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Quasi-normal mode (QNM) modeling is an invaluable tool for characterizing remnant black
holes, studying strong gravity, and testing general relativity. Only recently have QNM studies
begun to focus on multimode fitting to numerical relativity strain waveforms. As gravitational
wave observatories become even more sensitive they will be able to resolve higher-order modes.
Consequently, multimode QNM fits will be critically important, and in turn require a more thorough
treatment of the asymptotic frame at I +. The first main result of this work is a method for
systematically fitting a QNM model containing many modes to a numerical waveform produced
using Cauchy-characteristic extraction (CCE), a waveform extraction technique which is known to
resolve memory effects. We choose the modes to model based on their power contribution to the
residual between numerical and model waveforms. We show that the all-mode strain mismatch
improves by a factor of ∼ 105 when using multimode fitting as opposed to only fitting the (2,±2, n)
modes. Our most significant result addresses a critical point that has been overlooked in the QNM
literature: the importance of matching the Bondi-van der Burg-Metzner-Sachs (BMS) frame of
the numerical waveform to that of the QNM model. We show that by mapping the numerical
waveforms—which exhibit the memory effect—to a BMS frame known as the super rest frame, there
is an improvement of ∼ 105 in the all-mode strain mismatch compared to using a strain waveform
whose BMS frame is not fixed. Furthermore, we find that by mapping CCE waveforms to the super
rest frame, we can obtain all-mode mismatches that are, on average, a factor of ∼ 4 better than
using the publicly-available extrapolated waveforms. We illustrate the effectiveness of these modeling
enhancements by applying them to families of waveforms produced by numerical relativity and
comparing our results to previous QNM studies.

I. INTRODUCTION

When in a vacuum a black hole can be considered one of
the simplest objects in the universe, since it is fully charac-
terized by its mass and angular momentum. Despite this
simplicity, black holes continue to be challenging to study
with a multitude of important and unanswered questions
concerning them [1]. Currently, a rather promising means
of studying black holes is through gravitational wave as-
tronomy, i.e., using observations of gravitational waves
emitted by binary black hole (BBH), black hole-neutron
star (BH-NS), and possibly binary neutron star (BNS)
mergers to study properties of the perturbed remnant
black holes [2–5]. While the waveform that is emitted
during the merger phase is challenging to model and
requires the aid of numerical simulations [6–10], the ra-
diation emitted by the remnant black hole during its
ringdown phase is expected to oscillate at a certain set
of well-understood frequencies, called quasi-normal mode
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(QNM) frequencies, until the remnant black hole settles
into a final state of equilibrium [11].
Fortunately, these QNM frequencies can be computed

using perturbation theory and are completely determined
by the remnant’s mass and spin, thereby allowing for a
thorough analysis of the remnant black hole’s properties,
provided the QNM model is used properly when fitting
to the observed gravitational waves [12–16]. Often, these
QNMs are labeled by the numbers {`,m, n}, where (`,m)
are the angular numbers that correspond to spin-weighted
spheroidal harmonics (see [17]) and n = 0, 1, . . . is the
overtone number that sorts the QNM frequencies in order
of decreasing damping timescales, with the fundamental
n = 0 mode being the least-damped mode.

Recently, gravitational wave analysis efforts have shifted
their focus from modes with ` = 2, m = 2 to multiple
(`,m) modes through studies that explore the effects of
overtones, retrograde modes, and mode-mixing [18–26].1
Moreover, third-generation, ground-based detectors such
as the Einstein Telescope (ET) and Cosmic Explorer (CE)

1 By mode-mixing effects, we mean the mixing that occurs when
writing a QNM model in a spherical harmonic basis, rather than
its preferred spheroidal harmonic basis.
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are expected to observe roughly 102 − 104 events per
year with ringdown signals that will be strong enough to
exhibit various higher-order mode contributions, which,
until now, have not been systematically studied [27, 28].
Consequently, being able to include higher-order modes in
QNMmodels is vitally important for future analyses, since
this will be essential for ensuring that the dynamics of
the observed remnant black holes are accurately captured
and measured. In addition, the Laser Interferometer
Space Antenna (LISA) will be even more sensitive to the
ringdown phase of compact mergers, thereby allowing for
even more inclusive multi-frequency ringdown studies that
may aid with black hole astronomy and testing various
theories of relativity [29–31].

Apart from the clear importance of including overtones,
retrograde modes, mode-mixing effects, and higher-order
modes in analyses of gravitational waves that are emitted
during ringdown [18–26], there is one other crucial com-
ponent to QNM modeling that is absent in prior QNM
studies: ensuring that the waveforms and the QNM model
are in identical Bondi-van der Burg-Metzner-Sachs (BMS)
frames. Until now, studies that have compared numerical
relativity (NR) waveforms to QNMs have not considered
the frame of their waveforms during the ringdown phase.
While many of them have used NR waveforms whose
inspiral phase has been mapped to the center-of-mass
frame [7, 32],2 this is very different from mapping the
ringdown phase to a certain frame, such as the center-
of-mass frame of the remnant BH. Nonetheless, even if
one were to map the remnant to the center-of-mass frame,
rather than the inspiraling BHs, this procedure would
still be lacking due to a subtle, but important feature of
relativity. Namely, the fact that for asymptotically flat
spacetimes the symmetry group of future null infinity I +

is not the Poincaré group, but the infinite-dimensional
BMS group [34, 35].

Fundamentally, the BMS group is just an extension of
the Poincaré group, in which spacetime translations are
replaced by an encompassing collection of transformations
known as supertranslations. When working with Bondi
coordinates (u ≡ t−r, r, θ, φ), these supertranslations can
be understood rather simply as being direction-dependent
time translations. Namely, a supertranslation transforms
the time coordinate via u → u − α(θ, φ), with α being
an arbitrary function. Therefore, when fitting QNMs to
a waveform, one not only needs to map to the center-
of-mass frame with the remnant BH’s spin aligned with
the positive z-axis, i.e., fixing the Poincaré frame, but
they also need to fix the supertranslation freedom of their
waveforms to ensure that comparisons with QNMs are
meaningful. Using an incorrect BMS frame leads to two
effects that are sources of errors in the fits: the waveform
is shifted and settles down to a nonzero value, and there
is a mixing of modes that is distinct from the spherical-
spheroidal mixing mentioned before [33, 36].

2 See [33] for an improved way to map to the center-of-mass frame.

Across this work, we perform QNM fits by including
every one of the important aforementioned components
to modeling NR ringdowns with QNMs, i.e., overtones,
retrograde modes, mode-mixing, higher-order modes, and
BMS frame fixing. More specifically, we simultaneously
fit various modes over all angles on the two-sphere while
also accounting for the mode-mixing that occurs because
NR waveforms are in a spherical harmonic basis, while
our QNM model is in a spheroidal harmonic basis. When
trying to model such a large number of modes and their
overtones, we must choose which modes to model. We
do this systematically by examining which modes in our
model contain the largest portion of unmodeled power
(see Sec. III for more detail). Apart from this, we also
map our NR waveforms to the BMS frame that is ex-
pected by the QNM model, namely, the super rest frame
(see Sec. II B for more detail) [33, 37–39].3 We, therefore,
create a QNM model by choosing modes based on their
unmodeled power and, for the first time, fit said model
to a NR waveform that has been properly mapped to the
same BMS frame as is expected by the Teukolsky formal-
ism [11]. We find that by carrying out this procedure,
i.e., fitting over the whole two-sphere and accounting for
BMS frames, we can drastically enhance previous results,
such as the GW150914 investigations in Giesler et al. [18]
and Cook [19], by both reducing mismatches between NR
waveforms and QNM models by a factor of 105 as well
as improving parameter estimates of the remnant black
hole’s characteristics by more than half an order of mag-
nitude using QNMs. We tested the effects of multimode
modeling and frame fixing with 14 SXS simulations (see
Table I), which include systems of mass ratio 1 and 4,
with varying spin configurations, including precessions.
We also provide an in-depth study on the simulation
SXS:BBH:0305, a proxy for GW150914.

We present our computations and results as follows.
In Sec. II, we outline the mathematical conventions for
waveform modeling that is used throughout the paper.
Furthermore, we also discuss the reason why fixing the
BMS frame is important and present how we will map
our waveforms to the super rest frame. Next, in Sec. III,
we discuss our greedy algorithm for choosing modes to
include in our QNM model and highlight the importance
of multimode fitting for ringdown modeling. We also show
how multimode fitting affects the mismatch between a
NR waveform and a QNM model. Finally, in Sec. IV we
show the importance of mapping the remnant black hole
to the super rest frame and the consequences of using the
correct BMS frame when fitting to QNMs.

3 Note that in this work when we refer to mapping a waveform
to the super rest frame we really mean simultaneously mapping
to the remnant BH’s center-of-mass frame, aligning the remnant
BH’s spin with the positive z-axis, and fixing the supertranslation
freedom by mapping to the super rest frame of [33].
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II. FORMALISM

The remnant black hole formed from a BBH merger
is well-described as a supertranslated Kerr metric with
(potentially large) perturbations, which decay with time.
As shown by Teukolsky in 1973 [11], applying perturba-
tion theory to the Kerr spacetime, one acquires a decou-
pled “master equation” that describes linear curvature
perturbations of the black hole. The Teukolsky partial
differential equation also separates into temporal, radial,
and angular ordinary differential equations. The oscilla-
tory yet exponentially decaying modal solutions are the
QNMs, and the spacetime after merger is modeled as
a linear superposition of many of these QNMs. Impos-
ing appropriate conditions of decay (at null infinity, I )
and regularity (at the horizon and poles) quantizes the
allowed complex QNM frequencies [13]. One finds the fre-
quencies, separation constants, and angular wavefunctions
simultaneously, either via Leaver’s original approach of
infinite continued fractions [13], or a more recent spectral
eigenvalue approach of Cook and Zalutskiy [15, 19]. The
spectral approach finds the angular mode shapes—the
spin-weighted spheroidal harmonics—as a decomposition
in spin-weighted spherical harmonics. This decomposi-
tion has been employed before in [19, 20, 22, 25, 26, 40].
We obtain the QNM frequencies and spherical-spheroidal
decomposition coefficients from the open-source Python
package qnm, which uses a Leaver solver for the radial sec-
tor, with the spectral eigenvalue approach for the angular
sector [13, 41]. For more details on the implementation
see [41] and references therein.
In this study, we are exclusively interested in working

with complex waveforms, like the strain h,4 which are
decomposed into spin-weight −2 spherical harmonic bases
and live on future null infinity I +. We write these
waveforms as, e.g.,

h(u, θ, φ) =
∑

`≥2,|m|≤`

h`m(u) −2Y`m(θ, φ). (1)

The spin-weighted spherical harmonics of fixed spin-weight
s form a complete and orthonormal basis on the two-
sphere [42, 43],

∫

S2

(sY`m)∗ sY`′m′ dΩ = δ``′δmm′ , (2)

where ∗ denotes complex conjugation and the differential
dΩ = d cos θ dφ is the standard volume element on the
two-sphere.

A. QNM formalism

For a given black hole spin |a| < M , and choice of angu-
lar numbers (`,m), there are an infinite number of QNM

4 We explicitly define the strain as described in Appendix C of [7].
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FIG. 1. Right-pointing triangles are prograde modes, left-
pointing triangles are retrograde. Note that prograde and ret-
rograde modes are present both in the left half-plane (so-called
“mirror” modes) and the right half-plane (ordinary modes).

frequencies satisfying the boundary conditions. These
are all in the lower half-plane, Im[ω] < 0, as required by
stability. The symmetry of the equations means that if
ω`m is a QNM frequency, then so is −ω∗`,−m; this is a
“mirror” symmetry between the left and right half-planes.
This leads to the nomenclature (see also Table I of [26])

• “ordinary” mode: Re[ω] > 0,

• “mirror” mode: Re[ω] < 0.

Because of this symmetry, much of the QNM literature
has focused on just the ordinary modes, since the mirror
modes can be recovered via the transformation {m →
−m,ω → −ω∗}. Within each family, there are still an
infinite number of overtones. Thus to uniquely identify
each solution, we label the mode ωp`mn with {`,m, n, p},
where n = 0, 1, . . . is the overtone number, ordered by the
magnitude of Im[ω], and p = sgn(Re[ω]) is either ±1. The
least-damped n = 0 mode is often called the fundamental
mode or zeroth tone while the n > 0 modes are referred
to as overtones [16].

Moreover, there are prograde and retrograde modes in
both the right and left (mirror) half-planes [16, 26, 40, 44].
A QNM is labeled prograde if its wavefronts circulate
around the BH in the same sense as its rotation. Because
a QNM solution goes as ∝ exp(−iωt + imφ), we see
that surfaces of constant phase circulate in the positive φ
direction when

• “prograde” mode: sgn(m) = + sgn(Re[ω]),

and in the negative φ direction when

• “retrograde” mode: sgn(m) = − sgn(Re[ω]).

Modes with m = 0 cannot be labeled as either prograde
or retrograde. This is demonstrated in Fig. 1.
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When a perturber is corotating with the spin of the
black hole, it dominantly excites the prograde modes.
For most binary coalescences, the remnant spin ends up
with a positive projection onto the direction of the orbital
angular momentum at plunge; thus the prograde modes
are expected to be most important. In this study, we
found that the power of m 6= 0 retrograde modes was a
very small fraction of the total power, but we nonetheless
include them to provide a more complete picture of QNM
modeling and attain marginally higher accuracies. Note
though that form = 0 modes, neither of the pair of mirror
modes is dominant, so both must be included in the fits.
In addition to the frequency, there is also an associ-

ated angular mode distribution for a given QNM, which
is given by a spin-weighted spheroidal harmonic func-
tion sS`m(θ, φ; c) that solves the separated angular equa-
tion [11]. Here θ and φ represent the polar and azimuthal
angles, and crucially this is a coordinate system where
the black hole is at rest and its spin vector is along the
θ = 0 direction.

The complex oblateness parameter c = aω`mn is deter-
mined by both the QNM frequency and the BH’s spin
parameter a = |J |/M , with 0 ≤ a < M for a horizon to
exist. When c = 0, a spheroidal harmonic reduces to a
spherical harmonic. For a fixed value of c which is purely
real or imaginary, we obtain a complete and orthonormal
basis of oblate or prolate spheroidal harmonics. However,
we have complex values of c, and a different c associated
to each QNM, so they may no longer form a complete
basis.
Therefore, we choose to work in the complete basis

of spin-weighted spherical harmonics. Each spheroidal
harmonic can be decomposed as a series of spherical
harmonics with the same m but different ` as

sS`′m(θ, φ; c) =
∑

`

C``′m(c) sY`m(θ, φ), (3)

where the C``′m(c) functions are called the spherical-
spheroidal mixing coefficients [22]. Here we follow the
conventions of [15], as implemented in [41]. These conven-
tions are that

∑
` |C``′m|2 = 1, and that C``′m is purely

real when ` = `′. In the case where c = 0, we then have
C``′m(0) = δ``′ , i.e., sS`′m(θ, φ; 0) = sY`′m(θ, φ).

With these spheroidal harmonics in mind, we can now
write the general ansatz for the strain of a ringing black
hole at future null infinity, hQ(u, θ, φ). This ansatz is
simply a linear combination of QNMs

hQ(u, θ, φ) =
∑

`′,m,n,p

Ap`′mne−iω
p

`′mn
(u−u0)

−2S`′m(θ, φ; aωp`′mn), (4)

where the Ap`′mn are complex amplitudes for each QNM
and u0 is a freely-specified start time of the QNM model.
Although these amplitudes transform in a simple way
under translations of the retarded time coordinate u and

rotations about the z-axis, they are not rotated by the
Wigner-D matrix under more general rotations.

Now we insert the spherical-spheroidal decomposition
from Eq. (3) into the spheroidal ansatz of Eq. (4), rewrit-
ing it as

hQ(u, θ, φ) =
∑

`′,m,n,p

[
Ap`′mne−iω

p

`′mn
(u−u0)

∑

`

C``′m(aωp`′mn)−2Y`m(θ, φ)

]
. (5)

Since this is now in the spin-weighted spherical harmonic
basis, it is ideal for modeling numerical relativity results.
Writing the QNM ansatz hQ(u, θ, φ) in spin-weighted
spherical harmonics as in Eq. (1) and (using completeness)
matching up the coefficients of −2Y`m(θ, φ), we readily
find that the spherical mode-decomposed analytical QNM
model is

hQ`m(u) =
∑

`′,n,p

Ap`′mne−iω
p

`′mn
(u−u0)C``′m(aωp`′mn) . (6)

These hQ`m’s do indeed rotate under the Wigner-D matrix
since they are expressed in the spin-weighted spherical
harmonic basis [45]. Such a rotation is explicitly shown
by Eq. (12) of [19] with a couple of subtle differences
between that paper and this one. In this work, we use the
conventions of [15], where C is the spherical-spheroidal
mixing coefficient. Additionally, we do not express ω− or
C(aω−) in terms of their positive frequency counterparts,
via

C``′m
(
aω−`mn

)
= C``′m

(
−a
(
ω+
`,−m,n

)∗)
(7)

C``′m
(
aω−`mn

)
= (−1)`+`

′
C∗`,`′,−m

(
aω+

`,−m,n

)
. (8)

Using this identity, we can restate our Eq. (6) to look like
Cook’s Eq. (12) [19]. Regardless of the way one writes
down this mode-decomposed analytical model, it allows us
to consider a ringing black hole with its spin axis oriented
in any direction by rotating hQ`m.

B. Importance of BMS frames

One important takeaway from the functional form of
the QNM model hQ`m(u) in Eq. (6) is the fact that

lim
u→+∞

hQ`m(u) = 0. (9)

That is, hQ`m(u) tends to zero at late times, approaching i+.
Consequently, whenever we fit this model to a waveform,
our waveform should also decay to zero as the retarded
time approaches +∞ in order to obtain reasonable results.
What some readers may not be familiar with is that

gravitational waves need not be, and often are not, zero as
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u→ +∞, due to an effect which is commonly called grav-
itational memory [46–49]. Fundamentally, gravitational
memory can be understood as a persistent physical change
to spacetime that is induced by the passage of transient
radiation. While there are various types of gravitational
memory effects with varying properties (see [50, 51] for
more thorough explanations), the one that will strongly
impact our ability to model the ringdown of a black hole
with QNMs is the displacement memory effect. This is
because, unlike the other gravitational memories, the dis-
placement memory uniquely corresponds to an overall net
change in the strain between the two points i0 and i+;
that is, the difference ∆ = h(u → +∞) − h(u → −∞).
Consequently, the strain need not return to zero, provided
that the memory is nonzero and the strain’s value at i0
does not cancel the memory’s value. Fortunately, it turns
out that this important problem regarding gravitational
memory is only present if one does not account for the
frame that a perturbed black hole should be in for proper
QNM modeling.
As has been understood since the 1960s, the symme-

try group of asymptotic infinity is not the usual Poincaré
group, but a group with a richer structure called the Bondi-
van der Burg-Metzner-Sachs (BMS) group [34, 35]. The
BMS group is a semidirect product of the usual Lorentz
group with an infinite-dimensional group of transforma-
tions called supertranslations, which are angle-dependent
time advances/delays that contain the familiar spacetime
translations as a subgroup. Fundamentally, supertransla-
tions act on the Bondi coordinates (u, r, θ, φ) as

u′ = u− α(θ, φ). (10)

and the strain as

h′(u′, θ, φ) = h(u′, θ, φ)− ð̄2α(θ, φ)

=

∞∑

k=0

1

k!

(
−α(θ, φ)

∂

∂u

)k
h(u, θ, φ)− ð̄2α(θ, φ).

(11)

where ð̄ is the conjugate of the Geroch-Held-Penrose
differential spin-weight operator [52]. Above

α(θ, φ) ≡
∑

`≥0,|m|≤`

α`mY`m(θ, φ) (12)

with

α`m = (−1)mᾱ`,−m (13)

is a real function which characterizes the supertranslation.
The ` = 0 component of α(θ, φ) is a time translation, the
` = 1 components are space translations, and the ` ≥ 2 are
proper supertranslations. From Eq. (11), one can easily
realize that under the action of a supertranslation the
strain experiences two types of changes. First, the strain
is changed by the angle-dependent constant ð̄2α(θ, φ).
Apart from this, however, because the retarded time

changes as u′ = u− α(θ, φ), we also expand about u to
express the transformed strain directly in terms of the
strain in the original frame. We see from Eq. (11) that
this involves multiplying the time derivatives of the strain
with powers of α(θ, φ). Consequently, the strain will
experience mode-mixing in addition to changing by an
angle-dependent constant. Furthermore, if one imagines
taking a time-derivative of Eq. (11) then it can be seen
that the news will also experience mode-mixing due to
the supertranslation’s effect on the retarded time.

Therefore, because of these extra symmetries, whenever
we examine a system that is radiating gravitational waves
it is insufficient to specify just a Poincaré frame, e.g.,
the remnant BH’s center-of-mass frame; we instead need
to specify the entire BMS frame, i.e., how the system’s
supertranslation freedom is being fixed in addition to the
usual Poincaré transformations.
In [33] this task of specifying a system’s BMS frame

was performed for the first time by mapping numerical
waveforms from BBH systems to the post-Newtonian (PN)
BMS frame, i.e., the frame that PN waveforms are in.
When fitting the ringdown phase of waveforms to Eq. (6),
mapping waveforms to the PN BMS frame is not the
appropriate BMS frame choice, because this frame corre-
sponds to the strain going to zero at early times (when
approaching i0), rather than at late times (when approach-
ing i+). Instead, we should be mapping our waveforms
to what is called the nice section [39] or the super rest
frame [33] at i+. This is because when Teukolsky found
the linear equations that describe the dynamical gravita-
tional perturbations of a rotating black hole [11], i.e., the
equations that give rise to QNMs, he implicitly worked
in the BMS frame adapted to the stationary background
metric [53], i.e., the super rest frame. However, black
holes in nature or the remnant black holes produced in
numerical simulations are supertranslated relative to this
preferred frame. As a result, we need to map these black
holes to the frame that Teukolsky worked in.
As outlined in [33], the way to map a system to the

super rest frame is to use the Moreschi supermomentum,
which is an extension of the usual Bondi four-momentum,

ΨM(u, θ, φ) =
∑

`≥0,|m|≤`

ΨM
`m(u)Y`m(θ, φ), (14)

where

ΨM
`m(u) = − 1√

4π

∫

S2

Y`m
[
Ψ2 + σ ˙̄σ + ð2σ

]
dΩ, (15)

Ψ2 is one of the Weyl scalars, and σ is the shear.5 Ideally,
to map to the super rest frame we would want to minimize
the Moreschi supermomentum as u→ +∞. But, since our

5 Note that here and in Eq. (15) we are specifically working with
the Moreschi-Boyle convention [33, 36, 54, 55], i.e., in comparison
to the numerical formulation of the strain and the Weyl scalars
we simply have hNR = 2σ̄ and ΨNR

i = 1
2

(−
√

2)iΨi.
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simulations do not go all the way to i+, we can instead
minimize the Moreschi supermomentum during a late
portion of the ringdown phase. Specifically, we construct
the BMS frame of our waveforms via the following:

• take the boost velocity and space translation, i.e.,
the ` = 1 components of the supertranslation, to be
the transformations that minimize the remnant’s
center-of-mass charge over the late time window
u ∈ [upeak + 150M,upeak + 350M ] [33];

• take the 2 ≤ ` ≤ 4 modes of the supertranslation to
be the transformations that minimize the L2 norm
of the 2 ≤ ` ≤ 4 modes of ΨM over the late time
window u ∈ [upeak + 150M,upeak + 350M ] [33];

• fix the system’s rotation freedom by aligning the
remnant BH’s spin with the positive z-axis.

These calculations for fixing the BMS frame require the
system’s strain as well as the four Weyl scalars Ψ1−4 [33].
Note that while only the strain, Ψ1, and Ψ2 are needed to
compute the BMS charges, Ψ3 and Ψ4 are also needed to
transform Ψ1 and Ψ2 during the frame fixing procedure.
We obtain the Ψ3 and Ψ4 Weyl scalars independently from
the strain through our Cauchy-characteristic extraction.
Above upeak is the time at which the L2 norm of the
strain achieves its maximum value. By performing this
frame-fixing procedure, we transform to a waveform with
its BMS frame fixed so that it can be modeled by Eq. (6).
Note that the window u ∈ [upeak + 150M,upeak + 350M ]
is chosen as such because it is roughly the 200M before
the earliest end time of our simulations. We find that
our results are fairly independent of this time window,
provided that it starts beyond u ≈ (upeak + 100M). A
quantitative description of how the results are affected
by the choice of time window is beyond the scope of this
paper. Nevertheless, an analysis of when to map to the
super rest frame will be presented in future work.

C. QNM fitting procedure

Given a numerical waveform hNR
`m (u) and the functional

form of hQ`m(u), we can consider the problem of fitting
for the complex QNM amplitudes Ap`′mn. To do this, we
first need an inner product on the space of spin-weight s
waveforms on I +. For waveforms a and b, the natural
inner product is defined as

〈a, b〉 ≡
∫ uf

u0

du

∫

S2

dΩ a∗(u, θ, φ)b(u, θ, φ), (16)

Where [u0, uf ] is the interval of time where we would like
to fit the waveform with a QNM model. Both waveforms
can be decomposed into a`m and b`′m′ as in Eq. (1).
By applying the orthogonality relationship of Eq. (2) to
collapse the double sum to a single sum, the inner product

on I + then becomes

〈a, b〉 =

∫ uf

u0

du
∑

`,m

a∗`m(u)b`m(u) =
∑

`,m

〈alm, blm〉u,

(17)

where

〈f, g〉u ≡
∫ uf

u0

f∗(u)g(u)du (18)

is the usual L2 inner product for complex functions on
the real line. However, because our study only considers
modes with ` ≤ 4, the inner product that we use in the
rest of paper is in fact given by

〈a, b〉 =
∑

`≤4,m

〈alm, blm〉u, (19)

which we henceforth call the all-mode inner product, keep-
ing in mind that here ‘all’ means all the modes included
in the NR waveform.
From this inner product we construct the mismatch
M, a figure of merit commonly used in the literature, as
follows:

M(a, b) ≡ 1−O(a, b), (20)

where O(a, b) is the overlap,

O(a, b) ≡ Re

[
〈a, b〉√
〈a, a〉〈b, b〉

]
. (21)

Consequently, for a NR waveform hNR(u, θ, φ) ex-
pressed by its spin-weighted spherical harmonic coeffi-
cients hNR

`m , we can quantify the effectiveness of a fit hQ(~λ)

by calculating the all-mode mismatchesM(hNR, hQ(~λ)).
Here ~λ is the set of free parameters of the fit. When we
focus on a single mode (`,m), however, we instead use
the single mode mismatchM(hNR

`m , h
Q
`m(~λ)).

Nonetheless, we do not find the optimal parameters
~λopt by directly minimizing this figure of merit. Instead
we first calculate the residual

R ≡ hNR − hQ, (22)

and then compute the squared norm of the residual,
〈R,R〉, as the figure of merit that we want to minimize.
One can show that because the norm of hQ(~λ) can be
independently varied, minimizing the norm of the residual
also minimizes the mismatch. However the problem of
minimizing the former is manifestly linear in nature for
the QNM amplitudes, and is not degenerate in the norm.
Therefore we find the optimal parameters ~λopt by

~λopt = arg min
~λ

〈R,R〉 or ~λopt = arg min
~λ

〈Ṙ, Ṙ〉 , (23)

where we use the second choice if we want to work in
the domain of the news N = ḣ. Although one could also
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consider working in the Ψ4 domain, our analyses focus
on the strain, since it is the physical quantity that the
gravitational-wave detectors measure and on the news,
since the power is naturally defined by it.

Now, ~λ can take on one of two forms: ~λ = {Ap`′mn}, or
~λ = {{Ap`′mn},M, a}, where Ap`′mn are the QNM ampli-
tudes from Eq. (6), andM and a are the mass and spin of
the remnant black hole. In the former we use the remnant
black hole’s mass and spin obtained from the simulation
(see below), and solve for ~λ = {Ap`′mn} using NumPy’s
linear least square method [56]. On the other hand when
~λ = {{Ap`′mn},M, a}, the remnant properties are deduced
by fitting the waveform. Here we perform a least-squares
minimization between the NR waveform and the QNM
model using SciPy’s Nelder-Mead algorithm [57, 58] to
find the remnant BH’s mass and spin and simultaneously
use the linear least square method to determine the am-
plitudes. We also note that since we rotate the remnant
BH’s spin direction to be aligned with the positive z-axis,
there is no mixing of the m modes. Therefore, we can fit
the QNM amplitudes for each value of m independently.

Finally, it should be noted that when we are only solving
for the amplitudes, i.e., ~λ = {Ap`′mn}, we obtain the mass
and the spin of the remnant from I + rather than the
apparent horizon. That is, following the work of [33, 59],
we use Poincaré charges to obtain the remnant’s mass
and spin via Eqs. (11) and (15) of [59]. The mass and
spin are taken to be the values of the charges at the last
available time step.

D. Numerical waveforms

For the following results, we numerically evolved a set
of 14 binary black hole mergers with many mass ratios
and spin configurations using the Spectral Einstein Code
(SpEC) [62]. We list the important parameters of these
various BBH systems in Table I. Each simulation contains
roughly 19 orbits prior to merger and is evolved until the
waves from ringdown leave the computational domain.
Unlike the evolutions in the SXS catalog, the full set of
Weyl scalars and the strain have been extracted from
these runs and the waveforms have been computed using
the extrapolation technique described in [63] and the
Cauchy-characteristic extraction (CCE) procedure that
is outlined in [64, 65]. Extrapolation is performed with
the python module scri [36, 66–68] and CCE is run with
SpECTRE’s CCE module [64, 65, 69].
For the CCE extractions, the four world tubes that

are available have radii that are equally spaced between
2λ0 and 21λ0, where λ0 ≡ 1/ω0 is the initial reduced
gravitational wavelength as determined by the orbital
frequency of the binary from the initial data. Based on
the recent work of [70], however, we choose to use only
the waveforms that correspond to the world tube with
the second-smallest radius, since these waveforms have
been shown to minimally violate the BMS balance laws.

For clarity, we provide the world tube radius used for
each system in Table I. All of these 14 BBH systems’
waveforms have been made publicly available at [60, 61].

As mentioned above, the asymptotic strain waveforms
are computed using two methods: extrapolation and CCE.
The first method utilizes Regge-Wheeler-Zerilli (RWZ)
extraction to compute the strain on a series of concentric
spheres of constant coordinate radius and then proceeds to
extrapolate these values to future null infinity I + using
1/r approximations [7, 63, 71–74]. This is the strain that
can be found in the public SXS catalog. The other and
more faithful extraction method, which is known as CCE,
computes the strain by using the world tube data provided
by a Cauchy evolution as the inner boundary data for
a nonlinear evolution of the Einstein field equations on
null hypersurfaces extending all the way to I + [64, 65].
CCE requires freely specifying the strain on the initial
null hypersurface labeled u = 0. Like [33, 50, 70], we
choose this field to match the value and the first radial
derivative of h from the Cauchy data on the world tube
using the ansatz

h(u = 0, r, θA) =
A(θA)

r
+
B(θA)

r3
, (24)

where the two coefficients A(θA) and B(θA) are fixed by
the Cauchy data on the world tube.
Lastly, when performing our analyses, we predomi-

nantly use the code scri [36, 66–68] to compute Poincaré
charges and transform our asymptotic waveform quanti-
ties to the super rest frame using the procedures outlined
in Sec. II and Appendix A of [33]. Our waveforms only in-
clude the ` ≤ 4 modes since these are the modes included
in the BMS frame fixing procedure. We also only model
our waveforms up to uf = upeak + 90M as in [18].

III. ON WHICH MODES TO INCLUDE

The importance of using multiple waveform modes to
capture the physics of a remnant black hole—considering
both multiple angular (`,m) modes as well multiple
overtones—has been studied extensively [18–20, 26, 75].
When constructing a QNM model it is crucial that we are
able to choose as many modes as necessary to accurately
model our system, without overfitting or introducing de-
generacy. Because manually choosing an arbitrary number
of modes without knowing which modes are important
to include is objectionable, we have written a greedy al-
gorithm that provides us with an efficiently low number
of modes needed to model the ringdown waveform to a
requested precision. Consequently, we can reduce the
number of modes that are needed to capture the most
physics and also identify the most physically-relevant
modes.
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Name CCE radius q χA: (x̂, ŷ, ẑ) χB : (x̂, ŷ, ẑ)

q1_nospin 292 1.0 (0, 0, 0) (0, 0, 0)

q1_aligned_chi0_2 261 1.0 (0, 0, 0.2) (0, 0, 0.2)

q1_aligned_chi0_4 250 1.0 (0, 0, 0.4) (0, 0, 0.4)

q1_aligned_chi0_6 236 1.0 (0, 0, 0.6) (0, 0, 0.6)

q1_antialigned_chi0_2 274 1.0 (0, 0, 0.2) (0, 0, −0.2)

q1_antialigned_chi0_4 273 1.0 (0, 0, 0.4) (0, 0, −0.4)

q1_antialigned_chi0_6 270 1.0 (0, 0, 0.6) (0, 0, −0.6)

q1_precessing 305 1.0 (0.487, 0.125,−0.327) (−0.190, 0.051,−0.227)

q1_superkick 270 1.0 (0.6, 0, 0) (−0.6, 0, 0)

q4_nospin 235 4.0 (0, 0, 0) (0, 0, 0)

q4_aligned_chi0_4 222 4.0 (0, 0, 0.4) (0, 0, 0.4)

q4_antialigned_chi0_4 223 4.0 (0, 0, 0.4) (0, 0, −0.4)

q4_precessing 237 4.0 (0.487, 0.125,−0.327) (−0.190, 0.051,−0.227)

SXS:BBH:0305 (GW150914) 267 1.221 (0, 0, 0.330) (0, 0, −0.440)

TABLE I. Parameters of the BBH mergers used in our results. The mass ratio is q =MA/MB , and the initial dimensionless
spins of the two black holes are χA and χB . These simulations have been made publicly available at [60, 61].
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FIG. 2. Fraction of unmodeled power that is obtained when
comparing a QNM model built from the (2,±2, 0−n) mode(s)
to a CCE strain waveform as a function of the QNM model
start time u0. We compute the fraction of unmodeled power
in the waveform using the news waveforms, i.e., by using
Eq. (30). This includes the power that is unmodeled because
of neglecting higher modes in the QNM model.
BBH merger: SXS:BBH:0305.

A. Greedy algorithm

The greedy algorithm that we implement is iterative,
adding the prograde and retrograde modes at each iter-
ation. The data at iteration i is a collection of i mode
labels (`′,m, n, p) and the parameter vector of length i,

~λ(i) = {Ap`′mn} , (25)

corresponding to those modes.
The greedy algorithm can be summarized as follows.

−10 0 10 20 30 40 50

(u0 − upeak) /M

10−7

10−5

10−3

10−1
F

(ḣ
)

Nmodes = 5

Nmodes = 20

Nmodes = 50

Nmodes = 100

u0 − upeak = 20M

FIG. 3. Fraction of unmodeled power (solid) that is obtained
when comparing QNM models built by our greedy algorithm
with various number of modes to a CCE strain waveform.
Again, the power, which is plotted and used in our algorithm
to pick modes to model, is computed using the news waveforms,
i.e., by using Eq. (30). The dashed curves are QNM fits using
the fixed set of modes determined by the greedy algorithm at
the time u0−upeak = 20M . On the other hand, the solid curves
have their set of modes determined for each u0 independently,
which causes these curves to not be smooth.
BBH merger: SXS:BBH:0305.

(I) Begin with an empty list of modes and amplitudes.

(II) At each iteration i, form the residual

R(i) ≡ hNR − hQ,i , (26)

between the NR waveform and hQ,i, which is built
from the i amplitudes {Ap`′mn}. If instead working
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in the news domain, we form the residual as the
difference of the news waveforms

Ṙ(i) ≡ ḣNR − ḣQ,i . (27)

(III) Compute the power in each mode of the residual,

P
(i)
`m(R) ≡ 〈R(i)

`m, R
(i)
`m〉u , (28)

using the usual L2 metric in Eq. (18). Analogously,
when working in the news domain we use P (i)

`m(Ṙ)

as the power instead. Notice that,
∑
`,m P

(i)
`m(Ṙ)

is proportional to the physical gravitational-wave
luminosity of the residual waveform.

(IV) Rank the (`,m) modes in the residuals by their
powers P (i)

`m, and identify the mode (¯̀, m̄) with the
largest residual power.

(1) If no QNMs with the (` = ¯̀,m = m̄) mode are
present in the parameter list, add the prograde
and retrograde modes (¯̀, m̄, 0,±1).

(2) If some QNMs with (` = ¯̀,m = m̄) are already
in the parameter list, identify the smallest n̄
not present in the parameter list. If n̄ ≤ nmax

for some max overtone number nmax, add this
next mode with the prograde and retrograde
modes (¯̀, m̄, n̄,±1). For this paper we chose a
max overtone number of nmax = 7.

(3) If all modes (¯̀, m̄) with 0 ≤ n ≤ nmax are
already in the parameter list, set (¯̀, m̄) as the
mode of the residual that is the next loudest
in the list of P (i)

`m. Return to step (1) to find
which mode to include.

Although here at each step we are adding 2 QNMs
(¯̀, m̄, n̄,±1), we group these modes together and
count them as adding one mode.

(V) After identifying the next mode(s) to include, re-
solve the linear least squares problem to determine
the optimal values of {Ap`′mn}.

(VI) Compute the fraction of residual power to target
waveform power in the strain domain

F(h) ≡ 〈R
(i), R(i)〉

〈hNR, hNR〉 (29)

or the news domain

F(ḣ) ≡ 〈Ṙ
(i), Ṙ(i)〉

〈ḣNR, ḣNR〉
, (30)

where R and Ṙ are defined in Eq. (26) and Eq. (27).
Both of these choices are well motivated, but we
primarily use Eq. (30), since this corresponds to
the physical gravitational-wave luminosity of the
residual waveform.

(VII) Terminate if either F < Ftarget for some target
residual power fraction, or if the number of modes
i = Nmax: a maximum number of modes to include.

(VIII) Return to step (II) and repeat.

A study using multimode fitting to investi-
gate the performance of three different fitting
methods across three different sets of modes—
{(2, 2)}, {(2, 2), (3, 2)}, {(2, 2), (3, 2), (4, 2)}—was recently
carried out in [19]. Results show that when fitting for
more than just the dominant (2, 2) mode, all fitting
methods converge. However, these methods are tested
using only a limited set of modes, whereas our greedy
algorithm can use all modes (see [19] for more details).
Earlier studies of multimode fitting have been carried

out in one of two ways: some models have been executed
by manually choosing a set of modes [18, 19, 24] while
others use greedy algorithms to pick which modes to
model [20, 26]. However, instead of focusing on a single
(`,m) mode as in [20] or greedily picking only the angular
numbers (`,m) as in [26], we implement a physically well
motivated, multimode greedy algorithm where each QNM
with labels (`,m, n) is picked greedily. At the moment,
checks to compare greedy algorithms with one another
have not been performed. This would be interesting to
examine in the future.

B. Importance of multiple modes in modeling

In the remaining parts of this section, we use the simu-
lation SXS:BBH:0305, which corresponds to GW150914,
(see Table I) to study the importance of multimode fit-
ting. We begin by applying our QNM modeling procedure
to the (2,±2) modes with up to 7 overtones. In Fig. 2
we show the fraction of unmodeled power as a function
of u0 − upeak using n number of overtones in the QNM
model. For computing the unmodeled power, we use the
CCE waveform, in the super rest frame, and measure the
fraction of unmodeled power in the news domain with
Eq. (30). From this plot, one can easily observe the impor-
tance of including overtones in the model. By using just
the n = 0 mode, one can only model about 65% of the
power starting at u0 = upeak. With all 7 of the overtones
included, the modeled power improves to roughly 97% of
the total power. Note, however, that these numbers will
vary depending on the time that one chooses to model
the QNMs.
Accounting for overtones, however, is only one of the

important components for correctly modeling a wave-
form with QNMs. Although the (2,±2) modes are the
most important to use due to their dominance, including
higher-order modes is crucial to more accurately describe
the ringdown phase. This is especially true for systems
that may not exhibit symmetries, e.g., having mass ra-
tio one. Overall, higher-order modes contain less power
and overtones have shorter damping times relative to
the (2,±2) modes and n = 0 modes. Therefore, their
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FIG. 4. All-mode mismatches between the CCE waveform
and a QNM model fitting N number of modes. The solid
curves correspond to QNM models with a varying number
of modes that are modeled. The dashed curves are QNM
amplitude fits using the modes from u0 − upeak = 20M . The
dash-dotted curves represent the all-mode mismatches from
just the (2,±2) modes—one with the n = 0 tone and another
with the n = 0− 7 tones. Finally, the top of the black region
illustrates the mismatch between the highest and the next-
highest resolution waveforms to provide a reference for the
numerical error that is present in our strain waveform.
BBH merger: SXS:BBH:0305.

importance within the QNM model lessens as we reach
later stages of ringdown. Nevertheless, they exhibit a
considerable amount of power at early ringdown times
and are essential in capturing the remaining power stored
in a gravitational wave. To highlight this, in Fig. 3 we
compute the fraction of unmodeled power for models that
include N ∈ {5, 20, 50, 100} modes as a function of the
QNM model’s start time u0. We remind the reader that
N counts the number of pairs of prograde and retrograde
(`,m, n) modes included by the greedy algorithm, e.g., the
set {(2, 2, 0,±1), (2, 2, 1,±1), (3, 2, 0,±1)} corresponds to
N = 3. In this plot, the solid curves correspond to running
the greedy algorithm independently for each u0, while the
dashed curves just use the fixed set of modes that are
obtained by the greedy algorithm at u0 − upeak = 20M .
The jaggedness of the solid curves illustrates the fact
that the greedy algorithm’s choice of modes for the QNM
model is not a smooth function of the model start time
u0. Moreover, we have performed a minimal test of the
greedy algorithm to ensure that the results do not depend
too sensitively on the initial mode content. We do this
by giving the greedy algorithm an initial set of modes to
fit before it adds the modes it has ranked. Slight changes
in results only arise when modeling a small number of
modes, e.g., N = 5 at times before u0 = upeak. This is
not surprising since overtones play an important role at
early times. Consequently, replacing an overtone with a
higher harmonic at such times would slightly worsen our

model by increasing the fraction of unmodeled power. For
a higher number of modes N and later times, however,
no detectable change occurs.
Using the solid curves, we find that at u0 = upeak

the power captured in the model is nearly 96% with 5
modes, which is a rather comparable result to using the
(2,±2, 0 − 7) modes. With 20 modes over 99% of the
power is captured. With 100 modes, we are modeling
99.999% of the power. Again, for this plot we are using
the CCE waveform for SXS:BBH:0305 and are perform-
ing computations of the power in the news domain by
using Eq. (30). The order in which all 168 modes of this
waveform are included is shown in Table. II.

Apart from the fraction of unmodeled power, we also
calculate the mismatches between the CCE strain and
the model using varying number of modes, as shown by
the solid curves in Fig. 4. As a reference, we also provide
two dash-dotted curves showing the all-mode mismatches
from just the (2,±2) modes—one with the n = 0 tone
and another with the n = 0 − 7 tones. Moreover, we
show the mismatch between the highest and the next-
highest resolution waveforms via the top of the black
region to illustrate that every mismatch curve is above
our numerical error, and thus, there is no concern for
overfitting to numerical noise.
Our most important finding regarding multimode fit-

ting, however, is that by using multimode fitting rather
than just the (2, 2) mode with its n = 0 tone and the first
7 overtone modes we can significantly improve our ability
to extract the remnant’s mass and spin using a QNM
model. To confirm that our QNM model is able to faith-
fully represent the full numerical simulation, rather than
just the waveform, we perform a minimization of the resid-
ual between the QNM model and the NR strain waveform,
with the remnant’s mass and spin as free parameters. As
a measure of the error in the mass and spin found by our
NR/QNM mismatch minimization procedure, we use

ε =
√

(δM/M)2 + (δχ)2, (31)

where the terms δM and δχ are the differences between
the minimization results and the remnant values obtained
by computing the Poincaré charges that correspond to
the strain and Weyl scalars produced by the simulation
(see Sec. II C and Eqs. (11) and (15) of [59]). Our results
from this procedure are shown in Fig. 5.

For this analysis, we used 86 SXS simulations that were
incorporated into the NRHyb3dq8 surrogate [76]. In this
figure, there are four histograms that show the epsilon
values obtained from either using the (2, 2, 0) mode, the
(2, 2, 0− 3) modes, the (2, 2, 0− 7) modes, or from using
the first 40 modes that are chosen by our multimode
algorithm, which is summarized in Sec. III A. For each of
these histograms, we also plot the median of the epsilons
on the ε-axis. However, as can be seen by using just
40 modes, we can improve the median epsilon estimate
across these simulations by a more than half an order
of magnitude: specifically, the median epsilon that is
obtained from the (2, 2) mode with up to 7 overtones
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` 2 3 4

m
n 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

-4 12 14 18 31 38 50 69 90
-3 10 16 33 43 83 112 153 168 44 48 56 71 99 116 130 152
-2 2 4 6 25 55 104 135 156 26 28 34 47 80 114 148 164 75 77 84 97 107 118 143 160
-1 19 22 39 62 101 127 145 161 63 66 73 94 109 121 132 139 123 125 133 137 141 149 158 166
0 7 8 21 36 41 59 79 95 52 53 58 60 65 78 91 103 86 87 88 92 100 106 111 120
1 20 23 40 61 102 128 146 162 64 67 72 93 110 122 131 140 124 126 134 138 142 150 157 165
2 1 3 5 24 54 105 136 155 27 29 35 46 81 115 147 163 74 76 85 96 108 119 144 159
3 9 15 32 42 82 113 154 167 45 49 57 70 98 117 129 151
4 11 13 17 30 37 51 68 89 0

168

TABLE II. Order in which 168 (`,m, n) modes are added to the QNM model by the greedy algorithm for SXS:BBH:0305 with
the QNM model’s start time u0 taken to be upeak, i.e., the peak of the L2 norm of the strain.
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FIG. 5. Various distributions of the epsilons (see Eq. (31)) that have been obtained by minimizing the residual between the
strain waveforms from 86 SXS simulations used in the NRHyb3dq8 surrogate and a QNM model that has either been built with
the (2, 2, 0) mode (blue), the (2, 2, 0− 3) modes (orange), the (2, 2, 0− 7) modes, (green), or the 40 modes that are chosen by
the multimode algorithm (red) (see Sec. III A). On the ε-axis, we also provide the median values of epsilon for each distribution.
The starting time for the distributions created using the (2, 2) mode and various overtones is taken to be u0 − upeak = 0M while
for the distribution created using 40 modes as chosen by the greedy algorithm it is u0 − upeak = 20M .

is 4.23 × 10−3 while the median epsilon obtained from
using 40 modes is 7.10× 10−4. Furthermore, we find that
the median epsilon only improves as one includes more
than 40 modes, but eventually reaches a minimum value
of 2.68 × 10−4 when using every mode available in the
waveform. We attribute this inability to push the epsilon
precision any lower to the fact that the higher-order modes
of the waveform are more influenced by numerical error
and also have more nonlinear contributions, which are
not captured by the linear QNM model (see, e.g., Fig. 2
of [50]). Finally, we should also note that when using

modes other than just the (2, 2) mode, the QNM model
needs to start at a time later than the usual u0−upeak = 0.
This is because other modes, such asm = 0 modes, exhibit
nonlinearities related to memory effects that cannot be
represented by the QNM model. Consequently, for the
histogram created with 40 modes that we show in Fig. 5,
we start our fits at u0 − upeak = 20M .
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IV. CONSEQUENCES OF WORKING IN THE
SUPER REST FRAME

At this point, we now wish to illustrate the importance
of using waveforms that are in the super rest frame and
clarify some points of disagreement that have been present
in recent works regarding QNMs. As a reminder, in this
work by super rest frame we mean the frame in which
the boost velocity and space translation are fixed by
minimizing the center-of-mass charge, the 2 ≤ ` ≤ 4
supertranslations are fixed by minimizing the L2 norm
of the 2 ≤ ` ≤ 4 modes of the Moreschi supermomentum
(see Sec. II B), and the rotation is fixed by aligning the
remnant BH’s spin with the positive z-axis. First, we
simply show the most prominent effect that working in
the incorrect BMS frame has on QNMs. In Fig. 6, we
show two plots. Both are comparisons between the real
component of the strain (2, 0) mode of the CCE waveform
that corresponds to the GW150914 event and a QNM
model for the same mode with 7 overtones. However, the
plots on the left use the waveform in the remnant BH’s
center-of-mass frame whereas the plots on the right use
the waveform once it has been mapped to the super rest
frame. As can be seen, the primary difference between
these two curves is that the curve on the left approaches
some nonzero value as u → +∞ while the curve on the
right instead approaches zero. Consequently, the QNM
model in the left plot completely fails, while the QNM
model in the right plot is what we would expect to see
based on QNM fits to the (2, 2) mode, e.g., Fig. 2 of [18].
Again, the reason for this stark contrast in results is due
to the supertranslation freedom that is present in our
asymptotic waveforms. If one does not map their system
to the super rest frame, i.e., if one does not make their
system resemble a Kerr black hole in its canonical BMS
frame—rather than a supertranslated Kerr black hole—
then the QNM model fails to represent the waveform.
Apart from this, in the bottom right plot of Fig. 6 we

also provide the red curve to highlight the importance of
performing supertranslations, i.e., transforming the coor-
dinates as well as the waveform objects, rather than just
changing the strain by a constant. This curve also shows
the residual between a NR waveform and its correspond-
ing best-fit QNM model, but the NR waveform has been
changed by a constant so that its final value is zero, as
was performed in Giesler et al. [18]. As can be seen, while
the error in this QNM fit is comparable to that of the
NR waveform whose BMS frame has been properly fixed,
it is still off by nearly an order of magnitude. Therefore,
even though changing the strain by a constant is simpler
than performing a BMS transformation, applying a su-
pertranslation produces a much better QNM fit because
it also fixes unwanted mode-mixing that occurs due to
the supertranslation also changing the retarded time [36].

While this effect is most prominent in the strain (2, 0)
mode, it is also present in other modes, such as the (3, 2)
as shown by Fig. 7, and even the more-commonly used
strain (2, 2) mode, as shown by Fig. 8. Note that in Fig. 8

we also provide the purple curve in the bottom right plot,
which shows the previous result obtained by [23, 25] when
using an extrapolated waveform that has been changed
by a constant so that its final value is zero. By comparing
the black and purple curves in Fig. 8, one can see that
previous studies that have used the (2, 2) mode from the
extrapolated waveforms are only slightly impacted by
mapping to the super rest frame. However, we will see
later that for higher modes this is not true.
In Fig. 9, we show the mismatch in the (2, 2) mode

between a numerical waveform and a QNM model, with
varying numbers of overtones, as a function of the QNM
model’s start time u0. Ultimately, this plot is a recre-
ation of Fig. 1 in [18] or Fig. 2 in [19], but with the
intent of clarifying why the figures from those two papers
are in clear contrast with one another, despite using the
same SXS waveform. In [18], their plot more closely re-
sembles our solid curves, which have been created using
a CCE waveform that has been mapped to the super
rest frame. In [19], their plot is identical to our dashed
curves, which have been created using the publicly avail-
able extrapolated waveform that can be found in the SXS
Catalog [7, 61]. This is the waveform used in [18, 19],
without one important change. What is different about
the data used in [18] is that they performed an ad hoc
subtraction of their waveform to send it to 0 as u→ +∞.
In [19] and in the dashed curves of Fig. 9, this subtraction
was not performed, hence the worsening of the mismatch
that can be seen as u0 increases. The reason why our
solid curves more closely resemble the curves seen in [18]
is because we have mapped our waveform to the super
rest frame using supertranslations, rather than changing
the waveform by a constant. While the two actions have
similar effects, supertranslations also affect the coordi-
nates, which is not true of changing the waveform by
a constant. This is illustrated by the red curve in the
bottom right plot of Figs. 6, 7, and 8. Therefore, Fig. 9
clearly illustrates the importance of mapping to the super
rest frame, even for modes such as the (2, 2) mode where
such effects were thought to be negligible.
Based on the results that are shown in Fig. 6, one’s

immediate response to this issue of BMS frames might be
to simply fit the QNM model to the news instead of the
strain, seeing as the displacement memory effect is not
present in the news. To counter this proposal, however,
we provide Fig. 10, which shows the mismatch between
numerical waveforms and QNM models built from 100
modes for a wide range of systems whose parameters can
be found in Table I. In the top panel, we are performing
our QNM fits in the strain domain, while in the bottom
panel we are performing our QNM fits in the news do-
main. For each panel, we also show four types of mismatch
comparison: when the numerical waveforms are extrap-
olated waveforms (EXT) and when the CCE waveforms
(i) are not mapped to a certain BMS frame; (ii) have
been mapped to just the center-of-mass (CoM) frame, or
(iii) have been mapped to the the super rest frame using
the procedures outlined in [33]. As can be seen in the
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top panel, mapping to the super rest frame, on average,
improves the mismatches by 5 orders of magnitude. This,
however, should not come as a surprise seeing as this result
is predominantly due to supertranslating away the offset
in the strain induced by the gravitational memory effect,
e.g., what is shown in Fig. 6. What might be surprising is

what is shown in the bottom panel: namely that mapping
to the super rest frame, on average, also improves the
mismatches in the news domain by a factor of 4. Due to
this, we now realize that mapping to the super rest frame
is even important in the news or Ψ4 domains where there
is no memory effect. This phenomenon is due to the mode



14

−0.4

−0.2

0.0

0.2

0.4
R
/M

R
e[ h

(2
,2

)] hNR
(2,2) hN=7

(2,2)

0 20 40 60 80
(u− upeak) /M

10−6

10−5

10−4

10−3

10−2

|h
N

R
(2
,2

)
−
h
N

=
7

(2
,2

)
|

0 20 40 60 80
(u− upeak) /M

CCE changed by a constant

Extrapolated

FIG. 8. The same as Fig. 6, but for the (2,2) mode. We also include the purple curve, which illustrates the previous result
obtained by [23, 25] when using an extrapolated waveform which has been changed by a constant so that its final value is zero.

−10 0 10 20 30 40 50

(u0 − upeak) /M

10−6

10−4

10−2

100

M
( h

N
R

(2
,2

)
,h

Q (2
,2

)

)

(2, 2, 0− n) modes

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

EXT

CCE

FIG. 9. Comparing the mismatch curves for the (2, 2) mode
and its overtones obtained from the extrapolated waveform
used in [18] and [19] (dashed curves) as well as the corre-
sponding CCE waveform, after it was mapped to the super
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ent. In [18], they performed an ad hoc subtraction of their
waveform, while in [19] no such change to the extrapolated
waveform was performed. Note that for this plot we only
include the prograde modes in our QNM model to remain
consistent with the results of [18] and [19].
BBH merger: SXS:BBH:0305.

mixing that occurs due to the change in coordinates of
the system by the supertranslations.

Last, to help illustrate what brings about these changes
in the mismatch as a function of frame, we present Fig. 11.
In Fig. 11 we show how the fraction of unmodeled power
varies as a function of mode for strain and news waveforms

in the center-of-mass or super rest frame for the simulation
SXS:BBH:0305. More specifically, for each waveform we
build a QNM model using every available mode and then
we compute the fraction of unmodeled power between the
numerical waveform and the QNM model using Eq. (29)
(top plot) or Eq. (30) (bottom plot) with the residual, i.e.,
Eq. (26) or Eq. (27), only involving the corresponding
mode of the waveform and the QNM model. We organize
the modes in terms of the largest relative difference in the
fraction of unmodeled power in the strain domain between
the center-of-mass and the super rest frame waveforms.
As can be seen, in the strain domain the modes that are
most strongly impacted by the super rest frame are the
(2,±2) modes, the (3,±2) modes, and the m = 0 modes.
This occurs for many reasons. For the m = 0 modes,
this is most naturally understood by realizing that these
modes often exhibit more memory effects than others and
thus require the supertranslations to reduce the offset
normally found in the ringdown phase of these modes.
Put differently, these modes are strongly influenced by
the ð̄2α(θ, φ) factor in Eq. (11). For the (3,±2) modes,
the reason why these modes are impacted is because of
the mode-mixing that occurs due to Taylor expanding
the strain in the supertranslated coordinate system about
the original coordinate system. For the supertranslations
that we apply to map to the super rest frame, the most
dominant mode is the (2, 0) mode. Consequently, since the
dominant modes of the news are the (2,±2) modes, the
mode of the new strain that will be most influenced by the
supertranslation’s mode mixing is the mode corresponding
to the product of the Y(2,0) and −2Y(2,±2) functions, which
happens to be the (3,±2) mode. This can be seen directly
by making use of the spin-weighted spherical harmonic
triple integral identity:
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FIG. 10. Examining the mismatch between a NR waveform and a QNM model that is built from 100 modes as a function of the
BMS frame that the numerical waveform is mapped to. The QNM model start time u0 is taken to be the time at which the L2

norm of the news takes on its maximum value. We show four bars that correspond to the extrapolated waveform (EXT) and
the CCE waveform in three different BMS frames: the arbitrary BMS frame that the output of CCE is in, the remnant BH’s
center-of-mass frame, and the super rest frame. In the top plot, we show the mismatch between the strain waveforms, while in
the bottom plot we show the mismatch between the news waveforms. The parameters of the 14 binary black holes mergers that
appear on the horizontal axis can be found in Table I.

∫

S2
s1Y`1m1 s2Y`2m2 s3Y`3m3 =

√
(2`1 + 1)(2`2 + 1)(2`3 + 1)

4π

(
`1 `2 `3
m1 m2 m3

)(
`1 `2 `3
−s1 −s2 −s3

)
(32)

for s1 + s2 + s3 = 0, and then computing the corre-
sponding Wigner 3− j symbols to see which modes are
excited [77]. Last, for the (2,±2) modes, this is because
these two modes of the strain experience an unexpected
initial offset due to transient effects arising in the CCE
evolution [50, 64, 65]. Meanwhile, in the news domain, by
closer inspection one finds that the modes most strongly
influenced by mapping to the super rest frame are the
(3,±2), (4,±2), and (2,±1) modes. Like the case of the
(3,±2) modes in the strain domain, this is because these
modes also experience considerable changes due to super-
translation mode-mixing effects, as can be verified with
Eq. (32). The other important thing to note regarding
Fig. 11, as well as Fig. 10, is that by mapping CCE wave-

forms to the super rest frame, we can always produce a
better mismatch between the numerical waveform and
the QNM model than if we were using an extrapolated
waveform.

V. CONCLUSION

Across this study, we have developed a QNM model
which simultaneously fits multiple modes over all angles
and times using NR waveforms that have been mapped
to the super rest frame. First, we showed that for
SXS:BBH:0305 the amount of power captured in the QNM
model when fitting to only the dominant strain (2,±2)
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are organized in terms of the largest relative difference in the fraction of unmodeled power in the strain domain between the
center-of-mass and super rest frame CCE waveforms.
BBH merger: SXS:BBH:0305.

modes is below 65% of the whole numerical waveform’s
power over all modes. Moreover, we also found that in-
cluding the (2,±2) overtone modes does not dramatically
increase the power modeled, except at times very close
to u0 = upeak, in which case a 50% improvement over
the fundamental mode can be seen by including 7 over-
tones. To increase the amount of modeled power, one
must instead rely on higher-order modes.

Choosing which higher-order modes to include in the
QNM model is a nontrivial task. Therefore, we developed
a greedy algorithm that picks which modes to include
based on the fraction of unmodeled power in them. We
find that by including just 5 modes, we can model 96% of a
waveform’s power and by including just 20 modes, we can
push that number up to 99%. We also find an all-angles
mismatch improvement by a factor of 105 when using mul-
timode fitting as compared to using the (2,±2, n) modes.
Furthermore, we also showed the practical importance
of this higher-order mode power modeling improvement:
obtaining more accurate estimates of the remnant’s mass
and spin. With 40 modes we found that we can, on aver-
age, obtain mass and spin estimates that yield an epsilon
value (see Eq. (31)) that is more than half an order of

magnitude better than what can be obtained by using
the (2, 2) mode with 7 overtones. While we found that
we can further improve estimates by including even more
modes, the minimum median epsilon that we computed
was only 62% less than that obtained by using 40 modes.
We attribute this to the fact that by including higher-
order modes, there are more nonlinearities that the QNM
model has to try and fit (see, e.g., Fig. 2 of [50]).6

Greedy algorithms can suffer instabilities due to degen-
eracy in the underlying model [78]. However, we know
that the overlaps between different QNM modes with
distinct angular indices (`,m) are small for the spins that
we are considering because the angular part of the QNM
(l,m, n, p) is dominantly in the (l,m) spherical harmonic.
Therefore, any degeneracy we might expect is likely only
due to the overtone number [22]. Since the overtones
are chosen sequentially, and not greedily, our algorithm
should not suffer from such degeneracy problems. Never-

6 In Fig. 2 of [50] the blue and green curves in the middle plot
represent nonlinearities, which would not be captured by the
QNM model.
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theless, this is an important check to keep in mind and
would be interesting to examine in the future.

Lastly, we also illustrated the importance of using wave-
forms that have been mapped to the same BMS frame as
that of the QNM model. As shown in Figs. 6, 7, 8, 9, 10,
and 11 if one does not map their waveforms to the super
rest frame then being in the wrong BMS frame makes it
problematic to model the ringdown part of a waveform
with QNMs. This is because when the Teukolsky equation
is separated, the coordinate system used corresponds to
the super rest frame at I +. Thus the QNM ansatz in
Eq. (4) is only valid in this frame. On the other hand,
numerical simulations have a history of radiated gravita-
tional waves that cause their frame to typically deviate
significantly from this frame. Consequently, the wave-
forms emitted by these ringing black holes need to be
mapped to the super rest frame, if they are to be correctly
modeled by QNMs. Furthermore, this importance of BMS
frames extends beyond accounting for the memory effect
in the strain. In Fig. 10, we showed that while mapping
to the super rest frame is most important for modeling
the strain, it also plays a nontrivial role in modeling the
news because supertranslations also change the Bondi
coordinates and can thus reduce supertranslation-induced
mode-mixing in the news. Overall, we found that previ-
ous studies that focus on modeling the (2, 2) mode from
extrapolated waveforms are only slightly impacted by
mapping to the super rest frame. However, with the in-
clusion of more modes or memory effects, fixing the BMS
frame before fitting QNMs is crucial.

As is illustrated by the fact that future ground-based
detectors like the Einstein Telescope and Cosmic Explorer
are expected to observe 102 − 104 events per year with
strong ringdown signals, including higher-order modes and
BMS frame fixing will undoubtedly be important for cor-
rectly modeling such ringdown signals with QNMs. These
modeling enhancements should therefore also help with
measuring properties of the remnant black holes as well as
testing Einstein’s theory of relativity [27, 28, 79]. While
BMS frame fixing may not prove to be directly useful for
LIGO/Virgo observations,7 if the ringdown phase of NR
waveforms is to be used to study remnant BHs and model
their amplitudes then fixing the BMS frame will certainly
be important, as illustrated in this work. Furthermore,
while we have presented a template for improving QNM
models by comparing QNMs against numerical relativity
waveforms, it would be very interesting to see our work
applied to the observations already collected by LIGO
and Virgo.

7 Because the detector measures the waveform at a single point on
the sky only, the supertranslation will only shift the waveform.
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