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4Randstad, Diemermere 25, 1112TC Diemen, Netherlands
5Gravitation and Astroparticle Physics Amsterdam (GRAPPA),

Institute for Theoretical Physics Amsterdam, University of Amsterdam, the Netherlands
(Dated: June 13, 2022)

The noise of gravitational-wave (GW) interferometers limits their sensitivity and impacts the data
quality, hindering the detection of GW signals from astrophysical sources. For transient searches,
the most problematic are transient noise artifacts, known as glitches, that happen at a rate around
1 min−1, and can mimic GW signals. Because of this, there is a need for better modeling and
inclusion of glitches in large-scale studies, such as stress testing the pipelines. In this proof-of
concept work we employ Generative Adversarial Networks (GAN), a state-of-the-art Deep Learning
algorithm inspired by Game Theory, to learn the underlying distribution of blip glitches and to
generate artificial populations. We reconstruct the glitch in the time-domain, providing a smooth
input that the GAN can learn. With this methodology, we can create distributions of ∼ 103 glitches
from Hanford and Livingston detectors in less than one second. Furthermore, we employ several
metrics to measure the performance of our methodology and the quality of its generations. This
investigation will be extended in the future to different glitch classes with the final goal of creating
an open-source interface for mock data generation.

I. INTRODUCTION

During the first observing run (O1), the existence
of gravitational-wave (GW) signal from binary black
hole (BBH) coalescence was successfully proven by Ad-
vanced Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) [1]. After an upgrade of the detectors
to increase their sensitivity, Advanced LIGO [2] started
in November 2016 the second observing run (O2), which
Advanced Virgo [3] joined in August 2017 [4]. Follow-
ing significant upgrades, in April 2019, the third observ-
ing run (O3) was initiated by Advanced LIGO, and Ad-
vanced Virgo [5]. During O1 and O2, 11 candidates were
detected and 74 were detected during O3 [6–8]. In the
coming years, the improvement of the second generation
of interferometers and the construction of the third gen-
eration of detectors, such as Cosmic Explorer, LISA, and
Einstein Telescope, will increase significantly the detec-
tion sensitivity [9–11].

While current GW search techniques for transient sig-
nals (. 1 minute) have been extremely successful, their
sensitivity continues to be hindered by the presence of
transient bursts of non-Gaussian noise in the detectors,
known as glitches. Glitches have durations typically on
the order of sub-seconds, and their causes can be envi-
ronmental (e.g., earthquakes, wind, anthropogenic noise)
or instrumental (e.g., overflows, scattered light [12]), al-
though in many cases, the cause remains unknown [13].
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While much work has been done to mitigate the effect
of glitches on GW searches [14, 15], they remain one of
the major limiting factors in the detection and parameter
estimation of transient GW signals.

In this paper, we learn the underlying distribution of
glitches with Machine Learning (ML) methods for bet-
ter modelling an inclusion for large scales. For this aim,
we employ Generative Adversarial Networks (GAN) [16]
to build an artificial population of glitches and we use
several metrics to test their similarity to the real input.
This paper is structured as follows. In section II we intro-
duce the current state-of-the-art of glitch identification,
as well as blip glitches, which is the focus of this work.
In section III we describe in detail the ML method em-
ployed and we give details about the data acquisition. In
section IV we present some examples of the generated
data, we propose several statistical tests to measure the
performance of our methodology and we comment on its
limitations. In section V we provide a description of sev-
eral possible applications of the generated data for future
investigations and in section VI we conclude.

II. GRAVITATIONAL-WAVE DETECTOR
GLITCHES

A. Identification and Classification

Because glitches can reduce the amount of analyzable
data, bias astrophysical detection, parameter estimation,
and even mimic GW signals, it is fundamental to de-
velop robust techniques to identify and characterize these
sources of noise for their possible elimination. In previ-
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ous LIGO and Virgo science runs, this classification was
performed by visual inspection, which soon proved to be
slow and inefficient [17].

During O2 run, the detection rate of glitches was
≈ 1 min−1 ; so due to the overwhelming amount of
glitches present in data. A promising option is to con-
struct ML algorithms to identify and classify glitches [17–
19]. However, another challenge arises since a pre-labeled
data set is necessary to train such algorithms. With this
goal in mind, Zevin et al. [20] developed pioneerwork to
classify transient noise, called Gravity Spy. In this work,
both problems are addressed: volunteers provide large
labeled data sets to train the ML algorithms through
Zooniverse infrastructure, while ML algorithms learn to
classify the rest of the glitches correctly, providing feed-
back to participants. In practice, a glitch time series that
we wish to classify is fed to the algorithm that generates
the Q-transform of its input (see [20] for details). Then,
Gravity Spy classifier assigns a class and a confidence
value cGS to the Q-transform of the glitch, where cGS
represents the confidence of the label assigned. Gravity
Spy uses a multi-class classification, and it differentiates
between 23 glitch classes and the absence of glitch inside
the Q-scan in O2 [20].

B. Blip Glitches

This work focuses on blip glitches due to their abun-
dance during O2 run and their simple morphology. Blip
glitches are short glitches (. 0.2 s) that have a charac-
teristic morphology of a symmetric ‘teardrop’ shape in
time-frequency in the range [30, 250] Hz, as we show in
Fig.1 (left). They appear in both Livingston (L1) and
Hanford (H1) detectors, which is the focus of our work,
but there is also evidence of their presence in Virgo and
GEO 600 [13]. Due to their abundance and form, blip
glitches hinder both the unmodeled burst and modeled
CBC searches [21, 22], with particular emphasis in com-
pact binaries with large total mass, highly asymmetric
component masses, and spins anti-aligned with the or-
bital angular momentum. For illustration, in Fig.1, we
can observe the similarities between a blip an interme-
diate binary black-hole chirp surrounded by O2 noise.
Moreover, since there is no clear correlation to the auxil-
iary channels, they cannot be removed from astrophysical
searches yet.

III. METHODOLOGY

ML techniques have been very successfully applied
for solving a variety of tasks across different domains,
and in recent times they have sparked the interest of
scientists in the field of GW data analysis. A widely
used ML method for pattern recognition is convolutional
neural networks (CNNs), which present a grid-like
topology, able to exhibit strong local spatial depen-

FIG. 1. (Left) Q-transform of a blip glitch retrieved from
Gravity Spy [20]. (Right) Q-transform of an event with total
mass 106.6+13.5

−14.8M�.

dencies, allowing faster evaluation speeds [23]. CNNs
has been successfully employed in different tasks such
as identification of BBH [24, 25] and binary neutron
stars (BNS) [26, 27], detection of the early inspiral
of BNS mergers [28, 29], supernovae identification
[30–32] and glitch classification [20, 33], among oth-
ers. See also [34] for an interesting review. CNNs
can also be used to achieve pixel-wise identification
of long-duration bursts in the time-frequency plane.
Indeed, authors in [35] built a network that learns to
identify the relevant pixels in the image to later use
this information to upsample [36] it into the original size.

ML methods are not only limited to pattern recogni-
tion tasks. GAN can learn the underlying distribution of
a population to produce artificial examples from Gaus-
sian noise. With this idea in mind, the authors in [37]
employed a conditional GAN to burst signals, allowing
them to generate multiple classes of signals with the same
algorithm and to interpolate through different classes,
creating mixed signals. The powerful generation capa-
bility of GAN leads the authors to foresee that it could
be applied to generate artificial glitches. In the following
subsection, we provide more details about GAN method-
ology and the architecture of our network.

A. Generative Adversarial Networks

GAN [16] are a class of generative algorithms in which
two neural networks compete with each other to achieve
realistic image generation. One network, known as the
generator, is responsible for generating new images from
random noise, while the other, known as the discrimina-
tor, tries to discriminate the generated images from the
real training data. The generator progressively learns
which features of the real images should be mimicked
to fool the discriminator and save them into the latent
space, which can be understood as a compressed repre-
sentation of the input data learnt by the generator. At
the end of the training, new images are drawn by ran-
domly taking a latent space vector and passing it to the
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FIG. 2. Typical GAN architecture retrieved from [38].

generator, which has learned to translate it into a re-
alistic image. Fig.2 shows an overview of the original
architecture of GAN for generating 2D data, but all the
forthcoming developments still hold for 1D data. This
early approach has been shown to work well under some
hyperparameter configurations [39]. However, early GAN
architecture [16] suffers from the significant problems of
vanishing gradients and meaningless loss function [40].
Wasserstein GANs [41] (WGAN) were developed to ad-
dress these issues by making use of the Earth’s mover
distance estimator, or Wasserstein-1 distance (W1) [42],
which computes the similarities between two distribu-
tions. W1 is evaluated through the discriminator as
the training progresses and increases monotonically while
never saturating, providing a meaningful loss metric even
for two disjoint distributions. Since W1 is continuous
and differentiable, it yields reliable gradients, allowing
us to train the discriminator till optimality to obtain
high-quality generations. This change of paradigm led
Arjovsky et al.[41] to reformulate the optimization prob-
lem as :

θopt = argmin
θ
W1(Px‖Px̃) , (1)

where W1 is evaluated between the real distribution Px
and generated distribution Px̃. Eq.1 can be written as,

θopt = argmin
θ

max
φ:‖D(x,φ)‖L≤1

L(φ, θ) (2)

with the discriminator loss:

L(φ, θ) = −Ex∼Px
[
D(x, φ)

]
+ Ex̃∼Px̃

[
D(x̃, φ)

]
(3)

where D and G refer to the discriminator and the gener-
ator with parameters φ and θ, respectively. Ex∼Px indi-
cates that the expression has been averaged over a batch
of real samples x, while Ex̃∼Px̃ has been averaged over a
batch of generated samples x̃. The new condition over φ
in expression Eq.2 imposes a constraint on the discrimi-
nator D, which must be 1-Lipschitz continuous [41].

In practice, this can be achieved in two ways: clipping
the weights of the discriminator beyond a specific value

c[41], or adding a regularization term to the discrimi-
nator loss, defined in Eq.3, known as gradient penalty
(GP). While the first solution is a poor way to enforce the
Lipschitz condition, the second solution has been widely
accepted. The mathematical formulation of GP is as fol-
lows:

Ltot = L(φ, θ) + λGP (φ) (4)

with

GP (φ) = Ex̂∼Px̃

[(
‖∇xD(x̂, φ)‖2 − 1

)2]
, (5)

where λ is known as the regularization parameter, ‖·‖2
stands to the L2-norm and x̂ is evaluated following:

x̂ = x̃ t+ x (1− t) (6)

with t uniformly sampled ∼ [0, 1]. This method has
shown impressive applications such as [43], but it is not
restricted to WGANs [44, 45]. Nonetheless, unlike weight
clipping, GP cannot enforce the Lipschitz condition ev-
erywhere, particularly at the beginning of the training.
This can prevent the generator from converging to the
optimal solution. To overcome this obstacle, Wei et al.
have proposed a second penalization term to add to the
loss from Eq.3, called consistency term. They applied
their new constraint to two perturbed versions of the real
samples x, introducing dropout layers into the discrimi-
nator architecture. This ultimately leads to two different
estimates noted D(x′) and D(x′′). The consistency term
is defined as follows:

CT (φ) = Ex∼Px
[
max

(
0, d(D(x′, φ), D(x′′, φ))

+ 0.1 d(D (x′, φ), D (x′′, φ))−M ′
)]
,

(7)

where d(.,.) is the L2 metric, D stands for the second-
to-last layer output of the discriminator, and M ′ is a con-
stant value. Wei et al. found that controlling the second-
to-last layer output helps improve the performance of the
WGANs. Thus, the final discriminator loss is then [46]:

Ltot = L(φ, θ) + λ1GP (φ) + λ2 CT (φ) , (8)

with λ2 being the consistency parameter. This type of
WGAN was called CT-GAN, which is the one that we
employ in this work.

B. Network Architecture

The architecture of the networks has been inspired by
the work presented in [39] but nearest-neighbour (NN)
sampling layers have been preferred over strided convo-
lution layers in the generator structure. The convolution
parameters were chosen to be fixed through the generator
and discriminator layers with kernel k = 5, no padding
and stride s = 1. Leaky ReLU(·, α = 0.2) has been
chosen as the activation layer for both discriminator and
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generator, with the exception of the output layer of the
generator, that uses a Tanh(·) activation, allowing values
∼ [−1, 1].

In the generator structure (see Fig.3), we also employ
a dilation factor of 2, 4, 6, 8 and 16 for successive layers
to enlarge its receptive field and, in turn, its expressivity
power, at the exact computational cost [47]. Batch nor-
malization (BN) [48] has been added to the generator ar-
chitecture to make it both stable and faster to learn. The
discriminator structure (see Fig.4) is composed of convo-
lutions on which spectral normalization [49] is employed
to stabilize the training. Dropout layers are added, ex-
cluding the first and last layers, which is required by the
consistency term (Eq.7).

C. Training Data and Procedure

1. Pre-processing

The construction of our data set strongly relies on the
confidence provided by Gravity Spy. Thus, to create
a high confidence data set, we select the blip glitches
from L1 (Livingston) and H1 (Hanford) detectors of O21

run that have a confidence c1GS ≥ 0.9. Glitches are
surrounded by stationary and uncorrelated noise, which
will hinder the learning of our machine learning method.
Therefore, it is necessary to extract glitches from the
stream data maintaining their original morphology. For
this aim, we employ BayesLine [50] to whiten the glitches
locally and BayesWave (BW) [51] to extract the glitches
from the uncorrelated noise. BW uses non-orthogonal
continuous Morlet-Gabot wavelets to fit and reconstruct
the input signal, but the selection of the model is made
with a trans-dimensional Reversible Jump Markov Chain
Monte Carlo [52] that acquires a trade-off between the
complexity of the model and the quality of the fit. The
input signal is represented as a set of wavelets whose re-
construction is their addition.

In our particular framework, the input provided to BW
is a time series containing the blip glitch that is 2.0 sec
long. However, to avoid training the CT-GAN algorithm
in irrelevant data and speed up the training phase, the
samples of the final training set have 938 data points
sampled at 4096 Hz, constituting 0.23 sec of data. Since
the reconstruction is not perfect, we lose around 2% and
18% of the data for L1 and H1, respectively (see Table
I). To assess the quality of the reconstructions, we inject
them in real whitened noise and evaluate it with Gravity
Spy classifier, selecting blips with a c2GS ≥ 0.9 to generate
high-quality input data. After this heavy pre-processing,
the training data set is composed of around 66% and 50%
of the initial data for L1 and H1, respectively.

Moreover, as it was previously mentioned, blips can be
found in the frequency band [30, 250] Hz, but BW might

1 Data from GWOSC https://www.gw-openscience.org/data/

TABLE I. Size of the blip set for each detector in the different
phases of the pre-processing: selection, reconstruction and
evaluation.

Pre-processing Livingston Hanford

Num. blips
c1GS ≥ 0.9

5540 6768

BW output 5461 5612

Num. blips
c2GS ≥ 0.9

3654 3407

Num. blips
c2GS , c

3
GS ≥ 0.9

3291 2587

introduce certain high-frequency contributions that will
hinder the learning of our machine learning algorithm.
For illustration, in Fig.5 (left) we plot BW reconstruc-
tion (grey), where we coloured the characteristic blip
peak (blue) and the high frequency contribution (light
blue). To eliminate the high-frequency contribution, we
initially set an empirical threshold to remove power ex-
cess in the surroundings of the peak. Nonetheless, some
high-frequency contributions overlap with the blip and
cannot be removed with this method. Thus, to minimize
this contribution and generate a smoother input to en-
hance the learning of our model, we employ regularized
Rudin-Osher-Fatemi (rROF) proposed in [53].

This algorithm solves the denoising problem, s = g+n,
where g is the smooth reconstruction of glitch and n is
the noise, as a variational problem. The solution g is
computed as follows:

gλ = arg min
g
{R(g) +

λ

2
F(g)} , (9)

where R(g) is the regularization term that constrains the
data, which refers to the quality of the smooth recon-
struction g. F(g) is the fidelity term, which measures
the L2-distance between the g glitch and the observed
signal s. λ regularises and controls the relative weight of
both terms in the equation. It is important to note that
his parameter needs to be tunned manually to achieve
the desired level of denoising.

To assess the quality of the denoised blip glitches, we
use the Gravity Spy classifier for different λ parame-
ters again, and we found λ = 0.5 to be a trade-off be-
tween preserving the structure of the glitch and removing
the non-smooth high-frequency contribution. In Fig.5
(right), we plot the BW reconstruction denoised with
rROF (dashed orange), and the denoised characteristic
blip (green). In Fig.5 (bottom), we show the amplitude
spectral density (ASD) of the BW reconstruction with
and without denoising (grey and dashed orange), as well
as the characteristic peak with and without denoising
(blue and green) and the original high-frequency contri-
bution (light blue). We can observe that we are able
to maintain the structure of the characteristic peak by
damping the power of the high-frequency contribution.

https://www.gw-openscience.org/data/
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FIG. 4. Discriminator architecture showing strided convolutions, dropout layers and LeakyReLU activations.

To verify that we are able to preserve the structure of
blips according to the current state-of-the-art, we com-
pare in Fig.6 the Gravity Spy confidence of reconstructed
blips c2GS (blue), against denoised reconstructed blips
c3GS (orange) from L1. As we can observe, both dis-
tributions are similar since they have similar means µGS
and standard deviations σGS . Finally, we select the blip
glitches with c2GS ≥ 0.9 and c3GS ≥ 0.9, to ensure the high
quality of the input data of the algorithm.

2. CT-GAN training procedure

During the training of the CT-GAN algorithm, both
the generator and the discriminator need to be updated
at similar rates to acquire stability and guarantee con-
vergence. The task of the discriminator is more diffi-
cult since the generated samples that the discriminator
intends to classify can be anywhere in the data space

and change for each new iteration [54]. Hence, to assure
the stability of both networks, we update the discrimina-
tor 5 times per update of the generator, for each epoch.
We employ RMSProp optimizer [55] with a learning rate
= 10−4 for both discriminator and generator, and we
train the CT-GAN for 500 epochs, where we define an
epoch as the number of times the network has passed
through the whole dataset. Employing GPU TITAN V
with a memory of 96 Gb allowed us to use train our model
in ≈ 7.75 h.

To monitor the behaviour of the CT-GAN during the
training phase, we represent the generator and the dis-
criminator loss as a function of the epochs in Fig.7. We
can observe that both networks stabilize around epoch
100 and continue to oscillate around values close to zero
until the training is complete. After several experiments,
we concluded that while CT regularised the generator,
dropout regularised the discriminator and GP balanced
both. This stability can also be observed in the behaviour
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FIG. 5. (Top left) Blip glitch reconstructed with BW (grey),
where we colour the characteristic blip peak (blue) and the un-
desired high frequency contribution (light blue). (Top right)
Blip glitch reconstructed with BW (grey) and denoised with
λ = 0.5 (dashed orange). We colour in green the denoised
characteristic blip peak. (Bottom) Resulting amplitude spec-
tral density (ASD) for the reconstructed blip with BW (grey)
and its denoised version with λ = 0.5 (dashed orange). We
also show the ASD of the characteristic peak with (blue) and
without denoising (green), as well as the high frequency con-
tribution (light blue).

of the CT and GP penalizations in Fig.7, where both
terms tend to zero as the network stabilizes. The values
that helped the CT-GAN to converge were CT = 5 and
GP = 5, with a dropout rate of 0.6. These values were
obtained after several experiments, but in future works
it would be interesting to employ Optuna [56], which is
a hyperparameter optimization framework used to auto-
mate hyperparameter searches.

IV. RESULTS

A. Blip Generation

After the training of the CT-GAN, and given a 100-
dimensional vector drawn from a normally distributed
latent space (as it common in other GAN related works),
we are able to generate 103 blips a blip from the input
distribution of H1 and L1 in ≈ 5 sec for both interefer-
ometers. It is relevant to note that each blip has a length
≈ 0.23s with an amplitude ∈ [−1, 1], whitened and sam-
pled at 4096 Hz. In Fig.8 we represent the peak fre-
quency (top panel) and the duration (bottom panel) for
the fake population from L1, and we compare it with

FIG. 6. Comparison between the reconstructed and the de-
noised population of blip glitches for L1. For the recon-
structed set c2GS = 0.892 ± 0.003 and for the denoised set
c3GS = 0.874 ± 0.004 at 95% confidence level.

FIG. 7. Graph representing the discriminator loss (blue), gen-
erator loss (pink), CT (green) and GP (orange) penalisation
as a function of the epochs.

Tomte and Blips. As an example, we present in Fig.9
different artificial blips from L1 in the time domain, and
for visualization, we also compute their Q-transform as
in [20]. In the time-frequency representation, we can see
that CT-GAN has been able to capture the distinct sym-
metric ‘teardrop’ of blips in the expected frequency range
[30, 250] Hz. In Fig.8, we compare the peak frequencies
of real Tomte and Blip glitches from L1 against our ar-
tificial population, where we can observe that the bulk
of the distribution of fake blips is aligned with the real
blip population. Furthermore, we can observe that in
the time representation, we are able to reproduce differ-
ent morphologies of the characteristic central peak. Even
if by visual inspection it would seem that the artificial
generations are closely related to the real blips from O2,
it is necessary to perform a statistical test to assess the
performance of CT-GAN.
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FIG. 8. (Top) Peak frequency for Tomte (pink) and Blip
(green) from L1 retrieved from Gravity Spy [20], measured
with Omicron spectrograms [57]. In blue we plot the peak
frequency of the artificial blips from L1.

B. Assessing Performance

We employ four different methods to assess the quality
of the population. On the one hand, we employ their Q-
scan representation to evaluate our artificial population
with the current state-of-the-art. On the other hand, we
analyze their morphology in the time domain to take into
account the phase information:

• Gravity Spy classifier: In order to assess perfor-
mance using an independent ML classifier, we can
inject the generated glitches in real whitened noise
from O2 (see Fig.9) and evaluate them with Grav-
ity Spy, which will return a confidence value cGS
and a class label. We use the same noise strain for
each generated glitch to provide the classifier with
a fair comparison. Since the generated blip has an
amplitude ∈ [−1, 1], we can re-scale it according to
a desired optimal signal-to-noise ratio (ρopt). For
this aim, we relate ρopt to the scaling parameter α
by modifying Eq 4.3 from [58] as:

ρopt = 4α

∫ fmax

fmin

|g̃(f)|2

Sn(f)
df , (10)

where g̃(f) represents the artificial blip and Sn is
the power spectral density (PSD) of the fixed real
whitened noise. One of the main drawbacks of this
method is that it is computationally intensive (≈ 90
s/glitch) because it is necessary to calculate the Q-
transform of the input time series.

• Wasserstein distance (W1): As explained in sub-
section ii, the Wasserstein distance is continuous
and never saturating, allowing us to keep track of
the quality of the generated samples during the
training. For further mathematical details, a for-
mal definition can be found in [41]. This metric is

then an adequate tool to compare real and gener-
ated glitches. This method is fast and efficient since
the computation is performed in the time domain
(≈ 0.0026 s/glitch).

• Match function (Mf ): To compute the similar-
ity between two signals, we can also use the match
function, which returns the match between both
signals [59]. The match can be defined as the inner
product between two normalized signals maximized
over time (t) and phase (φ) [60],

Mf (a, b) := max
t,φ
〈â, b̂〉. (11)

Since the signals are noise-free, we do not employ
any PSD for normalization. This calculation is per-
formed in the frequency domain, and it is also fast
and efficient (≈ 0.0032 s/glitch).

• Normalized cross-covariance (k(X,Y )): As-
suming two random processes X and Y , their cross-
covariance between time t1 and t2 is defined as:

KX,Y (t1, t2) ≡ E[(Xt1 − µ(Xt1))(Yt1 − µ(Yt1))] (12)

To obtain the normalized cross-covariance coeffi-
cient, we divide the cross-covariance over the stan-
dard deviation of each random process. The max-
imum value of this magnitude is the metric em-
ployed to measure the similarity between two sig-
nals, as defined below:

k = max
(KX,Y (t1, t2)

σXσY

)
(13)

This calculation, which is also in time domain, is
most efficient (≈ 0.0011 sec/glitch).

1. Gravity Spy

For this procedure, we inject each generated blip in real
whitened detector noise and re-scale it according to Eq.10
to fix ρopt. We can compute the confidence of Gravity Spy
as a function of the optimal SNR ρopt ∈ [0.1, 18.2]. This
process is conducted on 103 blip glitches of each detector
population.

In Fig.10, we plot the classification labels, with max-
imum classification probability, for different ρopt of H1
population, while we present the results of L1 in Ap-
pendix A. We can observe that the dominant class is Blip
and that the number of glitches in this class increments
by increasing ρopt, in opposition to other classes. Inter-
estingly, when ρopt = 0.947, meaning that the artificial
blip is not visible by eye in the Q-transform, around 500
artificial glitches are labeled as Blip.

One could think that this type of behaviour would be
expected since CNNs are able to “see” patterns that are
invisible to the human eye, but the classifier is able to rec-
ognize glitches up to a certain threshold (Omicron SNR
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FIG. 9. (Top row) Generated blip of L1 plotted as a function of time. In red we represent the rescaled whitened blip and in
blue we plot its injection, both in the time domain. (Bottom row) We show the Q-transform representation of the generated
injected glitches.

FIG. 10. Histogram of predicted Gravity Spy classes for 103

generated blips from H1.

≥ 7.5 [57]). Another reason might be that the train-
ing set of Gravity Spy is imbalanced, so the classifier is
biased towards the larger classes such as Blip. Hence,
it seems that Gravity Spy has a certain degree of miss-
classification, so we employ other metrics to test the per-
formance of our CT-GAN. In the future we will revisit
the performance evaluation with independent ML classi-
fiers. For now we focus mainly on similarity metrics as
we explain in the following section.

2. Wasserstein distance, match function and normalised
cross-covariance during testing

To measure the performance of the network, we
use some alternative methods, namely Wasserstein dis-
tance (W1), match function (Mf ), and normalized cross-
covariance (k). These metrics are employed to calculate
the similarity between two different artificial blips b1 and

b2, but we can also use them to calculate the similarity
between a single artificial blip bF and the real population
(BR) or the artificial population (BF ) from each detec-
tor. Such procedure is as follows:

1. We use a certain similarity distance m to measure
the distance between blip bj and a population B.

2. For each blip bi ∈ B we compute mj,i(bj , bi), which
yields a set of measurements Mj .

3. We obtain the mean and the standard error of the
previous set as µ(Mj)± ε(Mj) at 99.7% confidence
interval.

The latter is the measure of similarity between the pop-
ulation B and bj . Note that the numerical meaning of
Wasserstein distance, match function, and normalized
cross-covariance are different. For the previous example,

• If bj is a reliable generation then W1(B, bj) ≈ 0,
while Mf (B, bj) ≈ 1 and k(B, bj) ≈ 1.

• If bj is an anomalous generation then W1(B, bj)�
0, while Mf (B, bj)� 1 and k(B, bj)� 1.

Since we are dealing with real data, the real population
BR contains not only blips but also certain misclassifica-
tions. If the CT-GAN had learned the underlying distri-
bution of the data, we would expect that the real popu-
lation BR and the artificial population BF had a similar
distribution, where reliable generations would be located
in the bulk of the distribution. In contrast, anomalous
blips would be located in the tails. Hence, under this
assumption, we would expect that, given a metric m,
the similarity distance between the real and artificial dis-
tribution m(BR, BF ), should be linearly related to the
similarity distance of the artificial distribution against
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a) Similarity distance: Wasserstein distance (W1)

b) Similarity distance: match function (Mf ) and normalised
cross-covariance (k)

FIG. 11. (Top) We represent the joint and marginal dis-
tributions of W1(BR, BF ) and W1(BF , BF ) for L1 (blue)
and H1 (orange) and their best fit. (Bottom) We rep-
resent the joint and marginal distributions of the pairs
[Mf (BR, BF ),Mf (BF , BF )] and [k(BR, BF ), k(BF , BF )] for
L1 (blue and pink) and H1 (orange and green), as well as their
best fit. The coloured regions in the marginal distributions
represent the confidence interval at 6 standard deviations.

itself, m(BR, BF ). In Fig.11, we plot the joint and
marginal distribution of both comparisons for different
similarity distances: Wasserstein distance (W1), match
function (Mf ) and normalised cross-covariance (k), and
present the results from the least-squares estimate for
each detector. Furthermore, in Table I we present the

Pearson coefficient resulting from the least-squares es-
timate, which represents the linear correlation between
both variables [61].

TABLE II. Pearson coefficient for different metrics and detec-
tors.

Livingston Hanford

Wasserstein
distance

0.993 0.999

Match function 0.999 0.999

Normalised
cross-covariance

0.996 0.999

We observe that the resulting slopes (Fig.11) and the
Pearson coefficients (Table I) for each metric and each
detector are close to 1.0, meaning that both variables
have a very strong linear relationship and compatibility.
Thus, all similarity distances indicate that the bulk of
the population is constituted by reliable blips, with the
presence of some anomalous generations that can be iden-
tified by fixing an empirical threshold. Therefore, since
the generated blips represent the artificial and real pop-
ulations, we conclude that the CT-GAN has learned the
underlying distribution of blips from L1 and H1.

C. Assessing Poor Generations

When dealing with real data, one must bear in mind
that certain anomalies might be present in the data.
In our particular context, our data sets might contain
glitches that have a distinct morphology from the mean
of the population. Such differences might not be visible
in a Q-transform representation, so Gravity Spy might in-
troduce certain miss-classifications that contaminate the
input dataset. Since CT-GAN is able to learn the under-
lying distribution, it can also generate non-blip glitches
that are in the tails of the distribution. For certain stud-
ies, the presence of anomalies might be counterproduc-
tive, so differentiating reliable from anomalous genera-
tions is crucial. For this aim, we propose several metrics
to identify these miss-generations.

To use Gravity Spy classifier, we inject the gener-
ated blips in real whitened noise with a fixed optimal
SNR ρopt = 18.46, according to Eq.10. From the clas-
sification, we select the generated blips that belong to
the three dominant classes: Blip, Repeating Blips, and
No Glitch.

In Fig.12 we plot the joint and marginal distribution
as probability densities of Gravity Spy confidence against
the alternative metrics for H1 (see Appendix A for de-
tails about L1). We can observe that according to Gravity
Spy Blip, Repeating Blips, and No Glitch seem to be-
long to distinct probability densities. However, accord-
ing to the alternative metrics, the probability densities
remain centered according to a certain value for different
classes. Furthermore, there seems to be no correlation
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a) Wasserstein distance (W1) b) Match fucntion (Mf ) c) Normalised cross-covariance (k)

FIG. 12. Joint and marginal distribution of Gravity Spy confidence cGS at ρopt = 18.46 against different metrics for different
glitch classes for H1: Blip, Repeating Blips and No Glitch. We mark in the marginal distributions selected generated glitches
A (solid blue), B (dotted pink), C (dashed green) and D (dash dotted blue).

between Gravity Spy confidence and other metrics in the
joint distribution, so to further understand our results,
we proceed to inspect the results by selecting examples,

• Glitch A: This glitch is labeled as a Blips with a
high confidence according to Gravity Spy (cGS ≈
0.99). Furthermore, the chosen metric has situated
this glitch in the bulk of the distribution, meaning
that it is a reliable blip generation.

• Glitch B: This glitch is labeled as a
Repeating Blips with a confidence cGS ≈ 0.72.
However, according to our metrics, it is a reliable
generation.

• Glitch C: This glitch is labeled as a No Glitch
with a confidence cGS ≈ 0.59. However, according
to our metrics, it is also a reliable generation.

• Glitch D: This glitch is labeled as a Blips with a
high confidence according to Gravity Spy (cGS ≈
0.89). Nonetheless, the chosen metric has situated
this glitch in the tail of the distribution, meaning
that it is an anomalous blip generation.

In Fig.12, we can observe that according to the alter-
native metrics, glitches A, B and C are situated around
the center of the probability density, while glitch D is
located in the tails. Moreover, for further visualization
in Fig.13, we present the selected in the time domain,
and we also plot their Q-transforms. We can observe
that while glitches A, B, and C seem to have a similar
shape and magnitude, they differ from anomalous glitch
D. Moreover, with these metrics, we are able to identify
anomalous generations that deceive Gravity Spy classi-
fier, and their exclusion from the generated data set can
be performed by imposing a threshold.

D. Limitations

The main shortcoming that we encountered when
training the CT-GAN was the limited amount of data
preserved after the heavy pre-processing. CT-GAN needs
a large amount of samples to learn the underlying dis-
tribution, which might be a limitation when extending
our methodology to other classes of glitches that are less
common in the LIGO/Virgo streams. Nonetheless, some
researchers are developing techniques to tackle this limi-
tation that we will explore in future works [62].

Another relevant shortcoming of this study is the fact
that the quality of our input data set strongly relies on
BW reconstruction and Gravity Spy classification. In
our particular case, blip glitches have a simple morphol-
ogy, but some undesired contributions were introduced
by BW, and some miss-classifications were introduced
by Gravity Spy. Other glitches might be even harder to
extract and/or classify with the current state-of-the-art
due to their complex form, which in turn will hinder the
performance of our CT-GAN. Moreover, longer and more
complex glitches will need better architectures to be able
to learn the underlying distribution of the data.

V. APPLICATIONS

In the following we provide examples of possible appli-
cations that can be explored in future works:

A) Glitch population statistics: Learning the distribu-
tions of glitches allows us to understand their pop-
ulations further and compare their different char-
acteristics. In this way, we can develop statistics to
analyze their morphologies, populations, and pro-
duction rates in more detail as it was discussed in
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a) Glitch A b) Glitch B c) Glitch C d) Glitch D

FIG. 13. Time series representation (top row) and Q-scan representation of selected glitches from H1

[63]. For illustration employing generated blips,
we have reduced the dimensionality of the artificial
population of L1 with Principal Component Anal-
ysis (PCA) [64]. By visual inspection, we can see
three main clusters that we classify with Gaussian
Mixture 2 [66]. Each point represents a single fake
blip in PCA space coloured according to their clus-
ter label. Furthermore, we have marked with a star

FIG. 14. PCA representation of fake blip population of H1,
clustered with Gaussian Mixture. The 5% most anomalous
blips according to the distance W1(BF , BF ) are marked with
a star.

5% of the most anomalous blips present in the pop-

2 For both algorithms, we employ Scikit-learn implementation [65]

ulation, according to their distance W1(BF , BF ). It
would be interesting to investigate the differences
between the clusters in these distributions in fu-
ture work. Another possibility would be to link the
features of the blip glitches with their representa-
tion in the latent space of the CT-GAN, as it was
proposed in [67].

B) Glitch template banks: It is well-known that blip
glitches have a similar morphology to intermediate
black holes (IMBH), which hinders the detection of
such events. With our generator, we could create
glitch templates to use matched-filtering techniques
in unknown signals to compute a ranking statistic
and weight it in the likelihood function of detection
pipelines. In this way, we would provide another
metric to distinguish blip glitches from IMBH. We
could use the standard matched-filter method [68]
(See Eq.14) to compute the SNR time-series for
a specific glitch template. However, performing a
matched filtering operation for a large glitch bank
will be a huge task as computational time will in-
crease drastically. We need to handle the scala-
bility issue of the computational time of perform-
ing matched filtering with the increased number
of glitch templates as we would expect to manage
many glitch templates. We can resolve this scala-
bility issue if we adapt the matched filtering frame-
work used in the GstLAL [69, 70] pipeline for the
searches of GW signals from CBC sources. We ob-
served that a few numbers of basis obtained using
Singular Value Decomposition (SVD) [71–74] can
also represent the glitch templates, and those basis
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can be used to get the matched filter output quickly.
The computational time-complexity of matched fil-
tering can be reduced as the required number of
basis vectors is much less than the number of glitch
templates. To show the efficacy of this framework,
we generated 103 glitches for the L1 detector using
our proposed CT-GAN-based glitch generator. We
used 1 second data, sampled at 4096 Hz for this
study. The data contains an injected glitch and
colored Gaussian noise with aLIGO Zero Detuned
High Power (ZDHP) noise power spectral density
[75]. Since the generated glitches are around 0.23
second (938 data points) sampled at 4096 Hz, we
padded them with zero and made them 1 sec long
to generate the noisy data. The amplitudes of the
injected glitch were adjusted for a target Signal to
Noise Ratio (SNR) of 10. Further, we used ZDHP
to whiten the data and the glitch templates. We
computed the SNR time-series for each glitch tem-
plate based on (a) standard matched-filter method
[68] as follows:

〈s(t), g(t)〉 = 4 Re

∫ ∞
0

s̃(f) g̃∗(f)

Sn(f)
df , (14)

where the term Sn(f) is defined as the one-sided
power spectral density (PSD). The square root of
Eq.14 is termed as SNR.
(b) SVD based matched filter [72] in which a set
of few top basis vectors have been computed from
glitch-matrix first. Since each glitch template has
4096 data points, therefore the dimension of the
glitch matrix is of size 103× 4096 after stacking all
the glitches together. After that, the basis vectors
are matched filter against data, and the SNR time-
series has been computed by combining coefficients
of each glitch and matched filter output obtained
based on basis and data. For our example, we ob-
tained that 10 top-basis vectors are sufficient to
represent those 103 glitches, as it can be observed
in Fig. 15. It shows that the singular values of a
set of 103 glitches are fall steeply, which implies a
few top-basis (e.g., 10, 20) can be used to represent
those glitches. We have chosen the number of top-
basis (`) = 1, 5, 10 and reconstructed the glitches in
our analysis. We have computed the reconstruction
error for each glitch as follows:

εα =
‖gα − ĝα‖2
‖gα‖2

;α = 1, 2, · · · , 103 (15)

where ĝα is the reconstructed whitened glitch based
on ` = 1, 5, 10 basis vectors respectively and ‖‖2
represents L2 norm, and α is the number of total
glitch templates. We also computed the fractional
SNR-loss [72] for each glitch templates based on
following definition:

δρα
ρα

=
|ρα| − |ρ̂α|
|ρα|

;α = 1, 2, · · · , 103 (16)

FIG. 15. The singular values (σ) are obtained from a set
of 103 whitened glitches using SVD [71], normalized by the
maximum singular values (σmax). The glitches are generated
from CT-GAN. The spectrum of singular values is seen to fall
sharply, implying only a few singular values (e.g., ` = 10),
and corresponding basis vectors are sufficient to represent the
glitches. See the Fig.16 in which the relative reconstruction
error for these glitches has been shown based on ` = 1, 5, 10.
For performing SVD based matched filtering for glitch tem-
plates, we followed the framework presented in [72].

With the increasing number of basis, the relative
reconstruction error should be decreased. To estab-
lish this statement, in Fig.16, we choose three dif-
ferent cases with varying ` = 1, 5, 10. Fig.16 shows
the probability density of the relative error εα for
` = 1, 5, 10 respectively. The figure shows that rel-
ative error is less for ` = 10, whereas the relative
error is high for ` = 1. Similarly, we obtained the
fraction SNR loss for all glitch templates for these
three cases. Fig. 17 shows the construction of glitch
and SNR time-series based on ` = 1, 5, 10 number
of basis respectively. Both plots show that ` = 10 is
sufficient to reconstruct the whitened glitches and
represent the SNR time series. If we increase the
number of basis, the reconstruction errors ( δραρα , εα)

can be reduced but matched filtering cost would
increase. Hence, we need to choose a minimal set
of the basis for which computation cost and also
the reconstruction errors are low. We have chosen
l = 10 as that minimal number for this specific
example.

In a follow-up work, we will explore the possibility
the construction of a glitch bank construction, with
a discussion on how to obtain ranking statistics,
and signal consistency tests.

C) Mock data challenges: With our methodology, we
are able to generate glitches in the time domain.
The user could generate as many glitches as nec-
essary, selecting the ones that represent best the
real distribution and injecting them in real detector
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FIG. 16. The plot shows the distribution of relative errors
for the reconstruction of the 103 whitened glitches generated
using CT-GAN. The relative error (εα) is calculated for each
case.

FIG. 17. This figure shows the histogram based on the frac-
tional SNR loss ( δρα

ρα
) for a set of glitches (103). For each

glitch template, the SNR time-series were obtained based
on (a) Standard matched-filter scheme and (b) SVD based
matched filtering framework presented in [72] by varying the
top-basis numbers as ` = 1, 5, 10 respectively.

noise to create a realistic data challenge. Moreover,
since certain anomalies are generated, those can
also be selected to stress-test analysis algorithms.
As a preliminary test, we inject some blip glitches
in the O3a data to evaluate how they will impact
the long-duration analysis with a dedicated neu-
ral network called ALBUS [35]. For visualization,
we present the output in the right panel of Fig.18.
Since a time resolution is much larger than the
glitch duration (i.e., < 0.3 s), the injected glitch
appears as a vertical line. The structure of the
glitch is fully recovered and allows to reveal the de-
tection capability of ALBUS. As suggested in [37],
when learning different classes of glitches, we could
also interpolate between them to generate hybrid

classes. This hybrid dataset could be employed to
discover unknown classes of glitches and improve
the efficiency of detection algorithms.

FIG. 18. Example of glitch injection. The left image shows
the input time-frequency map while the right panel shows the
output of ALBUS.

D) New glitch detection: Once the network has learned
the underlying distribution of the data, with cer-
tain modifications, it can output how likely it is for
an unknown signal to belong to the known distri-
bution. This metric can detect anomalous gener-
ations and provide feedback to classification algo-
rithms. For example, with this information Gravity
Spy could re-classify certain anomalies, which could
imply the definition of new glitch classes and their
further characterization.

E) Improving glitch classification: One of the main
challenges of working with real data is to deal with
imbalanced data sets. With our methodology, once
more classes are learned, we could generate bal-
anced data sets to improve the accuracy of classifi-
cation algorithms.

VI. CONCLUSION

In this work, we have developed a methodology to gen-
erate artificial blip glitches from real data using a ML
algorithm known as GAN. To be able to generate these
glitches, the input blips need to be processed: the signals
are selected from Gravity Spy data to be reconstructed
with BayesWave and smoothed with the rROF algorithm.
Because of this heavy processing, only around 66% and
50% of the initial data from L1 and H1 is preserved.

Due to the instability of GAN algorithms, in this par-
ticular research, we trained a CT-GAN [46]. The network
uses Wasserstein distance as a loss function, which allows
it to train its discriminator to optimality. The network
is penalized heavily to avoid training instabilities and to
learn the underlying distribution of blips accurately.
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To assess the performance of CT-GAN, we generate a
population of 103 blip glitches for both H1 and L1. The
quality measurements employed are Gravity Spy clas-
sifier and similarity distances, namely, Wasserstein dis-
tance (W1), match function (Mf ) and normalized cross-
covariance (k). The results of these metrics indicate that
the neural network was able to learn the underlying dis-
tribution of blip glitches from H1 and L1, despite the
presence of some anomalous generations due to imper-
fections of the input data set. Furthermore, it has been
observed that the similarity distances are able to detect
miss-classifications from glitch classifiers.

In this proof-of-concept investigation, we have demon-
strated that it is possible to isolate blip glitches from
their surrounding noise and learn their underlying distri-
bution with an ML-based method in the time domain,
providing several examples of its usage. This method-
ology allows us to generate better quality data, and it
provides us with flexibility that would be challenging to
achieve with Q-transforms. The long-term goal of this
investigation is to learn other classes of glitches and cre-

ate an open-source interface for producing real data in
the time domain.
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Appendix A: Results for blip distribution from L1

This appendix presents the results of blips from the L1 distribution, which are compatible with the H1 population.
In Fig.19, we present a histogram of the classes assigned by Gravity Spy to a population of 103 artificial blips. As in
Section IV, we can also observe that the three dominant classes are Blip, Repeating Blips and No Glitch, and as
we increase the optimal SNR ρopt, the number of artificial glitches classified as Blip increases. As we stated before,

FIG. 19. Histogram of predicted Gravity Spy classes for 103 blips from L1.

Gravity Spy classifier seems to be biased towards Blip class, since at very low ρopt, the network will be unable to see
the glitches. Another interesting question would be to assess the influence of the detector noise in the classification
task of Gravity Spy. Similarly to Fig. 12, we present in Fig. 20 the confidence of Gravity Spy as a function of
alternative metrics for the dominant classes. In Fig.20, we can also observe that there is no apparent correlation
between the measurements and the confidence provided by Gravity Spy classifier. To inspect the results, we select
certain glitches according to the definitions in IV B. Note that the anomalous glitch found by Wasserstein distance
(labeled as D) does not coincide with the one found by match function and normalized cross-covariance (labeled as
D’). Gravity Spy was able to correctly classify with a high confidence glitch A and B, but glitches C, D, and D’ are
misclassified. For visualization and a better understanding of the results, we plot in Fig.21 the Q-transforms and the
time series injected in real whitened noise of the selected glitches. While glitch A is classified by Gravity Spy as a
perfect glitch, glitch C is miss-classified as No Glitch, although their Q-transforms look similar. It is interesting to
mention that the GAN was able to generate a Repeating Blip because some repeating blips are present in the input
data set.
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a) Wasserstein distance (W1) b) Match fucntion (Mf ) c) Normalised cross-covariance (k)

FIG. 20. Joint and marginal distribution of Gravity Spy confidence cGS at ρopt = 18.46 against different metrics for different
glitch classes for L1: Blip, Repeating Blips and No Glitch. We mark in the marginal distributions selected glitches A (solid
blue), B (dotted pink), C (dashed green) and D (dash dotted blue).

a) Glitch A b) Glitch B c) Glitch C d) Glitch D e) Glitch D’

FIG. 21. Time series representation (top row) and Q-scan representation of selected glitches from L1

Glitches D and D’, which are misclassified by Gravity Spy, are situated in the tail of the distribution of the similarity
distances. While glitch D has a shape very different from a standard blip, glitch D’ has a very narrow peak.
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