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Quasi-normal oscillation modes of neutron stars provide a means to probe their interior com-
position using gravitational wave astronomy. We compute the frequencies and damping times of
composition-dependent core g-modes of neutron stars containing quark matter employing linearized
perturbative equations of general relativity. We find that ignoring background metric perturbations
due to the oscillating fluid, as in the Cowling approximation, underestimates the g-mode frequency
by up to 10% for higher mass stars, depending on the parameters of the nuclear equation of state and
how the mixed phase is constructed. The g-mode frequencies are well-described by a linear scaling
with the central lepton (or combined lepton and quark) fraction for nucleonic (hybrid) stars. Our
findings suggest that neutron stars with and without quarks are manifestly different with regards
to their quasi-normal g-mode spectrum, and may thus be distinguished from one another in future
observations of gravitational waves from merging neutron stars.

I. INTRODUCTION

Neutron Stars (NSs) are natural laboratories to study
the behaviour of matter under extreme conditions of den-
sity, rotation and magnetic fields [1, 2]. They are ob-
served across many wavelengths of the electromagnetic
spectrum, from radio waves to X-rays and gamma-rays,
using a variety of instruments and telescopes [3]. Re-
cent observations of merging NSs via gravitational waves
have ushered in a multi-messenger characteristic to re-
search in this area (for recent reviews, see [4, 5]). Pio-
neering measurements of pulse modulation profiles by the
recently launched NICER (Neutron Star Interior Com-
position Explorer) mission is advancing the goal of con-
straining the equation of state of dense matter by set-
ting precise limits (≈ 5%) on the radius of a neutron
star [6, 7].

However, the interior composition of the NS core is
likely to remain uncertain if only global and static prop-
erties of the star, like mass and radius, are measured.
Even with few % precision in these quantities, one can-
not distinguish between the many forms and ways in
which exotic matter can appear in the core of neutron
stars [8–11]. Definitive signatures of such exotic matter
in static NS observables is elusive, but new frontiers in
multi-messenger astronomy, such as gravitational waves,
can provide new insight. For example, when two neu-
tron stars merge, the tidal forces from one component
NS on the other can excite secular quasi-normal modes
(QNMs) that affect the phase of the gravitational wave-
form [12, 13]. Characteristics of some of these QNMs, in
particular, the core g-mode [14–17] depend strongly on
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the composition of the star. Detecting these QNMs in
mergers or isolated NSs remains an observational chal-
lenge, but in principle, this offers a method to constrain
the composition.

The study of QNMs originated in black holes with the
work of Regge & Wheeler [18], Vishveshwara [19] and
Zerilli [20]. The application to neutron stars was begun
by Thorne and Campolattaro [21], followed by numerous
other works (for a review, see [22] and relevant references
therein). Normal modes of neutron stars are tradition-
ally categorized by the restoring force that tries to bring
the perturbed star back to equilibrium. Not all of these
modes couple to gravitational waves, but all of them are
typically subject to dissipation, hence they are regarded
as “quasi”-normal modes.

Our focus in this work is on the g-mode since it is an
example of a secular 1 QNM that appears to be strongly
correlated with the composition of the core, displaying a
remarkable sensitivity to the onset of new species of parti-
cles [16, 17]. To be clear, these are different from the oft-
studied discontinuity g-modes [23, 24] which arise from a
sharp change in the density in the interior, as for exam-
ple at the boundary of a Maxwell-type first-order transi-
tion [25–27] or the core-crust boundary [28]. In principle,
there is an infinite tower of composition-dependent core
g-modes in the star. We study only the lowest order g-
mode. It has the highest frequency of all such g-modes
and is within the sensitivity range of the current gener-
ation of gravitational wave (GW) detectors. They could
be excited by strong tidal effects during the inspiral phase
of NS mergers [29]. We also note that while studies of
the g-mode abound in the literature, several choose to
employ the Cowling approximation [30–32]. In fact, the

1 The term secular refers to the fact that some of these modes are
long-lived, as the dissipation is small.
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composition g-modes pioneered in the work of Reiseneg-
ger and Goldreich [14, 15] used Newtonian gravity for
simplicity, and subsequent works [31, 33, 34] used the
relativistic Cowling approximation in lieu of a fully gen-
eral relativistic treatment. There are no extant studies
of composition g-modes for realistic neutron or hybrid
stars that employ general relativity (GR). We take this
opportunity to “fill the gap” in the literature, as well as
to shed new light on how gravitational wave astronomy
could play an important role in uncovering the role of
quarks or other forms of exotic matter in neutron stars.

In recent works [16, 17], we investigated the role of
composition gradients, including phase transitions to
quark matter, on the sound speeds and g-modes in neu-
tron stars. We found a rise in the frequency of the g-mode
at the onset of quark matter that was most pronounced
in the case of a Gibbs mixed phase [16] and less so in the
case of a crossover [17]. These results were obtained in
the relativistic Cowling approximation (which neglects
perturbations of the background metric). Completing
the analysis and confirming that this effect is robust, we
present the results of calculations of such core g-modes
of hybrid stars in a fully general relativistic framework.
We compare our results in GR to those from the Cowl-
ing approximation, finding generally good agreement as
expected. We also compute the damping time of core g-
modes due to gravitational wave emission, which is only
made possible by the general relativistic prescription 2.

This paper is organized as follows. Section II is a re-
view of the linearized equations in GR that describe polar
oscillation modes of an ideal self-gravitating fluid. This
recap largely follows the presentation by Lindblom and
Detweiler [37, 38], and establishes our working equations
up front, and their reduction to the Cowling approxima-
tion. Section III describes the specific EOS employed to
treat the phase transition, along with a discussion of the
relevant parameters that affect basic neutron star prop-
erties (mass,radius,composition). In Sec. IV, we present
a comparison of our results in GR against the Cowling
approximation, as well as some scaling relations. We also
discuss the relevance of our results to compact stars and
gravitational wave searches for their quasi-normal oscil-
lation modes in this section, and summarize our conclu-
sions in Sec. V.

2 We do not explicitly report results for damping times in this
work. It suffices to mention that this damping time is found
to be extremely long compared to merger timescales for non-
rotating stars. However, g-modes of neutron stars that rotate
sufficiently rapidly can have much shorter damping times [35],
making them unstable to gravitational wave emission. Therefore
such modes remain relevant to merging neutron stars with high
spins or rapidly rotating nascent neutron stars in the post-merger
phase [36].

II. ASTEROSEISMOLOGY IN GENERAL
RELATIVITY

The asteroseismology of compact objects like neutron
stars and black holes requires a general relativistic frame-
work to address the stability of the oscillations and emis-
sion of gravitational waves [39]. The main oscillation
modes and their implications for asteroseismology are re-
viewed in [40–42]. For the f -mode of neutron stars, which
is sensitive to compactness [40] or moment of inertia [43]
and static tidal polarizability [44, 45], but not to compo-
sition 3, post-Newtonian formulae can provide reasonable
estimates of its frequency and damping time [40]. These
estimates hold up well in a general relativistic calculation
and for different microscopic EOS. As pointed out re-
cently [46], the existence of universal (EOS-independent)
scaling relations for the f -mode frequency and damping
time in general relativity are not unexpected, given that
analytically solvable models in general relativity, such as
the Tolman VII solution, have density profiles in accor-
dance with a wide range of EOS [47].

Whether g-modes, which arise from compositional dif-
ferences, exhibit any sort of scaling with global stellar
or material properties in general relativity is an open
question. Another reason to study g-modes in GR is
that they can be dynamically excited by tidal forces in
a binary merger [48], providing compositional informa-
tion in the early gravitational wave signal that cannot be
gleaned from the static tidal deformability/Love number.
This compositional component in the dynamical tide is
expected to be small compared to the f -mode [49], but
may be teased out even at the few percent level by fu-
ture detectors such as the Einstein telescope or the Cos-
mic Explorer [46]. As an aside, perturbations of classi-
cal gravitational backgrounds in GR also serve as a tool
for computing transport properties of strongly coupled
quantum field theories via the gauge-gravity holographic
duality with applications to the quark-gluon plasma [50].

A. Non-radial oscillations in General Relativity

Thorne et al. first studied NS oscillations coupled with
gravitational radiation [51]. Oscillations of NSs are ex-
pected to be linear scalar variations of pressure and den-
sity. Since scalar variations in spherical harmonics are of
even parity, only even-parity perturbations of the Regge-

3 An additional scaling with compactness arises since the modes
are observed at “infinity” and must be corrected for the gravita-
tional redshift at the star’s surface.
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Wheeler metric are considered:

ds2 = −eν(r)[1 + rlH0(r)eiωtYlm(φ, θ)]c2dt2

+eλ(r)[1− rlH0(r)eiωtYlm(φ, θ)]dr2

+[1− rlK(r)eiωtYlm(φ, θ)]r2dΩ2

−2iωrl+1H1(r)eiωtYlm(φ, θ)dt dr ,

(1)

where

eλ(r) =
1

1− 2Gm(r)
c2r

(2)

and

eν(r) = exp

(
− 2G

c2

∫ r

0


[
m(r′) + 4πp(r′)r′3

c2

]
r′
[
r′ − 2m(r′)G

c2

]
 dr′

)
eν0 ,

(3)

where m(r′) is the enclosed mass of the star at r′ and
p is the pressure at r. The functions H0, H1, and K
are radial perturbations of the metric and the angular
part is contained in the spherical harmonics Ylm with
l denoting the orbital angular momentum number and
m the azimuthal number. The quantity ω is a complex
oscillation frequency; its real component is the oscillation
frequency and its imaginary component is the inverse of
the damping time (if it is positive). We can compute
both in the GR framework. The perturbations of the
metric inside the star and outside the star must match
at the stellar surface. The factor eν0 [39] accounts for a
matching of the exterior and interior unperturbed metric.

Perturbations of the fluid inside the star are described
by the Lagrangian displacement vector

ξr = rl−1e−
λ
2WY lme

iωt (4)

ξθ = −rl−2V ∂θY
l
me

iωt (5)

ξφ = − rl−2

sin2 θ
V ∂φY

l
me

iωt , (6)

which defines the perturbation amplitudes W and
V , with a dimension of [R]2−l where R is the ra-
dius of the star. We assume the perturbed fluid is
ideal. Superfluidity inside NS introduces an additional
flow component which is discussed in other works
[31, 52–54]. The perturbations are also assumed to
be adiabatic, which holds only when the in-medium
β-decay time scale is much longer than the oscillation
period. Non-adiabatic effects from the Urca pro-
cess during the inspiral and merger could lower the
g-mode frequency, which effectively damps the mode
energy, leading to weaker gravitational radiation [55, 56].

Perturbations of a spherical star have four degrees of
freedom; three coming from the metric perturbations,
which will be reduced by one applying Einstein’s equa-
tion, δG01 = 8πδT 01, and two coming from the fluid

perturbations. An additional function X, related to La-
grangian pressure variations, in addition to H0, H1 and
K is defined as

∆p = −rle− ν2XY lmeiωt . (7)

In order to avoid a singularity in the fourth-order
ODEs governing NS oscillation for some frequency range,
Lindblom et al. [57, 58] choose the four degrees of free-
dom to be H1, K, W , and X. Evaluating the two re-
maining functions H0 and V in terms of them yields

H0 =
{

8πr2e−ν/2X −
[
(n+ 1)Q− ω2r2e−(ν+λ)

]
H1

+
[
n− ω2r2e−ν − eλQ(Q− e−λ)

]
K
}

(2b+ n+ Q)−1,

(8)

V =

[
X

ε+ p
− Q

r2
e(ν+λ)/2W − eν/2H0

2

]
eν/2

ω2
, (9)

where n = (l − 1)(l + 2)/2, b = Gm/(rc2), Q =
b + 4πGr2p/c4 and ε is the local energy density. By
expanding Einstein’s equation to first-order, the homo-
geneous linear differential equations for H1, K, W and
X are [58],

r
dH1

dr
= −[l + 1 + 2beλ + 4πr2eλ(p− ε)]H1

+ eλ[H0 +K − 16π(ε+ p)V ] , (10)

r
dK

dr
= H0 + (n+ 1)H1

+ [eλQ− l − 1]K − 8π(ε+ p)eλ/2W , (11)

r
dW

dr
= −(l + 1)[W + le

λ
2 V ]

+ r2eλ/2
[
e−ν/2X

(ε+ p)c2ad

+
H0

2
+K , (12)

r
dX

dr
= −lX +

(ε+ p)eν/2

2{
(3eλQ− 1)K − 4(n+ 1)eλQ

r2
V

+(1− eλQ)H0 + (r2ω2e−ν + n+ 1)H1

−
[
8π(ε+ p)eλ/2 + 2ω2eλ/2−ν

−r2 d

dr

(
e−λ/2

r2

dν

dr

)]
W

}
, (13)

where c2ad = ∂p/∂ε is the adiabatic sound speed of NS
matter under oscillations, hence the ∂ here denotes a
derivative taken at fixed composition, i.e., assuming all
weak reactions are too slow compared to the oscillation
timescale. This is different from the equilibrium sound
speed c2eq = dp/dε [16, 59] where weak equilibrium is
assumed to be restored effectively instantaneously.

The boundary conditions for the perturbation func-
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tions at the center of the star r = 0 are

W (0) = 1 (14)

X(0) = (ε0 + p0)eν0/2{[
4π

3
(ε0 + 3p0)− ω2

l
e−ν0

]
W (0) +

K(0)

2

}
(15)

H1(0) =
lK(0) + 8π(ε0 + p0)W (0)

n+ 1
(16)

X(R) = 0 , (17)

where the last boundary condition is obtained by solving
the two trial solutions with K(0) = ±(ε0 + p0) and then
linearly constructing the correct solution satisfying the
boundary condition X(r = R) = 0 (no pressure varia-
tions at the surface). Note that H0(0) = K(0) by con-
struction.

B. Relativistic Cowling Approximation

In Newtonian theory of stellar pulsations, when the
perturbation of the gravity field due to matter pertur-
bation is neglected, this approximation is known as the
Cowling approximation [32], and the resulting equations
for the fluid perturbations are considerably simpler. Sim-
ilarly, in the case of the relativistic theory, the per-
turbation of the GR metric is often neglected as well,
leading to the relativistic Cowling approximation. The
relativistic Cowling equations are obtained by setting
H0 = H1 = K = 0 in Eq. (9), Eq. (12) and Eq. (13), and
furthermore, omitting the term −4π(ε+p)2e(ν+λ)/2W in
Eq. (20), leading to

V =

[
X

ε+ p
− dΦ

d ln r
e(ν−λ)/2W

r2

]
eν/2

ω2
, (18)

dW

d ln r
= −(l + 1)

[
W + le

λ
2 V
]

+ r2eλ/2
[
e−ν/2X

(ε+ p)c2ad

]
,(19)

dX

d ln r
= −lX + (ε+ p)eν/2

{
−2(n+ 1)

dΦ

d ln r

V

r2

−
[
ω2eλ/2−ν − r2 d

dr

(
e−λ/2

r2

dΦ

dr

)]
W

}
, (20)

where Φ = 2ν as in Eq. (3). The reason for omitting
the term −4π(ε + p)2e(ν+λ)/2W in Eq. (20) is that it
follows directly from the last term on the right hand
side of Eq. (11), wherein an application of the Cowling
approximation implies that this term should vanish for
self-consistency.

The boundary conditions for Eq. (19) and Eq. (20)

are obtained by setting K = 0 in Eq. (15):

X(0) = (ε0 + p0)eν0/2
[

4π

3
(ε0 + 3p0)

−ω
2

l
e−ν0

]
W (0) (21)

X(R) = 0 , (22)

where the first condition is an initial value condition for
the ODE system Eq. (19) and Eq. (20), and the sec-
ond one is the boundary condition that determines the
eigenvalue of the oscillation frequency. Unlike the GR
equations, where one needs to determine the appropri-
ate linear combination of two trial functions at the origin
that satisfy the surface boundary condition, the initial
values in the Cowling approximation are uniquely fixed,
which speeds up the computational time by at least a fac-
tor of two. Obviously, reducing four ODEs to two ODEs
is another big advantage of the Cowling approximation.

Although the set of ODEs, Eqs.(19), (20) represent
the equations obtained in the Cowling approximation,
neither they nor the boundary conditions above are gen-
erally used in this form for the purpose of calculating the
oscillation frequencies. The variable X that appears in
the GR formalism can, in the Cowling approximation, be
eliminated in favor of W,V by inserting Eq. (18) into Eq.
(19) and Eq. (20) to obtain

dW

d ln r
= −(l + 1)

[
W + le

λ
2 V
]

+
(ωr)2eλ/2−ν

c2ad

[
V +

eν−λ/2

(ωr)2

dΦ

d ln r
W

]
, (23)

dV

d ln r
= (2

dΦ

d ln r
− l)V

+eλ/2W + ∆(c−2)
dΦ

d ln r

[
V +

eν−λ/2

(ωr)2

dΦ

d ln r
W

]
,(24)

where ∆(c−2) = 1
c2eq
− 1

c2ad
. The suitable boundary con-

ditions for these equations is discussed below.
The above two ODEs can be simplified further by

defining U = −e−νV ,

dW

d ln r
= −(l + 1)

[
W − leν+λ/2U

]
−e

λ/2(ωr)2

c2ad

[
U − dΦ

d ln r

e−λ/2

(ωr)2
W

]
, (25)

dU

d ln r
= eλ/2−ν

[
W − leν−λ/2U

]
+∆(c−2)

dΦ

d ln r

[
U − dΦ

d ln r

e−λ/2

(ωr)2
W

]
, (26)

where W = eλ/2r1−lξr and U = r−lω−2δp/(ε + p) 4,
ξr are proper radial Lagrangian displacements defined in

4 As a crosscheck on the limiting procedure, Eqs.(25) and (26) are
identical to the Cowling approximation Eqs.(79) in [16] with the
replacements W → U/rl+1, U → V/(ω2rl), where U ,V indicate
the fluid variables used in Eqs.(79) of [16].
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Eq. (4) and δp is the Eulerian perturbation of pressure,
which is related to the the Lagrangian perturbation by
∆p = δp− (ε+ p)dΦ

dr ξ
r. This form is particularly advan-

tageous because the boundary conditions are explicitly
collected in square brackets. The first square brackets of
Eq. (25) and Eq. (26) vanish at r = 0, whereas the sec-
ond square brackets are proportional to the Lagrangian
pressure variation, which vanishes at r = R. Explicitly,
the boundary conditions can be written as

W

U

∣∣∣∣
r=0

= leνc = le2Φc (27)

W

U

∣∣∣∣
p=0

=
eλ/2(ωr)2

dΦ
d ln r

=
(ωr)2

√
1− 2b

b+ 4πr2p
|p=0

= (ωR)2 c
2R

GM

√
1− 2GM

c2R
, (28)

which determines the eigenmode frequency of the oscil-
lation. Note that only the ratio between W and U mat-
ters instead of the individual magnitudes of W and U,
as the corresponding eigenmode can have an arbitrary
amplitude. Thus, we simply take W (r = 0) = 1 and
U(r = 0) = e−2Φc/l. Because the two ODEs for W and
U are homogeneous ODEs, we can solve the ODE of W/U
directly:

d(W/U)

d ln r
= −(l + 1)

[
W

U
− leν+λ/2

]
−eλ/2−νW

U

[
W

U
− leν−λ/2

]
−
[
eλ/2(ωr)2

c2ad
+ ∆(c−2)

dΦ

d ln r

W

U

]
×
[
1− dΦ

d ln r

e−λ/2

(ωr)2

W

U

]
(29)

In this form, we only need to solve one ODE instead
of two ODEs, and the boundary conditions are more
straight forward to implement.

III. EQUATIONS OF STATE WITH AND
WITHOUT QUARKS

The discussion in the previous section shows that the
pressure p, energy density ε, and their derivatives c2eq =

dp/dε and c2ad = ∂p/∂ε inside the NS feature prominently
in determining g-modes both in GR and in the Cowling
approximation. The global g-mode frequency is related
to the local g-mode frequency νg known as the Brunt-
Väisälä frequency,

ν2
g = g2eν−λ∆(c−2), (30)

where ν and λ are the temporal and radial metric func-
tions. Here, g = (dp/dr)(ε+p)−1 is the local gravity, and
∆(c−2) = 1/c2eq − 1/c2ad is difference of squared inverse
sound speeds.

In what follows, we briefly describe the equations of
state (EOSs), the relation between p and ε, used in this
work, both for the case of nucleons- and leptons-only
matter and that including quarks. In the latter case, we
consider quarks appearing according to the Gibbs con-
struction as well as when there is a smooth crossover.
The case of discontinuous g-modes [60, 61] encountered
in the case when Maxwell construction is used to treat
first-order phase transitions is considered in a separate
work [27].

A. Nucleonic matter EOS

We describe nucleonic matter using the Zhao-Lattimer
(ZL) [62] model. We adjust its parameters such that the
nuclear saturation density nsat = 0.16 fm−3, the binding
energy Esat = -16 MeV, the compression modulus Ksat =
230 MeV, and the symmetry energy Sv = 31 MeV. The
high-density behavior is controlled by varying the slope
of the symmetry energy parameter, L, within the range
40 - 70 MeV, and a power-law index γ1 fixed at a value
of 2.

For a nucleonic system in which baryon number con-
servation, charge neutrality and β-equilibrium have not
been imposed, the independent variables are the baryon
density nB and the individual nucleon fractions yn, yp.
The total energy density of such a system, as given by
the ZL functional, is

εH =
1

8π2~3

∑
h=n,p

{
kFh(k2

Fh +m2
H)1/2(2k2

Fh +m2
H)

− m4
H ln

[
kFh + (k2

Fh +m2
H)1/2

mH

]}
+ 4n2

Bynyp

{
a0

nsat
+

b0
nγsat

[nB(yn + yp)]
γ−1

}
+ n2

B(yn − yp)2

{
a1

nsat
+

b1
nγ1sat

[nB(yn + yp)]
γ1−1

}
.

(31)

Here mH = 939.5 MeV is the common nucleon mass,
and kFh = (3π2~3nByh)1/3 is the Fermi momentum of
nucleon species h. Note that, in the present context, “H”
and “h” denote nucleons. The parameters a0, b0 and γ
refer to isospin-symmetric matter, whereas a1, b1 and γ1

to isospin-asymmetric matter.
We get the chemical potentials from (see [17] for ex-

plicit expressions)

µh1
=

1

nB

∂εH
∂yh1

∣∣∣∣
nB ,yh2

, (32)

the pressure from the thermodynamic identity

pH = nB

∑
h=n,p

µhyh − εH , (33)
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and the equilibrium speed of sound from(ceq

c

)2

=
dpH
dεH

. (34)

The adiabatic speed of sound is obtained from the partial
derivatives of the pressure and the total energy density
with respect to baryon density with all particle fractions
fixed

(cad

c

)2

=
∂pH
∂nB

∣∣∣∣
yh

(
∂εH
∂nB

∣∣∣∣
yh

)−1

. (35)

B. Quark matter EOS

For the calculation of the quark EOS, we use the vMIT
bag model [63, 64] whose Lagrangian density is given by

L =
∑

q=u,d,s

[
ψ̄q
(
i/∂ −mq −B

)
ψq + Lvec

]
Θ , (36)

where Lvec describes repulsive interactions between
quarks of mass mq confined within a bag (denoted by
the Θ function):

Lvec = −Gv
∑
q

ψ̄γµV
µψ +

(
m2
V /2

)
VµV

µ . (37)

B is a constant reflecting the cost of confining the quarks
inside the bag, and the mq are the current quark masses
(here, mu = 5 MeV, md = 7 MeV, and ms = 150 MeV).

The energy density, chemical potentials, and pressure,
corresponding to the above Lagrangian (before the ap-
plication baryon number conservation, charge neutrality,
and chemical equilibrium) are

εQ =
∑

q=u,d,s

εq +
1

2
a ~ [nB(yu + yd + ys)]

2 +
B

~3
(38)

εq =
3

8π2~3

{
kFq(k

2
Fq +m2

q)
1/2(2k2

Fq +m2
q)

− m4
q ln

[
kFq + (k2

Fq +m2
q)

1/2

mq

]}
(39)

µq = (k2
Fq +m2

q)
1/2 + a ~ nB(yu + yd + ys) (40)

pQ = nB

∑
q=u,d,s

µqyq − εQ (41)

where a ≡ (Gv/mV )2 and kFq = (π2~3nByq)
1/3. We fix

the vector interaction parameter a = 0.2 fm−2 and the
bag constant B1/4 = 180 MeV.

C. Leptons

The smallness of the electromagnetic fine structure
constant α ' 1/137, means that leptons can be treated

as non-interacting, relativistic particles and therefore

εL =
1

8π2~3

∑
l

{
kFl(k

2
Fl +m2

l )
1/2(2k2

Fl +m2
l )

− m4
l ln

[
kFl + (k2

Fl +m2
l )

1/2

ml

]}
(42)

µl = (k2
Fl +m2

l )
1/2 (43)

pL = nB

∑
l

ylµl − εL (44)

kFl = (3π2~3nByl)
1/3 ; l = e, µ . (45)

At low baryon densities only electrons are present in
the system. Muons appear at a density nB such that the
condition µe −mµ = 0 is met.

D. Crossover matter

For the calculation of crossover-matter properties we
rely on the Kapusta-Welle (KW) [11, 17] framework in
the context of which the pressure is given by

pB = (1− S)pH + S pQ . (46)

pH and pQ are the hadron and quark pure-phase pres-
sures respectively, and the switch function

S = exp

[
−
(
µ0

µ

)4
]

(47)

gives the fraction of quark matter to the total baryonic
matter when both quarks and nucleons are present. µ is
the average nucleonic chemical potential

µ =
nnµn + npµp
nn + np

, (48)

and µ0 a typical energy scale for the crossover (here, µ0 =
1.8 GeV).

Applying the grand-canonical expression ni = ∂p
∂µi

∣∣∣
µj

to Eq. (46) we find

n∗h = nh

[
1− S

(
1− 4µ4

0

µ5

pQ − pH
nn + np

)]
(49)

n∗q = S nq . (50)

for the crossover-matter densities (starred) of nucleons
and quarks. Above, the unstarred densities are those of
the pure phases. For leptons this distinction is irrelevant.

Finally, the energy density εB is given by

εB = −pB +
∑

i=n,p,u,d,s

n∗iµi . (51)

The chemical potentials in crossover matter are (func-
tionally) the same as in the pure phases.
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1. Neutron star matter

For a proper description of neutron-star matter that
consists of nucleons, leptons and quarks, the previously
unconstrained system must be subjected to the condi-
tions of strong

µn = 2µd + µu ; µp = 2µu + µd (52)

and weak equilibrium

µn = µp + µe ; µe = µµ ; µd = µs (53)

as well as to charge neutrality

n∗p + (2n∗u − n∗d − n∗s)/3− (ne + nµ) = 0 (54)

and baryon number conservation

n∗n + n∗p + (n∗u + n∗d + n∗s)/3− nB = 0 . (55)

These conditions eliminate the particle fractions in favor
of the total baryon density:

yi → yi,β(nB) ; i = n, p, u, d, s, e, µ (56)

2. Sound speeds

The total pressure and energy density in the crossover
region are

p = pB + pe + pµ (57)

ε = εB + εe + εµ . (58)

Using these, the adiabatic speed of sound is obtained by
first calculating the expression

c2ad(nB, yi) =
∂p

∂nB

∣∣∣∣
yi

(
∂ε

∂nB

∣∣∣∣
yi

)−1

(59)

and then evaluating it in β-equilibrium

c2ad,β(nB) = c2ad[nB, yi,β(nB)] . (60)

The equilibrium sound speed is given by the total deriva-
tives of the pressure and the energy density with re-
spect to the baryon density after the enforcement of β-
equilibrium,

c2eq =
dpβ
dnB

(
dεβ
dnB

)−1

. (61)

E. Gibbs construction

As in the crossover matter case, all thermody-
namic quantities are expressed in terms of the total
baryon density nB, and the individual particle fractions

yn, yp, ye, yµ, yu, yd, ys which are, at this point, in-
dependent variables. The Gibbs construction itself, in-
troduces another independent variable, χ, which is the
volume fraction of quarks in the mixed phase of a soft
first-order transition such that

εB = (1− χ)εH + χεQ ; (62)

that is, the mixed phase is defined by the condition 0 ≤
χ ≤ 1.

Afterwards, the conditions for mechanical, strong, and
weak equilibrium, charge neutrality, and baryon number
conservation are applied:

pH = pQ ; µn = 2µd + µu ; µp = 2µu + µd (63)

µn = µp + µe ; µe = µµ ; µd = µs (64)

3(1− χ)yp + χ(2yu − yd − ys)− 3(ye + yµ) = 0 (65)

3(1− χ)(yn + yp) + χ(yu + yd + ys)− 3 = 0 . (66)

Solving these equations eliminates the yi and χ in favor
of nB. Thus the state variables become functions of only
nB according to the rule

Q(nB, yi, yj , ...)→ Q[nB, yi(nB), yj(nB), ...] = Q(nB) .

Then, the thermodynamics of the mixed (∗) phase are:

ε∗ = (1− χ)εH + χεQ + εL (67)

p∗ = pH + pL = pQ + pL

= (1− χ)pH + χpQ + pL (68)

µ∗h = µh ; µ∗q = µq (69)

y∗h = (1− χ)yh ; y∗q = χyq . (70)

Quantities corresponding to leptons are not affected by
the ratio of the two baryonic components in the mixed
phase.

The sound speeds are obtained following the prescrip-
tion outlined in the previous section.

IV. RESULTS AND DISCUSSION

Fig. 1 is a representation of the EOSs used in this
work in the pressure vs. energy-density plane. The three
classes of EOSs are identical at low and intermediate en-
ergies being that quark contributions are 0 for ZL and
Gibbs and vanishingly small for KW. The width of the
band is a consequence of the variation of the slope of the
symmetry energy L in the range 40 - 70 MeV. At higher
energies the importance of L diminishes; here, the dif-
ferences between curves are due to the presence (Gibbs
and KW) or absence (ZL) of quarks and, to a lesser
extent, the manner in which matter containing quarks
is reached (soft first-order transition or crossover). All
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TABLE I. Neutron star properties for the EOSs used in this
work.

Model L (MeV) Mmax (M�) Rmax (km) R1.4 (km)
40 2.09 10.3 11.8

ZL 55 2.11 11.0 12.6
70 2.10 11.2 13.1
40 2.03 10.6 11.8

KW 55 2.01 11.3 12.6
70 2.01 11.7 13.2
40 2.04 10.6 11.8

Gibbs 55 2.00 10.9 12.6
70 1.98 10.9 13.2

ZL

Gibbs

KW

100 200 500 1000 2000

1

5

10

50

100

500

1000

ϵ (MeV fm-3)

p
(M

e
V

fm
-

3
)

FIG. 1. Range of EOSs displayed as pressure p versus energy
density ε. The composition of the three models used are: for
ZL, nucleons and leptons, for Gibbs, nucleons, quarks, and
leptons in a soft first-order phase transition description, and
for KW, the same as for Gibbs, but in a cross-over description.

EOSs produce NSs consistent with the 2 M� observa-
tions; however, those corresponding to small L’s lead to
radii that are outside the 1-σ constraints of recent studies
(e.g. [65]).

The equilibrium and adiabatic squared sound speeds vs
baryon density for the three models are shown in Figs. 2
and 3, respectively, for low (40 MeV - red), intermediate
(55 MeV - blue) and large (70 MeV - green) values of
L. The curves for the purely-nucleonic model (ZL) grow
monotonically and even exceed 1; albeit at densities be-
yond those reached in the cores of the maximum-mass
NSs. Note, however, that violation of causality is not a
pathology of the ZL functional but, instead, the result
of our choosing a large γ1. On the other hand, the ap-
pearance or enhancement of quarks slows down and/or
reverses the growth in sound-speed (smoothly for KW
and discontinuously for Gibbs).

Fig. 4 shows the difference of the inverses of the two
sound speeds (squared), that determines the profile of

ZL40

ZL55

ZL70

Gibbs40

Gibbs55

Gibbs70

KW40

KW55

KW70

0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

nB (fm-3)

c
e

q
2
(c

2
)

FIG. 2. Squared equilibrium sound speeds vs baryon density
for the models indicated in the inset. See also text for more
details.

ZL40

ZL55

ZL70

Gibbs40

Gibbs55

Gibbs70

KW40

KW55

KW70

0.2 0.4 0.6 0.8 1.0

0

0.2

0.4

0.6

0.8

nB (fm-3)

c
a

d
2
(c

2
)

FIG. 3. Squared adiabatic sound speeds vs baryon density for
the same models as in Fig. 2.

the local oscillation frequency, i.e., the Brunt-Väisälä fre-
quency Eq.(30) (see Fig.8 in [17] for an example of the
profile of the Brunt-Väisälä for the class of models used
in this work). All three models contain two sharp peaks
at low densities which are due to the nuclear liquid-gas
phase transition (∼ 0.1 fm−3) and to the muon onset (∼
0.15 fm−3). The Gibbs model also exhibits sharp peaks
at intermediate densities as a result of deconfinement; the
height(location) of these peaks is (inversely)proportional
to L. Less pronounced, broader peaks occur in the case
of KW as well. Similar to the g-mode study [33] which in-
cluded muons and hyperons (but no quarks), we may in-
terpret the distinct peaks in Fig. 4 as leading to a muonic
g-mode and a g-mode from the onset of quarks.

The lowest order g-mode frequencies of these 9
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Δ
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FIG. 4. Difference of squared inverse sound speeds, 1/c2eq −
1/c2ad for the same models as in Fig. 2.

parametrizations are shown in Figure 5 (a) for full GR
calculations (solid curves) and those using the Cowling
approximation (dashed curves). The Cowling approxi-
mation generates g-mode frequency curves that are qual-
itatively similar to those with the full GR metric per-
turbations. Quantitative differences do exist, however,
with the Cowling approximation generally underestimat-
ing the g-mode frequencies by a few % to about 10 %.

Table II records the lowest order g-mode frequencies
of NSs with 1M�, 1.4M� and Mmax for various EOSs.
Previous studies [24, 35] have suggested that the Cowling
approximation introduces an error of less than 5% for the
g-mode frequency. However, our calculation suggests this
is only true for NSs with low masses, M. 1.6 M�. As
shown in Fig. 5 (b), the deviation increases with the NS
mass, reaching ≈ 10% for NSs close to their maximum
mass.

TABLE II. Lowest order g-mode frequency (Hz) of typical
NSs for the EOSs in Table I without(with) Cowling approxi-
mation.

Model 1 M� 1.4 M� Mmax

114.8 (114.3) 104.2 (103.4) 386.4 (341.4)
ZL 187.3 (181.9) 240.6 (230.1) 582.5 (522.4)

242.6 (236.3) 323.6 (311.2) 700.2 (638.6)
114.8 (114.3) 104.2 (103.4) 578.4 (528.4)

Gibbs 187.3 (181.9) 240.6 (230.1) 801.5 (736.3)
242.6 (236.3) 323.6 (311.2) 948.4 (886.9)
114.6 (114.1) 103.6 (102.9) 597.6 (541.4)

KW 186.9 (181.6) 240.7 (230.2) 580.3 (528.4)
242.6 (236.3) 324.0 (311.5) 653.6 (602.2)

The fact that that Cowling approximation works better
for low mass NSs is not surprising insofar as they have
smaller gravity. Thus, the metric perturbations corre-
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FIG. 5. (a) Comparison of general relativistic and Cowling
approximation (dotted curves) g-mode frequencies vs neutron
star mass for the various EOSs considered in this work. (b)
Relative errors. All curves in (a) and (b) terminate at their
maximum masses.

sponding to perturbations of gravity are correspondingly
weak. This effect is evident in low mass NSs of the ZL40
EOS where ∆(c−2) ≈ 0 for 0.2 fm−3 . nB . 0.7 fm−3.
Therefore, the g-mode oscillation is supported mostly by
matter close to the surface of the NS where gravity is
weak, which allows the Cowling approximation to be par-
ticularly accurate, see Fig. 5 (b). We illustrate this com-
paring results for a 1.4 M� NS with those of a 2.11 M�
(maximum mass) NS with the ZL55 EOS. Figure 6 shows
the fluid and metric perturbation functions for the above
two cases with (dashed curves) and without (solid curves)
the Cowling approximation. In the case of the 1.4 M�
NS, the Cowling approximation produces a nearly iden-
tical fluid perturbation profile as GR with the full metric
perturbation. As a result, the characteristic frequency
decreases from 240.6 Hz to 230.1 Hz with an error of less
than 5%. The small kink in the metric function V close
to the surface in panel (a) arises due to the core-crust
transition which is negligible in panel (b). In the case of
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FIG. 6. g-mode fluid perturbation functions’ radial profile of
general relativistic (solid curves) and Cowling approximation
(dotted curves) as well as metric perturbation functions’ ra-
dial profile (dashed curves) with ZL55 EOS for (a) 1.4 M�
NS and (b) 2.11 M�(maximum mass) NS. W and V are di-
mensionless, while H0, H1 and K are in units of empirical
energy density at saturation εs = 152.55 MeV fm−3 and X is
in units of ε2s.

the 2.11 M� NS, the average magnitudes of the metric
perturbation are about an order of magnitude larger than
that for the 1.4 M� NS. In addition, the fluid perturba-
tion function with the Cowling approximation deviates
from GR significantly. The characteristic frequency de-
creases from 582.5 Hz to 522.4 Hz with an error of about
10% when the Cowling approximation is used.

One of the goals of this paper is to investigate the exis-
tence of a scaling relation involving the g-mode frequency
and an internal attribute of the NS. Previous studies have
shown that the f -mode universally correlates with com-
pactness [40] and moment of inertia [43], and the p-mode
correlates with mean density [66], the discontinuous g-
mode correlates with the density discontinuity and tran-
sition density [25, 27, 60, 61]. Since the restoring force
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FIG. 7. (a) Lepton number fraction as a function of baryon
number density. (b) Lepton number fraction at the center of
NS as a function of NS mass. Markers on the curves indicate
the maximum mass configurations of the corresponding EOS.

for the g-mode is the tendency towards chemical equi-
librium, the associated frequency should be related to
the frequency of the local chemical oscillation in mat-
ter which is proportional to the difference between the
equilibrium and adiabatic sound speeds. This difference
depends strongly on the lepton fraction in equilibrium
in the case of NS matter. Thus, we investigate the role
of the lepton fraction in the scaling relation regarding
g-mode frequency.

The lepton fraction Ylep = ye + yµ as a function of
baryon number density is determined by the EOS. Figure
7 (a) shows the trends for the various EOSs considered
in this work. The markers on these curves indicate the
maximum mass configurations. The monotonic increase
of Ylep with nB is due to a similar monotonic increase
of the symmerty energy for ZL EOSs with nucleons and
leptons only. In contrast, the lepton fractions of hybrid
EOSs deviate from those of nucleonic EOSs at the onset
of quarks. The downward trends with nB are due to the
fact that the charged quarks render the fractions of lep-
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FIG. 8. (a) Comparison of the g-mode frequencies vs lepton
fraction for the various EOSs with and without quarks. (b)
Same as (a) but for the dimensionless quantity GMωg/c

3 vs
lepton fraction.

tons to be diminished in satisfying charge neutrality. In
the case of Gibbs construction, the quark-hadron transi-
tion is of first-order, leading to a sharp kink in Ylep. The
KW crossover treatment uses a smooth bridge between
the quark and nucleonic EOSs, and results in a smooth
Ylep. Hybrid NSs with both Gibbs and KW constructions
approach the limit of pure quark matter at high density
causing Ylep = 0.

Figure 7 (b) shows the lepton fraction at the center of
the NS, Y clep, taken to be its characteristic lepton fraction,
as a function of mass. Note that Y clep follows the same

trend as in Fig. 7 (a), with the x-axis scaled. The curves
become steep on the right side since the central density
increases quickly toward maximum mass configurations.

The g-mode frequency is shown in Fig. 5 (a). Results
for the nucleonic EOS (ZL) have identical shapes as in
Fig. 7 (b) and Fig. 5 (a), indicating a strong correlation
between the central lepton fraction and the g-mode fre-
quency. We introduce a dimensionless g-mode frequency

as Ωg = GMωg/c
3, which universally correlates with the

central lepton fraction for nucleonic NSs, see Fig (b). 8.
This correlation is well fit with the linear form

Ωg = 1.228(Y c − 0.05) , (71)

where Y c = Y clep is a characteristic of weak equilibrium
which dominates the g-mode in nucleonic NSs.

The hybrid NSs, however, deviate from the above cor-
relation. Figure 8 shows that Ylep decreases with density
after the onset of quarks, whereas the g-mode frequency
keeps increasing. Because the quark-hadron mixture in-
troduces additional strong equilibrium between nucleons
and quarks, we characterize the quark content of hybrid
NSs by the quark number fraction Yqak = (yu+yd+ys)/3.

In order to combine the contribution from strong and
weak equilibrium, we take Ylep + Yqak as a new dimen-
sionless parameter to obtain an EOS-insensitive relation
for the g-mode frequency, as shown in Figure 8. Results
of Yqak for hybrid NS EOSs are shown in Fig. 9. The
quark fraction increases steeply with density for Gibbs,
whereas it increases slowly at low density and become
steep at higher density for KW. A similar tendency can
be observed in g-mode frequency as well, see Fig. 5 (a),
indicating a strong correlation between the central quark
fraction and the g-mode frequency.

The universal relation in Eq. (71) can be used for hy-
brid NSs with Y c = Y clep + Y cqak. Given the fact that ZL,
Gibbs and KW EOSs have drastically different compo-
sitions, this universal relation is adequate enough, com-
pared with the 10% deviation caused by the Cowling ap-
proximation. Results illustrating this relation are shown
in Fig. 10.

V. SUMMARY AND CONCLUSIONS

In this work, we extended the calculation of g-mode
oscillations in hybrid stars that we initiated within the
Cowling approximation in [16, 17], to the linearized per-
turbation equations of general relativity. Our main ob-
jectives were to quantify the differences in the g-mode
spectrum for nucleonic and hybrid stars between the
full GR and Cowling approximation approaches, as well
as to obtain new scaling relations between mode fre-
quencies and global stellar properties. We utilized self-
consistent fluid and metric perturbation equations em-
ployed in [57, 67], taking care to choose variables that
are singularity-free inside the star and verifying their
limiting forms that yield the equations of the relativis-
tic Cowling approximation. The microscopic description
of nucleonic and quark matter is identical to our previ-
ous work [17], allowing for a direct comparison of results
between the Cowling and general relativistic framework.
Assuming an ideal, zero-temperature fluid, we also com-
puted the damping times for g-modes from the imaginary
part of the frequency and found them to be very long
compared to merger timescales or any other dynamical
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FIG. 9. Same as Fig. 7 but for quark fraction Yqak in hybrid
NS EOS.
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FIG. 10. Same as Fig. 8 (b) but with x-axis replaced with
Ylep + Yqak for hybrid NS EOS.

timescales over which g-modes might be excited, indicat-
ing that these modes are long-lived. We do not consider
the possibility of rapid dissipation and damping due to
non-adiabatic effects in neutrino-trapped matter, or vis-
cous damping of higher order g-modes, which can con-
siderably narrow the instability window in rotation rate
and temperature [35]. Different formalisms [68, 69] have
been suggested to address causality and stability of per-
turbations in relativistic dissipative self-gravitating flu-
ids, which can be avenues for future work. Whatever the
actual damping rates may be, such modes, if excited to
sufficient amplitude, can act as a source of gravitational
wave emission owing to the CFS instability [70, 71] in
rotating neutron/hybrid stars, providing a link between
the gravitational wave signal and the composition of the
star.

Our principal finding is that, for any given stellar con-
figuration up to the maximum mass (about 2-2.25M�
depending on the EOS), the fundamental g-mode (i.e.,
the one with the lowest frequency) in general relativity
agrees to within ≈ 10% with that obtained in the Cowl-
ing approximation, with the precise amount of deviation
decreasing with decreasing stellar mass. This trend is
expected due to the decreasing relevance of general rela-
tivity for lower mass neutron stars, but we find deviations
to be larger than previously suggested [24, 35], especially
for higher mass stars. This finding holds whether the
star is purely composed of nucleons, or if it contains an
admixture of quarks. We therefore conclude that results
for g-mode frequencies in the Cowling approximation are
fairly robust across the range of observed neutron star
masses for both nucleonic and hybrid stars.

Interestingly, the deviations between the Cowling and
general relativistic results are largest for nucleonic stars,
while for hybrid stars modeled by the Gibbs construc-
tion, they decrease substantially at the onset of the quark
phase (threshold NS mass ≈ 1.8M�) before rising again
as the maximum mass is approached. We suspect this
is due to the fact that g-mode frequencies are mainly
determined by differences between the equilibrium and
adiabatic sound speeds, which in turn depend on the
input microscopic EOS rather than general relativistic
effects; as the sound speed difference increases sharply
when quarks appear in the Gibbs phase, their impact on
the g-mode frequencies overwhelms any effects that stem
from general relativity. This would be consistent with
the clearly non-monotonic behavior in the deviation that
is evident in the Gibbs construction, but is absent from
the crossover models where quarks are admixed with nu-
cleons at any density. In other words, while it is possible
to find crossover models for hybrid stars where the Cowl-
ing approximation is an excellent approximation for any
neutron star mass, the reliability of the approximation in
the Gibbs case depends on the neutron star mass.

This is not to imply that the inclusion of metric per-
turbations has no effect on the g-mode itself. In neu-
tron star masses of ≈ 2M� or larger, metric perturbation
amplitudes in the star are an order of magnitude larger
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compared to a canonical mass of ≈ 1.4M�, effectively de-
creasing the size of the fluid perturbations by up to 10%
compared to the Cowling result. Ultimately, the coupling
of the fluid to the background metric is what determines
the gravitational wave amplitude, and the detectability
of the gravitational wave signal.

By studying trends in the g-mode with composition,
we also found a universal relation between the (dimen-
sionless) g-mode frequency and the central lepton (or lep-
ton+quark) fraction of a purely-nucleonic (hybrid) NS. In
both cases, this is understood to be a consequence of the
dependence of the sound speed difference on changes in
lepton and quark fractions as these particle species drive
reactions that restore weak and strong equilibrium, re-
spectively, in the perturbed fluid. While the simple uni-
versal relation presented here works remarkably well for
a purely-nucleonic star, it is to be employed with caution
for hybrid stars, as compositional changes can be varied
and sudden, depending on how the phase transition is
modeled therein. In general, the applicability of this uni-
versal relation is less sensitive to the inclusion of general
relativity than it is to compositional changes in the hy-
brid EOS, with the Gibbs construction deviating more
than the crossover models. Besides leptons and quarks,
other degrees of freedom such as hyperons could play a
similar role in increasing the sound speed difference [33].
The universal relation could be extended when additional
degrees of freedom are introduced. Although no core os-
cillation modes have yet been detected from gravitational
waves or electromagnetic observations, such universal re-
lations and their relation to global stellar attributes are
of practical value in constraining mode frequencies, as
has been demonstrated for the case of f -modes [29]. One
hopes that in the future, with third generation detectors
like the Einstein Telescope or Cosmic Explorer, either
through the direct detection of g-modes or its coupling to
transient electromagnetic bursts [15], we can have con-
clusive evidence about the composition of neutron star
interiors.

Our results are of relevance to the late stages of a bi-
nary NS merger, particularly during the inspiral phase
when the tidal field reaches resonance with either star’s
internal oscillation modes, resulting in energy and an-
gular momentum transfer from matter to gravitational
waves. Amongst these modes, while the f -mode has tra-
ditionally been the focus of study, the g-mode is unique in
its sensitivity to composition, therefore, studying the ef-
fect of general relativity on the g-mode of neutron/hybrid
stars is deserving of further study. The lower frequency
g-mode could excite resonance at the earlier stage of a
merger, making it much more likely to be observed in
GW detectors. Building on our work presented here, in-
corporating effects such as rotation [36, 72, 73] and super-
fluidity [52, 74] will help in understanding the g-modes
of hybrid stars more thoroughly.
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[69] J. Noronha, M. Spaliński, and E. Speranza, arXiv e-

prints , arXiv:2105.01034 (2021), arXiv:2105.01034 [nucl-
th].

[70] S. Chandrasekhar, Physical Review Letters 24, 611
(1970).

[71] J. L. Friedman and B. F. Schutz, Astrophys. J. Lett. 199,
L157 (1975).

[72] D. D. Doneva, E. Gaertig, K. D. Kokkotas, and
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