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We present high signal-to-noise measurements of three-point shear correlations and the third mo-95

ment of the mass aperture statistic using the first 3 years of data from the Dark Energy Survey.96

We additionally obtain the first measurements of the configuration and scale dependence of the97

four three-point shear correlations which carry cosmological information. With the third-order mass98

aperture statistic, we present tomographic measurements over angular scales of 4 to 60 arcminutes99

with a combined statistical significance of 15.0σ. Using the tomographic information and measuring100

also the second-order mass aperture, we additionally obtain a skewness parameter and its redshift101

evolution. We find that the amplitudes and scale-dependence of these shear 3pt functions are in102

qualitative agreement with measurements in a mock galaxy catalog based on N-body simulations,103

indicating promise for including them in future cosmological analyses. We validate our measure-104

ments by showing that B-modes, parity-violating contributions and PSF modeling uncertainties are105

negligible, and determine that the measured signals are likely to be of astrophysical and gravitational106

origin.107

I. INTRODUCTION108

Two-point (2pt) auto-correlation functions of the shear109

field (sometimes referred to as cosmic shear) have been110

widely used in the recent literature to constrain cosmo-111

logical parameters. Current works utilize different statis-112

tical measures and exploit the shear distributions in both113

real (configuration) space as well as harmonic space (As-114

gari et al. (2021), Hamana et al. (2020), Hikage et al.115

∗ secco@uchicago.edu

(2019), Amon et al. (2021), Secco & Samuroff et al.,116

(2021)). One of the main products of years of effort by117

the community is the accurate determination of the am-118

plitude parameter S8 ≡ σ8

√
Ωm/0.3, where σ8 is the119

root mean square amplitude of the linear-theory matter120

power spectrum at z = 0 over an 8 Mpc/h scale, and121

Ωm is the matter density at z = 0. This amplitude is122

in mild tension with the value inferred from fluctuations123

of the Cosmic Microwave Background (Planck Collabo-124

ration 2020) by about 2σ (depending on the survey data125

sample used) and its origin remains unresolved.126

Extracting more cosmological information from the127

mailto:secco@uchicago.edu
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shear field than that encoded in 2pt statistics may help128

better characterize this tension and is an important goal129

in itself. To be useful, the additional information should130

have its systematics well-understood and controlled. The131

aim of this work is to address both points above: we use132

data from DES Y3, the first 3 years of data from the133

Dark Energy Survey (DES Collaboration (2022), Gatti,134

Sheldon et al. (2021b), Sevilla-Noarbe & Bechtol et al.,135

(2021)) to obtain high signal-to-noise measurements of136

three-point (3pt) correlation functions of the shear field137

and show that potential contaminants in these measure-138

ments coming from observational and instrumental ori-139

gins are negligible.140

The benefits of utilizing higher order correlations as a141

cosmological probe are plenty and go far beyond simply142

enabling access to non-Gaussian information in the shear143

and matter bispectrum. Compared to 2pt functions,144

3pt correlations in lensing carry different cosmological145

parameter degeneracies (Bernardeau et al. 2002, Kayo146

& Takada 2013, Takada & Jain 2003b) and when com-147

bined with 2pt functions can additionally constrain as-148

trophysical and systematic nuisance parameters (Huterer149

et al. 2006, Pyne & Joachimi 2021, Semboloni et al. 2013,150

Troxel & Ishak 2012). The combination of 2pt and 3pt151

lensing data vectors is thus greater than the sum of its152

parts, and enables degeneracy-breaking in both the cos-153

mological and nuisance parameter spaces.154

The community has followed several approaches to ex-155

tracting the information contained in higher order shear156

statistics. For example, non-Gaussian information can be157

obtained with position-dependent or integrated 2pt lens-158

ing signatures (Halder et al. 2021, Jung et al. 2021), peak159

statistics (Kacprzak et al. 2016, Zürcher et al. 2021), den-160

sity splits of the shear field (Friedrich et al. 2018, Gruen161

et al. 2018) as well as with techniques borrowed from162

artificial intelligence and neural networks (Cheng et al.163

2020, Fluri et al. 2019, Jeffrey et al. 2021, Lu et al. 2021).164

Another approach is to directly measure 3rd or higher165

order statistics of the shear field in the form of elliptic-166

ity correlations (Van Waerbeke et al. (2002), Benabed &167

Scoccimarro (2006)), mass aperture moments (Fu et al.168

2014, Jarvis et al. 2004, Semboloni et al. 2011) or lensing169

mass maps (Gatti et al. 2021a).170

In this work, we follow the latter approach and di-171

rectly measure 3pt statistics of the DES Y3 data in the172

form of “natural” correlation functions (the three-point173

equivalents of ξ±) (Schneider & Lombardi 2003) and the174

third moment of the mass aperture statistic (Schneider175

et al. 1998). We detect both statistics at high signifi-176

cance and additionally explore the triangle configuration177

dependence, tomographic signals and redshift evolution178

of the 3pt lensing signal, none of which have been previ-179

ously measured at high significance in survey data.180

We also verify that several null tests of great impor-181

tance for cosmological applications (such as B-mode con-182

tamination, PSF residual errors and parity-violating con-183

tributions) are consistent with zero or otherwise negligi-184

ble compared to the E-mode signal for these 3pt statis-185

tics in DES Y3. This work, therefore, represents the first186

step towards a cosmological analysis with DES Y3 data187

using the statistics presented here, which we leave for the188

future.189

This paper is structured as follows. In Sec. II we pro-190

vide an overview of the DES Y3 weak lensing shear cat-191

alog and an N-body simulation that we utilize as a check192

on the rough scale dependence and amplitude of the 3pt193

signatures. In Sec. III we review the underlying theory194

of three-point lensing correlations as a probe of the mat-195

ter bispectrum and describe the estimators we utilize in196

the data. In Sec. IV we present the main results of this197

paper: the measured signals of the mass aperture skew-198

ness, natural shear correlations, and some explorations199

of their configuration and redshift dependence, as well200

as a comparison with existing detections. In Sec. V we201

validate the measured signals and verify that their ori-202

gin must be astrophysical and gravitational by checking203

that B-mode, PSF and parity-violating contaminations204

are negligible and that our data estimator is robust. We205

conclude and mention future avenues and challenges in206

Sec. VII.207

II. DATA208

We describe below the data utilized in this work, the209

DES Y3 shape catalog and a simulated (N-body) mock.210

We regard the latter as providing a simplified theory esti-211

mate, serving as a basic check of the data measurement.212

A. DES Y3 Data213

The first 3 years of data from the Dark Energy Sur-214

vey (DES Y3) cover the full footprint of the survey’s215

six-year campaign. Its nominal area is over 5,000 deg2,216

which is reduced to 4143 deg2 after data selections and217

cuts that optimize the observed samples for weak lens-218

ing and galaxy clustering measurements, with a baseline219

mask described in Sevilla-Noarbe et al. (2021). The DES220

data were collected using the 570 megapixel Dark Energy221

Camera (DECam; Flaugher et al. (2015)) in five pho-222

tometric bands grizY at the Blanco telescope at Cerro223

Tololo Inter-American Observatory (CTIO) in Chile.224

Here we are interested in the Metacalibration (Huff225

& Mandelbaum 2017, Sheldon & Huff 2017) shape cata-226

log produced and validated in the DES Y3 analysis (Gatti227

& Sheldon et al., (2021c)). This is the largest shear cat-228

alog to date in number of objects and area, with over229

100 million objects with a mean redshift of z = 0.63 and230

a weighted source number density neff = 5.59 arcmin−2.231

An overview of the DES Y3 weak lensing and galaxy clus-232

tering cosmological analysis is available in DES Collab-233

oration (2022), where further specifications of the data234

and analysis tools are available in references contained235

within.236
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In the DES Y3 cosmological analysis, source galaxies237

were separated into four redshift bins each with approxi-238

mately equal numbers of galaxies (Myles & Alarcon et al.,239

(2021)). In some of the measurements presented in this240

work, we also separate the shear data into tomographic241

bins. However, since the 3pt statistics have lower signal-242

to-noise than the 2pt measurements, we instead divide243

the DES Y3 Metacalibration catalog into just 2 red-244

shift bins, which we label z1 and z2. The lower red-245

shift bin, z1, is a combination of the galaxies assigned246

to bins 1 and 2 in the fiducial analysis, while bin z2 is247

a combination of the galaxies originally assigned to bins248

3 and 4 in that analysis. Weighting the galaxy redshifts249

in these two newly defined bins by their inverse-variance250

ellipticity and shear response, we obtain mean redshifts251

〈z1〉 = 0.42 and 〈z2〉 = 0.81 with widths of 0.30 and 0.27252

respectively.253

Since the shape catalog used to derive the cosmic shear254

results in DES Y3 (Amon et al. (2021), Secco & Samuroff255

et al., (2021)) has been extensively validated, we use the256

same data quality cuts and sample specification in the257

3pt analysis below.258

B. T17 Mock Catalog259

To support our findings reported in the following260

sections, the same 3rd order correlation measurement261

pipelines applied to DES Y3 data are also applied to an262

N-body mock galaxy catalog based on Takahashi et al.263

(2017) [hereafter T17].264

We use full-sky lensing convergence and shear maps265

from T17 to create a DES Y3-like, tomographic shape266

catalog. In particular, we used a single one out of their267

108 available sets of convergence and shear map snap-268

shots, which span a redshift range between z = 0.05269

and 5.3 at intervals of 150 h−1 Mpc comoving distance.270

The maps have been obtained via ray-tracing using the271

algorithm GRayTrix (Hamana et al. 2015), based on272

the output of different N-body simulations. The N-body273

simulations have been run using the code L-Gadget-2274

(Springel 2005), assuming a flat ΛCDM WMAP 9 cos-275

mology (Hinshaw et al. 2013) with parameters given by276

(σ8, ns, h,Ωm,Ωb) = (0.82, 0.97, 0.7, 0.279, 0.046).277

The shear and convergence maps come in the form of278

Healpix1 (Górski et al. 2005, Zonca et al. 2019) maps279

with resolution NSIDE = 4096. We first produced shear280

maps for each of the tomographic bins by averaging the281

shear snapshots weighted by the redshift distributions of282

the bins. To this aim, we used the approximate DES Y3283

redshift distributions (Myles & Alarcon et al., (2021)).284

Galaxy catalogs are then created by sampling the simu-285

lated shear maps at the positions of real DES Y3 galax-286

ies, matching their number density. While, in principle,287

1 http://healpix.sf.net

shape noise can be added to the mock in order to closely288

match the real data specifications, we do not include it289

in our mock and instead regard simulation measurements290

as simple theory estimates.291

III. THREE-POINT SHEAR CORRELATIONS292

We now describe the basic theory of the higher order293

correlations we are interested in, the estimator methods294

that are applied to the simulated and observed data de-295

scribed in the previous section, as well as data covariance296

matrix estimates based on jackknife.297

A. Theory Basics298

Second order statistics (two-point correlation func-299

tions, power spectra, second moments etc.) contain only300

the Gaussian part of the shear field. To probe non-301

Gaussian information, one has to appeal to higher-order302

statistics. We focus here on lensing 3rd order correla-303

tions. A fundamental aspect of these correlations is that304

they are projections of the matter bispectrum under some305

lensing kernel, so we take that as our starting point.306

We first define the matter bispectrum Bδ(k1,k2,k3),307

that is, the Fourier transform of 3-point correlations of308

matter overdensities δ(k) in wavenumbers k:309

〈δ(k1)δ(k2)δ(k3)〉 = Bδ(k1, k2, k3)δD(k1 +k2 +k3), (1)310

where the Dirac delta δD enforces the bispectrum defini-311

tion over wavenumbers ki forming triangles, though with312

statistical isotropy the dependence is only on the mag-313

nitude of the modes k1, k2 and k3 of the triangle. The314

matter fluctuations give rise to a lensing signal that de-315

pends on the redshift distribution of the sources along a316

unit line-of-sight n̂. This is quantified in real space by317

the lensing convergence κ(n̂):318

κ(n̂) =

∫ ∞

0

dzW (χ)δ(n̂, χ), (2)319

where χ = χ(z) is the comoving distance to redshift z320

and the lensing efficiency along the line-of-sight is321

W (χ) =
3ΩmH

2
0

2c2
χ

a(χ)

∫ ∞

χ

dχ′ n (z(χ′))
dz

dχ′
χ′ − χ
χ′

, (3)322

where Ωm is the matter density at redshift z = 0,323

H0 = 100h km/s/Mpc is the Hubble parameter, a is the324

scale factor, n(z) is the normalized redshift distribution325

of sources, and c is the speed of light. Under this lensing326

kernel, the 3-dimensional matter bispectrum in eq. (1)327

can be projected down to the 2-dimensional harmonic328

space convergence bispectrum using the Limber approx-329

imation (Limber 1953, LoVerde & Afshordi 2008):330

Bκ (`1, `2, `3) =

∫ ∞

0

dχ
W (χ)3

χ4
Bδ (k1,k2,k3;χ) (4)331

http://healpix.sf.net
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With a weak lensing survey, we can probe the shear332

field at the positions of source galaxies and quantify its333

statistics with the lensing bispectrum above. We can de-334

fine the spin-2 shear field along some direction (e.g., a line335

connecting two source galaxies) as γ(θ) = γt(θ)+iγ×(θ),336

where γt is the shear component oriented perpendicularly337

with respect to that direction, γ× is the 45o orientation,338

and θ are vectors on the plane of the sky with magni-339

tude θ. A natural choice for two-point correlations of the340

shear field is to take the direction θ to be that of the line341

separating a pair of source galaxies, in which case these342

correlations are given by343

ξ±(θ) = 〈γtγt〉 (θ)± 〈γ×γ×〉 (θ) ≡ γtt ± γ××, (5)344

with the angle brackets denoting averages taken over345

all possible pairs of galaxies, and where the right-hand346

equivalence introduces a shorthand notation for the mul-347

tiplication of shears.348

While the choice for an orientation of shear projections349

in the three-point case is less obvious (e.g., the orthocen-350

ter of the triangle, or the side directions, etc.), there are351

“natural components” of cosmic shear with rotation and352

invariance properties analogous to ξ± that we can uti-353

lize (Schneider & Lombardi 2003) [hereafter SL03]. We354

follow SL03 and define:355

Γ0 ≡ 〈γ(θ1)γ(θ2)γ(θ3)〉 = γttt − γt×× − γ×t× − γ××t
+ i [γtt× + γt×t + γ×tt − γ×××] ,

(6)

Γ1 ≡ 〈γ∗(θ1)γ(θ2)γ(θ3)〉 = γttt − γt×× + γ×t× + γ××t

+ i [γtt× + γt×t − γ×tt + γ×××] ,
(7)

Γ2 ≡ 〈γ(θ1)γ∗(θ2)γ(θ3)〉 = γttt + γt×× − γ×t× + γ××t

+ i [γtt× − γt×t + γ×tt + γ×××] ,
(8)

Γ3 ≡ 〈γ(θ1)γ(θ2)γ∗(θ3)〉 = γttt + γt×× + γ×t× − γ××t
+ i [−γtt× + γt×t + γ×tt + γ×××] .

(9)

It has been shown by SL03 as well as by Schneider356

et al. (2002), Takada & Jain (2003a) that, for general357

triangle configurations, all of the correlations above can358

be non-zero and their imaginary parts do not necessarily359

vanish. Parity invariance, however, implies that the Γi360

for equilateral configurations are purely real (all terms361

with an odd number of ×-components vanish) and that362

some, but not all, imaginary components of these statis-363

tics for isosceles configurations vanish. The correlations364

above thus have a complex configuration dependence and365

can be divided into a total of 8 data vectors (the real and366

imaginary part of each Γi), and should contain the entire367

3pt information in the shear field.368

The Γi are connected to the convergence bispectrum369

in eq. (4) since, in harmonic space, the shear compo-370

nents can be written in terms of the convergence as371

γ(`) = e2iβκ(`), where β is the polar angle of `. The372

exact expressions for each Γi in terms of the convergence373

bispectrum is worked out in detail in Schneider et al.374

(2005); for brevity, we simply quote their result for Γ0 in375

simplified notation:376

Γ0 (θ1, θ2, θ3) = (2π)

∫ ∞

0

`1d`1
(2π)2

∫ ∞

0

`2d`2
(2π)2

×
∫ 2π

0

dφBκ (`1, `2, φ)

3∑

j=1

eiαjJ6(Aj),

(10)

where J6 is the 6-th order Bessel function of the first377

kind, and Bκ = Bκ(`1, `2, φ) due to statistical isotropy,378

with φ ithe polar angle between `1 and `2. We refer379

readers to Schneider et al. (2005) for the definitions of380

the coefficients αj and Aj = Aj (θ1, θ2, θ3) (see their eq.381

15).382

The shear field can also be decomposed into a different383

pair of statistics: the mass aperture statistic Map and its384

cross-component M× (Crittenden et al. 2002, Schneider385

et al. 1998). The mass aperture term is generally defined386

as a filtered version of the convergence κ:387

Map(θ) =

∫
d2rUθ(r)κ(r), (11)388

and we can also introduce it in terms of the tangential
shear in circular apertures plus a cross-component shear
term (expected to be null for an E-mode field) as:

M(θ) = Map(θ) + iM×(θ)

=

∫
d2rQθ(r)γt(r) + i

∫
d2rQθ(r)γ×(r), (12)

where again θ is the magnitude of a planar vector (an389

“aperture radius” over which the integrals above are com-390

puted), and r is a vector on the plane of the sky.391

There is some freedom in defining the filter functions392

Uθ(r) and Qθ(r), but in this work we stick to the form393

proposed by Crittenden et al. (2002):394

Uθ(r) =
1

2πθ2

(
1− r2

2θ2

)
exp

(
− r2

2θ2

)
, (13)395

Qθ(r) = −Uθ(r) +
2

r2

∫ r

0

r′ dr′ Uθ(r
′) (14)

=
r2

4πθ4
exp

(
− r2

2θ2

)
, (15)

for an aperture of radius θ. The statistics defined by eqs.
(12)-(15) have several interesting properties which have
been explored in the literature (Crittenden et al. 2002,
Kilbinger & Schneider 2005, Schneider et al. 2005). In
particular, Map and M× cleanly separate, respectively, E-
and B-modes of the shear field (Shi et al. 2014) and offer
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a relatively compact weighting over angular scales (note
that the filter Qθ(r) can be significantly non-zero for radii
r up to a factor of a few larger than the nominal aperture
θ, a feature we will come back to later). Additionally,
these forms are mathematically tractable as they mainly
involve Gaussian integrals. The ease of integration means
that the connection between the third-order correlation of
the mass aperture and the bispectrum is straightforward.
Again following Schneider et al. (2005), we have:

〈
M3

ap

〉
(θ1, θ2, θ3) =

3

(2π)3

∫ ∞

0

`1d`1

∫ ∞

0

`2d`2

∫ 2π

0

dφ

×Bκ(`1, `2, φ)Ũ (θ1`1) Ũ (θ2`2) Ũ (θ3`
′) ,

(16)

where Ũ(x) = (x2/2)e−x
2/2 is the Fourier trans-396

form of the filter Uθ(r) in eq. (13) and `′ =397 √
`21 + `22 + 2`1`2 cosφ. The relatively compact weight-398

ing over ` multipoles provided by the filter and the ab-399

sence of fast oscillatory functions in eq. (16) compared to400

eq. (10) make it a computationally tractable tool for the-401

ory predictions leading to cosmology, and indeed it has402

been a preferred statistic in the literature for cosmolog-403

ical constraints employing real space shear correlations404

(Fu et al. 2014, Jarvis et al. 2004, Semboloni et al. 2011).405

As a data vector,
〈
M3

ap

〉
(θ1, θ2, θ3) is easily tractable406

because it contains all three-point E-mode information407

in the field over all triangle configurations, as opposed to408

the complex splitting of the signal across the 8 non-zero409

Γi(θ1, θ2, θ3)’s. We will also obtain measurements in the410

special case θ1 = θ2 = θ3 = θ so that
〈
M3

ap

〉
=
〈
M3

ap

〉
(θ),411

which means all aperture radii are the same (though still412

accounting for different triangle configurations inside the413

apertures, not to be confused with a strict equilateral414

assumption). A schematic example of the angle variables415

used above and in Sec. III B below is shown in Fig. 8416

(Appendix B).417

It is interesting to consider, additionally, that as struc-418

ture in the universe becomes more non-Gaussian at lower419

redshifts, the third order moments of the 3-dimensional420

density field should increase towards z → 0. For lens-421

ing fields, projection along the line of sight must also be422

included, and the evolution of non-Gaussian features is423

quantified via the reduced skewness S(θ; z) (Schneider424

et al. 1998), showing the amplitude of the third moment425

relative to the second moment:426

S(θ; z) =

〈
M3

ap(z)
〉

〈
M2

ap(z)
〉2 (θ), (17)427

which is tightly related to the usual defini-428

tion of the reduced bispectrum in terms of429

B(k1, k2, k3)/[P (k1)P (k2) + perm.] (Cooray & Sheth430

2002). This ratio encapsulates the contribution of431

non-Gaussian statistics to our low-redshift lensing432

data, arising predominantly from nonlinear structure433

formation at the scales considered in this work.434

B. Estimating Γi and
〈
M3

ap

〉
435

Motivated by the connection between theory and ob-436

servables in Sec. III A above, we now turn to the main437

objective of this work: to obtain and validate a measure-438

ment of shear correlations Γi and
〈
M3

ap

〉
.439

Our starting point is to measure the Γi’s. Their most440

straightforward data estimator is not conceptually dif-441

ferent from estimating the usual 2pt statistics ξ±(θ) in442

eq. (5). It relies on counting triplets (or pairs in the443

2pt case) of galaxies in the survey, and accumulating the444

product of their shears in tangential and crossed orienta-445

tions. So, for a catalog with ellipticities e = et+ie× with446

per-galaxy weights w, the estimator Γ̂0, for example, is447

Γ̂0 =

∑
ijk wiwjwkeiejek∑

ijk wiwjwk
, (18)448

where the sum (ijk) runs over all galaxy triplets. In DES449

Y3, the weighting w is given by the inverse variance of450

the ellipticity estimates in Metacalibration (see Gatti451

& Sheldon et al., (2021c) Sec. 4.3), and the ellipticities e452

are mean-subtracted and divided by the combination of453

shear and selection responses2. Similar to the two-point454

ξ± case, this estimator is largely unaffected by masking455

and geometry of the survey.456

For the other statistic,
〈
M3

ap

〉
, there are at least two457

conceptually different estimators. One relies on sampling458

apertures over the survey footprint and averaging over459

the tangential and cross components, directly probing460

integrals on the right-hand side of equation (12) as pro-461

posed by Schneider et al. (1998). One of the main ben-462

efits of this method is that the estimation runtime can463

be made very fast (Porth et al. 2020), and consequently464

it becomes feasible to obtain empirical survey covariance465

matrices of nearly arbitrary order in the mass aperture466

moments (Porth & Smith 2021). A potential drawback467

of this estimator, however, is that survey masks, holes,468

edges and other common observational issues in real data469

can potentially bias the mass aperture estimate.470

A second method, which is our favored choice for the471

present work and was originally proposed by Schneider472

et al. (2002) and Crittenden et al. (2002), relies on esti-473

mating the n-point statistics of the aperture mass by in-474

tegrating over the n-point shear correlations themselves,475

as estimated from data. It was shown by Jarvis et al.476

(2004) that, by assuming the filtering function of Crit-477

tenden et al. (2002), one obtains concise expressions for478

the M(θ) integration:479

〈
M3
〉

(θ) =

∫
s ds

θ2

∫
d2t′

2πθ2
Γ0(s, t′)T0

(
s

θ
,
t′

θ

)
, (19)480

2 Example usage of the DES Y3 shear catalogs is provided in
https://github.com/des-science/DESY3Cats/

https://github.com/des-science/DESY3Cats/
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481

〈
M2M∗

〉
(θ) =

∫
s ds

θ2

∫
d2t′

2πθ2
Γ1(s, t′)T1

(
s

θ
,
t′

θ

)
,

(20)482

where we have used the special case θ = θ1 = θ2 = θ3,483

where s and t′ are triangle sides as defined in eq.(B1),484

and the functions T0 and T1 are defined in eqs.(B2) and485

(B3) (see Appendix B). The separate tangential and cross486

components
〈
M3

ap

〉
and

〈
M3
×
〉

can be written as linear487

combinations of the
〈
M3
〉

and
〈
M2M∗

〉
defined above.488

In particular, with R denoting the real part of an imagi-489

nary quantity, we have490

〈
M3

ap

〉
(θ) =

1

4
R
[
3
〈
M2M∗

〉
(θ) +

〈
M3
〉

(θ)
]
. (21)491

We utilize TreeCorr (Jarvis et al. 2004) in or-492

der to estimate the quantities in eqs. (18)-(21) above.493

TreeCorr is an efficient tree-based algorithm for com-494

puting 2pt and 3pt correlation functions in real space495

data. The estimator follows closely equations (18), (19)496

and (20) in the sense that galaxy shears are first aggre-497

gated by their triangle configuration and side lengths,498

and in a post-processing step the Γi are integrated over499

with the T0,1 functions to obtain Map/×. The base algo-500

rithm itself is the same utilized for correlation function501

measurements in the two-point DES Y3 cosmology re-502

sults (DES Collaboration 2022). We refer the reader to503

the source code and documentation webpage for more504

information3.505

Even with a highly efficient tree algorithm, we find that506

runtime is a limiting factor when computing 3pt corre-507

lations of the spin-2 shear fields in our data (see Sec.508

V A further below). Therefore, for all measurements pre-509

sented in this work, we divide the survey (and simula-510

tion) footprints into 100 patches of nearly equal number511

of galaxies. With DES Y3 data, each patch contains512

about N = 1M galaxies. The main advantage of this ap-513

proach is to significantly reduce the number of galaxies514

dealt with in each measurement and to better parallelize515

it.516

We define the patch centers and assign galaxies to them517

using the k-means implementation in TreeCorr, which518

yields patches of roughly similar area &40 deg2 (a char-519

acteristic length & 6 deg). This choice is sub-optimal,520

because measuring correlations in finite patches of an521

otherwise contiguous area necessarily neglects the signal522

contributions coming from triangles formed by galaxies523

that lie in different patches. However, since the area of524

the DES Y3 footprint is large compared to the relatively525

small angular scales over which we present our measure-526

ments in Sec. IV, this is not a significant issue. We return527

to this and other estimator tests in Sec. V A.528

3 https://github.com/rmjarvis/TreeCorr

Due to the angular binning performed by TreeCorr,529

for triangles of side lengths d3 ≤ d2 ≤ d1, we define, more530

conveniently531

θmedium = d2 (22)532

as a proxy to index the Γi data vector, and unless explic-533

itly noted otherwise we average over all triangles that fall534

within a bin around θmedium. TreeCorr uses internal535

variables u and v (defined in eqs. B4 and B5) that char-536

acterize triangles by their configuration (eg. squeezed or537

equilateral). We then estimate the mean 3pt signals for538

each natural component i of Γi(θmedium) via the weighted539

sample mean over the patches α, with α ∈ [1, 100]:540

Γi(θmedium) =

∑
α

∑
uv(1/Var [Γi,α])Γi,α(θmedium, u, v)∑

α

∑
uv(1/Var [Γi,α])

,

(23)541

where inverse-variance weights are estimated in the shape542

noise regime (more details in Sec. III C). Analogously, we543

compute the skewness of the mass aperture in each patch544

using eq. (21) and then combine them so the mean signal545

is546

〈
M3

ap

〉
(θ1, θ2, θ3) =

∑
α(1/Var

[
M3

ap

]
)
〈
M3

ap

〉
α∑

α(1/Var
[
M3

ap

]
)

. (24)547

C. Covariance Matrix548

With the computation of the measurement over N =549

100 patches of the DES Y3 data, we can readily obtain550

a jackknife estimate of the covariance matrix:551

Cov [ζ(θi), ζ(θj)] =
N − 1

N

∑

α

∆ζα(θi)∆ζα(θj)
T (25)552

where ζ is the data vector of the statistic under consid-553

eration (
〈
M3

ap

〉
(θ) or Γi(θmedium) for instance), 〈ζ〉 is its554

average value over the N patches, and ∆ζα ≡ ζα − 〈ζ〉.555

When inverting the covariance matrix, we also apply a556

“Hartlap correction” factor (Dodelson & Schneider 2013,557

Hartlap et al. 2007, Sellentin & Heavens 2016, Taylor558

et al. 2013) given by (P − N − 1)/(N − 2) where P is559

the dimension of the data vector and N is the number560

of patches (P = 7 and 55 for
〈
M3

ap

〉
(θ) and Γi(θmedium)561

respectively, and N = 100 in both cases).562

In Fig. 1, we show the normalized covariance matrices563

(correlation matrices) for the
〈
M3

ap

〉
(θ) and Γ0(θmedium)564

estimates which we present in the following Section. We565

additionally show, on the bottom panel of that Figure,566

how the diagonal
〈
M3

ap

〉
standard deviation compares567

with empirical and analytic estimates of the error in the568

shape noise dominated regime. We obtain an empirical569

estimate of the shape noise signal (light blue curve in Fig.570

1) by repeating the
〈
M3

ap

〉
measurement over patches in571

which each individual galaxy shear has been randomly ro-572

tated. This effectively cancels out the cosmic signal and573

variance, leaving us with an estimate of the shape noise574
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FIG. 1. Normalized covariance matrix estimates for
〈
M3

ap

〉
(top panel), Γ0 (middle panel) and

〈
M3

ap

〉
standard deviation

diagonal (bottom panel). With the exception of the analytic
shape noise estimate (dashed line in bottom panel), all other
estimates are obtained from the jackknife measurements on
DES Y3 data. We note that in most scales below around
20 arcmin, the shape noise contribution to the error bars is
of around 50% or more, and at larger scales the errors are
dominated by cosmic variance.

that preserves any masking or geometry effects of the real575

data. We additionally overplot in that same panel an576

analytic estimate of shape noise. The analytic estimate577

comes from the propagation of the weighted variance of578

Γi into
〈
M3

ap

〉
, which in turn can be written as579

Var [R{Γ}] = 4σ6
e

∑
ijk w

2
iw

2
jw

2
k(∑

ijk wiwjwk

)2 (26)580

where w are weights associated to the data ellipticities,581

σ2
e =

〈
(ei − 〈ei〉)2

〉
is the variance of single-component el-582

lipticities, and the sums (ijk) run over all possible triplets583

of galaxies. We note that this reduces to Var [R{Γ}] =584

4σ6
e/NM for equal galaxy weighting, where NM is the num-585

ber of triangles in a given angular bin. We find that, for586

values of θ less than ∼20 arcmin, the shape noise con-587

tributes > 50% of the estimated error bars in
〈
M3

ap

〉
.588

While jackknife covariances are known to be biased on589

scales that approach the characteristic length of an indi-590

vidual patch, the covariances we utilize should be reliable591

for the simple S/N estimates at the relatively smaller an-592

gular scales studied in this work. Survey data covariances593

are generally difficult to obtain and can directly impact594

likelihood analyses, especially at the 3pt level (Joachimi595

et al. 2009, Sato & Nishimichi 2013). We therefore intend596

to further study the suitability of our existing jackknife597

matrices in a follow-up work focusing on the inference of598

cosmology constraints.599

IV. MEASUREMENT RESULTS600

We now apply the estimators defined in Sec. III B601

to the DES Y3 data split into 100 patches. We mea-602

sure the 3pt correlations Γi within an angular range of603

θmedium ∈ [1, 240] arcmin, approximately the same range604

of scales validated in DES Y3 for weak lensing appli-605

cations. For Γi, angular bins in θmedium are log-spaced606

(with 0.1 spacing, leading to 55 bins) and TreeCorr’s607

internal variables u and v are linearly-spaced (0.1 spac-608

ing, leading to respectively 10 and 20 bins; see Appendix609

B) to ensure stability of the integrals that lead to Map610

moments. When plotting Γi results and obtaining its co-611

variance, we further average over every 5 bins in θmedium612

for ease of visualization and to reduce noise. For the613

results on the Map estimation, however, we focus on a614

narrower range of scales and limit aperture radii to the in-615

terval θ ∈ [4, 60] arcmin in 7 bins, avoiding measurement616

biases that can arise if the aperture filtering in eq.(15)617

spans scales over which the Γi were not obtained (fur-618

ther details in Sec. V A).619

We present the non-tomographic signal in Sec. IV A,620

along with splits of triangles by configuration type, and621

then we divide our data into two tomographic bins in622

Sec. IV B. In what follows, we define the signal-to-noise623

(S/N) of our detections as (see Appendix C, where this624
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FIG. 2. The non-tomographic 3rd order natural shear correlations Γi in DES Y3 as a function of angular scale in arcminutes of
the medium-length side of triangles, θmedium (eq. 22). Solid lines correspond to averaged measurements over 100 patches of the
DES Y3 footprint; error bars are estimated with a jackknife method. To guide the eye, the dashed lines show corresponding
measurements on a T17 N-body mock catalog (Sec. II B) with DES Y3-like redshift distributions but without shape noise and
for an older set of cosmological parameters. Signal-to-noise (S/N) estimates are obtained with eq.(27). Left panel: Real parts
of the natural 3pt shear components. The lensing signal is distributed rather evenly across the 4 components, and for most
of them the null-hypothesis is clearly rejected at high confidence. Right panel: Imaginary parts of the natural 3pt shear
components, which are expected to be zero for certain triangle configurations (e.g., equilateral) but not in general, thus leading
to smaller overall S/N .

is derived)625

S/N ≡
{√

χ2 −Nd.o.f if χ2 ≥ Nd.o.f + 1

“Null” otherwise
, (27)626

where Nd.o.f is degrees of freedom (here the number of627

data points) and χ2 = dTC−1d with d representing the628

measurement vector and C−1 representing the inverse629

data covariance. In the low signal-to-noise regime (which630

is the case for many of the null tests presented later), it631

may be that χ2 < Nd.o.f + 1, in which case S/N is less632

than 1.0 or imaginary, which we consider a “Null” signal633

(consistent with no detection). Additionally, for practi-634

cal purposes, we define a data vector to be significantly635

rejecting the null-hypothesis (at Xσ) if S/N = X > 2.5,636

which as an equivalent p-value yields p . 0.01.637

A. Non-tomographic 3pt Shear Signal638

We first focus on the non-tomographic setting, treating639

all galaxies in the survey as if their line-of-sight distances640

belonged to a thin plane on the sky. We show the real641

and imaginary parts of the non-tomographic Γi and their642

S/N in Fig. 2. We report significant detections (ruling643

out the null-hypothesis at 2.5σ or more) of the real parts644

of all natural shear components Γi(θmedium), and an over-645

all lower significance for their imaginary parts. This is646

expected since, in specific triangle configurations, but not647

generally all of them, the imaginary parts vanish due to648

parity conservation. We overplot measurements obtained649

from the T17 N-body mock with dashed lines as a guide650

to the eye, though it should not be expected that these651

curves serve as a fit to the data, which we return to below.652

We additionally report a strong detection (ruling out653

the null hypothesis at more than 11σ) of the non-654

tomographic lensing E-mode term
〈
M3

ap

〉
in the left panel655

of Fig. 3, in the special case of a single aperture ra-656

dius θ1 = θ2 = θ3. The higher S/N of the mass aper-657

ture in comparison with individual Γi’s is in principle ex-658

pected: the tangential projection of shears for a given tri-659

angle configuration contains a large fraction of the signal660

(Takada & Jain 2003b) and the
〈
M3

ap

〉
statistic sums over661

that projection across many configurations in an aperture662

θ, while Γi splits the contribution over a total of 8 inde-663

pendent correlations γabc with a, b, c ∈ [t,×].664

We find that the overall amplitude of the simulated and665

data signals in both Γi and
〈
M3

ap

〉
closely resemble each666

other. A more careful assessment beyond the scope of this667

work would be necessary to verify whether discrepancies668
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FIG. 3. The 3rd order mass aperture correlations in DES Y3 for the special case of a single aperture radius (θ1 = θ2 = θ3 = θ)
in arcminutes. Solid lines correspond to averaged measurements over 100 patches of the DES Y3 footprint, and error bars
are estimated with a jackknife method. As in Fig. 2, dashed lines show measurements for the T17 N-body mock (Sec. II B),
and S/N estimates are obtained with eq.(27) . Left panel: non-tomographic Map and M× moments. We find a significant
detection of the pure E-mode term

〈
M3

ap

〉
, and find the other combinations, which either violate parity or imply significant

B-mode contamination, to be consistent with the null-hypothesis. Right panel: Tomographic mass aperture cross-correlations
using DES Y3 data split into 2 wide redshift bins z1 and z2. We find a significant detection of the cross-correlations that include
the higher redshift bin z2, and the total combined data vector is detected with 15.0σ significance.

between solid and dashed lines in Fig 3 imply our data669

are statistically rejecting the cosmology (or gravity-only670

implementation) of the T17 simulations.671

Several known factors could result in these differences:672

the difference in assumed cosmology, small scale astro-673

physical systematic effects, and shear calibration. Dis-674

cerning between these factors would entail obtaining 3pt675

functions in the ensemble of 108 mocks in T17 as op-676

posed to the single shape-noise free mock utilized in this677

work, a computationally expensive task (see Sec. V A for678

details on the estimator performance), and carrying out679

likelihood analyses over scales where the theory model-680

ing is not excessively uncertain. We do note, however,681

that based on the left panel of Fig. 3 the largest off-682

sets are on small scales (roughly below 10′) and result683

in a ∆χ2 ≈ 40 when comparing data and mock within684 〈
M3

ap

〉
(θ < 10′) for the non-tomographic case. Similarly,685

the tomographic measurements
〈
Map(z1)Map(z2)2

〉
(θ <686

10′) and
〈
Map(z1)2Map(z2)

〉
(θ < 10′) over the same687

scales show a combined ∆χ2 ≈ 30, so it may be possi-688

ble that the origin of the non-tomographic discrepancy is689

driven by the redshift cross-correlations. This likely rules690

out strong baryonic feedback in the data as an explana-691

tion for the discrepancy (as that would also have shown692

up strongly in the lowest-redshift
〈
Map(z1)3

〉
(θ < 10′)693

for most feedback scenarios) as well as significant contri-694

butions from shear calibration bias (which would likely695

have appeared as a scale-independent offset affecting ad-696

ditionally the auto-redshift correlations). We leave fur-697

ther detailed explorations for a future work.698

Comparing the
〈
M3

ap/×

〉
(θ) and Γi(θmedium) statistics699

presented in Fig. 2 and in the left panel of Fig. 3 we find700

that they separate the signal contributions in different701

ways. While for general triangle configurations the E702

and B mode signals are split rather evenly between the703

Γi, they are more concentrated in Map as opposed to M×.704

We will exploit this feature in more detail in Sec. V as705

an assessment of systematics.706

While the mass apertures involve a sum over many707

triangles and effectively mix their contributions to the708

signal, eqs. (6)-(9) on the other hand suggest that the709

natural components Γi can be combined to separate spe-710

cific triangle configurations and projections. Several tri-711

angle geometries were used by Takada & Jain (2003b) to712

demonstrate that certain configurations (e.g., equilateral713

and isosceles triangles) have vanishing projections due to714

parity conservation, and that for general triangle shapes715

all 8 possible projections of γabc with a, b, c ∈ [t,×] are716

non-zero.717

We can similarly explore the dependence of the signal718

on projection and configuration in our data by construct-719

ing γttt and γ×××, the components with all shears pro-720
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FIG. 4. Three-point shear signals with different triangle configuration and scale dependences. Solid lines correspond to non-
tomographic DES Y3 data measurements, and dashed lines are the same measurements made on a T17 N-body mock. Left
panel: the purely tangential γttt component for isosceles triangles as a function of opening angle between sides d1 and d2. An
oscillating pattern (see text) can be seen at both the small scales (red) as well as large-scale triangles (blue, multiplied by a
factor of 50 for visualization). Right panel: purely tangential (γttt) and cross-projections (γ×××) of equilateral triangles. A
detection is clear in the tangential case and, according to expectations the equilateral, odd-parity γ××× is consistent with zero.

jected tangentially and at 45o with respect to the triangle721

center respectively, via722

γttt =
1

4
R [Γ0 + Γ1 + Γ2 + Γ3] (28)723

724

γ××× =
1

4
I [−Γ0 + Γ1 + Γ2 + Γ3] , (29)725

where R and I correspond to real/imaginary parts. Us-726

ing the triangle side lengths (d1, d2, d3) we obtain the727

shear signal for two types of configurations: isosceles tri-728

angles (d1 ≈ d2 6= d3, with φ being the opening angle729

between d1 and d2), and equilateral triangles (d1 ≈ d2 ≈730

d3)4. Furthermore, we can separate“small scale” isosceles731

triangles with sides d1 ≈ d2 smaller than 5 arcmin, and732

“large scale” isosceles with 5 < d1 ≈ d2 < 60 arcmin. We733

show our results in Fig. 4, where again dashed lines corre-734

spond to a measurement on a T17 mock. The left panel of735

the figure shows a characteristic oscillatory dependence736

on opening angle, somewhat similar to what was pre-737

dicted for even-parity modes in Takada & Jain (2003b)738

4 These relations are only approximate in the data. For these spe-
cific configuration tests, we allow for small departures from exact
triangle shapes, with side ratios binned with a ±15% tolerance
in relative side lengths.

using a halo model approach, and in qualitative agree-739

ment with the T17 simulation result. The right panel740

of Fig. 4 shows the tangential and cross components of741

equilateral triangles as a function of angular separation742

θmedium = d2 ≈ d1 ≈ d3. We find a significant signal in743

the even-parity γttt part, while the parity-violating term744

γ××× is consistent with zero; both are thus consistent745

with expectation. While the similarity of our signals with746

halo model studies such as Takada & Jain (2003b), Zal-747

darriaga & Scoccimarro (2003) and Ho & White (2004)748

is visually striking, it is not exact. In particular, we find749

peaked signals on isosceles opening angles φ → 0o and750

φ → 180o that do not exactly match the expectation751

based on either work, but follow closely the T17 result.752

We believe that a quantitative comparison of these mea-753

sured signals with theory and the information this could754

provide on gravity, nonlinear structure evolution and halo755

shapes certainly merits further exploration.756

We further explore the general definition of the mass757

aperture skewness for three different aperture radii758 〈
M3

ap

〉
(θ1, θ2, θ3) in equation (16), and obtain the sig-759

nal in some specific setups as shown in Fig. 5. We fix760

the aperture radius θ1 at 4, 15 and 60 arcmin, repre-761

senting roughly the smallest, intermediate and largest762

scales probed with this statistic, and plot the signal as763

a function of the two other apertures. We find that the764

amplitude of the third-order mass aperture tends to be765

higher as we go to smaller scales. We note also that,766
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FIG. 5. A detection of the generalized mass aperture skew-
ness, expected to contain the entire 3pt information in the
lensing field, with a dependence on three angular separations
(θ1, θ2, θ3). We fix three choices of representative scales θ1 at
4, 15 and 60 arcmin, respectively the top, middle and bot-
tom panels. In all cases, we find a significant detection of the
generalized signal.

while the generalized
〈
M3

ap

〉
(θ1, θ2, θ3) contain the entire767

E-mode information of the field, they do not necessarily768

contain the highest signal-to-noise individually, a factor769

that should be taken into account in a future likelihood770

inference study. Nevertheless, in all cases we again find771

a significant detection of this particular lensing signal.772

B. Tomography773

Motivated by the significant detections obtained in the774

non-tomographic regime, we proceed to split the DES Y3775

catalog into redshift bins and attempt a first tomographic776

measurement of the third moment of the mass aperture.777

We implement the same 2-bin redshift split described778

in Sec. II A on the T17 mock described in Sec. II B.779

The original, 4-bin redshift distributions in that mock780

resemble the actual DES Y3 n(z)’s but do not reproduce781

their substructure exactly, so we expect that 3pt statistics782

obtained from the mock should provide an approximate783

expectation for the scale dependence and amplitude of784

the tomographic signal on the data.785

We present our results for the cross-tomographic mass786

apertures in the right-hand panel of Fig. 3, in qualitative787

agreement with the T17 result at most scales and redshift788

bins. We compute the signal-to-noise ratios S/N again789

using eq. (27), and find significant detections of cross-790

correlations of
〈
M3

ap

〉
that include the high-redshift bin791

z2. For the complete data vector built with the 4 con-792

catenated cross-tomographic measurements and includ-793

ing their cross-covariances, we find a total S/N of 15.0σ.794

Interestingly, this detection is non-zero on angular scales795

that are relatively large (θ ∼ 1o), reaching quasi-linear796

and linear regimes. This implies that non-Gaussian sig-797

nals may add significant information to common two-798

point analyses even if these mostly rely on the linear799

regime due to conservative scale cuts (see, for instance,800

Gatti et al. (2021a)).801

We note several points related to this tomographic802

measurement. First, the signal in the higher redshift803

bin z2 (red curve in the right panel of Fig. 3) is sig-804

nificantly larger than that for the lower bin z1. As with805

the 2pt shear measurement, this trend can be attributed806

to the fact that the lensing kernel for the higher red-807

shift bin probes more large-scale structure than the ker-808

nel limited to low redshifts. Second, the signal-to-noise809

of
〈
Map(z1)Map(z2)2

〉
(S/N = 13.3) and

〈
Map(z2)3

〉
810

(S/N = 11.5) are both higher than the non-tomographic811

case (S/N = 11.2). While this may seem counter-812

intuitive at first, it is not against expectations: there are813

many low-redshift galaxy triplets in the non-tomographic814

sample whose 3pt correlations add significant noise but815

insignificant signal due to the lack of depth of the lens-816

ing kernel in the lowest redshift bin, and the overall S/N817

goes up once these are removed. Third, it is expected818

that
〈
Map(z1)Map(z2)2

〉
should have the highest S/N :819

for redshift bins with approximately the same number820

of galaxies, a cross-correlation contains a larger number821
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of galaxy triplets than any auto-correlation, and addi-822

tionally shot-noise contributions to the uncertainties are823

diagonal on the redshift bins.824

In addition to the signals presented above, we mea-825

sure the reduced skewness parameter in eq. (17). We826

again use TreeCorr in order to estimate
〈
M2

ap

〉
in our827

data and mocks over the same patches where the 3pt ob-828

servables were obtained. We show S(θ; z) in Fig. 6. A829

significant redshift evolution of the reduced skewness pa-830

rameter can be seen, with the low-z bin showing more831

power than the high-z bin. This is in line with our ex-832

pectation that the shear field should be more Gaussian833

at higher redshift. This is due to the larger projection834

distance for high redshift, which means more uncorre-835

lated structure contributes to the lensing and a version836

of the central limit theorem (considering the accumulated837

signal as a random walk along the line-of-sight) makes838

the resulting shear field closer to Gaussian (Bernardeau839

et al. 1997, Jain & Seljak 1997). Note that there is840

no such expectation for the 3-dimensional density field,841

where the skewness is redshift-independent in leading or-842

der perturbation theory. The lensing skewness is largely843

independent of the power spectrum shape and normaliza-844

tion, and its approximate redshift evolution was given by845

e.g. Bernardeau et al. (1997) who obtained S ∼ z−1.35.846

While that scaling depends on the cosmological model847

and the assumptions on the source redshift distribution,848

we find it to be in qualitative agreement with our mea-849

surement: for a representative scale of 10’ the ratio850

S(θ = 10′; z1)/S(θ = 10′; z2) is about 2 to 3, with the851

mean of redshift bins z1 and z2 being at 0.42 and 0.81852

(see Sec. II), roughly following the expected scaling.853

V. ASSESSMENT OF SYSTEMATICS854

We now turn to the validation of the signal with the855

aim of showing that the detection is not contaminated856

by systematics of observational/instrumental origin. The857

results of the tests detailed below indicate that the sig-858

nificant 3rd order lensing signals found in DES Y3 data859

are of astrophysical and gravitational origin.860

A. Estimator Uncertainties861

Potential uncertainties in the estimation of Γi’s and862 〈
M3

ap

〉
have three different sources, two of them originat-863

ing from approximations needed to bring the computa-864

tional runtime to a reasonable level and one, much easier865

to mitigate, stemming from the mass aperture filtering.866

We begin by describing this last one, the filtering fea-867

ture, which we have essentially mitigated in this work by868

employing angular scale cuts at the measurement level.869

The filter defined in eq. (13) decays quickly as a func-870

tion of angular separation, and is small (but not negligi-871

bly so) at separations of a factor λ of about 3× wider than872

the angular bin at which
〈
M3

ap

〉
is evaluated. This non-873
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FIG. 6. A measurement of the reduced mass aperture defined
in eq. (17). Solid lines and error bars correspond to mea-
surements on the DES Y3 data split into 2 wide redshift bins,
and dashed lines correspond to measurements on an N -body
mock based on the T17 simulations (see Sec. II B), which are
not expected to fit the data, but serve as a guiding compari-
son. The redshift evolution of the skewness parameter S(θ; z)
indicates, according to expectation, that more non-Gaussian
structure contributes to the signal at low-z than at high-z.

localization of the filter implies that, for a measurement874

of
〈
M3

ap

〉
at an angular separation θ̂, the integrals over Γi875

have significant support over a range [θ̂/λ, θ̂λ] where λ is876

a characteristic scale of filter. We employ a factor λ = 4877

after empirically testing estimates of
〈
M3

ap

〉
over differ-878

ent angular ranges and finding them to stabilize very well879

at that chosen width. This choice is similar to previous880

studies (Fu et al. 2014) and justifies our choice of scales881

of [1′, 240′] for Γi(θmedium) and [4′, 60′] for the aperture882

radii in
〈
M3

ap

〉
.883

The other two potential sources of estimator uncer-884

tainties that we have explored are a decreased binning885

accuracy w.r.t. analogous calculations of 2pt functions,886

and the jackknifing method utilized. Binning accuracy in887

TreeCorr is determined by code parameters binslop888

and binsize. Larger values of the former allow for889

larger errors when binning triangles by ratios of their side890

lengths (see App. B), and larger values of the latter imply891

coarser binning by triangle configuration. We empirically892

vary both on a reduced number of data patches to verify893

their impact on our measurement. First, we find that894

the recommended value of binsize=0.1 is sufficient for895

the integration over Γi and yields a stable
〈
M3

ap

〉
. Sec-896

ond, while runtime increases prohibitively with smaller897

binslop, we find that a value of binslop=1.0 makes898

computing time feasible and does not bias the correlation899

functions, although it increases the diagonal covariance of900

the measurement by around 15%. With these choices, we901
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find that the computing time for 1M objects in 28 2.4GHz902

CPUs on the Midway2 cluster5 is around 300 minutes903

(still very expensive when compared to a timing of un-904

der 20 minutes for the 2pt ξ±(θ) auto-correlation of 25M905

galaxies in one redshift bin of DES Y3 with binslop=0.0,906

which approximates brute-force pair-counting).907

Finally, there are the uncertainties associated with the908

jackknife method, which we employ for more efficient par-909

allelization and to obtain an estimate of the covariance910

matrix. A source of uncertainty comes from triangles911

whose corners are not all located on the same patch, be-912

cause these triangles are not included in the subsequent913

calculations. We run a feasibly short test on the full914

100M-object catalog by focusing only on several angular915

scales of approximately equilateral triangles and find that916

splitting the full footprint into disjoint patches misses ap-917

proximately 10% of the nearly equilateral triangles with918

a side length of 200 arcmin. The missing triplets en-919

hance the shot noise contribution in those large scales,920

but should not contribute a bias because there is no pref-921

erential shear projection that is missed due to the patch922

splitting.923

B. B-modes and Parity924

In general, a three-point signature of B-modes of as-925

trophysical original can come from a limited number of926

effects. In particular, at the 3pt level the main sources927

of B-modes are intrisic alignments (Semboloni et al.928

2011, Troxel & Ishak 2012, 2015) and the spatial clus-929

tering of source galaxies which are otherwise expected to930

randomly sample the survey footprint (Schneider et al.931

2002). These effects are expected to be small compared932

to the lensing-induced E-mode signal, so at first a rea-933

sonable approach is to consider any significant B-mode934

detection as pointing to potential data systematics (PSF935

residuals, for instance).936

Within the statistics we explore, the main correlations937

where B-modes could be searched for are
〈
MapM

2
×
〉

(θ),938

which would point to B-modes correlated with E-modes.939

In the non-tomographic case, as shown in the left panel of940

Fig. 3, we find that the signal-to-noise of
〈
MapM

2
×
〉

(θ) is941

compatible with the null-hypothesis according to the def-942

inition in eq. (27), meaning S/N is lesser than 1 or imag-943

inary. In a similar way, we verify that
〈
Map(z1)M2

×(z2)
〉

944

and
〈
Map(z2)M2

×(z1)
〉
, the tomographic versions of the945

same test which would respectively point to B-modes in946

the higher(lower) redshift bin correlating with E-modes947

in the lower(higher) redshift bin, are also consistent with948

the “Null” condition defined in eq. (27).949

Other correlations including odd powers of the B-mode950

field M× such as
〈
M2

apM×
〉

(θ) are expected to vanish951

due to parity (Schneider 2003). A parity-violating field952

5 https://rcc.uchicago.edu/

would necessarily come from systematics of the data, as953

no astrophysical source could produce it. We indeed find954

the parity-violating terms
〈
M2

apM×
〉

(θ) and
〈
M3
×
〉

(θ)955

presented in the left panel of Fig. 3 to be consistent956

with the null-hypothesis. Finally, we have also shown957

in Fig. 4 another parity-violating correlation, γ×××(θ)958

for approximately equilateral triangles, which is similarly959

consistent with zero.960

C. PSF Residuals961

We follow the approach of Rowe (2010) in order to es-962

timate the contribution of additive PSF modeling errors963

to our lensing observables. We obtain the mass aperture964

skewness of the so-called “ρ-statistics” (see Appendix A),965

which quantify the residual correlations caused by errors966

in the PSF modeling and deconvolution, modulated by967

empirically-obtained coefficients α and β.968

We estimate the PSF uncertainty impact via eq. (A7)969

using a catalog of stars to compare them to the actual970

data signal. In doing so, we need input values for the co-971

efficients α and β that multiply deconvolution errors and972

modeling residuals, respectively. We set α = 0.01 and973

β = 2 as inputs for the additive contaminations, consid-974

ering the bounds on these parameters presented in Gatti975

& Sheldon et al., (2021c) (respectively α = 0.001± 0.005976

and β = 1.09±0.07). This choice of input values is a very977

conservative one, which amplifies the estimated impact of978

these systematics. As the additive PSF contaminations979

considered here have their origin in the 1-point elliptic-980

ities, we do not expect the values of those coefficients981

to depend on which statistics are used to measure them982

(apart from practical aspects such as the signal-to-noise983

of the chosen statistic). We therefore do not pursue a984

measurement of α and β based on 3pt observables, and985

utilize those bounds obtained in Gatti & Sheldon et al.,986

(2021c) based on 1- and 2-point PSF correlations.987

Despite the conservative choice in input coefficients, we988

find additive PSF systematics to be entirely negligible.989

We show in Fig. 7 a breakdown of the PSF contributions990

to individual skewness component (
〈
M3

ap

〉
,
〈
M2

apM×
〉
,991

etc) and by PSF correlation type (
〈
e3
p

〉
,
〈
e2
pq
〉
, etc), where992

ep is the PSF ellipticity and q the ellipticity residual error993

after modeling. In all cases, we find the 3rd order mo-994

ments of PSF uncertainties to be negligible, well below a995

percent of the E-mode data signal
〈
M3

ap

〉
.996

D. Mean Shear and Other Observational997

Systematics998

Several other features of 3pt statistics are also relevant999

for their robustness against systematics. In particular1000

we consider contributions to the signal arising from a1001

residual mean shear in ellipticities 〈e1〉 and 〈e2〉.1002

While a mean shear that is coherent across angular1003

scales produces a ξ+ signal (eq. 5) at the 2pt level, it1004

https://rcc.uchicago.edu/
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does not produce any signature on the Γi. This can1005

easily be demonstrated by considering a constant shear1006

field in cartesian coordinates, γ = γ1 + iγ2 = c1, co-1007

herent across some angular length scale. For 2pt func-1008

tions ξ± we project shears along the direction α + ψ,1009

where α is the direction of the line that connects the1010

galaxy pair and ψ is the (random) orientation of the1011

pair with respect to the reference of the cartesian co-1012

ordinates, so γ → γ′ = γ exp [−2i(α+ ψ)]. Then the1013

natural 2pt functions of the field are ξ+ = 〈γ′γ′∗〉 = c211014

and ξ− = 〈γ′γ′〉 = c21 〈exp [−4i (α+ ψ)]〉 = 0 as the aver-1015

aging is essentially over the multiple random orientations1016

ψ.1017

For the natural 3pt functions, in comparison, the pro-1018

jection of each of the 3 shear components is along a1019

different direction (α + ψ, β + ψ or δ + ψ) and many1020

reference points are possible - the triangle incenter, the1021

center of the side opposing a given angle, etc (Schnei-1022

der & Lombardi 2003), with some projections leading1023

to α + β + δ = 0. In the same situation of a constant1024

shear in cartesian coordinates we have, for an example1025

case: Γ0 =
〈
c31 exp [−6i (α+ β + δ)− 6iψ]

〉
= 0 due to1026

the averaging over ψ, and similarly for all other Γi with1027

i = 1, 2, 3 defined in eqs. (6)-(9). This insensitivity to1028

an additive mean shear over coherent scales can be use-1029

ful when compared to 2pt functions because it would not1030

lead to the requirement of an extra correction at the data1031

level as in (Gatti & Sheldon et al., (2021c)), and would1032

potentially minimize the need for corrections due to ad-1033

ditive systematics such as presented in Kitching et al.1034

(2021).1035

We additionally expect that any other observational1036

systematics that arise from statistics that are well de-1037

scribed by Gaussian processes should have negligible con-1038

tributions to 3pt functions. A potential example which1039

we leave for a further exploration is the atmospheric con-1040

tribution to PSFs. As that is well characterized by Gaus-1041

sian processes with vanishing odd-order correlations, we1042

expect it to be significantly suppressed in importance1043

when dealing with 3pt shear correlations.1044

VI. COMPARISON WITH PREVIOUS WORK1045

Among the several types of 3pt shear statistics pre-1046

sented so far, some had already been detected and ex-1047

plored in the survey science literature while others had1048

not. In what follows, we compare our findings with a1049

number of previous results.1050

As a starting point, our 3pt S/N can be compared1051

with the 2pt DES Y3 cosmic shear measurements. The1052

null-hypothesis signal-to-noise defined in eq. (27) yields1053

S/N = 40.2 for the joint ξij± data vector (eq. 5) presented1054

in Amon et al. (2021), Secco & Samuroff et al., (2021)6
1055

6 Note that the definition of S/N utilized in these works is different
than the one employed here.

before the removal of relatively small angular scales that1056

are not included in the likelihood due to modeling uncer-1057

tainties (a total Nd.o.f. = 400 degrees of freedom). After1058

“fiducial” scale cuts, the DES Y3 cosmic shear data vec-1059

tor has S/N = 27.5 (Nd.o.f = 227), and after “optimized”1060

scale cuts we obtain S/N = 30.1 (Nd.o.f = 273).1061

While the signal-to-noise ratio of our 3pt measure-1062

ments are smaller than the corresponding 2pt S/N, it is1063

realistic to expect that real-space 3pt shear correlations1064

can tighten posteriors in key cosmology results because1065

parameter degeneracies are different between two- and1066

three-point functions. That is indeed the case with Gatti1067

et al. (2021a), wherein an improvement of ∼ 15% is seen1068

in the lensing amplitude S8 when combining second and1069

third order moments of the lensing convergence.1070

Regarding three-point detections of cosmic shear ob-1071

servables, Stage-II surveys presented some of the first re-1072

sults: a first detection was claimed by Bernardeau et al.1073

(2002) in the VIRMOS-DESCART 8.5deg2 survey (Van1074

Waerbeke et al. 2002), followed by detections of the third1075

moment of the mass aperture by Jarvis et al. (2004) with1076

the CTIO 75deg2 survey data, Semboloni et al. (2011)1077

with HST COSMOS data (Schrabback et al. 2010, Scov-1078

ille et al. 2007) and, more recently, Fu et al. (2014) with1079

CFHTLenS data (Erben et al. 2013). These first de-1080

tections of lensing third moments with signal-to-noise1081

around 3σ advanced the field. Our measurements sig-1082

nificantly improve upon those detections and bring them1083

up to S/N of around 15σ, a significance that enables1084

quantitative interpretation.1085

To the best of our knowledge and at the time of this1086

writing, we have reported in this work the first signifi-1087

cant detection of the four natural 3pt cosmic shear com-1088

ponents (Fig. 2), the first detection of tomographic 3pt1089

mass aperture signals (right panel of Fig. 3), and the1090

first significant detection of components split by their1091

configuration dependence (Fig. 4). Equally important,1092

our measurement (along with the Gatti et al. (2021a)1093

measurement of the skewness of κ in the same data), ex-1094

tends to large scales approaching 1 degree, where quasi-1095

linear theory is reliable and uncertainties due to baryonic1096

physics can be neglected. Thus it will enable robust in-1097

terpretations of cosmology and gravitational physics.1098

VII. CONCLUSIONS AND OUTLOOK1099

Using over 100M galaxies spread across the 4,143deg2
1100

footprint of the first 3 years of data from the Dark Energy1101

Survey, we presented measurements of the three-point1102

correlations of the lensing shear field. We also combined1103

all three point correlations into the third moment of the1104

mass aperture statistic and verified that systematics of1105

observational origin are negligible in our measurements.1106

We expect this work to be a stepping stone for future1107

applications of these 3pt statistics, in particular a joint1108

2pt and 3pt cosmology analyses. Our main results are1109

summarized below:1110
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FIG. 7. Upper bound on PSF systematics due to their potentially incorrect modelling and deconvolution, assuming coefficients
α = 0.01 and β = 2.0 in eq. (A7). Horizontal axes show angular separations and vertical axes in each panel, from top to
bottom respectively, show the absolute value of PSF

〈
M3

ap

〉
,
〈
M2

apM×
〉
,
〈
MapM

2
×
〉

and
〈
M3

×
〉

correlations divided by the E-

mode signal
〈
M3

ap

〉
of the data, which is always at the sub-percent level and significantly smaller than the measurement errors.

The dashed black line shows the 1% level and blue, light blue, salmon and red lines correspond to different cross-correlation of
PSF properties ep (the PSF ellipticity) and q (the ellipticity residual error after modeling).
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• In a non-tomographic analysis, we measure the nat-1111

ural cosmic shear correlations Γi (the 3pt functions1112

analogous to the two-point functions ξ±) in DES1113

Y3 data at high signal-to-noise (2.5 . S/N . 7.01114

for the real part of the correlations) and also ex-1115

plore the triangle configuration dependence of 3pt1116

shear projections (respectively Figs. 2 and 4);1117

• Also in a non-tomographic setting, we measure the1118

skewness of the mass aperture statistic
〈
M3

ap

〉
both1119

in 1 aperture radius and in the generalized case of1120

3 aperture radii (left panel of Fig. 3 and Fig. 5).1121

The detection significance in all cases is very high1122

(7.0 . S/N . 11.0);1123

• We detect, for the first time, a tomographic1124 〈
M3

ap

〉
(θ) signature with high significance (total to-1125

mographic S/N = 15.0) and additionally verify an1126

expected redshift evolution of the skewness param-1127

eter S(θ; z) (respectively the right panel of Fig. 31128

and Fig. 6);1129

• We verify that the third-order signatures found1130

are robust against B-mode systematics, parity-1131

violating contributions and PSF modeling errors,1132

thus validating that our measurements are likely a1133

result of astrophysical and gravitational phenom-1134

ena (left panel of Fig. 3, right panel of Fig. 4 and1135

Fig. 7);1136

• We reproduce the main results in an N-body mock1137

catalog and verify that overall angular scale de-1138

pendences and signal amplitudes of our measure-1139

ments are broadly consistent with theoretical ex-1140

pectations.1141

Given the high S/N of the data vectors here presented1142

and the fact that systematics of observational origin are1143

well under control, carrying forward with a cosmological1144

analysis is a reasonable path. It is also interesting to note1145

that our detected signals are non-zero even on relatively1146

large angular separations of a degree or more, implying1147

that non-Gaussian information coming from quasi-linear1148

and linear scales could significantly add even to a conser-1149

vative 2pt cosmic shear analysis. We do, however, iden-1150

tify below several challenges that a joint 2pt+3pt pro-1151

gram would face.1152

First, analytic covariances for higher order moments1153

of shear are notoriously complex, and their uncertain-1154

ties can significantly affect parameter posteriors. While1155

it remains to be tested, it is possible that the jackknife1156

approach employed here for the simple S/N estimates1157

might not be sufficiently accurate for the more subtle1158

inference of cosmological parameters. A mock-based co-1159

variance would be straightforward method, but we note1160

that the 3pt measurement runtime is computationally ex-1161

pensive and could make that approach impractical unless1162

we select 3pt statistics that minimize that computational1163

cost. In particular,
〈
M3

ap

〉
and its generalized form have1164

a high signal-to-noise with a relatively small number of1165

data points, which would make the use of mock covari-1166

ances more feasible.1167

Second, the modeling of astrophysical systematics such1168

as intrinsic alignments and baryons is likely to preclude1169

the use of small angular scales presented in our measure-1170

ments, and therefore it might be necessary to remove part1171

of those data points when fitting a theory model. How-1172

ever, the statistical uncertainties in our measurements1173

are large compared to those for 2pt cosmic shear, so it is1174

not unreasonable to expect that in fact relatively simple1175

theory modeling can be used for the 3pt data vector and1176

still maintain an acceptable level of potential biases. We1177

also point out that the nonlinear dark matter bispectrum1178

modeling itself is a challenge, although methods based on1179

fitting formulas calibrated against simulations have been1180

employed in the literature (Lazanu et al. 2016, Takahashi1181

et al. 2020).1182

Third, redshift and shape measurement uncertainties1183

propagate significantly into 3pt observables. These un-1184

certainties are calibrated to high accuracy and precision1185

in 2pt analyses, and a comparably careful analysis is1186

needed for 3pt correlations to determine their contribu-1187

tion to the error budget.1188

Many of the challenges above have already been ad-1189

dressed in cosmology studies including higher order lens-1190

ing correlations, in particular in the convergence mo-1191

ments work of Gatti et al. (2021a). In detail, the covari-1192

ance matrix estimation was made feasible in that work1193

with a data compression technique retaining a number1194

of data points smaller than the full length of the data1195

vector. Also, scale cuts were determined by the impact1196

of baryonic physics and other astrophysical contaminants1197

(such as intrinsic alignments and 3rd order contributions1198

such as source clustering) were modeled or shown to be1199

negligible. Finally, the nonlinear matter bispectrum was1200

obtained with a fitting formula calibrated on simulations1201

(Scoccimarro & Couchman 2001), and its computation1202

was made faster with an emulator technique.1203

We expect to employ similar methodologies for the real1204

space analysis of 2pt+3pt cosmic shear, but with some1205

differences in the details owing to the different choice1206

of estimators. The resulting constraints would provide1207

an important consistency check to the results of Gatti1208

et al. (2021a), with the advantage that the real space1209

statistics presented in this work (specifically the general,1210

three-aperture radii
〈
M3

ap

〉
(θ1, θ2, θ3)) are guaranteed to1211

contain the total E-mode content in the shear field along1212

with specific configuration-dependent information. Fi-1213

nally, our measurements of the full 3-point function of1214

the shear field lay the groundwork to test for primordial1215

non-Gaussianity in the density field, e.g. via constraints1216

on the fNL parameter, as studied theoretically by Takada1217

& Jain (2003a) and Hilbert et al. (2012).1218

With many practical challenges overcome and a1219

steadily increasing level of maturity, it is realistic to ex-1220

pect that that lensing 2pt+3pt analyses will be among1221

the central probes of S8 and the Dark Energy equation-1222

of-state parameter w in current and future surveys such1223
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as the Vera C. Rubin Observatory’s Legacy Survey of1224

Space and Time7 (LSST), ESA’s Euclid mission8 and the1225

Roman Space Telescope9. That is especially important1226

since these experiments represent a massive investment1227

of resources, and extracting as much useful information1228

as possible from their data is highly desirable.1229
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Appendix A: Derivation of PSF corrections1316

As ellipticities e are measured from galaxy images,1317

their PSF must be deconvolved. As in Gatti & Sheldon1318

et al., (2021c), we define the errors in the PSF modeling1319

as well improper deconvolution both as additive contri-1320

butions to the measured ellipticities:1321

e = γ + δe, (A1)1322

where the additive factor δe is defined by1323

δe ≡ αep + βq; q ≡ e∗ − ep, (A2)1324

where ep is the modeled PSF elipticity (referred to as1325

emodel in Gatti & Sheldon et al., (2021c)) and e∗ is the1326

https://www.lsst.org
https://www.euclid-ec.org
https://roman.gsfc.nasa.gov
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actually measured PSF. That means the coefficients α1327

and β are respectively interpreted as a leakage of the1328

modeled PSF shape onto the galaxy ellipticity e (coming1329

possibly from incorrect deconvolutions) and errors in the1330

interpolation of the PSF shape. The shear fields ep and q1331

are estimated from reserved stars which do not contribute1332

to the PSF fitting, that is, where both the modeled PSF1333

and the true PSF are known, otherwise we would have1334

q → 0 by construction.1335

Using the same definitions in eq. (12), we can propa-
gate the PSF correction in eq. (A1) to the 1-point quan-
tities:

Map(R) =

∫
d2RQ(R)γt +

∫
d2RQ(R) [αept + βqt]

M×(R) =

∫
d2RQ(R)γ×

︸ ︷︷ ︸
=0

+

∫
d2RQ(R)

[
αep× + βq×

]
.

As the cross-projections of the PSF residuals ep× and q×
can generally have non-zero statistical moments, we see
that the additive PSF errors defined above can contam-
inate both E-modes and B-modes. As a stepping stone
for the third-order case, we can again follow Jarvis et al.
(2004) and get, for the second-order mass aperture:

〈
M2
〉

=

∫
d2R1d

2R2Q(R1)Q(R2) 〈(γ + δe) (γ + δe)〉

× exp (−2i (φ1 + φ2))

〈MM∗〉 =

∫
d2R1d

2R2Q(R1)Q(R2)
〈
(γ + δe) (γ + δe)

∗〉

× exp (−2i (φ1 − φ2)) .

We can safely assume that the expected value of correla-
tions between the gravitational shear and PSF residuals is
zero so the cross-terms 〈γδe〉 vanish. Then, defining the

PSF correlations ξpsf
± analogously to how the (gravita-

tional) shear correlations are defined, that is ξ+ ≡ 〈γγ∗〉,
ξ− ≡ 〈γγ exp(−4iθ)〉, we see that the PSF corrections
are simply additive at the mass aperture level:

〈
M2
〉

(R) =

∫
s ds

R2

(
ξγ−(s) + ξpsf

− (s)
)
T−

( s
R

)
(A3)

〈MM∗〉 (R) =

∫
s ds

R2

(
ξγ+(s) + ξpsf

+ (s)
)
T+

( s
R

)
(A4)

where ξpsf
± ≡ α2 〈epep〉± + αβ 〈epq〉± + β2 〈qq〉±, and1336

where the functions T± are defined in Appendix B.1337

The terms
〈
M2

ap

〉
and

〈
M2
×
〉

can be expressed as sim-1338

ple linear combinations of the quantities above (Jarvis1339

et al. 2004). While
〈
M2
×
〉

would represent B-mode sig-1340

nal which can generally become non-zero in the presence1341

of uncorrected PSF errors, the term 〈MapM×〉, if found1342

to be non-negligible, would additionally imply a parity-1343

violating contribution.1344

The reasoning above also applies to the third-order mo-
ments of the same observables. We define the 3pt PSF

correlations in the same way we define the natural com-
ponents of the shear signal and write

〈
M3
〉

(R) = −
∫
d2R1d

2R2d
2R3Q(R1)Q(R2)Q(R3)

×
〈

(γ + δe)
3

exp [−2i(α+ β + δ)])
〉

= −
∫
s ds

R2

∫
d2t

2πR2

(
Γ0 + Γpsf

0

)
T0(s, t)

(A5)

〈
M2M∗

〉
(R) =

∫
d2R1d

2R2d
2R3Q(R1)Q(R2)Q(R3)

×
〈

(γ + δe)
2

(γ + δe)
∗

exp [−2i(α+ β − δ)]
〉

=

∫
s ds

R2

∫
d2t

2πR2

(
Γ1 + Γpsf

1

)
T1(s, t)

(A6)

where we have introduced the PSF correction at the 3pt1345

level as1346

Γpsf
0,1 = α3

〈
e3
p

〉
0,1

+3α2β
〈
e2
pq
〉

0,1
+3αβ2

〈
epq

2
〉

0,1
+β3

〈
q3
〉

0,1
.

(A7)1347

The derivation above assumes that cross-terms of1348

the type
〈
γδ2
e

〉
or
〈
γ2δe

〉
are null when averaged over1349

large ensembles, as both of these terms boil down to1350

whether the 1(2)-point gravitational shear correlates with1351

the 2(1)-point PSF’s, which should not be the case.1352

The expressions for
〈
M3

ap

〉
,
〈
M2

apM×
〉
,
〈
MapM

2
×
〉

and1353 〈
M3
×
〉

can be obtained from the ones above as shown in1354

Jarvis et al. (2004), and it remains true that
〈
M2

apM×
〉

1355

and
〈
M3
×
〉

are null in order to conserve parity, while1356 〈
MapM

2
×
〉

may include non-zero PSF B-modes that cor-1357

relate with E-modes (in addition to astrophysical B-mode1358

contributions).1359

Appendix B: Definition of coordinates and TreeCorr1360

internal variables1361

Here we clarify some of the notation utilized in this1362

draft, mainly in what refers to coordinates and definitions1363

of triangle sides and their respective angles. We use the1364

same conventions of Jarvis et al. (2004) and reproduce1365

their Fig. 1 below in our Fig 8.1366

With q1, q2 and q3 defined as the vectors from each of1367

the triangle vertices to the centroid of the triangle, and s1368

and t′ the sides of the triangle (notice that without loss1369

of generality we fix s and take t′ to be at an angle α with1370

respect to that line), we have1371

q1 =
(s+ t′)

3
, q2 =

(t′ − 2s)

3
, q3 =

(s− 2t′)

3
. (B1)1372

The functions T0 and T1 that enter the mass aperture1373

computations such as eq.(19) are purely geometrical and1374
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FIG. 8. Convention for coordinates systems. Top panel:
TreeCorr internal variables and side length definitions as
utilized in eqs. (B1)-(B5), reproduced from Jarvis et al.
(2004). Bottom panel: definition of distances of interest
and shear projections (t,×) relevant in the Γi(θmedium) and
〈Map(θ1, θ2, θ3)〉 measurements. Notably, the reference scale
θmedium is a side length, while the scales θi (i = 1, 2, 3) are
radii from the triangle center.

dependent on the vectors above:1375

T0 (s, t) = − (q∗1q
∗
2q
∗
3)2

24
exp

(
−q

2
1 + q2

2 + q2
3

2

)
(B2)1376

T1 (s, t) = −
(

(q1q
∗
2q
∗
3)2

24
− q2

1q
∗
2q
∗
3

9
+
q∗21 + 2q∗2q

∗
3

27

)

× exp

(
−q

2
1 + q2

2 + q2
3

2

)
, (B3)

where bold symbols are vectors in complex notation with1377

x/y on the real/imaginary direction, eg v = vx + ivy.1378

Additionally, internal TreeCorr units utilized to bin1379

triangles are such that, for triangles of side lengths d1 ≤1380

d2 ≤ d3, we have1381

u =
d3

d2
, (B4)1382

1383

v = ± (d1 − d2)

d3
, (B5)1384

where the positive and negative signs of v correspond1385

to whether side lengths are in clockwise or counterclock-1386

wise order respectively, and recall that we have named1387

θmedium = d2 to conveniently bin the Γi functions in1388

eq.(22). Note that with these definitions we have u ∈1389

[0, 1] and v ∈ [−1, 1]. In practice, selecting i.e. equilat-1390

eral triangles of characteristic side length θmedium within1391

the output corresponds to sub-selecting the galaxies in1392

bins u ∼ 0 and v ∼ 0.1393

Appendix C: Signal-to-noise of a Vector1394

The signal-to-noise ratio of a scalar value, X, with a
Gaussian uncertainty, σ, is well-defined. The signal is the
expectation value of the measurement 〈X〉, and the noise
is the standard deviation of the uncertainty E. Thus, the
signal-to-noise is simply the ratio of these.

X = 〈X〉+ E (C1)

E ∼ N (0, σ) (C2)

S/N(X) ≡ 〈X〉
σ

(C3)

=
〈X〉√

Var(X)
(C4)

However, it is less obvious what the corresponding quan-
tity should be for a vector d, where each component of
the vector is itself a measurement with an uncertainty.
We start by considering a data vector of independent
measurements, each with its own Gaussian uncertainty.

d = {di} (C5)

di = 〈di〉+ Ei (C6)

Ei ∼ N (0, σi) (C7)

We consider all possible linear combinations of the vector
elements,

Xw ≡ w · d =
∑

i

widi, (C8)

for arbitrary weight vectors w. For each choice of w, the
scalar quantity Xw of course has a well-defined signal-
to-noise, given by Equation C4, but each choice may be
different, depending on the specific weights being used.
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Among all such possible choices, we take the one with
the largest signal-to-noise to define the signal-to-noise of
the vector d.

S/N(d) ≡ max
w

(
〈Xw〉√

Var(Xw)

)
(C9)

We therefore need to determine what choice of weights
w gives the largest signal-to-noise for Xw. For a given
choice of w, we have

(S/N)2 =

(∑
j wj〈dj〉

)2

∑
j w

2
jσ

2
j

. (C10)

As usual, we find wi at the extremum by setting the
derivative to 0.

0 =
∂ (S/N)

2

∂wi
=

2
(∑

j wj〈dj〉
)
〈di〉

∑
j w

2
jσ

2
j

−
2wiσ

2
i

(∑
j wj〈dj〉

)2

(∑
j w

2
jσ

2
j

)2

〈di〉
∑

j

w2
jσ

2
j = wiσ

2
i

∑

j

wj〈dj〉

wi =
〈di〉
σ2
i

(C11)

The signal-to-noise for this choice of w is then

S/N =

∑
i wi〈di〉√∑
i w

2
i σ

2
i

=

∑
i〈di〉2/σ2

i√∑
i (〈di〉/σ2

i )
2
σ2
i

=

√∑

i

〈di〉2
σ2
i

. (C12)

Aside from the expectation value in the numerator,

this is equivalent to
√
χ2, which is a relatively common

approximation used to estimate the signal-to-noise of a
vector. Calculating the expectation value of χ2, we find

〈χ2〉 =

〈∑

i

d2
i

σ2
i

〉

=
∑

i

(〈di〉+ Ei)
2

σ2
i

=
∑

i

〈di〉2 + 2〈di〉〈Ei〉+
〈
E2
i

〉

σ2
i

=
∑

i

〈di〉2 + σ2
i

σ2
i

= (S/N)2 +Nd.o.f.. (C13)

Thus, we have derived the relatively simple relationship,

S/N =
√
〈χ2〉 −Nd.o.f.. (C14)

In practice, one does not have access to the expectation
value 〈χ2〉, so we replace it with its measured value, which
is the best we can do:

S/N =
√
χ2 −Nd.o.f.. (C15)

For high signal-to-noise vectors, the approximation1395

S/N =
√
χ2 is not bad. But when χ2 is only moder-1396

ately larger than the number of degrees of freedom, the1397

correction is important, and one should instead use Equa-1398

tion C15. And of course if the measured χ2 is less than1399

Nd.o.f., there is no detection, and the signal-to-noise is1400

essentially zero.1401

Finally, what if the uncertainties are correlated? That
is, what if the data vector has a non-diagonal covariance
matrix C? It turns out that this case can be reduced
to the same formula as above by diagonalizing C and
changing to the basis where the covariance is diagonal.

Cov(d) ≡ C = V ΛV T (C16)

z ≡ V Td (C17)

Cov(z) = V TCov(d)V

= V TV ΛV TV

= Λ (C18)

Given our definition (Equation C9), the signal-to-noise
of z is the same as the signal-to-noise of d. Furthermore,
the χ2 for the two vectors are also equal:

χ2 = zTΛ−1z =
∑

i

z2
i

Λii

= (V Td)TΛ−1V Td

= dTV Λ−1V Td

= dT (V ΛV T )−1d

= dTC−1d, (C19)

where we used the fact that V T = V −1.1402

We know that the signal-to-noise of z is given by Equa-1403

tion C15, since it has uncorrelated uncertainties. Since d1404

has the same signal-to-noise as z, and it has the same χ2
1405

and Nd.o.f., this must also be the correct formula for d.1406

Therefore, Equation C15 applies even to a vector with a1407

non-trivial covariance matrix.1408
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