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Merger rates of binary black holes, binary neutron stars, and neutron star-black hole binaries in the local
Universe (i.e., redshift z = 0), inferred from the Laser Interferometer Gravitational Wave Observatory (LIGO) and
Virgo, are 16–130 Gpc−3 yr−1, 13–1900 Gpc−3 yr−1, and 7.4–320 Gpc−3 yr−1, respectively. These rates suggest
that there is a significant chance that two or more of these signals will overlap with each other during their lifetime
in the sensitivity-band of future gravitational-wave detectors such as the Cosmic Explorer and Einstein Telescope.
The detection pipelines provide the coalescence time of each signal with an accuracy O(10 ms). We show that
using a prior on the coalescence time from a detection pipeline, it is possible to correctly infer the properties of
these overlapping signals with the current data-analysis infrastructure. We study different configurations of two
overlapping signals created by non-spinning binaries, varying their time and phase at coalescence, as well as their
signal-to-noise ratios. We conclude that, for the scenarios considered in this work, parameter inference is robust
provided that their coalescence times in the detector frame is more than ∼ 1–2s. Signals whose coalescence
epochs lie within ∼ 0.5 s of each other suffer from significant biases in parameter inference, and new strategies
and algorithms would be required to overcome such biases.

I. INTRODUCTION

The advent of the third generation (3G) gravitational-wave
(GW) observatories, such as the Cosmic Explorer (CE) [1–3]
and the Einstein Telescope (ET) [4], will offer the possibility
to observe binary coalescence events from redshifts z ∼ 10–50,
thanks to an order of magnitude improved strain and frequency
sensitivity compared to the current generation of detectors of
Advanced LIGO [5], Advanced Virgo [6], and KAGRA [7].
Indeed, 3G observatories will have unprecedented sensitivity
to detect coalescence events from an epoch when the Universe
was still in its infancy assembling its first stars and will rou-
tinely detect mergers with stupendously large signal-to-noise
ratios of several thousands [1, 8–10]. An order of magnitude
greater redshift reach and access to extremely high-fidelity sig-
nals compared to current interferometers promises many new
discoveries, while allowing completely independent, precision
tests of cosmological models, alternative gravity theories, and
astrophysical scenarios of compact binary formation and evo-
lution [1, 10]. With an expected rate of hundreds of thousands
of binary coalescence signals each year [1, 10–12] on top of
weak, but persistent, radiation from isolated neutron stars [8],
rare bursts from supernova and other transient sources and
stochastic backgrounds [13], 3G observatories demand novel
algorithms for signal detection and characterization. Therefore,
a proper understanding of systematics arising from overlapping
loud and quiet signals alike will answer a range of scientific
questions that are at the forefront of fundamental physics and
astronomy, as well as a realistic estimation of the computa-
tional cost.

According to current estimates, 3G observatories are ex-
pected to detect hundreds of thousands of binary black hole
(BBH) and binary neutron star (BNS) mergers each year [1, 10–
12]. If we take account of the fact that signals will last longer
due to a lower starting frequency (3 Hz for ET and 5 Hz for
CE), then it is clear that 3G data will be dominated by many

overlapping signals [13–17]. The problem of overlapping sig-
nals producing a confusion background in future terrestrial
detectors was identified more than a decade ago [18]. The
problem poses two challenges: first, the detection of individ-
ual signals could, in principle, be affected by the presence of
multiple signals. Second, the current Bayesian inference meth-
ods [19, 20] may not guarantee unbiased estimation of source
parameters, which is crucial to deliver the science promises of
3G observatories.

A similar issue has been tackled, in a different context, by
the LISA (Laser Interferometer Space Antenna) community.
LISA is expected to produce a data set containing many over-
lapping astrophysical signals: galactic white dwarf binaries are
persistent sources of gravitational waves and they produce a
“foreground” noise [21] that could masquerade the detection
and parameter estimation of other astrophysical signals. Sev-
eral authors have studied the problem of both detection [22–24]
and Bayesian inference [25, 26] in this context, while others
have focused on searching for the global solution to the full
family of potential signals [27–29]. A parallel effort has been
made by other studies [30–32] to characterize the overlapping
between GW signals and glitches in the context of LIGO/Virgo
data analysis. These studies represent a useful reference that
could guide the development of new algorithms specifically
suited to deal with the parameter estimation of multiple signals
in the context of terrestrial detectors.

However, no effort to study the problem of inference in the
case of 3G terrestrial detectors has so far been made. Given
the relevance of this specific problem, an exploratory study of
the capabilities of current parameter estimation methods in the
context of overlapping signals in terrestrial detectors appears
to be necessary. With this consideration in mind, we aim to
characterize the conditions for which parameter estimation is
possible with the current algorithms for overlapping signals
and to identify regions in the signal parameter space that create
significant biases in the inference process, for which novel
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algorithms would be required.
Detecting overlapping GW signals has been shown to be

possible by two ET mock data challenges [14, 15]. These
studies were able to correctly identify and recover signals even
when they were overlapping with multiple others. Even though
the signal detection may provide unbiased results, however,
there is no guarantee that the parameter inference in the case of
overlapping signals is possible within the current framework.
This is because current methods heavily rely on the efficiency
of sampling algorithms, which are used to explore the posterior
distribution of parameters. If we analyze overlapping signals
with the current parameter estimation (PE) procedures (i.e., the
assumption that the parameter space for multiple signals is the
same as in the case of data containing only one signal at a time),
we expect Markov Chains and the posterior distribution to ex-
hibit a non-trivial behavior such as slowly or non-convergence
of chains, multi-modal and biased posterior distributions, etc.

To this end, we deploy the Fisher information matrix formal-
ism to gauge the limit between the region where overlapping
signals could lead to biases in parameter inference and the
region where they don’t. The Fisher study tells us that as long
as the difference in the merger time ∆tC of two overlapping
signals is larger than the accuracy δt with which their merger
times can be measured (i.e., ∆tC � δt), irrespective of how
long the individual signals are, parameter inference will not
cause significant biases. We exploit this result in the Bayesian
analysis of mock data by choosing the prior on the merger
epoch as determined by the signal detection pipelines, which
is about δtC ∼ O(10 ms) [33]. Indeed, most signals are re-
covered by search pipelines with a bias of δtC < 20 ms. A
conservative prior on the merger time could be a factor of 10
to 20 larger or at most 500 ms. Thus, two overlapping signals
with their merger times separated by larger than about ≈ 2 s
are not expected to suffer from any systematic biases. Hence,
it suffices to consider the extent to which overlapping signals
pose a problem for ∆tC . 2 s.

The rest of the paper is organized as follows: in Sec. II,
we compute the number of chunks in a year’s worth of data
containing more than one merger. Section III is devoted to
studying the covariance between overlapping signals using the
Fisher information matrix with the emphasis on what we might
expect for parameter inference in case of overlaps. Bayesian
inference of overlapping signals is presented in Sec. IV. Our
main conclusions and a brief discussion of the type of problems
that should be addressed in future studies is presented in Sec. V.

II. NUMBER OF OVERLAPPING SIGNALS

The number of overlapping signals depends on (a) the typi-
cal duration of signals and (b) the rate at which they arrive at
the detector. At the leading order, the length ξ of a coalesc-
ing compact binary signal starting from a gravitational-wave
frequency fs until merger is given by

ξ =
5

256

(
GM/c3

)−5/3
(π fs)−8/3 , (1)

where G is Newton’s constant, c is the speed of light and the
chirp massM is related to the component masses m1 and m2
viaM ≡ (m1 m2)3/5/(m1 + m2)1/5. A BNS system consisting

of a pair of 1.4 M� would last for ξ ' 103 s starting from a
frequency of fs = 10 Hz (relevant for Advanced LIGO and
Advanced Virgo), 1.8 hr for fs = 5 Hz (CE) and almost 7 hr
for fs = 3 Hz (ET). A source of intrinsic chirp massM at a
cosmological redshift of z would appear in the detector to have
a chirp mass of (1 + z)M, and hence lives for a shorter duration
in a detector’s sensitivity band. Thus, BNSs (1M� ≤ m1,m2 ≤

3M�) could last for tens of minutes to several hours in band
while BBH signals (3M� ≤ m1,m2 ≤ 50M�) could last for tens
of seconds to thousands of seconds.

The cosmic merger rate of compact binary coalescences
determined by the first two observing runs of LIGO and
Virgo [34, 35] implies that in a network of 3G observatories
the detection rate r, defined as the number of signals whose
matched filter signal-to-noise ratio is larger than 12, lies in
the range rBBH ∈ [5 × 104, 1.5 × 105] yr−1 for BBHs and
rBNS ∈ [105, 106] yr−1 for BNSs [16, 36, 37]. Thus, given that
signals last for several hours, 3G data would contain several
loud overlapping signals at any one time. We shall see below
that for the purpose of parameter inference the relevant quantity
is not how many overlapping signals there are at any one time
but if two or more signals have their merger times lie within a
duration ∆t. This is what we will set out to compute next.

A. Overlapping signals of the same family

Let r denote the Poisson detection rate of a given signal
family (BBH or BNS). In an interval ∆t, the expected Poisson
rate is ν = r ∆t and the probability of observing exactly k
mergers during ∆t is given by

Pk(ν) =
νk e−ν

k!
. (2)

Thus, the probability of observing two or more mergers during
∆t is

Pk≥2 =

∞∑
k=2

Pk(ν) =

∞∑
k=2

νk e−ν

k!
= 1 − e−ν(1 + ν). (3)

We have made use of the fact that the Poisson distribution is
normalized, namely

∑∞
k=0 Pk(ν) = 1. To compute the number

of chunks Nk≥2 in which two or more mergers will be observed
we must multiply the probability Pk≥2 by the number of chunks
n∆t = T/∆t in an observational period T :

Nk≥2 ≡ Pk≥2n∆t =
[
1 − e−ν(1 + ν)

] T
∆t
. (4)

Substituting ∆t = ν/r and noting that NT ≡ r T is the total
number of signals detected during the period T, we get

Nk≥2 =
[
1 − e−ν(1 + ν)

] NT

ν
. (5)

It is easy to see that in the limit ∆t → 0 (equivalently, ν→ 0),
Nk≥2 ' νNT /2. The factor of 1/2 assures that the number of
instances when two or more signals are found in a chunk is
never greater than half of the total number of observed signals
but it is also weighed down by the Poisson rate ν. In the other
limit, when ∆t → T (and ν � 1), Nk≥2 ' 1 but less than 1.
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FIG. 1. Contour diagram showing the number of times two or more signals have their epoch of coalescence occurring within an interval ∆t in a
year’s worth of data as a function of the chunk size ∆t and the Poisson rate r. Also shown are the detection rate of BBH and BNS signals in 3G
observatories of one ET and 2 CEs [16]. As an example, if the detection rate is 8 mHz then we can expect in one year’s of data 1000 one-second
long chunks in which two or more mergers would occur. For a pair of signals whose coalescence times differ by an interval of ∆t > 1 s we do
not expect to see any biases in their parameter estimation, although the signals themselves might overlap. Biases begin to show up for ∆t < 1 s
and become severe as ∆t → 0.

Figure 1 plots the number of chunks Nk≥2 in which we can
expect to find two or more mergers in a year’s worth of data
(i.e., using T = 1 yr and ν = r ∆t). Also indicated in the plot are
the detection rate of BBH (BNS) which is expected to be in the
range rBBH ∈ [1.6, 4.8] × 10−3 s−1 (rBNS ∈ [3.5, 35] × 10−3 s−1,
respectively) [16] in a 3G detector network comprising of
one ET and two CEs (one in north America and the other in
Australia). As we shall see in Sec. III, parameter inference
should not be a problem if the difference in coalescence times
of a pair of signals is larger than ∼ 1 s; this is indicated in Fig.
1 by the horizontal line drawn at ∆t = 1 s. Thus, in Sec. IV
we will focus on Bayesian inference of signals whose merger
times differ by about one second. We see that at the higher
end of the BNS rate, we expect ∼ 15, 000 one-second long
chunks with two or more mergers while at the lower end of
the BNS rate this number is ∼ 200. Likewise, ∼ 300 chunks
will contain two or more BBH mergers at the higher end of the
BBH detection rate while this number is ∼ 40 at the lower end
of the BBH rate. Although the vast majority of events will have
their merger times larger than 1 s from their nearest neighbor,
the number of events with their merger times within a second
is quite large.

The detection rate of BBH signals in the current detector
network of LIGO, Virgo and KAGRA at their design sensitivity
is at best r ∼ 2.3 × 10−5 s−1 (or 730 yr−1) [35]. Thus, the
probability of observing multiple mergers in a chuck of size 1
s or less is negligibly small in the Advanced detector era. This
will also be the case in the A+ era [38] where the detection

rates are expected to be 3 times larger.

B. Overlapping signals from two different families

If the detection rate of signal families A and B are rA and
rB, then probability that one or more mergers of each of these
signal families would occur during an interval ∆t is

PA,k≥1 = 1 − e−∆t rA , PB,k≥1 = 1 − e−∆t rB . (6)

Thus, the probability PAB that an interval ∆t contains one
or more from each of the two signal families is simply the
product PAB = PA,k≥1 PB,k≥1. If the rates are small, this reduces
to PAB = (∆t)2 rA rB and the number of such chunks over a
period T is NAB = (∆t)2rA rB T = NA NB/n∆t, where NA and
NB are the total number of mergers during the period T of
families A and B, respectively, and n∆t = T/∆t is the number
of chunks of width ∆t during T. Using the range of BNS and
BBH rates quoted before, we find that NAB would lie in the
range 170–5100 for T = 1 yr and ∆t = 1 s.

From the foregoing discussions it is clear that a small but
significant fraction of signals would have their coalescence
time within an interval of 1 s. As we shall see in the next
Section, due to their long duration, overlapping BNS signals
are far less correlated with each other than overlapping BBH
signals. For the same reason, a pair of overlapping BNS and
BBH signals are poorly correlated. Hence, in the Bayesian
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inference problem (Sec. IV) we will only consider overlapping
BBH signals.

III. COVARIANCE AMONG OVERLAPPING SIGNALS

If two signals are well separated then the covariance between
their parameters is zero and we do not expect one signal to
affect the parameter inference of the other. As we bring the
two signals closer together in time, at some point the presence
of one of the signals will begin to bias the estimation of param-
eters of the other. In this Section we estimate the covariance
between the parameters of a pair of overlapping signals using
the Fisher matrix formalism. Although Fisher matrix is valid
in the limit of large signal-to-noise ratios, any inferences we
can draw from the correlation will guide us in choosing the
parameter space of compact binaries where systematic biases
could be large.

To this end, we assume that the data contains a pair of signals
sA and sB buried in stationary, Gaussian noise n. The detector
output is a sum of the overlapping signals buried in detector
noise:

x(t) = n(t) + sA(t, λ(A)
α ) + sB(t, λ(B)

α ). (7)

where λ(A)
α , λ(B)

α , for α = 1, . . . , p, are the set of parameters
corresponding to signals sA and sB, respectively. Note that
since both sA and sB are assumed to belong to the same sig-
nal family they are specified by the same number of param-
eters. Furthermore, we shall only consider a single detector
for this exercise. The relevant parameters for a binary with
non-spinning companions are the chirp massM, symmetric
mass ratio η, the epoch tC when the signal amplitude reaches
its peak and the phase φC of the signal at that epoch and so:
λ(A)
α = (M(A), η(A), t(A)

C , φ(A)
C ) and similarly for signal sB. We

assume the IMRPhenomPv2 waveform model.
For the computation of the covariance matrix it is more con-

venient to consider that the data contains only one signal, i.e.,
the sum of the two signals s = sA + sB, and it is characterized
by a double number of parameters: θa = λ(A)

a for a = 1, . . . , p
and θa = λ(B)

a−p for a = p + 1, . . . , 2p. For a noise background
that is stationary and Gaussian the covariance matrix C, which
is inverse of the Fisher matrix Γ, is given by:

Cab = Γ−1
ab , Γab =

〈
∂s
∂θa

,
∂s
∂θb

〉
. (8)

Here the scalar product of two waveforms (or any pair of
functions of time for that matter) h and g is defined as

〈h, g〉 ≡ 4<
∫ fhigh

flow

h̃( f ) g̃∗( f )
S h( f )

d f , (9)

where < stands for the real part of the integral, h̃ and g̃ are
the Fourier transforms of the signals h and g, respectively,
g∗ denotes the complex conjugate of g and S h( f ) is the one-
sided noise spectral density of the detector. In our study we
will use either the noise spectral density of Advanced LIGO
[5] or that of the Cosmic Explorer [3]. The lower frequency
cutoff flow is chosen to be 20 Hz for Advanced LIGO and

5 Hz for Cosmic Explorer. For BNSs, the upper frequency
cutoff fhigh is assumed to be the larger of the inner-most stable
circular orbit frequency of the two overlapping signals, i.e.,
fhigh = max[(63/2πM1)−1, (63/2πM2)−1], where M1 and M2 are
the total mass of the two overlapping signals. For BBHs, the
upper frequency cutoff is chosen to be the Nyquist frequency
of 1024 Hz.

The Fisher matrix contains interference terms of the follow-
ing type:

Γα, β+p =

〈
∂sA

∂λ(A)
α

,
∂sB

∂λ(B)
β

〉
. (10)

Covariances are of primary interest in this Section as they can
tell us the degree to which the presence of one signal affects
the parameter inference of the other. In order to measure
the extent of covariance we consider two sets of overlapping
signals (masses are specified in the detector frame):

1. overlapping BBHs with masses:

(m(A)
1 , m(A)

2 ) = (21 M�, 15 M�) (11)

(m(B)
1 , m(B)

2 ) = (33 M�, 29 M�). (12)

2. overlapping BNSs with companion masses:

(m(A)
1 , m(A)

2 ) = (1.45 M�, 1.35 M�) (13)

(m(B)
1 , m(B)

2 ) = (1.50 M�, 1.40 M�). (14)

Furthermore, in all cases we choose

(t(A)
C , φ(A)

C ) = (0, 0), (t(B)
C , φ(B)

C ) = (τ, 0), (15)

and vary τ over the range [−3, 3] s.
The covariances between the chirpmass, symmetric mass

ratio and epoch of coalescence are plotted in Fig. 2 as a function
of the parameter τ for overlapping BBHs (top panels) and
BNSs (bottom panels) for noise spectral densities of Advanced
LIGO (left panels) and Cosmic Explorer (right panels). Other
cross-covariances are negligibly small and not shown. What
we plot are the normalized covariances, i.e., a combination of
the correlation coefficients defined as:

σab ≡
Cab
√

CaaCbb
, a , b. (16)

This quantity is strictly bounded between −1 and +1. A correla-
tion coefficient of +1 implies that the parameters are perfectly
correlated, −1 implies they are perfectly anti-correlated, and
a value of 0 would imply they are uncorrelated. We will take
σab ∼ 0.1 (grey shaded region in the plot) to be small enough
to indicate that the presence of the second signal does not sig-
nificantly bias parameter inference of the other signal. This
threshold is inevitably arbitrary, as a thorough analysis of the
connection between the values of the correlation coefficients
and the presence of biases in parameter inference is beyond
the scope of this paper. However, as we show in Sec. IV D,
the regions of the parameter space where biases in PE arise are
compatible with the ones for which σab & 0.1.
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FIG. 2. Plot shows the correlation coefficients, i.e., normalized covariances as defined by Eq. (16) between the parameters of the two overlapping
signals as a function of the difference in merger times τ = tB

C − tA
C . The left panel is for Advanced LIGO and right for Cosmic Explorer. Top row

is for BBHs and bottom row BNSs. We assume the parameter inference of overlapping signals to be negligibly affected when (the absolute value
of) the correlation coefficients are less than 10% (grey shaded regions).

The correlations displayed in Fig. 2 show a range of different
behaviours. In all cases, they have a peak for |τ| . 0.5 s. This
is expected, as the interaction between the signals is enhanced
when the two signals coalesce very close to each other. For
|τ| > 0.5 s, all the different configurations stay always below
the threshold σab = 0.1, with the significant exception of BBH
in Advanced LIGO detectors. In this latter case, correlations
remain very high in the range −1.5 s < τ < 0 s, and become
small only for τ . −2 s. The fact that correlations are not
symmetric in τ can be easily explained by the different form of
the two signals considered (see also Fig. 3).

Finally, we note that in the case of BNS, the correlation re-
mains always below the threshold both in Advanced LIGO and
Cosmic Explorer, except when τ ' 0. This implies that param-
eter inference of overlapping BNS signals is likely to be less
severe than that of overlapping BBH signals. We will, there-
fore, consider only the latter class of signals in the remainder
of this paper, leaving the parameter estimation of overlapping
BNS signals for future work.

The analysis presented in this section is limited by the fact
that we have explored only for a few particular sets of source
parameters. Therefore, we cannot conclude that parameter
estimation will never be a problem in the case of overlapping
BNSs. Indeed, very similar values of the chirp masses (as well
as other relevant parameters) will likely increase the correlation

between the two signals, especially in the proximity of τ = 0 s.
In addition, we note that further work is necessary to assess

the validity of the correlation threshold we have considered
here, especially in light of the fact that sinusoidal features with
amplitudes σab ≈ 0.05 − 0.1 are present in the case of the
Cosmic Explorer detector, even for large values of |τ|. Despite
the fact that these correlations are very low, their effects on the
results of parameter inference need to be evaluated quantita-
tively.

IV. BAYESIAN INFERENCE OF OVERLAPPING SIGNALS

In this Section, we support the results we have derived using
the Fisher information matrix formalism (Sec. III) with a full
Bayesian inference procedure. With this parameter estimation
(PE) process, we are able to fully explore the posterior distri-
bution of the parameters that generated the signals. This is im-
portant, because it allows us to confirm the presence (expected
from the Fisher study) of distinct maxima in the posterior, one
for each signal coalescing within the time chunk considered.
Moreover, thanks to this numerical approach, we can explore
more carefully the region where biases are expected assessing
their significance and gauging the conditions for which they
seem to happen.
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Within the Bayesian framework, given a set of parameters
λ describing a compact binary coalescence (CBC) waveform
h(λ, t), we can write the posterior distribution for λ as:

P(λ |x, h) =
π(λ)L(x |λ, h)
Z(x)

, (17)

where x is the detector output. This posterior can be explored
by using a sampling algorithm (e.g., MCMC, nested sampling).
As in Sec. III, assuming that the data x contains two overlap-
ping signals sA (signal A) and sB (signal B), then it can be
written as:

x = n + sA + sB, (18)

where n is the noise of the interferometer. Note that, in prin-
ciple, to perform a Bayesian analysis of two or more over-
lapping signals we should broaden the parameter space, e.g.,
θ = {λA, λB}, in order to account for the presence of multiple
overlapping signals. However, since running a sampling algo-
rithm requires significant amount of computational resources,
in most cases this is not required. In fact, as argued in Sec. III, if
the signals’ coalescence times are wide apart we do not expect
the presence of one signals to influence posterior distribution
of parameters of the other. For this reason, in what follows we
consider the parameter space of a single CBC signal. We will
return on this point later on when discussing possible biases
arising because of this choice.

A. Choice of signal families

As already mentioned, in this analysis we focus only on
BBH signals. This choice is motivated by the fact that: (a)
covariances among overlapping BNS signals are smaller than
the BBH ones (Sec. III), and, therefore, biases in the BNS case
are expected to be less important; (b) BNS signals last for
several hours in 3G detectors and tens of minutes in Advanced
LIGO and Virgo, implying that Bayesian inference takes a
formidable amount of computational resources (although new
algorithms are already showing the promise of greatly reducing
the computational requirement [39–41]).

Furthermore, we also restrict our analysis using Advanced
LIGO sensitivity. As argued before, LIGO is not affected by
the problem of overlapping signals, because the rate and the
duration of the signals are far too small to create any overlap.
Nonetheless, in this work we are not really interested in repro-
ducing a realistic set of overlapping data; instead, we want to
focus on the parameter estimation process. To do so, there is
no substantial advantage in using 3G mock data: we expect
that our conclusions will be valid even if they are based on the
analysis of Advanced LIGO mock data.

The parameters of the overlapping BBH signals used in
Bayesian inferences is the same as what we used in Sec. III:
nonspinning BBHs with masses as given in Eq. (12) and coa-
lescence times and phases as given in Eq. (15). We ignore the
position of the sources in the sky and their orientation relative
to the detectors (setting all angles to zero). We do, however,
include in our analysis the luminosity distance dL of the source.
The parameter space we use in our analysis is thus:

λ = {m1,m2, φC , tC , dL}

Note that our choice of sky position is the worst case scenario,
because we are considering the two sources to have the same
exact location in the celestial sphere. In reality, if overlapping
signals arrive from different directions in the sky, they will
have different phase coherence amongst a network of detectors
and thus easier to discriminate. Thus, since our choice of sky
position is the worst case scenario, the parameter estimation
problem can only be better when sky position and orientation
are taken into account.

To explore different configurations of the parameters, we
vary the time shift τ - defined in Eq. (15) as the epoch coa-
lescence of signal B - in the range τ ∈ {−2.0 s, 0.5 s}. Along
with the time shift, we also vary the two luminosity distances
of the sources d(A)

L and d(B)
L , and their phases φ(A)

C and φ(B)
C . In

the first set of runs, we fix φ(A)
C = φ(B)

C = 0 and vary the two
distances. We keep the distance of one of the sources fixed
to 1 Gpc and set the other at either 500 Mpc, 1 Gpc, or 2
Gpc. In the second set of runs, we vary the phase of signal B
(φ(B)

C ∈ {0, π/3, 2π/3}), keeping φ(A)
C fixed to zero and the two

luminosity distances to d(A)
L = d(B)

L = 1 Gpc.
The resulting variations in the parameter sets are:

τ = {−2.0 s,−1.5 s,−1.0 s,−0.5 s, 0.0 s, 0.5 s} (19)
d(B)

L , d(A)
L = {500 Mpc, 1 Gpc, 2 Gpc} (20)

φ(B)
C = {0, π/3, 2π/3} (21)

With these choices, there are 48 different possible configu-
rations, each of which is analyzed for Bayesian parameter
inference.

In the inference problem we use a signal model that accu-
rately represents the BBH waveforms. As in Sec. III, we use
the IMRPhenomPv2 approximant to create waveforms in the
frequency domain, fixing the low frequency cutoff to be 20 Hz,
which is consistent with the minimum frequency used in the
LIGO/Virgo PE. In Fig. 3, we plot the two waveforms in the
time domain, for the different configurations of the time shift
τ. The resulting overlapping waveform is plotted as well. In
Table I, we compute the expected matched filter SNR for the
different possible configurations of the parameters, focusing
on the distances, since neither the coalescence time nor the
phase affect the SNR value.

SNR dL = 0.5 Gpc dL = 1 Gpc dL = 2 Gpc
signal A 54.2 27.1 13.5
signal B 82.8 41.5 20.7

TABLE I. SNRs for the two signals we have chosen to focus on in
our analysis (considering the two LIGO interferometers network),
created with different values of the luminosity distances dL. Note that
applying a time shift to the signals do not change the value of the
SNR.

B. Setting up Bayesian inference runs

Having created the mock data with overlapping signals we
next focus on parameter inference. Our analysis uses two
LIGO interferometers, but our conclusions are not significantly
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FIG. 3. Signals in the time domain, for four different values of the time shift τ. signal A, signal B, and the resulting overlapping signal are plotted.
The waveforms are generated using the approximant IMRPhenomPv2. The two luminosity distances are fixed to d(A)

L = 1 Gpc, d(B)
L = 1 Gpc.

Note that, if we neglect the effects of cosmological redshift, then changing these distances just results on a scaling of the signals’ amplitude.

affected by this choice: considering a different detector network
would simply result in different SNRs for the signals as we
are not focusing on the sky position of the source. Although
this could in principle change the heights of the peaks in the
posterior distribution, we do expect it to influence their relative
ratios significantly, and hence the PE process we consider is
expected to hold for any network.

The data set consists of 4 s of mock data from the two LIGO
interferometers. 4 s is large enough to span the full length of
the longer signal. We do not add any noise to the data – i.e., we
set n = 0 in Eq. (18) –, as we want to highlight the presence
of biases created by the overlap between the signals, and these
biases could be covered by the statistical uncertainty created
by the presence of noise.

We use the bilby package to perform Bayesian parameter
inference of the two signals, running the dynesty sampler
[42]. dynesty is a dynamic, nested sampling algorithm [43,
44], which is well suited for our purposes because it quickly
achieves convergence, but at the same time it is able to handle
non-trivial, multi-modal distributions better than MCMC-based
algorithms [42]. We allow the sampler to explore the likelihood
surface with respect to all the parameters except φC , over which
the likelihood is analytically marginalized, and dL, over which
the likelihood is numerically maximized. Marginalization over
φC and dL correctly accounts for the effects of the parameters
φC and dL on the resulting 3-d posterior [19, 45].

C. Bayesian priors

At the beginning of the analysis, we have to set the priors
on the various parameters. We consider a uniform prior on

the phase φC , with periodic boundary conditions, a power-law
prior on the luminosity distance, p(dL) ∝ dαL with α = 2, and
a uniform prior on the two masses m1 and m2 over the range
[10 M�, 50 M�]. As for the coalescence time, selecting the
best possible prior turns out to be a game-changing strategy. In
fact, running a simulation with a wide prior on the time tC that
spans the merger times of the two overlapping signals leads to
significant problems: while one of the two signals is always
recovered correctly, the other is completely ignored by the
sampling algorithm. A wide prior on tC , therefore, would only
allow us to infer the parameters of the louder signal, without
access to the weaker one.

However, as already pointed out, previous work suggests
that signal can always be detected, even if they are overlapping,
and their merger time correctly identified [14, 15]. Although
these studies dealt only with BNS signals, we do expect that
similar conclusions hold also in the case of BBH. This is be-
cause (as we show in Sec. IV D, Fig. 5) biases on the values of
tc recovered from our PE analysis are minor (at the ms level)
and the presence of the overlap does not seem to hamper the
time recovery of the signals. However, future efforts will need
to back up this assumption and confirm that BBH overlapping
signals can be correctly recovered in time domain. From cur-
rent pipelines, we know that the detection of a signal allow us
to know its epoch of coalescence with very low uncertainty
(at the order of 10 ms). We then assume to know the time of
coalescence of the two overlapping signals with a good degree
of accuracy, and constrain our parameter space choosing a
prior on the coalescence time which is centered on the (fidu-
cial) true value of the time tC , with a width of 100 ms. In this
way, for each of the signals we can isolate the region of the
parameter space where we expect to find the true values of
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the injection parameters. This choice allows us to recover the
correct parameters for both signal A and signal B.

Therefore, for each of the 48 injections, we run the Bayesian
inference procedure two times: the first one (we refer to it as
run A) aims to recover the true values of the parameters of
signal A; to this end, since t(A)

C = 0.0 s, we set the prior on the
coalescence time centered around zero. Run B, on the other
hand, focuses on the signal B peak in the parameter space; thus,
the prior is chosen to be centered in tC = τ.

D. Results

In this section, we study the posterior distributions obtained
for the different runs described in Sec. IV A and we compare
them with the same results obtained when only a single signal
is present in the data. This comparison allows us to assess the
presence of biases created by the overlap of the signals. In this
analysis, we focus on the results for the two masses m1 and m2
(which we can rewrite also as chirp massM and mass ratio q),
and for the coalescence time tC .

We start by plotting four different corner plots for specific
values of the parameters (Fig. 4). In the top row, we show
the posterior distributions for run A (left panel) and run B
(right) for the following parameters: d(A)

L = d(B)
L = 1 Gpc;

φ(A)
C = φ(B)

C = 0; τ = −1.0s. The blue contours represent the
results obtained when the two signals are overlapping, while
the green ones are the results for a run where only signal A
(B) is present in the data. The agreement between these two
posteriors (upper panels) is remarkably good, and biases, if
any, are negligible. The recovered values of the parameters
in the case of run A (run B) are perfectly compatible with the
injected ones λ(A) = {m1 = 21 M�,m2 = 15 M�, tC = 0.0 s}
(λ(A) = {m1 = 33 M�,m2 = 29 M�, tC = τ}). This proves that
using the current parameter inference methods to deal with
overlapping signals is possible.

These results also imply that the posterior distribution for
a run with wider priors would be (at least) bi-modal, as the
two peaks identified by the two runs (corresponding to the
true values of the parameters λA and λB) with narrower priors
would be preserved when the priors are extended coherently
to a larger parameter space. However, as already mentioned in
Sec. IV C, when we try to extend the prior on the time shift τ,
we find that the sampling algorithm can identify only one peak
in the posterior. This behavior is due to the fact that the heights
of the two peaks differ by many orders of magnitude, since the
peak of logL scales as the SNR squared, and the SNRs for
signal A and signal B are SNR(A) = 27.1 and SNR(B) = 41.5,
respectively (see also Table I). Clearly, the sampling algorithm
is not able to sample such a subdominant peak in the posterior.
Thus, setting the appropriate prior on the coalescence time tC ,
as determined by the search pipeline, is critical in determining
the parameters of both of the signals.

We note that a different approach could consist of imposing
narrower priors on the two masses m1 and m2 (or, equivalently,
on the chirp massM) in order to isolate one peak and exclude
the other. This is also a viable alternative, provided that the in-
formation on the masses recovered from the detection pipeline
is accurate enough to give effective constraints for the priors.
Ultimately, combining the information on the coalescence time

with the one on the masses may be the best strategy in order to
isolate the two peaks even when the two signals are coalescing
very close to each other. It is, however, important to ascertain
the extent to which such constraints can imposed by carrying
out the detection problem on a large sample of injections and
the accuracy with which detection pipelines are able to measure
chirp mass.

In fact, our approach fails when the two signals are overlap-
ping within 100 ms. In the bottom row of Figure 4, we show
exactly this case: we take the same distances and phases as
described above, but we impose a zero time shift between the
two signals. Therefore, in this case the two runs run A and run
B yield the exact same results (as both the priors and the likeli-
hood are the same). As expected, only the louder signal (i.e.,
signal B) is correctly recovered, with the posterior distribution
resembling very closely (although not perfectly matching) the
one obtained in the single signal case. We conclude that, once
again, the bias is negligible for run B. As for signal A, the peak
corresponding to λ(A) is completely neglected by our inference
pipeline, and thus there is no way we can reconstruct the pa-
rameters of signal A correctly. This is an intrinsic limitation
of our method: different inference prescriptions need to be
devised in order to deal with the case of closely coalescing
signals.

1. Dependence on the luminosity distance

We now analyze the results of the other runs, where we
changed the time shift, luminosity distance, and phase of co-
alescence of the two signals (as described in Sec. IV A). The
top row of Fig. 5 shows the posterior distributions for the
chirp massM, the mass ratio q, and the coalescence time tC ,
for different combinations of luminosity distances d(A)

L , d(B)
L

and coalescence times tC; the phase at coalescence of the two
signals are set to φ(A)

C = φ(B)
C = 0.

Posteriors are shown in the form of violin plots, and the
results for a single injection are shown in light grey color for
reference on the right side of each panel. In order to make
the plots more accessible, we identify three different regions,
highlighted by the shaded grey boxes. In the first region (no
shade), biases are negligible: posteriors for run A (run B)
closely resemble the ones obtained by injecting only one signal
with the same luminosity distance d(A) (d(B)). In this region,
the presence of overlapping signal does not create any biases
to parameter inference, and both signals can be recovered
correctly. As expected from our Fisher analysis (Sec. III), this
happens when the two signals are not coalescing too close to
each other. In particular, we find that parameter inference is
robust in the regions tC . −0.75 s and tC & 0.25 s. Note that
the asymmetry of these boundary values are expected, as the
correlation between the two signals is not symmetric in τ (Fig.
2).

When tC = −0.5 s (light shaded region), we find that small
biases (at the 1 − 2σ level) arise: this implies that the pres-
ence of the overlap causes a shift of the posterior peak in the
parameter space, preventing the correct recovery of the true
parameters λ(A) and λ(B) for the two signals. We note, however
that these relatively small biases may not be a problem in real-
ity, because the presence of the noise may create even larger
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FIG. 4. Corner plots for two runs A (left side) and two runs B (right side); all the overlapping signals are created with the following choice of
the parameters: d(A)

L = d(B)
L = 1 Gpc, φ(A)

C = φ(B)
C = 0. The top row shows the case τ = −1.0 s, while the bottom one shows τ = 0.0 s. The three

parameters considered here are the two masses m1 and m2, and the coalescence time tC . The true values of these parameters are highlighted with
red dashed lines in the corner plots. The blue histograms refer to the actual runs, while the green ones are shown for comparison and they are
obtained by injecting only one signal in the data. The dashed vertical lines represent the 1σ error on the parameters. On top of each panel, the
median values (and the 1σ errors) of the parameters are shown.

biases, making these effects totally irrelevant. This depends,
of course, on the noise level in the interferometer.

It is also interesting to note that intensity of the biases vary
with the relative strengths of the two signals (which are de-
termined by the luminosity distances). In particular, biases
for run A (run B) are smaller whenever signal A (signal B) is
louder: this can be observed in the left (right) panel of Fig. 5,
top row, as the posteriors colored in yellow and purple (red,
blue, and green) are closer to the ones obtained in the case of a
single signal.

Finally, in the last region (darker shade, τ = 0.0 s), two
relevant effects take place at the same time. First, as already
discussed, only the parameters of the louder signal can be
recovered correctly. Since the results for run A and run B are

perfectly identical (because they have identical settings), this
implies that chirp masses are close to the one of signal A for
the yellow and purple cases (as seen in the left panel), and
close to the one of signal B in the red, blue, and green cases
(as seen in the right one). On top of that, we note that even
the louder signal seems to suffer from significant bias in the
τ = 0.0 s case. This is again expected from our Fisher analysis
(Fig. 2), as the correlations between the signals have a peak at
zero time shift.
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FIG. 5. Summary of the results for the set of 48 runs, each one with a different configuration of the parameters τ, d(A)
L and d(B)

L (top panels), φ(A)
C

and φ(B)
C (bottom); for details about the parameters choice, see Sec. IV A. A runs are shown on the left panels, and B runs are on the right panel.

Posterior distributions for the chirp massM, mass ratio q, and coalescence time tC − τ are shown in the form of violin plots. Along with the
results for overlapping signals, posteriors for the “single signal” case (i.e., only one signal is present in the data) are shown in the rightmost side
of each panel in grey. The true values of the masses and times for signal A and signal B are highlighted with dashed horizontal lines. Note that
the distributions in the plots referring to the same time shift τ are slightly shifted with respect to their exact value of τ so that they do not overlap
with each other. The τ = 0.0 s runs are highlighted with a dark grey shadowed band; other regions where non-negligible biases are present (see
discussion in Sec. IV D) are highlighted in the same way with a lighter shade of grey. Note that in the τ = 0.0 s case, part of the recovered values
for the chirp masses are out of the range and thus not shown.
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2. Dependence on the phase

In the bottom row of Fig. 5, we show the results for the
runs with varying φC . As described in Sec. IV A, we fix the
luminosity distances to d(A)

L = d(B)
L = 1 Gpc and the phase at

coalescence of signal A to φ(A)
C = 0, and vary φ(B)

C in the set
φ(B)

C = {0, π/3, 2π/3}. Results are presented in the same form
as the top row of Fig. 5 (Sec. IV D 1).

We find that the phase at coalescence plays an important
role in determining whether inference suffers from significant
biases or not. In particular, biases are greater for the two
configurations φ(B)

C = π/3 and φ(B)
C = 2π/3. On top of that, they

extend in a larger time span: the region where 2σ biases are
present extend out to τ = −1.0 s; for τ = −1.5 s and τ = −2.0 s,
they progressively become less severe until they become hardly
detectable. Again, we find that biases arise only for negative
values of the time shift τ, in accordance with the asymmetric
correlation amplitudes found in Fig. 2.

Overall, our Bayesian inference analysis confirms the results
we found in Sec. III for BBH in Advanced LIGO detectors (Fig.
2, upper left panel). If the two BBH signals do not coalesce
too close in the time domain (i.e., their coalescence times are
separated by more than ≈ 1.5 s), then inference results are
robust: two distinct peaks are present in the posterior, and they
can be well-sampled if a suitable prior on the coalescence time
is chosen. This is an interesting conclusion, as the vast majority
of BBH signals are expected to belong to this category: from
Fig. 1, we can estimate that only 0.01% of the signals are
expected to coalesce within 1 s.

When the BBH signals do coalesce very close to each other
(|τ| . 1 s), though, biases at the 2 − 3σ level may arise, as the
correlation between the two signals increases. These biases
become even more dramatic as the time shift approaches to
zero.

V. DISCUSSION AND OUTLOOK

We presented a Bayesian inference analysis in the case of
overlapping gravitational waves signals. Our goal was to assess
the capabilities of current Bayesian inference infrastructure to
handle the non-trivial case of one or multiple overlaps taking
place within a data segment. This problem is destined to play a
major role in 3G detector planning, since the dramatic increase
in sensitivity will result in a great number of signals coalescing
within a few seconds.

We started from a study based on the Fisher matrix for-
malism, in which we analyzed the correlation between two
overlapping signals. In this way, we were able to determine
whether in some regions of the parameter space the overlap-
ping signals were strongly correlated with each other, thus
preventing a distinct inference procedure for one signal at a
time. We found that BNS signals are less strongly correlated,
and that their inference will likely be a problem only for coa-
lescence times really close to each other (at the 10 − 100 ms
level). BBHs, instead, suffer from the presence of a correlation
starting from a much greater time shift τ (i.e., the difference
between the two coalescence times). In particular, in the Ad-
vanced LIGO BBH scenario, correlations are significant up

until |τ| ≈ 2 s.
We investigated these issues further with a full Bayesian

analysis of the two overlapping BBHs. The analysis used the
dynesty sampling algorithm to describe the posterior distribu-
tion for the parameters considered. We showed that, in order
to sample a single peak without worrying for the presence of
the other one, a possible solution is to impose a narrow prior
around the fiducial value (provided by the signal detection
pipeline) of the coalescence time of the signal of interest. This
procedure allows to isolate one single peak at a time, and works
well in the configurations we explored. However, as the time
shift approaches zero, isolating one single peak at a time is not
possible, and within our framework we can recover only the
parameters for the louder signal (i.e., the highest peak in the
posterior). In our approach, we are implicitly assuming that
signal detection will return the coalescence times of the two
signals with an uncertainty lower then O(10 − 100) ms. This is
a reasonable assumption, which, however, needs to be tested
by a dedicated analysis dealing with BBH signals’ recovery
in the context of 3G detectors (see also [14, 15] for the BNS
case).

We also studied the emergence of biases in the overlapping
signals scenarios considered, by varying some key parameters
of the two signals such as their coalescence time, coalescence
phase, and luminosity distance. We found that significant
biases (at the 2 − 3σ level) arise in the range −1 s < τ < 0 s,
and that these biases are caused primarily by the relative phase
of the two signals and only marginally by the relative difference
of the SNRs. As suggested by our Fisher analysis (Fig. 2, upper
left panel), these biases tend to become minor for τ < −1.5 s
and τ > 0 s.

Dealing with these biases needs a different approach that
we did not attempt in this work. One possible solution is to
broaden the parameter space searching for multiple signals in
the same Bayesian inference run. This is the approach that
previous works have shown to be feasible in the context of
LISA data analysis (e.g., see [25, 27]). Such approach could
significantly increase the computational costs of the Bayesian
algorithms; however, this is compensated by the fact that -
as suggested here - novel algorithms may be needed only for
closely-coalescing signals, that are a very small minority of
the total number of signals expected in 3G detectors. Using
current estimates for the BBH rates in future detectors, we find
that signals coalescing within 1 s are expected to be at most
hundreds per year.

Another possible solution to the biases would be to create
an iterative procedure where one hierarchically determines
the parameters of louder signals (as inferred from search al-
gorithms) and subtracts them from the data before analysing
weaker ones [12, 46]. Currently, it is unclear which approach
will perform better in the context of 3G detectors, and further
work is needed to gauge the potential of both approaches.

In our exploratory study we did not deal with the conse-
quences of varying the mass parameters of the two signals, nor
did we include in our analysis other source parameters such
as companion spins, the position of the source in the sky and
the orientation of the binary relative to the detector frame. The
SNR range explored in our study (20-100; see also Tab. I) is
also limited compared to the range expected to be covered by
3G detectors [3, 4, 47]. In particular, when overlapping signals
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arrive from different positions in the sky then they would, in
general, have different coalescence times in different detectors,
which might help to isolate one of the peaks better [48]. The
inclusion of spins, on the other hand, introduces new physics
in the formation of these overlapping signals such as spin pre-
cession, and may introduce another layer of complexity in the
parameter inference problem [49]. These and related problems
will be explored in a future study.
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