) as a function of catalog size N ,

computed for a case in which the true values are µ = 0 and σpop = σobs/2. A solid line marks the median of the posterior variance
computed over 50 simulated catalogs for any given N , while surrounding bands enclose the corresponding 68% highest-density
interval. For low N , the variances var (µ/σobs) and var

(
σ2
pop/σ

2
obs

)
are dominated by the hyperprior; as N increases, the data

become more informative and the variances approach the analytic prediction of Eqs. (16) and (17) (red dashed lines). Dotted
vertical lines mark the expected number of observations needed for the likelihood of Eq. (14) to become narrower than the prior,
as dictated by Eqs. (18) and (19) with σprior = σobs, but rounded up to the closest integer.

FIG. 8. As in Fig. 6, except the true population follows the fencepost model of Sec. IV, by which the true deviation is
x = ±σobs/2 with equal probability for either sign. Even though this distribution cannot be expressed as the limit of a Gaussian,
the hierarchical analysis infers the correct values of µ = 0 and σpop = σobs/2.

the above examples because the hierarchical model was
able to match the true population exactly, and that this
gain would fail to materialize in realistic situations. Yet,
as we show in this section, this is not the case: the
hierarchical method is more robust than products of BFs
even when the underlying population cannot be fit exactly
by a Gaussian.

Consider a situation in which the true deviation pa-
rameter is either x = ±x0 for some x0 and with equal
probability for both signs. The true distribution in this
“fencepost” model is simply the sum of two delta functions,

p3 (x) =
1

2
[δ (x− x0) + δ (x+ x0)] , (22)

and, therefore, has zero mean and standard deviation
σ0 = |x0|. This population cannot be described as a
limiting case of a Gaussian distribution; nevertheless, we

can always analyze it hierarchically with the Gaussian
likelihood of Eq. (14), and expect to recover the correct
values for the population mean and spread (namely, µ = 0
and σpop = |x0|) given enough detections [5]. In Fig. 8,
we show this explicitly for simulated measurements in
which x0 = σobs/2.

On the other hand, when presented with the fencepost
model, BF computations suffer from the same problems
already identified above: with a broad prior relative to
the measurement uncertainty (∆ > σobs), the combined
BF for multiple observations will necessarily converge to
the wrong answer (i.e., favor of the null hypothesis) unless
x0 & σobs, in which case the deviation is detectable in
individual observations. Similarly to Fig. 2, in Fig. 9 we
show the scaling of the expected BF accumulated from
fencepost-model observations, as a function of x0 and ∆.

In Fig. 10, we compare the hierarchical and Bayes-factor
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FIG. 9. Average log BF in favor of GR accumulated for each
observation in the “fencepost” model described in Sec. IV as
a function of the prior width ∆ and the location of the true
deviations at ±x0. The black lines indicate the parameter val-
ues chosen for the numerical experiment illustrated in Fig. 10.

results for a progressively-higher number of simulated
measurements from a fencepost population with x0 =
σobs/2. As the number of measurements increases, the
hierarchical model disfavors the null hypothesis more
strongly, with QGR vanishing rapidly for increasing N .
On the other hand, a BF computed with ∆ = 5σobs grows
exponentially in favor of the null hypothesis, yielding a
spectacularly incorrect result.

Of course, in the fencepost example as in any realistic
situation, determining that the observations are incon-
sistent with a delta function at the origin would not be
sufficient to fully characterize the population distribution.
Were we to find inconsistency with µ = σpop = 0, then
we would carry out a followup analysis to more compre-
hensively infer the properties of the population, e.g., by
applying a population model with higher moments than a
Gaussian. Regardless, the hierarchical test is always well
suited as a first null-test, because a vanishing mean and
variance is a necessary condition for the null hypothesis.

V. CONCLUSIONS

Although conceptually appealing in idealized situations,
the use of BFs to aggregate information from multiple
observations presents difficulties in practice. Their ap-
parent simplicity in reducing a complex model selection
problem to a single number hides an opaque dependence
strict and unrealistic population assumptions. Unless
priors (aka, the “population”) adapt to the observations
at hand, BFs are difficult to interpret—a problem that is
compounded when multiplying such BFs from a catalog of
observations. Even when priors are adequate, the result
on its own provides no insight as to why a model is to be
preferred over another. This and related problems have
been widely discussed in the statistics literature [e.g., 54,
and references therein], but not extensively in the context

of GWs and testing GR.
In this paper, we have examined BFs and hierarchical

posteriors as two commonly-used alternatives to derive
information from collections of GW detections in order to
decide between two models, e.g., the presence or absence
of beyond-GR effects in the detected waveforms. We
furthered arguments in [5, 36] to show that, without a
principled way to set priors, BFs are an unreliable tool for
this task. We demonstrated this with three examples in
which the value of some parameter x encoding the effect
in question (e.g., a deviation from GR) follows different
distributions deviating from the null hypothesis.

We have found that, when the truth does not conform
to the null model, the usual approach of multiplying
single-event BF converges to the incorrect answer for an
increasing number of observations, except in a regime
where the targeted effect is discernible in individual obser-
vations (thus negating the need for combining events in
the first place). On the other hand, hierarchical modeling
of the underlying population leads to identification of the
appropriate priors (aka, the “population model”) and con-
verges to the correct answer. We established this in the
context of nested models for which GR can be recovered
as a special case of the beyond-GR model (i.e., x0 = 0);
however, the issue of sensitivity to the prior width will
still be present in non-nested models [e.g., 55] where it
will require a different solution.

In principle, BFs could be computed after the hier-
archical population inference [54] or between different
population models [3], but we here show that they are
unreliable without this step. Even then, it is not possible
to evade the core problem of prior dependence when com-
puting BFs, no matter how many levels of inference are
applied: the BF computation based on the highest level
of inference in a hierarchical model will still depend on
the choice of priors on that level, reducing the problem
once again to the choice of a prior distribution that is
difficult to establish in a principled way. This issue is
devistatingly acute for the approach that multiplies Bayes
factors with a simple, fixed prior because each observation
contributes an additional prior factor.
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FIG. 10. Accumulation of credibility (left) or log BF (right) for GR versus catalog size N in numerical experiments corresponding
to the parameter choices indicated by the black lines in Fig. 9. The solid line gives the median over 100 catalog realizations
at each catalog size N while the band shows the range of the 16th to 84th percentile values. The credibility of GR (left) is
the fraction of posterior mass for µ and σ in our hierarchical model that lies at a lower posterior density than the GR values
µ = σ = 0 when the model is fit to a catalog of observations whose true and observed deviations are drawn from the “fencepost”
model described in Sec. IV with x = ±σobs/2. The log Bayes factor (right) is the sum of the log BFs for each observation in
the catalog using a flat prior on the true deviation −∆ < x < ∆ with ∆ = 5σobs. The hierarchical model correctly finds that
there is little credibility for GR once the catalog size is a few hundred; the accumulated BF, on the other hand, becomes very
confident in the incorrect GR model even at small catalog sizes.

Appendix A: Expectation value and variance of
hierarchical parameters

Consider i = 0 . . . N−1 measurements of parameters xi
whose true values, µi, are drawn from a normal distribu-
tion µi ∼ N (µ, σpop); further assume each measurement
is unbiased, i.e., 〈xi〉 = µi, where the angle brackets de-
note a noise average, and that it is well represented by a
Gaussian distribution such that xi ∼ N (µi, σi), where σi
is the measurement uncertainty.5

The joint likelihood for µ and σpop conditional on the
N uncertainties σi can be obtained by marginalizing over
the true values µi:

p(xi | µ, σpop, σi) =

∫
p(xi | µi, σi) p(µi | µ, σpop) dµi

=
1

2πσiσpop

∫
e
− (xi−µi)

2

2σ2
i e

− (µi−µ)2

2σ2pop dµi

=
1√

2πσ2
tot,i

e
− (xi−µ)2

2σ2
tot,i , (A1)

where σ2
tot,i = σ2

i + σ2
pop is the total variance for the ith

measurement. For the full set of N measurements {xi},

5 In the main text, we used slightly different notation: instead
of (xi, µi, σi) we had (xobs, x, σobs); the former is slightly more
succinct, which will be helpful here given the increased number
of mathematical expressions.

then, the hierarchical likelihood is

p({xi} | µ, σpop, {σi}) =

N−1∏

i=0

1√
2πσ2

tot,i

e
− (xi−µ)2

2σ2
tot,i . (A2)

The maximum-likelihood estimators for µ and σpop, de-
noted µ̂ and σ̂pop respectively, can be found by enforcing

∂µ ln [p({xi} | µ, σpop, {σi})]|µ=µ̂ = 0 , (A3)

where ∂µ denotes the partial derivative ∂
∂µ , and similar

for σpop. We find that µ̂ and σ̂pop satisfy

µ̂ =

∑
xiwi∑
wi

, (A4)

and

∑
wi −

∑
w2
i (xi − µ̂)

2
= 0 (A5)

for wi ≡ σ−2
tot,i =

(
σ2
i + σ̂2

pop

)−1
.

We cannot solve this most general (heteroskedastic)
case for µ̂ and σ̂pop in closed form, so we specialize to
the (homoskedastic) case where all measurements have
similar error, σi = σobs for all i. With this simplification,
the above relations reduce to

µ̂ =
1

N

∑
xi , (A6)

and

σ̂2
pop =

1

N

∑
(xi − µ̂)

2 − σ2
obs . (A7)
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As might be expected, the maximum-likelihood estimate
of the population mean is simply the sample mean, and the
inferred population variance corresponds to the variance
in the data that cannot be accounted for by the statistical
uncertainty in each individual measurement.

We can go one step further and compute the uncertainty
in these estimators, which we can take as a proxy for the
width of the marginal likelihoods. The uncertainty in µ̂
is straightforward to compute, since this is just a linear
combination of independent random variables xi with
known variance σ2

tot ≡ σ2
obs + σ2

pop, hence

var (µ̂) =
σ2

obs + σ2
pop

N
. (A8)

Obtaining var
(
σ̂2

pop

)
is less straightforward, but we can

do so by writing var
(
σ̂2

pop

)
= F−1, in terms of the corre-

sponding Fisher element6

F ≡ −
〈
∂2
σ2
pop

ln [p({xi} | µ, σpop, σobs)]
∣∣∣
σ2
pop=σ̂2

pop

〉
.

(A9)
Doing the math, we find

var
(
σ̂2

pop

)
= 2

(
σ2

obs + σ̂2
pop

)2

N
. (A10)

In the main text, we quoted these results for var (µ̂) and
var
(
σ̂2

pop

)
in Eqs. (16) and (17) respectively.

We can compare the width of the hierarchical likeli-
hood, as proxied by the estimator variances above, to
some typical scale of interest in the problem. Below we
consider the scale imposed by the µ and σpop hyperpriors
to estimate the number of events before the likelihood be-
come informative with respect to the prior. We chose the
hyperpriors to be Gaussians with scale σprior, restricting
to positive σpop values, i.e.,

p(µ | σprior) =
1√

2πσ2
prior

exp

(
− µ2

2σ2
prior

)
(A11)

for the mean, and

p(σpop | σprior) =





√
2

πσ2
prior

exp
(
− σ2

pop

2σ2
prior

)
(σpop ≥ 0)

0 (σpop < 0)

(A12)
for the standard deviation, where the difference in nor-
malization arises from the σpop ≥ 0 truncation. The prior
variances in our example are, thus, var (µ) = σ2

prior for the

mean, and var
(
σ2

pop

)
= 2σ4

prior for the variance (obtained

through direct computation). For concreteness, in the
main text we set σprior = σobs, since that is the only scale
intrinsic to the measurement.

We can now directly compute the number of observa-
tions required for the likelihood to achieve comparable
widths by equating these variances to the likelihood vari-
ances from Eqs. (A8) and (A10) above. The result is

N &
σ2

obs + σ2
pop

σ2
prior

(A13)

for µ, and

N &

(
σ2

obs + σ2
pop

σ2
prior

)2

=

(
σtot

σprior

)4

(A14)

for σpop. We quoted these results in Eqs. (18) and (19)
in the main text. We require at least this many measure-
ments before the uncertainty in the population variance
can be smaller than the measurement uncertainty. Until
that point, the σpop posterior will be dominated by the
prior.

The results for the N thresholds quoted above hinge
on the specific choice of prior for µ and σpop. In the
main text, we justified our decision to set the scale of
those priors based on σobs by noting that this is the
only intrinsic scale to the problem, and should always be
sufficiently broad as long as the deviation from GR is not
visible in a single detection—the regime in which we are
interested in the first place. Had we chosen to increase
the prior variance by some factor, then the N thresholds
would decrease by the same factor, i.e., we need fewer
detections to gain information relative to a broad (less
informative) prior than a narrower prior. Either way, the
result converges to the right answer as we accumulate
more observations.
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