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We introduce NRPyElliptic, an elliptic solver for numerical relativity (NR) built within the
NRPy+ framework. As its first application, NRPyElliptic sets up conformally flat, binary black
hole (BBH) puncture initial data (ID) on a single numerical domain, similar to the widely used
TwoPunctures code. Unlike TwoPunctures, NRPyElliptic employs a hyperbolic relaxation scheme,
whereby arbitrary elliptic PDEs are trivially transformed into a hyperbolic system of PDEs. As
consumers of NR ID generally already possess expertise in solving hyperbolic PDEs, they will
generally find NRPyElliptic easier to tweak and extend than other NR elliptic solvers. When
evolved forward in (pseudo)time, the hyperbolic system exponentially reaches a steady state that
solves the elliptic PDEs. Notably NRPyElliptic accelerates the relaxation waves, which makes it
many orders of magnitude faster than the usual constant-wavespeed approach. While it is still ∼12x
slower than TwoPunctures at setting up full-3D BBH ID, NRPyElliptic requires only ≈0.3% of the
runtime for a full BBH simulation in the Einstein Toolkit. Future work will focus on improving
performance and generating other types of ID, such as binary neutron star.

I. INTRODUCTION

To date the LIGO/Virgo gravitational wave (GW) ob-
servatories have detected dozens of binary black hole
(BBH) mergers [1], and numerical relativity (NR) BBH
simulations form a cornerstone of the ensuing data analy-
ses. Such simulations build from formulations of the gen-
eral relativistic (GR) field equations [2–10] that decom-
pose GR into an initial value problem in 3+1 dimensions.
These formulations generally rewrite the GR field equa-
tions as a set of time evolution and constraint equations,
similar to Maxwell’s equations in differential form [11].
Thus, so long as one is provided initial data (ID) that
satisfy the Einstein constraints (elliptic PDEs), the evo-
lution equations (hyperbolic PDEs) can propagate them
forward in time to construct the spacetime.

Construction of NR ID for realistic astrophysical sce-
narios is typically a complex and highly specialized task
(see [12–15] for excellent reviews). A wide range
of approaches have been employed by different groups to
set up ID for realistic astrophysical scenarios, including
the use of finite difference [16–21], spectral [22–36], and
Galerkin [37, 38] methods, which are then combined with
special numerical techniques to solve the associated ellip-
tic PDEs. Notably, this generally requires a different skill
set than those associated with solving the (hyperbolic)
evolution equations, so experts in setting up ID for NR
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are rarely experts in solving the evolution equations, and
vice versa.

NRPyElliptic is a new, extensible elliptic solver that
sets up initial data for numerical relativity using the
same numerical methods employed for solving hyperbolic
evolution equations. Specifically, NRPyElliptic imple-
ments the hyperbolic relaxation method of [39] to solve
complex nonlinear elliptic PDEs for NR ID. The hyper-
bolic PDEs are evolved forward in (pseudo)time, result-
ing in an exponential relaxation of the arbitrary initial
guess to a steady state that coincides with the solution
of the elliptic system. NRPyElliptic solves these equa-
tions on highly efficient numerical grids exploiting un-
derlying symmetries in the physical scenario. To this
end, NRPyElliptic is built within the SymPy [40]-based
NRPy+ code-generation framework [41, 42], which facili-
tates the solution of hyperbolic PDEs on Cartesian-like,
spherical-like, cylindrical-like, or bispherical-like numeri-
cal grids. For the purposes of setting up BBH puncture
ID, NRPyElliptic makes use of the latter.

Choice of appropriate numerical grids is critically im-
portant, as setting up binary compact object ID requires
numerically resolving many orders of magnitude in length
scale: from the sharp gravitational fields near each com-
pact object, to the nearly flat fields far away. If a con-
stant wavespeed is chosen in the hyperbolic relaxation
method (as in [39]), the Courant-Friedrichs-Lewy (CFL)-
constrained global timestep for the relaxation will be
many orders of magnitude smaller than the time required
for a relaxation wave to cross the numerical domain.
This poses a significant problem as hyperbolic relaxation
methods must propagate the relaxation waves across the
entire numerical domain several times to reach conver-
gence. Thus hyperbolic relaxation solvers are generally
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far slower than elliptic solvers based on specialized nu-
merical methods.
NRPyElliptic solves the hyperbolic relaxation PDEs

on a single bispherical-like domain, enabling us to in-
crease the local relaxation wavespeed in proportion to
the local grid spacing without violating the CFL condi-
tion. As grid spacing in our coordinate system grows
exponentially away from the two coordinate foci and to-
ward the outer boundary, the relaxation waves accelerate
exponentially toward the outer boundary, increasing the
solver’s overall speed-up over a constant-wavespeed im-
plementation by many orders of magnitude. In fact the
resulting performance boost enables NRPyElliptic to be
useful for setting up high-quality, full-3D BBH puncture
ID, though it is still 12x slower than the widely used pseu-
dospectral TwoPunctures [31] BBH puncture ID solver.1

Like TwoPunctures, NRPyElliptic adopts the con-
formal transverse-traceless decomposition [12, 43–45] to
construct puncture ID for two BHs. In this paper we
present both 2D and full 3D validation tests, which
demonstrate that NRPyElliptic yields identical results
to TwoPunctures as numerical resolution is increased in
both codes.

We also embed NRPyElliptic into an Einstein
Toolkit [46–48] module (“thorn”), called
NRPyEllipticET, which enables the generated ID
to be interpolated onto Cartesian AMR grids within the
Einstein Toolkit. To demonstrate that NRPyElliptic
ID are of high fidelity, we first generate 3D BBH puncture
ID with both NRPyEllipticET and the TwoPunctures
Einstein Toolkit thorns at comparable-accuracy;
then evolve the ID forward in time through inspiral,
merger, and ringdown using the Einstein Toolkit
infrastructure; and finally show that the results of these
simulations are virtually indistinguishable.

While existing algorithms for elliptic equations
can be used to solve a general class of problems,
their numerical implementations can be rather
problem-specific (see, e.g., Ref. [49] and refer-
ences therein). For instance, the TwoPunctures
code employs the Biconjugate Gradient Stabi-
lized (BiCSTAB) method, which requires a spe-
cific preconditioner for numerical efficiency [31].
In contrast, hyperbolic relaxation solvers can be trivially
solving used for other elliptic problems by simply re-
placing the right-hand sides of the resulting hy-
perbolic PDEs while preserving other aspects of
the numerical implementation. In fact the general-
ity of the hyperbolic relaxation method has already been
demonstrated in [39], where it was used to produce ID for
many different scenarios of interest, such as scalar fields,
Tolman-Oppenheimer-Volkoff (TOV) stars, and binary
neutron stars (BNSs). In this work we will focus our
discussion on BBH puncture ID, and further evidence of

1 Benchmark tests performed using an Intel Xeon Gold
6230 20-Core CPU for initial data of comparable quality.

the extensibility of NRPyElliptic will be presented in
forthcoming papers to generate e.g., BNS ID.

The remainder of this paper is organized as follows.
Sec. II introduces the puncture ID formalism, the hy-
perbolic relaxation method, and our implementation of
Sommerfeld (radiation) boundary conditions. In Sec. III
we discuss the details of our numerical implementation,
including choice of coordinate system and implementa-
tion of a grid spacing-dependent wavespeed. We present
2D (axisymmetric) and full 3D validation tests, as well as
results from a BBH evolution of our full 3D ID in Sec. IV.
We conclude in Sec. V and discuss future work.

II. BASIC EQUATIONS

Throughout this paper we adopt geometrized units, in
which G = c = 1, and Einstein summation convention
such that repeated Latin (Greek) indices imply a sum
over all 3 spatial (all 4 spacetime) components.

Consider the 3+1 decomposition of the spacetime met-
ric, with line element

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) . (1)

Here, α is the lapse function, βi is the shift vector, and
γij is the 3-metric.

It is useful to define a conformally related 3-metric γ̃ij
via

γij = ψ4γ̃ij , (2)

where the scalar function ψ is known as the conformal
factor. We adorn geometric quantities associated with
γ̃ij with a tilde diacritic. For instance, the Christoffel
symbols associated with γ̃ij are computed using

Γ̃
k

ij =
1

2
γ̃lk(γ̃li,j + γ̃lj,i − γ̃ij,l) . (3)

Likewise, ∇̃i is the associated conformal covariant deriva-
tive and R̃ij the Ricci tensor. All geometric quantities
compatible with the physical 3-metric γij are written
without tildes.

In the limit of vacuum (e.g., BBH) spacetimes, the
Hamiltonian and momentum constraint equations can be
written as [12]

H ≡ R+K2 −KijK
ij = 0 , (4)

Mi ≡ ∇j(Kij − γijK) = 0 , (5)

where Kij is the extrinsic curvature and K ≡ γijKij is
the mean curvature. Setting up ID for vacuum space-
times in numerical relativity generally involves solving
these constraints, which exist as second-order nonlinear
elliptic PDEs.

For the purposes of this paper, we will focus on the
puncture ID formalism, in which a set of simplifying as-
sumptions is applied to these constraints, known as the
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conformal transverse-traceless (CTT) decomposition (see
e.g., [12]). For completeness we next apply the CTT ap-
proach to Eqs. (4, 5) to derive the constraint equations
solved in this paper by NRPyElliptic.

A. Puncture Initial Data Formalism

To arrive at the CTT decomposition, we first rewrite
the extrinsic curvature as

Kij = Aij +
1

3
γijK , (6)

where Aij is the trace-free part of Kij . The conformal
counterpart of Aij is defined through the relation

Aij ≡ ψ−2Ãij . (7)

The CTT decomposition splits Ãij into a symmetric

trace-free part M̃
ij

and a longitudinal part (L̃V )ij ,

Ã
ij

= (L̃V )ij + M̃
ij
, (8)

where the longitudinal operator L̃ is defined via

(L̃V )ij ≡ ∇̃iV j + ∇̃jV i − 2

3
γ̃ij∇̃lV l . (9)

Inserting these CTT quantities into the constraint equa-
tions (Eqs. 4, 5) yields the generic CTT Hamiltonian and
momentum constraint equations (see, e.g., [45, 50] and
references therein)

∇̃2
ψ − 1

8
ψR̃− 1

12
ψ5K2 +

1

8
ψ−7ÃijÃ

ij
= 0 , (10)

∆̃LV
i − 2

3
ψ6∇̃iK + ∇̃jM̃

ij
= 0 , (11)

where R̃ is the conformal Ricci scalar and the operator
∆̃L is defined as

∆̃LV
i ≡ ∇̃j(L̃V )ij = ∇̃2

V i+
1

3
∇̃i(∇̃jV j)+R̃

i

jV
j . (12)

The degrees of freedom in this formulation include

choice of M̃
ij

, K, and γ̃ij . Here we consider puncture
ID, which assume maximal slicing (K = 0), asymptotic
flatness (ψ|r→∞ = 1), and conformal flatness

γ̃ij = γ̂ij , (13)

where γ̂ij is the flat spatial metric. In addition the as-

sumption M̃
ij

= 0 is made, yielding Hamiltonian and
momentum constraint equations of the form [31]

∇̂2
ψ +

1

8
ψ−7ÃijÃ

ij
= 0 , (14)

∇̂2
V i +

1

3
∇̂i(∇̂jV j) + R̂

i

jV
j = 0 , (15)

where ∇̂i is the covariant derivative compatible with γ̂ij .
Bowen and York [51] showed that the momentum con-
straint is solved for a set of Np punctures with a closed-
form expression for the extrinsic curvature. This expres-

sion can be written in terms of ~V as follows

~V =

Np∑
n=1

(
− 7

4|~xn|
~Pn −

~xn·~Pn
4|~xn|3

~xn +
1

|~xn|3
~xn×~Sn

)
,

(16)

where ~xn = (xn − x, yn − y, zn − z), ~Pn, and ~Sn are
the displacement relative to the origin (i.e., (x, y, z) =
(0, 0, 0)), linear momentum, and spin angular momentum
of puncture n, respectively.

The Hamiltonian constraint equation (Eq. 14) must
be solved numerically, but ψ becoming singular at the
location of each puncture could spoil the numerical solu-
tion. Early attempts excised the singular terms from the
computational domain (see, e.g., [12]), but modern ap-
proaches generally follow [52] in splitting the conformal
factor into a singular and a non-singular piece,

ψ = ψsingular + u ≡ 1 +

Np∑
n=1

mn

2|~xn|
+ u , (17)

where mn is the bare mass of the nth puncture. The
Hamiltonian constraint equation, which can then be
solved for the non-singular part u, reads

∇̂2
u+

1

8
ÃijÃ

ij
(ψsingular + u)−7 = 0 , (18)

since the Laplacian of the singular piece vanishes.

B. Hyperbolic relaxation method

We now describe the basic hyperbolic relaxation
method of [39]. Consider the system of elliptic equations

LE~u− ~ρ = 0 , (19)

where LE is an elliptic operator, ~u is the vector of un-
knowns, and ~ρ is the vector of source terms. The hyper-
bolic relaxation method replaces Eq. (19) with the hyper-
bolic system of equations

∂2
t ~u+ η∂t~u = c2

(
LE~u− ~ρ

)
, (20)

where η is an exponential damping parameter (with units
of 1/t [53]) and c is the wavespeed. The variable t be-
haves as a time variable in this hyperbolic system of
equations and is referred to as a relaxation (as opposed
to physical) time. As noted in [39], the damping pa-
rameter η that maximizes dissipation is dictated by the
length scale of the grid domain when the wavespeed is
constant. On the other hand, a spatially varying
wavespeed, as introduced in Sec. III B, gives rise
to a new scale to the problem: the relaxation-
wave-crossing time, TRC (refer to Appendix B for
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details). Through numerical experimentation, we
found that the choice η that minimizes the re-
quired relaxation time follows a power law given
by Eq. (36).

If appropriate boundary conditions are chosen, when
Eq. (20) is evolved forward in (pseudo)time, the damping
ensures that a steady state is eventually reached expo-
nentially fast such that ∂tu → 0 and ∂2

t u → 0. Thus
u relaxes to a solution to the original elliptic problem.
To this end, we adopt Sommerfeld (outgoing radiation)
boundary conditions (BCs) for spatial boundaries, as de-
scribed in Sec. II C; what remains is a choice of initial
conditions. As this is a relaxation method, any smooth
choice should suffice. For simplicity, in this work we set
trivial initial conditions ~u = ∂t~u = ~0.

To complete our expression of these equations in prepa-
ration for a full numerical implementation, we rewrite
Eq. (20) as a set of two first-order (in time) PDEs

∂t~u = ~v − η~u ,
∂t~v = c2

(
LE~u− ~ρ

)
,

(21)

so that the method of lines (Sec. III) can be immediately
used to propagate the solution forward in (pseudo)time
until a convergence criterion has been triggered (indicat-
ing numerical errors associated with the solution to the
elliptic equation are satisfactorily small).

As a simple example, consider Poisson’s equation, for
which LE~u = LEu = ∇2u = u,i,i. This PDE can be

easily made covariant (“comma goes to semicolon rule”):

∇̂2
u = u;i

;i = ρ , (22)

where ∇̂i is the covariant derivative compatible with γ̂ij .
In this way, the Laplace operator is expanded as

∇̂i∇̂iu = γ̂ij∇̂i∇̂ju = γ̂ij
(
∂i∂ju− Γ̂

k

ij∂ku
)
, (23)

with Γ̂
k

ij the Christoffel symbols associated with γ̂ij .
Poisson’s equation is then written as the system

∂tu = v − ηu
∂tv = c2

(
∇̂2
u− ρ

) . (24)

Writing the PDEs covariantly enables the hyperbolic
relaxation method to be applied in coordinate systems
that properly exploit near-symmetries. For this purpose
we adopt a reference metric γ̂ij , which is chosen to be
the flat spatial metric in the given coordinate system we
are using. In this way, single compact object ID can
be solved in spherical or cylindrical coordinates (using
spherical or cylindrical reference metrics respectively),
and binary ID can be solved in bispherical-like coordi-
nates. Once the appropriate coordinate system is
chosen, all covariant derivatives are expanded in
terms of partial derivatives and the Christoffel
symbols as prescribed in Eq. (23).

Truly the power of the hyperbolic relaxation method is
its easy and immediate extension to complex, nonlinear
elliptic PDEs by simply modifying the right-hand
sides of Eqs. (24). Case in point: ID for two punctures
are constructed by solving Eq. (18) for u. This elliptic
PDE is nonlinear, but is trivially embedded within the
hyperbolic relaxation prescription via2

∂tu = v − ηu

∂tv = c2
[
∇̃2
u+

1

8
ÃijÃ

ij(
ψsingular + u

)−7
]
. (25)

Note that just like in the case of Poisson’s equation, ∇̃2
u

is expanded as in Eq. (23).

C. Boundary conditions

Similar to both the hyperbolic relaxation method im-
plemented in [39] and the Einstein Toolkit BC driver
NewRad [46, 47, 54], spatial BCs are applied to the time
derivatives of the evolved fields instead of the fields di-
rectly. Consequently the desired BC is only satisfied by
the steady state solution.

For example, assume that at ∂Ω, the boundary of our
numerical domain, we wish to impose Dirichlet BCs of
the form

~u
∣∣
∂Ω

= ~a ,

~v
∣∣
∂Ω

= ~b ,
(26)

for some constant vectors ~a and ~b. In our implementa-
tion, these would be imposed as

∂t~u
∣∣
∂Ω

= ~u− ~a ,
∂t~v
∣∣
∂Ω

= ~v −~b .
(27)

Upon reaching the steady state, ∂tu
∣∣
∂Ω

= 0 = ∂tv
∣∣
∂Ω

,
and we recover the desired BCs.

When applying the hyperbolic relaxation method to
solve the Einstein constraint equations, outgoing radia-
tion BCs are most appropriate, as they allow the outgoing
relaxation wave fronts to pass through the boundaries of
the numerical domain with minimal reflection.

Radiation (Sommerfeld) BCs generally assume that
near the boundary each field f behaves as an outgoing
spherical wave, and our implementation follows the im-
plementation within NewRad, building upon the ansatz:

f = f0 +
w(r − ct)

r
+

C

r2
, (28)

2 Recall in the previous section we adopted the tilde for the con-
formal metric and the hat diacritic to denote the flat metric,
consistent with the general convention in the literature. Due
to the choice of conformal flatness, both can be used inter-
changeably here, γ̃ij = γ̂ij .
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where f0 = limr→∞ f , w(r − ct)/r satisfies the spherical
wave equation for an outgoing spherical wave, and C/r2

models higher-order radial corrections.
Just as in the case of Dirichlet BCs, we apply Sommer-

feld BCs to the time derivative of the fields. Appendix A
walks through the full derivation for applying Sommer-
feld BCs to any field ∂tf , as well as its numerical imple-
mentation. Based on Eq. (A10), Sommerfeld BCs for a
generic hyperbolic relaxation of solution vector ~u takes
the form

∂t~u
∣∣
∂Ω

= − c
r

[
r∂r~u+(~u− ~u0)

]
+
~ku
r3
,

∂t~v
∣∣
∂Ω

= − c
r

[
r∂r~v+(~v − ~v0)

]
+
~kv
r3
,

(29)

where ~ku and ~kv are constant vectors computed at each
boundary point for each field within the ~u and ~v vectors
using Eq. (A15).

III. NUMERICAL IMPLEMENTATION

NRPyElliptic exists as both a standalone code and an
Einstein Toolkit module (“thorn”), NRPyEllipticET.
NRPyEllipticET incorporates the standalone code into
the Einstein Toolkit, solving the elliptic PDE en-
tirely within NRPyElliptic’s NRPy+-based infrastruc-
ture. Once the solution has been found, NRPyEllipticET
uses the Einstein Toolkit’s built-in (3rd-order Her-
mite) interpolation infrastructure to interpolate the so-
lution from its native, bispherical-like grids to the Carte-
sian AMR grids used by the Einstein Toolkit. From
there, the data can be evolved forward in time using any
of the various BSSN or CCZ4 Einstein Toolkit thorns.
Both standalone and Einstein Toolkit thorn versions
of the NRPyElliptic code are fully documented in peda-
gogical Jupyter notebooks. Henceforth we will describe
our implementation of the standalone version.

Our implementation of Eqs. (25) within NRPyElliptic
leverages the NRPy+ framework [41, 42] to convert these
expressions, written symbolically using NRPy+’s Einstein-
like notation, into highly optimized C-code kernels
(SymPy [40] serves as NRPy+’s computer algebra system
backend). Notably NRPy+ supports the generation of such
kernels with single instruction, multiple data (SIMD) in-
trinsics and common sub-expression elimination (CSE).
Like TwoPunctures, NRPyElliptic currently sup-
ports OpenMP parallelization [55] and both codes
run on single computational nodes. Further NRPy+
supports arbitrary-order finite-difference kernel genera-
tion, and we use 10th-order to approximate all spatial
derivatives in this work. The time evolution is performed
using the method of lines (MoL) infrastructure within
NRPy+, choosing its fourth-order (explicit) Runge-Kutta
implementation (RK4).
NRPy+ supports a plethora of different reference met-

rics, enabling us to solve our covariant hyperbolic PDEs

(Eqs. 25) in a large variety of Cartesian-like, spherical-
like, cylindrical-like, or bispherical-like coordinate sys-
tems. This in turn enables the user to fully take advan-
tage of symmetries or near-symmetries of any given prob-
lem. For example, for problems involving near-spherical
symmetry we have used spherical-like coordinates (e.g.,
log-radial spherical coordinates). In this work, we make
use of the prolate spheroidal-like (i.e., “bispherical-like”)
coordinate system in NRPy+ called SinhSymTP, described
in detail in Sec. III A. This allows us to solve the elliptic
problem for two puncture black hole initial data within
a single domain, similar to the TwoPunctures code.

Note that the wavespeed c appearing e.g., in Eqs. (25),
need not be constant. In curvilinear coordinates where
the grid spacing is not constant, the CFL stability cri-
terion remains satisfied if the wavespeed is adjusted in
proportion to the local grid spacing. As the grid spacing
in the SinhSymTP coordinates adopted here grows expo-
nentially with distance from the strong-field region, the
wavespeed grows exponentially as well. As a result, relax-
ation waves accelerate exponentially to the outer bound-
ary, significantly speeding up the convergence to the so-
lution of the elliptic PDE. Our implementation of this
technique is detailed in Sec. III B.

A. Coordinate system

Like TwoPunctures, NRPyElliptic adopts a modified
version of prolate spheroidal (PS) coordinates when set-
ting up two-puncture ID. However, these coordinate sys-
tems are distinct both from each other and from PS co-
ordinates. Here we elucidate the differences and similar-
ities.

Consider first PS coordinates (µ, ν, ϕ), which are re-
lated to Cartesian coordinates (x, y, z) via [56]

x = a sinhµ sin ν cosϕ ,

y = a sinhµ sin ν sinϕ , (30)

z =
(
a2 sinh2 µ+ a2

)1/2
cos ν .

Here, µ ∈ [0,∞), ν ∈ [0, π), ϕ ∈ [0, 2π), and the two foci
of the coordinate system are located at z = ±a.
TwoPunctures [31] adopts a PS-like coordinate sys-

tem, which is written in terms of coordinate variables
A ∈ [0, 1), B ∈ [−1, 1], and ϕ ∈ [0, 2π). TwoPunctures
coordinates are related to Cartesian via3

x = b
2A

1−A2

1−B2

1 +B2
sinϕ ,

y = b
2A

1−A2

1−B2

1 +B2
cosϕ , (31)

z = b
A2 + 1

A2 − 1

2B

1 +B2
.

3 We swap the x and z coordinates of [31] to simplify comparison.
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The two foci of TwoPunctures coordinates are situ-
ated at z = ±b. Of note, the coordinate A is com-
pactified with |x|, |y|, |z| → ∞ as A→ 1. Similar to the
term sin ν (where ν ∈ [0, π)) in PS coordinates, the
(1−B2)/(1 +B2) (where B ∈ [−1, 1]) term is a con-
cave down curve with a maximum of 1 at the midpoint
of the range of B and zeroes at the endpoints B = ±1.
Unlike PS coordinates, however, the coordinate system
is not periodic in the variable B.
NRPyElliptic adopts the NRPy+ PS-like coordinate

system SinhSymTP (x1, x2, x3) with x1 ∈ [0, 1], x2 ∈ [0, π],
and x3 ∈ [−π, π]. These are related to PS coordinates
via

a sinhµ = r̃ ≡ A sinh(x1/w)

sinh(1/w)
,

ν = x2 , (32)

ϕ = x3 ,

with r̃ ∈ [0,A]. Introducing the parameter b, we obtain

x = r̃ sin(x2) cos(x3) ,

y = r̃ sin(x2) sin(x3) , (33)

z =
(
r̃2 + b2

)1/2
cos(x2) .

Given inputs for w, A (domain size), and the foci
parameter b, NRPy+ samples coordinates (x1, x2, x3)
uniformly when setting up numerical grids. The
foci exist at z = ±b, and grid point density near
the foci can be increased or decreased by decreas-
ing or increasing w, respectively. Contrast this to
PS coordinates, in which there is no such param-
eter to adjust the focusing of gridpoints near foci.
In fact when the foci separation is increased in PS
coordinates, the density of gridpoints decreases in
proportion.

As illustrated in Fig. 1, like PS and TwoPunctures
coordinates, SinhSymTP coordinates become spherical in
the region far from the foci. Note also that regular
spherical coordinates (with a non-uniform radial coor-
dinate) are fully recovered by setting b = 0. As with
TwoPunctures, NRPyEllipticET possesses the option to
rotate the coordinate system, to situate the punctures on
either the x-axis (x = ±b) or the z-axis (z = ±b).

For all cases considered here, the outer boundary is
set to 106 (i.e., A = 106), and the grid point spacing
parameter w is set to 0.07. We set b so that the foci match
the punctures’ positions and, when interpolating the ID
to the Einstein Toolkit grids, we adjust the origin of
the coordinate system to coincide with the center of mass
of the punctures, as is conventional.

B. Wavespeed

To propagate the hyperbolic system of equations for-
ward in (pseudo)time from the chosen initial conditions,
we make use of NRPy+’s method of lines implementation.

FIG. 1. Curves of constant x1 (red) and constant x2 (blue)
using a cell-centered grid structure with x3 = 0.

Specifically we choose the explicit fourth-order Runge-
Kutta (RK4) method. As this is an explicit method, and
we use three dimensions in space, the steps in time ∆t
are constrained by the CFL inequality:

c∆t

∆smin
≤ C0 , (34)

where c is the local wavespeed, and C0 is the CFL factor,
which depends on the explicit time stepping method and
the dimensionality of the problem. Empirically we find
that C0 = 0.7 ensures both stability and large time steps
for both 2D and 3D cases presented in this paper, with
one exception: when the 3D case is pushed to very high
resolution. In the single highest-resolution 3D case in this
work, we find C0 must be lowered to 0.55 for stability.

Further, ∆smin is the minimum proper distance be-
tween neighboring points in our curvilinear coordinate
system:

∆smin = min (h1∆x1, h2∆x2, h3∆x3) , (35)

where hi and ∆xi are the i-th scale factor and grid spacing
of the flat space metric, respectively.4

The global relaxation time step ∆tglob is given by the
minimum value of ∆smin on our numerical grid. As
we adopt prolate spheroidal-like coordinates, the global
∆smin occurs precisely at the foci of the coordinate sys-
tem. At this point, for simplicity we set the wavespeed
c = 1. As this is merely a relaxation (as opposed to a
physical) wavespeed, we increase c in proportion to the
local ∆smin, which grows exponentially away from the
foci. In this way we maintain satisfaction of the CFL in-
equality while greatly improving the performance of the

4 In orthogonal, curvilinear coordinate systems, such as
the ones supported by NRPy+, we have hi =

√
γ̂ii (no sum-

mation implied).
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relaxation method. Details and implications of our im-
plementation are described in Appendix B.

C. Choice of damping parameter η

Sweeping through values of η in early tests of
our code (using different grid parameters than
those adopted here), we found that setting η =
12.5/M was optimal for minimizing the time to
convergence of the relaxation scheme. After com-
pleting the tests, we later found that this is value
of η is not optimal for the grids and resolutions we
chosen in this work. As a result, our core bench-
mark in Sec. IV B below, comparing the perfor-
mance of NRPyElliptic with TwoPunctures is slower
by roughly a factor of 2 as compared to the opti-
mum η for that grid choice, which would be closer
to η = 18/M . We note that this sub-optimal choice
does not influence our relaxed solution, as every
choice of η that leads to a stable evolution yields
that same relaxed solution.

To find the optimal value of η, we perform a
linear sweep through possible values in a range
η = 1 through 20, in intervals of 0.25 (recall η has
units of inverse mass, 1/M , and here when quot-
ing values of η we always choose M = 1). In the
steady-state regime, the L2-norm of the relative
error, E (see Sec. IV for details), becomes con-
stant. Therefore once we have chosen a trial value
of η, we perform the relaxation until |dE/dt| < δ
for n consecutive iterations, where δ ∼ 10−4−10−6

and n ∼ 10−100. I.e., we relax until the L2-norm
of the relative error has reached its minimum,
constant value. The optimum value of η is that
value that results in the fewest relaxation itera-
tions before the L2-norm of the relative error has
plateaued.

As η has units of 1/t, it is natural to in-
quire whether the optimum damping parame-
ter, ηoptimum, is inversely proportional to the
relaxation-wave-crossing time, TRC. We applied
the aforementioned optimum η search to a vari-
ety of grids, each with its own TRC (in the range
TRC ∈ (0.24, 0.99)), finding that the optimum η
obeys the following power law:5

Mηoptimum ≈
6.9

(TRC/M)0.79
− 0.7. (36)

5 For this fit, we generated 3-dimensional initial data with
physical parameters as described in Sec. IV B (with M =
1 at resolutions ranging from 322×16 to 1282×16). As the
wavespeed depends on grid spacing, the relaxation-light-
crossing time is affected by the resolution.

IV. RESULTS

Validation of NRPyElliptic is performed in two
stages. First we generate initial data (ID) for a given
physical scenario with the widely used TwoPunctures [31]
code, increasing resolution on the TwoPunctures grids
until roundoff error dominates its numerical solution of
Eq. (18), u. We refer to this high-resolution result as
the trusted solution. Second we generate the same ID
with NRPyElliptic, and demonstrate that its results ap-
proach the trusted solution at the expected convergence
rate.

We repeat this procedure twice: first for an axisymmet-
ric case of two equal-mass BHs with spin vectors collinear
with their separation vector, and second for a full 3D
case involving a GW150914-like unequal-mass, quasi-
circular, spinning BBH system. To demonstrate the fi-
delity of the latter case, we first generate NRPyElliptic
and TwoPunctures ID at similar levels of accuracy. Then,
using the Einstein Toolkit [46–48] we evolve the ID
through inspiral, merger, and ringdown, and compare the
results. Finally we note that M = M+ + M− is defined
as the sum of individual ADM masses of the punctures
(Eq. (83) of Ref. [31]).

A. Axisymmetric initial data

In this test, we generate initial data (ID) for a scenario
symmetric about the z-axis: two equal-mass punctures at

rest, with spin components ~S± = ±0.4M2
±ẑ and initial

positions z± = ±6M .6

We start by constructing the trusted solution
u, against which we will compare results from
NRPyElliptic. The trusted solution is generated by
increasing the resolution of the TwoPunctures numeri-
cal grids until roundoff errors dominate. As we adopt
double-precision arithmetic, this occurs when relative er-
rors reach levels of roughly 10−14. The top panel of Fig. 2
indicates that this occurs at a TwoPunctures grid reso-
lution of NA ×NB ×Nφ = 962 × 4.7

After obtaining this 962 × 4 trusted solution, we next
compare it against NRPyElliptic at various resolutions
in the bottom panel of the figure. To allow for a point-
wise comparison, we use the spectral interpolator
in TwoPunctures [57] to evaluate the TwoPunctures
solution at every point on our grid. Notice that the
numerical errors drop by roughly 29 each time the reso-
lution is doubled, indicating that numerical convergence

6 The bare mass of each puncture is m = 0.456428 and the total
ADM mass is MADM = 0.979989M .

7 To ensure we reach the level where roundoff errors dominate,
the maximum number of iterations of the Newton-Raphson
method (Newton maxit parameter) is set to 10, and the toler-
ance (Newton tol parameter) is to ×10−16, for the axisymmetric
case. Also we fix Nφ = 4, following an axisymmetric example
in Ref. [31].
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FIG. 2. Calibration of TwoPunctures and NRPyElliptic so-
lutions, axisymmetric ID study. Top: Relative errors be-
tween a super-high resolution (1962×4) and lower-resolution
results from the TwoPunctures code. Bottom: Cali-
bration of NRPyElliptic solutions at various resolutions
(N1×N2×6), comparing against the trusted solution (i.e., the
TwoPunctures result at 962×4 resolution). The horizontal
axis is logarithmic in the range |z| > 1 and linear otherwise.
Further, the black dots on the horizontal axes denote the
puncture BH positions (also the locations of the coordinate
foci). TwoPunctures data were rotated so that the punctures
and the foci lie on the z axis.

is dominated by our choice of 10th-order finite-difference
(FD) stencils. That perfect 10th-order convergence is not
obtained is unsurprising, as our outer boundary condi-
tion is approximate and implements its own 6th-order
FD stencils.8

The exponential convergence in time of the hyperbolic
relaxation method can be readily seen in Fig. 3. In

8 NRPy+ currently requires the minimum number of grid points in
any given direction to be even and larger than FD order/2, where
FD order order of the finite difference scheme. Thus we set N3 = 6
despite the system being axisymmetric. This requirement may
be relaxed in the future.
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FIG. 3. Axisymmetric ID study. Top: Snapshots of
the relative error between the NRPyElliptic solution at
1282×4 resolution and the trusted solution at different times.
TwoPunctures data were rotated so that the punctures and
the foci lie on the z axis. Bottom: Black dashed curve: L2-
norm of the same relative error as the top panel, computed
within a sphere with radius r = 100M and as a function of
time. Blue (dotted) and red (solid) curves: L2-norms of resid-
uals (second term in Eq. 18) computed within the same sphere
at two different finite-difference orders as a function of time.

the top panel snapshots of the relative error at resolu-
tion 1282×6 are shown as a function of relaxation-wave-
crossing times, or RCTs (i.e., the time required for a
relaxation wave to cross the numerical domain; see Ap-
pendix B). During the first RCT, the errors decrease (in-
crease) in the region near (away from) the punctures and
subsequently drop exponentially in time. Numerical er-
rors are consistently smaller in the region near the origin
due to the extreme grid focusing there. Notice that after
∼4 RCTs the relative errors between the punctures have
already reached the same order of magnitude as that of
the fully relaxed solution, and the remaining relaxation
time (40% of the total) is spent decreasing the relative
errors away from the punctures.

Coincident with the exponential relaxation along the z-
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axis, the L2-norm of both the relative errors and residual
(second term in the left-hand side of Eq. 18), computed
inside a sphere of radius 100M around the origin (situ-
ated at the center of mass), displays a steady exponential
drop, as illustrated in the bottom panel of Fig. 3. We
find that when the FD order for computing the residual
matches the one used by the relaxation algorithm, the
L2-norm of the residual continues to drop even after the
steady state has been reached, until roundoff errors dom-
inate this measure of residual. This indicates that the
residual has become overspecialized to the approxima-
tion adopted for the FD operators. To ameliorate this,
we also compute the residual using 12th-order stencils,
finding this measure of the residual to have more consis-
tent behavior with the true error (i.e., the relative error
against the trusted solution). We repeated this analysis
at 8th and 14th finite-differencing order and found the
same qualitative behavior as 12th order.

B. Full 3D initial data

The second test consists of two punctures with mass
ratio q = 36/29, in a quasicircular orbit emulating the
GW150914 event [58]. The punctures are located at

z = ±5M , with spin components ~S+ = 0.31M2
+ŷ and

~S− = −0.46M2
−ŷ.9

The validation procedure for both TwoPunctures and
NRPyElliptic follows the prescription used in the ax-
isymmetric case. Since the full-3D system does not posses
axial symmetry, the number of grid points along the az-
imuthal direction is no longer minimal. As indicated
in the top panel of Fig. 4, the trusted TwoPunctures
solution has resolution 962×16, and we found that us-
ing Nφ > 16 does not lower the relative errors further.
In NRPyElliptic (bottom panel of Fig. 4), the opti-
mal resolution in the azimuthal direction was also found
to be N3 = 16, except for when the highest resolution
(2562 × 24) was chosen. We find this solution to have
smaller relative errors when compared to the 2562 × 16
resolution data (not shown), and requires a lower CFL-
factor of C0 = 0.55 for numerical stability. With trun-
cation errors dominated by sampling in the x1 and x2
directions, we find roughly 9th-order convergence for this
case as well.

As expected, the relaxation to the steady state has
exponential convergence in (pseudo)time as depicted in
both panels of Fig. 5. Although the relaxation requires a
larger number of RCTs in the full-3D case, its qualitative
behavior is the same.

9 The bare (local ADM) masses of the punctures are
m+ = 0.518419 (M+ = 0.553846) and m− = 0.391936.
(M− = 0.446154). The total ADM mass isMADM = 0.989946M .
To elicit a quasicircular orbit, linear momenta are
set to ~P± = ±Pφx̂± Pr ẑ, where Pφ = 9.53×10−2 and
Pr = −8.45×10−4, in code units.
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FIG. 4. Same as Fig. 2, but for GW150914-like, full-3D BBH
initial data.

Next, to demonstrate the fidelity of full-3D initial data
generated by NRPyElliptic, we first generate ID for the
GW150914-like BBH scenario using both NRPyElliptic
and TwoPunctures. These ID are chosen to be of com-
parable quality, as shown in Fig. 6. Precise numeri-
cal parameters for the ID exactly follow the GW150914
Einstein Toolkit gallery example [31, 46, 59–67], for
which complete results are freely available online.10 No-
tably the TwoPunctures code required slightly less than
a minute to generate the ID (we input the bare masses di-
rectly), while NRPyElliptic required about 10 minutes,
for a difference in performance of ≈12x.11

After generation, the ID from both codes are inter-
polated onto the evolution grids, which consist of a set

10 See https://einsteintoolkit.org/gallery/bbh/index.html

for more details.
11 Benchmarks were performed on a 16-core AMD Ryzen 9 3950X

CPU; the speed-up factor was found to be very similar on other
CPUs as well. Moreover, the damping parameter was not
set to the optimum value of η = 18/M , and if it were the
difference in performance would drop to only ≈6x.

https://einsteintoolkit.org/gallery/bbh/index.html
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FIG. 5. Same as Fig. 3, but for GW150914-like, full-3D BBH
initial data, with NRPyElliptic resolution of 1282×16.

of Carpet [61]-managed Cartesian AMR patches in the
strong field region, with resolution around the punc-
tures of ≈M/52. These AMR patches are surrounded by
a Llama [62]-managed cubed spheres grid in the weak-
field region. When interpolating the ID onto these
grids, TwoPunctures adopts a high-accuracy spectral in-
terpolator (see e.g., [57]), and NRPyElliptic uses the
third-order Hermite polynomial interpolator from the
AEILocalInterp thorn. As our choice of Hermite in-
terpolation order results in far less accuracy, it intro-
duces error to the Hamiltonian constraint violation at
time t = 0 on the orbital plane, as shown in the left
panel of Fig. 7.

We then evolve these ID forward in time using the
McLachlan BSSN thorn [65]. Notice that after the first
orbital period the Hamiltonian constraint violations on
the orbital plane are essentially identical (right panel of
Fig. 7), indicating that numerical errors associated with
the evolution quickly dominate ID errors.

Finally, to demonstrate that NRPyElliptic’s 3D data
are of sufficiently high fidelity, we demonstrate that when
they are evolved forward in time the results are indistin-
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FIG. 6. Initial data quality of the GW150914-like BBH 3D
scenario evolved with the Einstein Toolkit, showing the rel-
ative error of u against the trusted TwoPunctures solution.
Here TwoPunctures and NRPyElliptic ID used resolutions of
382× 16 and 1282× 16 respectively. Note that TwoPunctures
data were rotated so that the punctures are positioned on the
z axis.

guishable from an evolution of TwoPunctures ID at com-
parable initial accuracy. For instance in Fig. 8 we show
the trajectory of the less-massive BH and the dominant
mode (` = 2, m = 2) of the Weyl scalar ψ4, for both
evolutions. We find that quantities extracted from the
evolution of NRPyElliptic ID to be in excellent agree-
ment with results from evolution of ID from the trusted
TwoPunctures code. Although not shown, the trajec-
tory of the more-massive BH for both simulations are
also visually indistinguishable, as are other, higher-order
ψ4 modes.

V. CONCLUSIONS AND FUTURE WORK

NRPyElliptic is an extensible ID code for numeri-
cal relativity that recasts non-linear elliptic PDEs as
covariant, hyperbolic PDEs. To this end it adopts
the hyperbolic relaxation method of [39], in which the
(pseudo)time evolution of the hyperbolic PDEs exponen-
tially relaxes to a steady state consistent with the solu-
tion to the elliptic problem. That standard hyperbolic
methods are used to solve the elliptic problem is bene-
ficial, as consumers of numerical relativity ID generally
already have expertise in solving hyperbolic PDEs. Thus
the learning curve is significantly lowered for core users
of NRPyElliptic, enabling them to build on existing ex-
pertise to modify and extend the solver.
NRPyElliptic leverages NRPy+’s reference metric in-

frastructure to solve the hyperbolic/elliptic PDEs in a
wide variety of Cartesian-like, spherical-like, cylindrical-
like, and bispherical-like coordinate systems. As its
first application, in NRPyElliptic we solve a nonlin-
ear elliptic PDE to set up two-puncture ID for numer-
ical relativity. Similar to the TwoPunctures [31] code,
NRPyElliptic solves the elliptic PDE for the Hamilto-
nian constraint in a prolate spheroidal-like coordinate
system. But unlike the one-parameter coordinate system
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FIG. 7. Hamiltonian constraint violation log10 |H|, as defined in Eq. (4), in orbital plane after interpolation to AMR grids
at t = 0 (left) and after one orbit (right). Note that NRPyElliptic data were rotated so that the punctures are positioned on
the x axis.

FIG. 8. Simulation results with ID by TwoPunctures (solid,
blue) and NRPyElliptic (dashed, orange-red). Left: Domi-
nant mode (` = 2, m = 2) of the Weyl scalar ψ4 at extraction
radius rext = 500M . Right: Trajectory of the less-massive
BH.

used in prolate-spheroidal coordinates or TwoPunctures
coordinates, NRPyElliptic adopts NRPy+’s SinhSymTP
three-parameter coordinate system, providing greater
flexibility in setting up the numerical grid.

As the SinhSymTP numerical grid is not compactified,
finite-radius boundary conditions must be applied. To
address this, a new radiation boundary condition algo-
rithm within NRPy+ has been developed, which is based
on the widely used NewRad radiation boundary condi-
tion driver within the Einstein Toolkit. While NewRad
implements a second-order approach, NRPyElliptic ex-
tends to fourth and sixth finite difference orders as well.
This high-order boundary condition meshes well with the
high (tenth) order finite-difference representation of the
elliptic operators adopted in NRPyElliptic.

To greatly accelerate the relaxation, we set the
wavespeed of the hyperbolic PDEs to grow in proportion
to the grid spacing. As the SinhSymTP grid spacing grows

exponentially with distance from the central region of
the coordinate system, so does the relaxation wavespeed.
Thus this approach is many orders of magnitude faster
than the traditional, constant-wavespeed choice, in fact
making it fast enough to set up high-quality, full-3D BBH
ID for numerical relativity.

Although NRPyElliptic currently requires only a tiny
fraction of the total runtime of a typical NR BBH merger
calculation, it is roughly 12x slower than TwoPunctures
when setting up the full-3D BBH ID in this work. Efforts
in the immediate future will in part focus on improving
this performance. To this end, a couple of ideas come
to mind. First, all ID generated in this work used the
trivial (u = v = 0) initial guess. We plan to explore
whether relaxations at lower-resolutions might be used
to provide a superior initial guess on finer grids, in which
convergence is accelerated.

Second, due to the CFL condition, the speed of
NRPyElliptic is proportional to the smallest grid spac-
ing, which occurs at the foci of our SinhSymTP coordinate
system. Typical grid spacings at the foci are ∼10−4M
due to extreme grid focusing there, which in turn are
∼1/100 those typically used in (near-equal-mass) binary
puncture evolutions, indicating that a significant speed-
up may be possible if superior grid structures are used.

To this end, we plan to adopt the same seven-grid
bispheres grids infrastructure adopted by the NRPy+-
based BlackHoles@Home [68] project. As illustrated
in Fig. 9, seven-grid BiSpheres consists of seven over-
lapping spherical-like and Cartesian-like grids. This ap-
proach places Cartesian-like AMR grid patches over re-
gions where the spherical-like grids would otherwise ex-
perience extreme grid focusing (r → 0), constraining
the smallest grid spacings in the strong-field region to
≈M/200. Thus with such grids, accounting for needed
inter-grid interpolations, we might expect roughly a∼10x
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increase in speed—making NRPyElliptic comparable in
performance to TwoPunctures for near-equal-mass-ratio
systems—all while maintaining excellent resolution in the
strong-field region. Further, the Cartesian-like AMR
patches on these grids are centered precisely at the loca-
tions of the compact objects, making them efficiently tun-
able to higher mass ratios, unlike SinhSymTP or other pro-
late spheroidal-like coordinates mentioned in this work.
Extending NRPyElliptic to higher mass ratios in this
way, as well as to other types of NR ID, will be explored
in forthcoming papers.

FIG. 9. Schematic of seven-grid BiSpheres numerical meshes
used for BlackHoles@Home ∼6:1 mass-ratio BBH simulations
during the long inspiral phase. BHs are represented as black
dots.
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Appendix A: Sommerfeld Boundary Conditions

Sommerfeld boundary conditions (BCs)—also referred
to as radiation or transparent boundary conditions—
aim to enable outgoing wave fronts to pass through the
boundaries of a domain with minimal reflection. Som-
merfeld BCs typically assume that for large values of r

any given field f = f(t, r) behaves as an outgoing spheri-
cal wave, with an asymptotic value f0 as r →∞. Follow-
ing NewRad [54], our ansatz for f(t, r) on the boundary
takes the form

f = f0 +
w(r − ct)

r
+

C

rn
, (A1)

where w(r−ct)/r represents an outgoing wave that solves
the wave equation in spherical symmetry,12 and C is a
constant. The 1/rn correction term encapsulates higher-
order corrections with n > 1 fall-off.

We follow the hyperbolic relaxation method of [39] and
NewRad, and apply Sommerfeld boundary conditions not
to f directly, but to ∂tf :

∂tf = −cw
′(r − ct)
r

. (A2)

To better understand the w′(r − ct) term, we compute
the radial partial derivative of f as well:

∂rf =
w′(r − ct)

r
− w(r − ct)

r2
− n C

rn+1
. (A3)

Solving Eq. (A3) for w′(r − ct) and substituting
into Eq. (A2) yields

∂tf = −c
[
∂rf +

w(r − ct)
r2

+ n
C

rn+1

]
. (A4)

To take care of the (as-yet) unknown w(r − ct)/r2 term,
notice that our ansatz Eq. (A1) implies

w(r − ct)
r2

=
f − f0

r
− C

rn+1
, (A5)

which when inserted into Eq. (A4) yields

∂tf = −c
[
∂rf +

f − f0

r

]
+

k

rn+1
, (A6)

where k = −cC(n−1) is just another constant. Thus we
have derived the desired boundary condition

∂tf = − c
r

[
r∂rf + (f − f0)

]
+

k

rn+1
. (A7)

To generalize Eq. (A7) to arbitrary curvilinear coordi-
nate systems xiCurv, we make use of the chain rule

∂f
(
xiCurv

)
∂r

=

(
∂xiCurv

∂r

)(
∂f

∂xiCurv

)
, (A8)

which can be plugged into Eq. (A7) to give us Eq. (29)

∂tf = − c
r

[
r
∂xiCurv

∂r

∂f

∂xiCurv

+ (f − f0)

]
+

k

rn+1
. (A9)

12 That is, ∂2t (rw)− c2∂2r (rw) = 0.
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Returning to the original ansatz (Eq. A1), we would
generally expect the lowest-order correction to be one
order higher than the dominant, 1/r falloff. As the cor-
rection term in Eq. (A1) has 1/rn falloff, we therefore set
n = 2 to obtain our final expression for imposing outgo-
ing radiation boundary conditions any given field f :

∂tf = − c
r

[
r
∂xiCurv

∂r

∂f

∂xiCurv

+ (f − f0)

]
+

k

r3
. (A10)

Regarding numerical implementation of this expression
a couple of subtleties arise. First, note that ∂xiCurv/∂r
may be impossible to compute analytically, as the spher-
ical radius r is generally easy to write in terms of
the curvilinear coordinates xiCurv, but not its inverse
xiCurv(r).

To address this, for all coordinate systems xiCurv im-
plemented in NRPy+, the function

xiSph =

(
r(xiCurv), θ(xiCurv), φ(xiCurv)

)
, (A11)

is explicitly defined. If we define the Jacobian

Jji =
∂xjSph

∂xiCurv

, (A12)

and use NRPy+ functions to invert this matrix, we obtain
exact expressions for the inverse Jacobian matrix, which
encodes ∂xiCurv/∂x

j
Sph:

(
J−1

)i
j

=
∂xiCurv

∂xjSph

. (A13)

From this, we can express ∂xiCurv/∂r exactly for any
curvilinear coordinate system implemented within NRPy+.

The second subtlety lies in formulating a way to ap-
proximate k. If the function f represented only an out-
going spherical wave, then it would exactly satisfy the
advection equation[

∂f

∂t

]
adv

≡ − c
r

[
r
∂xiCurv

∂r

∂f

∂xiCurv

+ (f − f0)

]
, (A14)

which is identical to Eq. (A10) but with k = 0.
Next consider an interior point rint directly adjacent

to the outer boundary. Then, f(rint) approximately sat-
isfies both the time evolution equation (e.g. Eq. 25), and
the advection equation Eq. (A14). We compute ∂tf(rint)
for a given field f directly from evaluating the corre-
sponding right-hand side of Eq. (21), and [∂tf ]adv(rint)
from Eq. (A14). The difference of these two equations
yields the departure from the expected purely outgoing
wave behavior at that point k/rn+1

int . From this we can
immediately extract k:

k = r3
int

(
∂f

∂t
−
[
∂f

∂t

]
adv

)
int

, (A15)

where again we impose n = 2.
Our numerical implementation of Sommerfeld BCs

evaluates ∂f/∂xiCurv in Eq. (A14) using either centered
or fully upwinded finite-difference derivatives as needed
to ensure finite-difference stencils do not reach out of
bounds. Unlike NewRad, which only implements second-
order finite-difference derivatives for ∂f/∂xiCurv, our im-
plementation supports second, fourth, and sixth-order fi-
nite differences.

We validated this Sommerfeld boundary condition al-
gorithm against NewRad for the case of a scalar wave
propagating across a 3D Cartesian grid, choosing second-
order finite-difference derivatives in our algorithm. We
achieved roundoff-level agreement for the wave propa-
gating toward each of the individual faces.

Appendix B: Spatially-dependent wavespeed and
relaxation-wave-crossing time

At every point in the domain we compute the smallest
proper distance between neighboring points, ∆Smin, and
define a local wavespeed that is proportional to the grid
spacing as

c(~x) = C0
∆Smin(~x)

∆t
, (B1)

where ∆t is the time step used by the time integrator,
and C0 is the CFL factor.

For the sake of readability, we repeat here the rela-
tionship between SinhSymTP coordinates and Cartesian
coordinates,

x = r̃ sin(x2) cos(x3) ,

y = r̃ sin(x2) sin(x3) , (33)

z =
(
r̃2 + b2

)1/2
cos(x2) .

To establish the time scales associated with the propa-
gation of relaxation waves, we calculate the relaxation-
wave-crossing time along the x-axis—(x2, x3) = (π/2, 0)
in Eqs. (33)—and the z-axis. NRPyElliptic adopts
topologically Cartesian, cell-centered grids with inter-
cell spacing of ∆x1, ∆x2, and ∆x3 in the x1, x2, and
x3-directions, respectively. Because of this, the clos-
est points to the x-axis are obtained by setting x2 =
(π + ∆x2)/2 and x3 = ∆x3/2. Likewise, the closest points
to the z-axis are given by setting x2 = ∆x2/2 and x3 to
any fixed value. The relaxation-wave crossing time along
the x-axis is given by

T
(x)
RC =

∫
dx

c(x)
=

∫ 1

x1=0

f(x1)dx1
c(x)(x1)

, (B2)

where

f(x1) = ∂x1x(x1, x2, x3)
∣∣∣
x2=(π+∆x2)/2,x3=∆x3/2

, (B3)
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FIG. 10. Top: Propagation of u along gridpoints closest to
the x-axis during the first relaxation-wave-crossing time for
the 3D ID. Bottom: Same as top panel, except for gridpoints
closest to the z-axis.

and c(x) is the wavespeed along the x-axis. For the choice
of grid parameters described in Sec. III, the smallest grid
spacing along the x-axis is given by the proper distance
in the direction of the x2 coordinate, so that

c(x)(x1) = C0
∆S(2)(x1)

∆t
=
C0∆x2

∆t
h(2)(x1) , (B4)

where h(2)(x1) =
√
r̃2(x1) + b2 cos2(∆x2/2) is the scale

factor. Substituting Eq. (B4) in Eq. (B2) and integrating
yields

T
(x)
RC =

∆t

C0∆x2
arctanh

(
A√

A2 + b2 cos2(∆x2/2)

)
× sin(∆x2/2) cos(∆x3/2) . (B5)

Similarly, the wavespeed along the z-axis is given by

c(z)(x1) = C0
∆S(3)(x1)

∆t
=
C0∆x3

∆t
h(3)(x1) , (B6)

where h(3)(x1) = r̃(x1) sin(∆x2/2) is the scale factor in
the direction of x3. Thus, the relaxation-wave-crossing
time along the z-axis can be computed as

T
(z)
RC =

∫
dz

c(z)
=

∫ 1

x1=0

g(x1)dx1
c(z)(x1)

=
∆t

C0∆x3
arctanh

( A√
A2 + b2

)
cot(∆x2/2) , (B7)

where we used

g(x1) = ∂x1z(x1, x2, x3)
∣∣∣
x2=∆x2/2

. (B8)

Plugging in the values of the grid parameters A, w,

and step sizes, we find T
(x)
RC = 0.248M (0.574M) and

T
(z)
RC = 1.28M (1.26M) for full-3D (axisymmetric) ID.
From Eq. (B6) we find that for fixed values of x1 and

small angles x2 the wavespeed along the z-axis behaves
as

c(z) ∼ r̃(x1) x2 ∆x3 . (B9)

Our cell-centered grid has x2i2 = (i2 + 1/2)∆x2 with
i2 = 0, 1, 2, . . . , N2, and thus the wavespeed quickly in-
creases as we move away from the axis. Such rapidly-
moving signals slightly off the z-axis are not considered
in our analytic estimates, yet influence the RCT so that
in our full-3D simulations we observe the same value of
TRC ≈ 0.25M ≈ T (x)

RC along both axes, as shown in Fig. 10.

Thus we use TRC = T
(x)
RC in all figures.
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T. Radke, E. Seidel, and J. Shalf, in Vector and Par-
allel Processing - VECPAR’2002, 5th International Con-
ference, Lecture Notes in Computer Science (Springer,

Berlin, 2003).
[65] J. D. Brown, P. Diener, O. Sarbach, E. Schnet-

ter, and M. Tiglio, Phys. Rev. D 79, 044023 (2009),
arXiv:0809.3533 [gr-qc].

[66] S. Husa, I. Hinder, and C. Lechner, Comput. Phys. Com-
mun. 174, 983 (2006), arXiv:gr-qc/0404023.

[67] M. Thomas and E. Schnetter, in Grid Computing
(GRID), 2010 11th IEEE/ACM International Confer-
ence on (2010) arXiv:1008.4571 [cs.DC].

[68] “Blackholes@home home page,” http://

blackholesathome.net/.

http://dx.doi.org/10.1088/0264-9381/21/6/014
http://arxiv.org/abs/gr-qc/0310042
http://dx.doi.org/10.1088/0264-9381/21/2/026
http://arxiv.org/abs/gr-qc/0306056
http://dx.doi.org/10.1103/PhysRevD.67.024018
http://arxiv.org/abs/gr-qc/0206008
http://arxiv.org/abs/gr-qc/0206008
http://dx.doi.org/ 10.1103/PhysRevD.79.044023
http://arxiv.org/abs/0809.3533
http://dx.doi.org/10.1016/j.cpc.2006.02.002
http://dx.doi.org/10.1016/j.cpc.2006.02.002
http://arxiv.org/abs/gr-qc/0404023
http://arxiv.org/abs/1008.4571
http://blackholesathome.net/
http://blackholesathome.net/

	NRPyElliptic: A Fast Hyperbolic Relaxation Elliptic Solver for Numerical Relativity, I: Conformally Flat, Binary Puncture Initial Data
	Abstract
	Introduction
	Basic equations
	Puncture Initial Data Formalism
	Hyperbolic relaxation method
	Boundary conditions

	Numerical implementation
	Coordinate system
	Wavespeed
	Choice of damping parameter 

	Results
	Axisymmetric initial data
	Full 3D initial data

	Conclusions and Future Work
	Acknowledgments
	Sommerfeld Boundary Conditions
	Spatially-dependent wavespeed and relaxation-wave-crossing time
	References


