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The self-lensing of a massive black hole binary (MBHB), which occurs when the two BHs are
aligned close to the line of sight, is expected to produce periodic, short-duration flares. Here we
study the shapes of self-lensing flares (SLFs) via general-relativistic ray tracing in a superimposed
binary BH metric, in which the emission is generated by geometrically thin accretion flows around
each component. The suite of models covers eccentric binary orbits, black hole spins, unequal mass
binaries, and different emission model geometries. We explore the above parameter space, and report
how the light curves change as a function of, e.g., binary separation, inclination, and eccentricity.
We also compare our light curves to those in the microlensing approximation, and show how strong
deflections, as well as time-delay effects, change the size and shape of the SLF. If gravitational waves
(GWs) from the inspiraling MBHB are observed by LISA, SLFs can help securely identify the source
and localizing it on the sky, and to constrain the graviton mass by comparing the phasing of the
SLFs and the GWs. Additionally, when these systems are viewed edge-on the SLF shows a distinct
dip that can be directly correlated with the BH shadow size. This opens a new way to measure BH
shadow sizes in systems that are unresolvable by current VLBI facilities.

I. INTRODUCTION

Massive black hole binaries (MBHB) are thought to
reside in the nuclei of numerous galaxies as a result of
galaxy mergers [1]. As their orbits shrink, they will even-
tually merge due to gravitational wave radiation. MB-
HBs are also the primary candidates to be observed by
LISA [2], and are targeted by searches for gravitational
waves (GWs) via pulsar timing arrays (PTAs; [3]). MB-
HBs are expected to be surrounded by a gaseous cir-
cumbinary disk, from which material is accreted towards
both black holes (BHs), forming a so-called mini-disk
around each component. In many cases, the accretion
rates are expected to be close to the Eddington limit, and
the mini-disks are then best described by geometrically
thin and optically thick accretion flows. Electromagnetic
emission from these systems should be detectable start-
ing well before the merger, and should persist all the way
to the merger [4, 5].

Observational evidence for compact MBHBs was, how-
ever, until recently sparse (see, e.g. [6, 7] for comprehen-
sive recent reviews). The first detected candidates are
large-separation binaries of several kpc [8, 9]. More re-
cently, with large optical time-domain surveys, several
active galactic nuclei (AGN) have been identified that
show quasi-periodic behavior in their light curves [10–
14].

This periodicity can be attributed either to periodic
hydrodynamical modulations of the accretion flow [15–
19], or to relativistic Doppler effects [20, 21]. One Kepler
source KIC-11606854 [21], also known as Spikey, shows,
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in addition, a short duration flare, lasting for a time scale
of an hour. This short duration makes an accretion-
induced flare scenario unlikely, since the viscous and the
orbital timescales in the disk regions believed to be re-
sponsible for optical emission are both too long compared
to the flaring time. An alternative mechanism for these
flares is self lensing of the MBHB [21–23].

Assuming the BHs orbit on elliptical Keplerian orbits,
self-lensing can occur when the binary is viewed close to
edge-on. For a distant observer, one of the mini-disks is
lensed by the other BH twice per orbit. Lensing occurs
when the two BHs are aligned with respect to the line of
sight, such that the source is within the Einstein angle
of the lens. The Einstein angle for a point-mass lens is
given by [e.g. 24]

θE = rE/D =

√
4GM

Dc2
, (1)

where rE is the Einstein radius, G is Newton’s constant,
M is the mass of the lens, D−1 ≡ D−1

L −D
−1
S , DL and DS

are the distances to the lens and the source, respectively,
and c is the speed of light.

Previous work has raised the possibility of such self-
lensing, using simple models [21, 22, 25–27]. In these
studies, lensing was approximated in the limit of mi-
crolensing, meaning that the lens and the source are both
taken to be point-like, and the deflections angles are as-
sumed to be small [28]. These simple models demon-
strated that self-lensing, together with the Doppler mod-
ulation from the orbital motion, can produce the ob-
served sinusoidal trends in the light curves, as well as
produce recurring lensing flares for nearly edge-on bina-
ries. However, they did not consider the effects of finite
light travel time and photon trajectories in strongly rel-
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ativistic spacetimes. Additionally, [27] and [21] both as-
sume the emission from each component to be point-like.

Ref. [22] presented, in addition, the first exhaustive
study, including the dependence of the flare shapes on
source morphology by including a finite-sized disk emis-
sion model. The mini-disks were assumed to extend from
the the innermost stable circular orbit (ISCO) to the
tidal truncation radius. On the other hand, these mod-
els still utilized the microlensing approximation, for each
disk patch.

The strong bending of photon trajectories in the
strongly relativistic regions can introduce new effects in
two ways. First, in the ”source”, the lensing of the mini-
disk emission by its own central BH warps the emission
region around it, enlarging its apparent size on the sky
and strongly distorting its shape. Second, for sufficiently
compact binaries, rays passing near the other BH (i.e.
the ”lens”) can suffer further large deflections.

To our knowledge, the first mentions of MBHB self-
lensing modeled with general relativistic ray tracing
(GRRT) was made by [29], who computed the emission
from thin Novikov-Thorne disks in curved spacetimes.
They modeled a binary with a mass ratio of q = 0.01
and showed a single light curve. See also related works
by [30] who ray traced numerical binary metrics with a
far away artificial screen, on ray tracing GRMHD MBHB
simulations by [31, 32], on emission from binary neutron
stars [33], and [26] on lensing by stellar transits around
a supermassive BH. More recently, [23] studied lensing
flares by ray-tracing the image of the disk around the
background BH that is lensed by the other (foreground)
BH. This method allowed them to compute light curves
that include strong lensing distortions of the source mor-
phology. This work, however, does not use a binary met-
ric, only considers circular equal mass binaries, and does
not include Doppler modulations due to orbital motion.

In this work, we expand on these recent studies by
including the above, previously neglected, effects, and
by exploring how the light curves of self-lensing binaries
depend on numerous model parameters. In § II, we con-
struct an approximate superposed Cartesian binary met-
ric, explain our adaptive general-relativistic ray-tracing
code, and describe our semi-analytical emission models.
In § III, we report the results of our parameter explo-
ration, which are further discussed in § IV. Finally in
§ V, we summarize our main findings and the implica-
tions of this work.

II. METHODS

In this section, we introduce our approximate super-
posed binary metric and the Kepler orbits used for the bi-
nary, explain our adaptive general-relativistic ray-tracing
code, and finally describe our emission models and intro-
duce our model parameters.

A. Metric

For constructing an approximate binary metric, we use
a superposition of two Cartesian Kerr-Schild metrics [34],
this approach is similar to Refs. [29, 35]. Our covariant
superposed metric, gµν , in geometric units G = M = c =
1, is given by,

gµν = ηµν + hpµν + hsµν , (2)

where (p/s) superscripts indicate the primary or sec-
ondary BH, and q is the mass ratio q ≡ Ms/Mp ≤ 1.
The metric is a superposition of the Minkowski metric
ηµν defined as ηµν = (−1, 1, 1, 1), and two source terms

h
p/s
µν = fp/sl

p/s
µ l

p/s
ν for the BHs, where f is a scaling

factor, and lν is a Killing vector. The source terms are
shifted with respect to the original spatial coordinates ~x
via ~xp/s = ~x − ~xbh with ~xbhp/s the position vector of the

BH. The factor f and Killing vector lν are given by,

f = 2r3

r4+a2z2 , (3)

lν =


1

rx+ay
r2+a2
ry−ax
r2+a2
z
r ,

 (4)

where r is the radial coordinate, equivalent to the radius
in spherical Kerr-Schid coordinates, given by

r2
=
R2−a2+

√
(R2−a2)2+4a2z2

2 , (5)

R2 = x2 + y2 + z2. (6)

All terms f and lν are either using the variables for the
primary or secondary BH. The contravariant metric is
similarly defined as

gµν = ηµν − hµν,p − hµν,s, (7)

with hµν,p/s = fp/slµ,p/slν,p/s. Here lν,p/s is identical to

l
p/s
ν except that the temporal component changes sign.

The choice for a superposed metric violates the non-
linearity of the Einstein equation. However, [36] showed
that a superposed metric in post-Newtonian (PN) har-
monic coordinates recovers the behavior of more exten-
sive PN approximate metrics. In this work, we only con-
sider relatively wide binaries, i.e. with separation d much
larger than Rg and vγ < 1, where Rg = GM

c2 is the gravi-

tational radius, v the orbital velocity, and γ = 1/
√

1− v2

the Lorentz factor.
In this limit [36] showed that the addition of ”fake”

mass (Fig. 7 in their work) , e.g. the mass not accounted
for in the stress-energy tensor of the Einstein equations
given the metric we use, is small. [36] computed for their
superposed metric that for a 40Rg binary the ”fake” mass
would be of the order of 10−7 M�. The leading order
correction for our metric would be the tidal deformation,
which scales with the binary separation a as 1/a3. In
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this work we limit ourselves to the smallest separation of
100Rg, resulting in an order 10−6 effect.

The benefit of a superposed metric is that it is compu-
tationally cheap, and therefore ideal for performing our
parameter study as long the binaries have large separa-
tions, where, e.g., tidal deformations and gravitational
radiation remain small corrections. In our case, we will
limit ourselves to large separations of at least 100Rg
which also ensures that the orbital velocity remains at
most mildly relativistic.

B. Keplerian orbits

Our assumed superposed metrics take the BH positions
as an input. We assume the BHs to be on Keplerian
orbits with eccentricity e. To find the position of the
BHs given a separation aper at periapsis, total binary
mass M , mass ratio q, eccentricity e, and time t, we
solve the Kepler equations in the center-of-mass frame
following [37]. We initially orient coordinate axes such
that the orbital angular momentum vector of the binary
is aligned along the z-axis,

which is further assumed parallel to the individual BH
spin axes (although we will relax the latter assumption
below by rotations the BH spin axis and the orbital axis).
In more detail, to find the positions of the BHs as a
function of time, we use the following steps:

1. Given the periapsis distance, find the semi-major
axis amajor = aper/(1− e) and compute the orbital

period T =
√

4π2a3
major/(1 + q).

2. Given the period T and the input time t, define the
phase n = 2πt/T .

3. Solve Kepler’s equation, n(t− t0) = E− e cosE for
the eccentric anomaly E, using a Newton-Raphson
algorithm (here t0 sets the pericenter passage time).

4. Given E, find the radial distance r = amajor(1 −
e cosE)

5. Given r, find the phase angle f = t
√

1 + q/r3/2 (for
e = 0) or f = cos−1[(amajor(1 − e2)/r − 1)/e] (for
e 6= 0).

The position vector is then given by

~X =

XY
Z

 =

r cos f
r sin f

0

 . (8)

Finally, we introduce a rotation of the binary around
the z-axis by a node angle Ω and around the y axis by
the inclination angle I. The rotation around the y axis
keeps the BH spin axes fixed in the z direction. The
angular momentum vectors of both minidisks are also
kept aligned with BH spin axes, and are in this case mis-
aligned with the binary orbit. The inclination angle of

the observer is defined with respect to the angular mo-
mentum vector of the binary, with the observer located
in the x − z plane, as illustrated in Fig. 1. This results
in the following rotated position vector,

~X =

r cos(f + Ω) cos I
r sin(f + Ω)

r cos(f + Ω) sin I

 . (9)

The positions of the individual BHs are then given by

~xp = 1
1+q

~X and ~xs = − q
1+q

~X.

The velocity of the binary is computed by taking the
time derivate of the position vector and is given by

~V =

(ṙ cos(f + Ω)− rḟ sin(f + Ω)) cos I

ṙ sin(f + Ω) + rḟ cos(f + Ω))

(ṙ cos(f + Ω)− rḟ sin(f + Ω)) sin I

 (10)

where

ṙ = 2π
amajore sin f

T
√

1− e2
(11)

rḟ = 2π
amajor(1 + e cos f)

T
√

1− e2
(12)

The BH velocity vector is then given by ~vp = 1
1+q

~V

and ~vs = − q
1+q

~V . These velocities are used to com-

pute the Doppler shift of the observed frequency via,
νobs = νemitted/(γ(1 − v‖)), where γ = 1/

√
1− v2 is the

Lorentz factor, and v‖ the velocity parallel to the line of
sight.

C. Adaptive general-relativistic ray tracing

To generate synthetic images and light curves, we
adapted the general-relativistic ray tracing (GRRT) code
RAPTOR [38, 39]. The code integrates the geodesic equa-
tion and simultaneously solves the radiation transport
equation for multiple frequencies. The geodesic equation
is given by,

d2xα

dλ2
= −Γαµν

dxµ

dλ

dxν

dλ
, (13)

with λ is the affine parameter and Γαµν the connection
coefficients given by,

Γαµν =
1

2
gαρ [∂µgνρ + ∂νgµρ − ∂ρgµν ] . (14)

The connection coefficients depend on the derivates of
the metric. These derivates are numerically computed
by the code using a first-order finite difference method.

Light rays are initialized as geodesics attached to a
pixel on a virtual camera held by the observer. We use a
covariant tetrad camera described in [40], positioned far
away from the center of mass, dcam = 104. As the code
integrates the geodesic equation, it simultaneously solves
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FIG. 1. Illustration of the model setup. The binary’s center
of mass is at the origin, and the observer is located in the
x− z plane. The binary’s orbital plane is tilted with respect
to the observer’s line of sight by the angle iorbit. The BH
spin axes and the orbital angular momentum vectors of the
minidisks are kept parallel to the z-axis, and are misaligned
with the binary’s orbital plane by the angle I. The node
angle Ω specifies the orientation of the semi-major axis of the
elliptical binary orbit within the orbital plane,rotating the
binary while keeping the observers position fixed will change
the moment during the orbit when the two BHs are aligned
with the line of sight.

the radiative transfer equation backward in time, which
is given by

dIν
ν3dλ

= jν exp(−τν). (15)

Here jν is the local specific emissivity coefficient and τν
is the optical depth, defined as τν =

∫ λcurrent

0
νανdλ. The

integral goes from the ”camera” to the current point of
integration, and αν is the specific absorption coefficient
which depends on the emission model (described in the
following section). During the integration of a geodesic,
we keep track of the coordinate time and change the po-
sitions of the BHs correspondingly. This introduces a
retarded time in our models, often referred to as “slow-
light” in the ray-tracing literature. This is in contrast to
“fast light”, where all dynamical processes are ignored,
i.e. the metric as well as the plasma is assumed static
during the ray-tracing (effectively corresponding to an
infinite speed of light).

Since the binaries studied in this work have large sep-
arations and high resolution is needed only close to the
BHs or to the Einstien ring, using a purely uniform res-
olution camera is computationally inefficient since most
of the field of view is empty. To this end, we speed up
our code by implementing a quadtree adaptive mesh re-

finement scheme on the camera plane, enabling the code
to add resolution during run time only in the regions
of interest. Our method differs from the approach by
[41], who introduced adaptive gridding by using recur-
sive subdivision of the image plane which is not block
based. Our method is closer to adaptive mesh refine-
ment strategies as used in GRMHD, e.g. [42]. The code
initializes a uniform camera grid at relatively low reso-
lution, consisting of N1 ×M1 blocks with n ×m pixels.
Given a predefined field of view (fov) of the total image
fovx by fovy, each block has a fov of block fovx= fovx
/N1 and block fovy=fovy/M1, with pixel separation of
dx=block fovx/n and dy=block fovy/m. Each block has
a unique set of indices i, j from which we can compute
the coordinates of the lower-left corner

lcornerx(i) = − fovx/2 + i× block fovx (16)

lcornery(j) =− fovy/2 + j × block fovy, (17)

and assign an initial set of impact parameters α, β for
the pixel given a set of indices k, l,

α =lcornerx(i) + (k + 0.5)dx (18)

β =lcornery(j) + (l + 0.5)dy. (19)

Every block is then ray-traced by the code, and the total
intensity of each pixel is computed. The code then com-
putes the sum sij of the relative differences for every pixel
with index (k, l) in a block and their four direct neighbors
(excluding diagonals) via skl =

∑
mn | Ikl − Imn | /Ikl,

and when the maximum of this sum in a block exceeds a
user-defined threshold sth, refinement is triggered for the
whole block. For sth we use a value of 0.2, correspond-
ing with an increase of more than 20 percent between
adjacent pixels. When refinement is triggered, the block
splits in two in both directions, the level is incremented
by one, and new indices for the new blocks are computed
via

i =2iparent + kchild mod 2 (20)

j =2jparent + kchild/2, (21)

where kchild is an index that runs from zero to four and
iparent and jparent are the original (i, j) indices of the
parent block. The coordinates of the lower-left corners
of the new blocks are computed via

lcornerx(i) = − fovx/2.+ i× block fovx/2
level−1(22)

lcornery(j) =− fovy/2.+ j × block fovy/2
level−1,(23)

where level is the current resolution level, from which the
impact parameters can be computed from Eq. 19.

For each pixel in the block, the code then recomputes
the emission at the new resolution level. This procedure
repeats every time the refinement criterion is met or until
the level of refinement of a block reaches a user-defined
maximum.

A high-resolution example of an adaptive image is
shown in Fig. 2, where white lines indicate blocks. The
speedup obtained by this method depends on the image
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morphology. If an Einstein ring is present, the emission
region is enlarged, and more high resolution blocks are
triggered. In this case, the speedup is approximately a
factor three compared to a uniformly sampled image with
the smallest pixel size used in the adaptive case, while in
the absence of an Einstein ring, the speedup is approxi-
mately a factor ten.

FIG. 2. Example of a ray-traced image in one of our mod-
els, illustrating the adaptive grid of the camera pixelization.
White lines indicate blocks of equal resolution, each contain-
ing 252 pixels. Higher resolution blocks are triggered only
when a block overlaps with the source.

Additionally, we can predict the location of the BHs on
the image by solving Kepler’s equation for the expected
arrival time of the light ray at the BH. The code then
only computes the blocks that are close to the predicted
positions. This results in an additional factor of four
speedup for our widest binaries (amajor = 1000Rg).

D. Emission model

To describe the emission from the plasma around each
BH component, we adopt multicolor ”minidisks”, gen-
erating radiation by an optically thick and geometrically
thin accretion flow. The disk resides in the plane perpen-
dicular to the BH spin axis, meaning that the disk’s an-
gular momentum vector is parallel to the BH’s spin axis.
In what follows, the two BH spin axes will be assumed
to be aligned with respect to one another. This choice is
not strongly physically motivated, but was made to limit
the number of models presented in this work. In reality
misalignment between the secondary and primary can be
expected [see e.g. 43, 44]. The minidisk extend from an

inner radius Rinner up to the tidal radius. The inner ra-
dius is either at the event horizon, Rh = 1 +

√
1− a2 or

at the ISCO, given by

RISCO = 3 + Z2 +
√

(3− Z1)(3 + Z1 + 2Z2), (24)

Z1 = 1 +
3
√

1− a2
(

3
√

1 + a+ 3
√

1− a
)
, (25)

Z2 =
√

3a2 + Z2
1 , (26)

where a is the dimensionless spin parameter of the BH.
The tidal truncation radius of a minidisk is given approx-
imately by [45]

Rtidal,p =0.27q−0.3amajor(1− e), (27)

Rtidal,s = 0.27q0.3amajor(1− e). (28)

When a geodesic crosses the disk, the intensity is
computed from a black body spectrum. The tem-
perature of the black-body spectrum is set via T =

T0M
−0.25
6 r

−3/4
5

√
1−Rh/R. Here T0 is a normalization

factor, which we set to T0 = 3 × 107K, such that the
peak of our spectra in the plasma frame is similar to
the spectra found by [4, 5]. These studies of the spec-
tral shape in hydro-simulations included shock-heating
of the minidisk, and found it to dominate over viscous
heating. The BH mass (either primary or secondary) is
specified in terms of M6 = MBH/(106M�) and the radius
by r5 = r/(5rg), and the dependence on radius and mass
follows a typical thin disk temperature profile [46]. For
illustration, black-body spectra in the local frame of the
disk at a series of radii are shown in Fig. 3.

1015 1016 1017 1018 101910 4

10 2

100

102

104

106

B

Mbin=107 M , q=1.0

R=2.5 Rg
R=5.0 Rg
R=10 Rg
R=15 Rg
R=15 Rg

FIG. 3. Black-body spectra for a binary mass ofM = 107 M�,
and mass ratio q = 1 at various radii in the disk. The temper-
ature is normalized so that the spectra resemble those found
in hydrodynamical simulations [5].

The velocity profile is assumed either to be circular,
or additionally includes a radial free-fall velocity compo-
nent. The latter is used in the variants of our model,
discussed below, in which we set the inner radius to be
smaller than the ISCO. Purely circular Kepler orbits in-
side the ISCO are non-physical and hence the accretion
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flow in the inner regions will have significant radial veloc-
ities. The spatial component of the four-velocity is given,
in Boyer-Lindquist coordinates, by

ur =

{
0, if Rinner = RISCO
−
√

2r(a2 + r2)∆/Σ; otherwise
(29)

uθ = 0. (30)

uφ = utω (31)

where Σ = (r2 + a2)2 − a2∆ sin(θ)2, ∆ = r2 + a2 − 2r,
and ω = 1/(r3/2 + a1/2) is the angular velocity, where a
is the BH spin. The time component of the four-velocity
is then computed in such a way that it ensures the right
normalization uµuµ = −1 of the four-velocity, via

ut =
√

(−1− ururgrr)/Ψ, (32)

Ψ =gtt + 2ωtotgtφ + ω2
totgφφ. (33)

here the metric components are in Boyer-Lindquist coor-
dinates and are given by

gtt = −
(

1− 2r
ρ

)
(34)

grr = Σ/∆ (35)

gtφ = − 2ar sin2 θ
ρ (36)

gφφ =
(
r2 + a2 + 2a2r sin2 θ

ρ

)
sin2 θ (37)

ρ = r2 + a2 cos2 θ (38)

The four-velocity in BL coordinates is then transformed
to Cartesian Kerr-Schild coordinates.

E. Model parameters

In total we performed a suite of 28 simulations. The
full list of model parameters that we will vary can be
grouped in three sets; namely the orbital parameters:
periapsis aper, eccentricity e, orbital inclination iorbit,
and nodal angle Ω; the BH parameters: BH mass M ,
mass ratio q, spin ap/s, BH spin inclination iBH,p/s; and
the emission parameters: opacity τ , and the inner radius
Rinner. A cartoon of the geometry of our model config-
uration is shown in Fig. 1 and the various models and
their parameters are summarized in Table I.

We compute the synthetic images at four frequencies
uniformly spaced between 2.5 keV and 10 keV, we focus
on the X-ray emission since it is typically produced close
to the BH horizon. Light curves are then generated by
integrating the images and taking the sum of the total
fluxes at each frequency. In what follows light curves
show the 2.5 keV emission. The initial resolution is cho-
sen such that the images and light curves are well resolved
spatially and in time when three levels of resolution are
used. We found empirically that a base resolution of N2

pixels, together with two adaptive refinement levels, is
sufficient for all our models when N is given by

Disk Orbit Black hole Opacity
Rinner aper e iorbit Ω Mp q a iBH τ

Fiducial model
M0 rh 100 0 90 0 107 1 0 90 thick

Inner radius dependence
M1 rISCO 100 0 90 0 107 1 0 90 thick

Binary orbital inclination dependence
M2a rh 100 0 89 0 107 1 0 90 thick
M2b rh 100 0 88 0 107 1 0 90 thick
M2c rh 100 0 87 0 107 1 0 90 thick
M2d rh 100 0 86 0 107 1 0 90 thick
M2e rh 100 0 85 0 107 1 0 90 thick
M2f rh 100 0 80 0 107 1 0 90 thick

Binary separation dependence
M3a rh 200 0 90 0 107 1 0 90 thick
M3b rh 300 0 90 0 107 1 0 90 thick
M3c rh 400 0 90 0 107 1 0 90 thick
M3d rh 500 0 90 0 107 1 0 90 thick
M3e rh 1000 0 90 0 107 1 0 90 thick

Eccentricity dependence
M4a rh 100 0.3 90 0 107 1 0 90 thick
M4b rh 100 0.6 90 0 107 1 0 90 thick
M4c rh 100 0.9 90 0 107 1 0 90 thick

Viewing (Node) angle dependence
M5a rh 100 0.9 90 30 107 1 0 90 thick
M5b rh 100 0.9 90 60 107 1 0 90 thick
M5c rh 100 0.9 90 90 107 1 0 90 thick

Mass ratio dependence
M6a rh 100 0 90 0 107 0.1 0 90 thick
M6b rh 100 0 90 0 107 0.3 0 90 thick

Spin magnitude dependence
M7a rh 100 0 90 0 107 1.0 0.5 90 thick
M7b rh 100 0 90 0 107 1.0 0.95 90 thick

Spin inclination dependence
M8a rh 100 0 90 0 107 1.0 0 0 thick
M8b rh 100 0 90 0 107 1.0 0 45 thick

Total mass dependence
M9a rh 100 0.0 90 0 105 1 0 90 thick
M9b rh 100 0.0 90 0 109 1 0 90 thick

Optical thickness dependence
M10 rh 100 0.0 90 0 107 1 0 90 thin

TABLE I. Summary of the parameters of our fiducial model
(M0, first row) and its 27 variants. The four categories in-
dicated by four separate columns refer to parameters related
to the disk, the binary’s orbit, the BHs, and the opacity of
the emitting region. Different rows indicate exploring the im-
pact of each parameter. The parameters that are varied with
respect to the fiducial model M0 are shown in bold font.

N = 250

(
aper

100Rg

)(
1 + e

1− e

)(
1

q

)
. (39)

Our highest-resolution model is M4c, with an effec-
tive resolution of 19, 0002 in each direction; with ”effec-
tive resolution” we mean the resolution if the image was
sampled uniformly with the resolution of the highest re-
fined block. In reality the adaptive resolution and only
computing the blocks close to the BHs allows us to only
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compute a small fraction of the effective resolution. Light
curves are sampled using 1000, 5000, or 10,000 points
depending on how finely detailed we find the temporal
structure to be. A sampling of 5000 points is used for the
eccentric models and the models with separations of 500
and 1000 Rg. The sampling of 10,000 points is used for
models M9 and M10 since they have the sharpest tempo-
ral features generated by the photon ring (see discussion
below). Even with the optimization from adaptive reso-
lutions and only computing blocks close to the BH po-
sition, the models are computationally expensive due to
the large volume of images that needed to be computed,
namely almost 400,000 in total (77,000 points at four
frequencies), the total computational cost of the project
exceeded one million CPU hours.

III. RESULTS

This section reports the results of our synthetic images
and light curves for all the model parameters described
in the previous section.

A. Fiducial model

Snapshots of the apparent images and the full light
curve in the fiducial model can be seen in Fig. 4. The
first three panels show snapshots at three different orbital
phases. The first panel shows the binary at half of the
period, when the two BHs align perpendicular to the line
of sight. The second and third panels show the binary at
the beginning and the maximum of a SLF. The blue and
red colors in the top three panels indicate emission by the
minidisk of the approaching, blueshifted, and receding,
redshifted BH. The bottom panel shows the total light
curve at 2.5 keV, combining the emission of both BHs,
where the numbers indicate the moments shown in the
top panels.

At a quarter and three-quarters of the orbit, a SLF
is present in the light curve. This phase corresponds to
the moment when the two BHs are aligned along the
line of sight. The dip visible on top of the peak of the
light curve indicates that spatial variations in the mini-
disk emission morphology can be discerned from these
lensed light curves. This is discussed in more detail in a
companion paper [47, hereafter Paper II].

To understand how the inclusion of general relativi-
tistic effects, special relativistic Doppler boosts, and re-
tarded times affect our light curves, we incorporate these
effects one at a time into our model.

We start with a comparison between light curves gen-
erated with microlensing and from GRRT. In the liter-
ature, self-lensing is often approximated by the amplifi-
cation factor A derived from microlensing, the so-called

FIG. 4. Light curve and images in the fiducial model. The
top three panels show images of the binary when they have
the largest projected separation on the sky (top panel), and
at the rise and peak of the lensing event (two middle panels).
Blue colors indicate an approaching BH, orange the receding
BH. Bottom panel: the combined light curve of the binary,
with numbers indicating the moments shown in the upper
three panels.

”Paczynski curve” [28],

A =
u2 + 2

u
√
u2 + 4

. (40)

Here u ≡ b/rE, with b the offset between the lens and
the unlensed source position on the sky, and rE is the
Einstein radius. The assumptions made in deriving this
simple formula is that the deflection angles are small, and
that the size of the source is much smaller than the Ein-
stein radius, so it can be treated as a point. We generate
light curves by moving the lens in front of 1) a point
source, 2) a Gaussian profile, and 3) a single BH image,
where we use the same orbital and BH parameters as in
model M0.

We apply the microlensing amplification to every pixel
on the image plane and then compute the total flux for
every point along the orbit. The resulting light curves
can be seen in the top two panels of Fig. 5. The point
source model shows a strong peaked flare since as the
source size goes to zero equation (40) is singular (yield-
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ing the Einstein ring). When we increase the source size
by using a Gaussian profile, the peak flattens, caused by
the emission being spread out compared to the focal point
of the lens, and the total amplification drops. The Gaus-
sian has a width of σ = 10 = 0.5rE. When we use the
BH image of our fiducial model, a double-peaked flare
structure appears, similar in shape to the full GRRT-
generated light curve shown in the second panel. Addi-
tionally microlensing assumes that the radial separation
between the source and the lense is large, i.e that the
angular size of the source is small compared to the Ein-
stein angle and the amplification is singular for u = 0.
This results in overestimating the expected amplification
factor.

Within the Einstein ring, a secondary image of the
lensed BH is visible, as can be seen in panel (2) of Fig. 4.
This image is associated with strong deflections. To il-
lustrate this, in Fig. 6 we plot geodesics in the x − y
plane of the binary. The foreground BH, as well as the
observer are on the right (positive x). Close to the lens
(within several Rg), there is a subset of geodesics visible,
which show large deflection angles. Geodesics originating
from positive y values reach the lensed BH at negative
y values, and result in a secondary image of the source
inside the Einstein ring. Large deflection angles are not
captured by microlensing.
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FIG. 5. Various light curves showing the impact of different
physical effects. The top panel shows the difference between
microlensing models, assuming either point source, a source
with a Gaussian surface brightness distribution, or the ac-
tual source BH image in our model. The second panel shows
a comparison between microlensing and GR-generated light
curves. The third panel shows the effect of relativistic Doppler
boosting. The bottom panel takes all effects into account by
also including time-delays.

Next, in addition to switching to GRRT we also add
(special) relativistic Doppler shifts caused by the Kep-
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FIG. 6. Geodesics in gray as an illustration of strong and
weak deflections. Orange disks indicate the minidisks around
each BH and black circles mark the event horizons. The ob-
server is to the right, so that the emission from the left-side
BH is lensed by the right-side BH. The rays originating from
the source at positive y and passing the lens at negative y
suffer strong deflections and form a secondary image whose
brightness is not predicted accurately by microlensing.

lerian velocity of the orbital motion. In this case, no
retarded time is taken into account. Hence, at every
phase, we generate an image by ray-tracing over a static
spacetime geometry: as light propagates, the BHs do not
move. Ref. [23] argues that for q = 1 binaries, the line-
of-sight velocity components are equal but have opposite
sign, and therefore Doppler modulations cancel. This,
however, is only correct if the underlying spectrum of
the emission is close to a power-law; otherwise Doppler
boosting and de-boosting at velocities ±v do not have the
same magnitude. In the case of a power-law the boosting
is given by ∆F

F = (3 − α)v, where α is the slope of the
power-law. Light curves of our fiducial model with and
without Doppler shift can be seen in the third panel in
Fig. 5. We also computed the individual light curves of
the BHs to show how the modulation in the total light
curve is generated. We see that the overall Doppler mod-
ulation is out of phase between the two BHs and of similar
amplitude resulting in almost no modulation in the over-
all light curve. However, some deviations can be seen,
especially during the flares. Part of the receding BH disk
enters the Einstein angle before it reaches zero line-of-
sight velocity, therefore, there still is some Doppler de-
boosting resulting in a decrease in the first sub peak of
the flare. When the BH emerges from the Einstein angle
it already gained some approaching line-of-sight velocity,
and the resulting Doppler boosting increases the second
sub-peak. Together this generates a slightly less asym-
metric peak profile compared to the light curve in panel
two. For unequal mass binaries Doppler or unequal ac-
cretion rates, Doppler modulations will be more clearly
visible.
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Lastly, we also computed our models the effects of re-
tarded time included (with ”slow light”). In this case,
the BHs move as light propagates. The effect of this
can be seen in the bottom panel of Fig. 5. Again, we
plot the total combined light as well as the individual
light curves for each BH. The individual BHs show again
a modulation that we identify as Kerr-Doppler boost-
ing [48] (which is not limited to spinning BHs only).
Which is the Doppler effect caused by the movement of
the BHs, causing the approaching BH to be blueshifted,
while the receding BH is redshifted. Similar to the rel-
ativistic Doppler boosting, this effect also nearly cancels
in the total light curve. But similarly to the relativistic
Doppler case the peak profile is less asymmetric com-
pared to the non-boosted flares.

B. Inner radius dependence

In our fiducial model, we chose the inner radius of each
minidisk to be at the event horizon. The motivation for
this is that recent numerical works [49] show that in the
case of geometrically thick flows, radiation inside ISCO
does not necessarily vanish. On the other hand, radiation
from inside ISCO is small for geometrically thin Novikov-
Thorne disks. To understand how the inner radius alters
the light curves, we computed model M1 with the in-
ner radius at the ISCO. This model M1, as well as our
fiducial model M0, can be seen in Fig. 7. The overall am-
plification in model M1 is, somewhat counter-intuitively,
higher than in M0. This is because after excising the in-
ner region, the emission region becomes concentrated in a
narrow annular ring around ISCO, whose effective width
is smaller than in the fiducial model. Also, the dip in
the SLF is broader since the central gap in the accretion
flow is larger compared to our fiducial model. Secondly,
there are two additional features visible in the SLF, on
either side of the central ”dip”, which are caused by the
presence of the ”photon ring”. In the M0 model, the
optically thick disk prohibits rays from circling the hole,
but in the M1 model, the rays can circle ones or multiple
times around the BH, an observer far away from the black
hole will measure these photons appearing from a critical
closed curve in the image that generates a ring like fea-
ture [50–53]. When the photon ring moves through the
focal point of the lens, a small increase in amplification
is visible. We anticipate that higher-order photon rings
could also become visible if an even higher image and
time resolution is used. These features are highlighted
in the bottom panel of Fig. 7, and are discussed in more
detail in Paper II.

C. Binary orbital inclination dependence

In Fig. 8 we compare models M2a-f with the fiducial
model. These models differ in the inclination angle be-
tween the observer and the angular momentum vector of
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FIG. 7. Light curves showing the inner-radius dependence by
contrasting the fiducial model M0 (with the inner radius at
the event horizon) and its variant M1 (with the inner radius
moved out to ISCO). As the inner radius increases, there is
a larger central gap in the accretion flow, extending outside
the horizon. This enhances the amplitude of the flare, with a
wider and broader ”dip” (top two panels). Additionally, the
ISCO is outside the photon sphere, resulting in a photon ring
in the image plane of the source. The photon ring adds an
extra minor increase to the light curve on either side of the
central dip (bottom panel).

the binary. The inclination angles for models M1a-f are
89◦, 88◦, 87◦, 86◦, 85◦ and 80◦ respectively, while the
fiducial model is seen edge-on at 90◦. As a function of
inclination, the height of the lensing flare decreases. This
agrees with the expectation from microlensing, where
the amplification factor depends only on the offset be-
tween the source and the lens (in units of the Einstein
radius). The offset increases with decreasing inclination,
and therefore, the amplification efficiency drops, as al-
ready demonstrated by [22]. Still, the overall flare re-
mains visible even for disks misaligned by 10◦. On the
other hand, the dip in the SLF disappears for inclinations
smaller than 87◦, and is visible only when the focal point
moves over the BH shadow. This is discussed in more
detail in Paper II.

D. Separation dependence

In Fig. 9 we show light curves for models M3a-e, which
differ from the fiducial model by varying the binary sep-
aration. While the fiducial model has a separation of
100 Rg, in M3a-e, this is increased to 200, 300, 400, 500
and 1000 Rg, respectively. In the bottom panel, we also
show the orbit of each model. With increasing separa-
tion, the angular size of the source on the sky as seen by
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FIG. 8. Light curves showing the dependence on the ob-
server’s viewing angle. The fiducial model M0 has an incli-
nation of 90◦ (edge-on), and the models M2a-f have smaller
inclinations of 89◦, 88◦, 87◦, 86◦, 85◦ and 80◦ respectively.
As the inclination decreases, the separation on the image
plane between the source and the lens increase, resulting in
a lower overall amplification, as expected from microlensing-
based models [22]. While the overall flare remains visible even
for disks misaligned by 10◦, the central dip disappears once
the BH shadow’s projected offset from the lens is too large
(that is, in the models M2d,e,f which are more than ∼ 3◦

from edge on).

the lens decreases, and therefore, the light curve asymp-
totes to that of a point source model. Since the angular
size of the emission region of the source shrinks, more
emission falls inside the Einstein angle at the moment of
maximum amplification, which results in a higher over-
all amplification, similar to the top panel of Fig.5. The
width of the flare also decreases with increasing separa-
tion, since the source spends less time within the Einstein
angle relative to its orbital period. With increasing sepa-
ration, the sizes of the individual minidisks also increase,
because the tidal truncation radius becomes larger. How-
ever, this effect is minimal for an edge on view, since the
source emission morphology is dominated by the strong
lensing region around the BH (see the top panel of Fig. 5).

E. Eccentricity and node angle dependence

In Fig. 10 we show the dependence of the light-curves
on orbital eccentricity. While the fiducial model is cir-
cular, models M4a-c have increasing eccentricities of
e = 0.3, e = 0.6 and e = 0.9, respectively. Note that
in all models, we keep the pericenter distance the same.
In the bottom panel, we show the shape and orientation
of the orbit in each model. The eccentricity of the or-
bit introduces a clear asymmetry between the two SLFs.
One of the peaks is larger in height compared to our fidu-
cial model. When the larger SLF occurs, the BHs are at
apoapsis, while the BHs are at periapsis at the second,
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FIG. 9. Light curves showing the dependence on the sepa-
ration of the two BHs. The models M3a-e have separations
of 200, 300, 400, 500 and 1000 Rg, compared to 100 Rg in
the fiducial model. As the separation increases, the angular
size of the source becomes smaller, resulting in a larger am-
plification since a larger fraction of the source falls inside the
Einstein angle, as well as a narrower width in phase, since the
source spends a smaller fraction of the total orbit behind the
lens, however since the period does grow, the width becomes
large in physical time.

smaller SLF. At apoapsis, the separation is large, and the
lensed BH has a smaller angular size on the sky, which
results in a larger amount of emission closer to the fo-
cal point and causes the amplification to increase. This
is similar to what we found for our models M3a-e. At
periapse, the binaries have the same separation, so the
flare amplitudes remain similar. However, the higher ve-
locities in the more eccentric cases result in a narrower
peak at periapsis than in the fiducial case, since the BH
spends less time within the Einstein angle.

Since the orbit is no longer axisymmetric due to the
eccentricity, we also vary the nodal angle, to orient the
orbital ellipse differently with respect to the line of sight.
The light curves of the models M4c (e = 0.9 and Ω = 0)
and M5a-c (all with e = 0.9 but Ω = 30, 60 and 90°,
respectively) can be seen in Fig. 11. The bottom panel
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FIG. 10. Light curves showing the ccentricity dependence.
The fiducial model is circular, while models M4a-c have in-
creasing eccentricities of e = 0.3, 0.6 and 0.9, respectively.
The pericenter distance is kept constant in all four models.
The bottom panel shows the orbits in the x − y plane, with
the observer to the right at y = 0.The more eccentric the bi-
nary, the larger the separation at apoapsis, and the smaller
the angular size of the source, this results in a higher ampli-
fication of the flux, similarly as for models M2a-e in Fig. 9.
At periapsis, the orbital velocity increases with e, and there-
fore the source spends a smaller fraction of the orbit directly
behind the lens, making the flares narrower.

again shows the orbital shape and orientation, with the
observer to the right at y = 0. As we increase the nodal
angle, the height between the two SLFs becomes compa-
rable since the difference in separation at the two flares
decreases, as can be seen in the bottom panel of Fig. 11.
The spacing between the SLFs is now also non-uniform
in orbital phase or time, since the two lensing alignments
occur at different phases along the binary orbit.

F. Mass ratio dependence

The dependence on mass ratio is shown in Fig. 12.
Models M6a and M6b differ from the fiducial model (q =
1) by having q = 0.1, and q = 0.3 respectively. The
binary separation and total mass are kept constant. The
bottom panel again shows the orbits in the x− y plane.
As a function of q, the two SLFs differ in shape. When
the secondary BH is lensed, the flare has a smaller width
since the source morphology is smaller compared to the
primary BH. When the primary BH is lensed, the width
of the light curve is wider than the fiducial model since
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FIG. 11. Light curves showing the node angle dependence.
All curves have eccentricities of e = 0.9, as in model M4c,
but models M5a-c change the nodal angle (Ω = 0 in model
M4c) to Ω = 30, 60 and 90◦, respectively. The bottom panel
shows the orbits in the x− y plane, with the observer to the
right at y = 0. As the nodal angle changes, the BHs align at
different phases along the orbit and align with the minor axis
in the case of model M5c. Since the lensing events happen at
the closest approach here, the spacing becomes non-uniform
compared to M3a. Since the separation decreases, the ampli-
fication drops, and the width narrows due to higher velocities.

the source size of the primary is larger than the secondary
BH. The secondary BH also dominates the measured flux
via T ∝M−1/4. Since there is a different amount of flux
generated by each BH, their Doppler effects no longer
cancel, a significant net Doppler modulation can be seen.

G. Spin and tilt angle dependence

Fig. 13 shows the BH spin-dependent models M7a-b.
The fiducial model has a non-spinning BH, while for mod-
els M7a-b both BHs have a spins of a = 0.5 and a = 0.95,
respectively. The effect of spin turns out to be small on
the global properties of the light curve; this is expected
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FIG. 12. Light curves showing the mass-ratio dependence.
Models M6a and M6b differ from the fiducial model (q = 1)
by having q = 0.1, and q = 0.3 respectively. As the mass
ratio decreases, the angular size of the secondary BH’s disk
decreases, which results in a higher amplification factor when
it is being lensed. Simultaneously, the ratio between the pri-
mary source size and the Einstein radius of the secondary as
the lens becomes larger, resulting in lower amplification and
widening the flare profile when the primary BH is lensed.

since the spin does not affect the overall lensing proper-
ties to first order. Spin alters the accretion disk’s inner
radius and its velocity profile in the innermost regions.
This results in a narrower dip in the light curve and a
lower second sub-peak for each flare. Both of these ef-
fects are small, but can be discerned in the bottom panel
of Fig. 13.

In models M8a-b we vary the inclination of the mini-
disks and the BH spin axes with respect to the binary’s
orbital plane. We assume that the minidisk angular mo-
mentum and the BH spin always remain aligned with
respect to one another. These models have fixed spin
magnitudes of a = 0.95 and minidisk / spin axis inclina-
tion angles of idisk = 0◦ and idisk = 45◦, respectively.

When the minidisks are inclined, a new effect appears,
because the foreground disk, which is assumed to be opti-
cally thick, can physically block the light from the lensed
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FIG. 13. Light curves showing the spin magnitude depen-
dence. The fiducial model has zero spin (a = 0) while models
M7a-b have spins of a = 0.9 and 0.95, respectively. The spin
dependence only has a relatively small effect on the asymme-
try of the double-peaked structure, since it only modifies the
emission and the space-time metric within a few gravitational
radii of the BHs.
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FIG. 14. Light curves showing the spin orientation depen-
dence. The BH spins and their minidisks in models M8a-b
differ in their inclination with respect to the line of sight. In
the fiducial model, both minidisks have idisk = 90° (edge-
on), whereas models M8a-b have idisk = 0° (face-on) and
idisk = 45°, respectively. For nearly face-on minidisks, a new
effect appears, as the foreground disk can block the light from
the lensed BH - this physical occultation can erase the flare
or replace it with a transit-like depression.

background BH. Due to this occultation, the lensing flare
can be erased, or, for a face-on minidisk, replaced by a
depression similar to those see in planetary transit light-
curves. This occultation was also found by [23].

H. Spectral dependence

To assess the spectral-slope dependence, we varied the
mass of the BHs in models M9a-b, which have total bi-
nary masses of 105M� and 109M� respectively, com-
pared to 107M� for the fiducial model. This shifts the
peak of our spectrum either to lower or higher frequen-
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cies since T ∝ M−1/4. The change of the peak alters
the spectral slope, the slopes are computed between 2.5
and 10 keV and are α = 1.1, 1.7 and −0.8 respectively,
where α ≡ [log(F10keV) − log(F2.5keV)]/[log(ν10keV) −
log(ν2.5keV)]. In the case of our fiducial and M9a model,
the spectral slope is positive, while for the M9b model,
the spectral slope turns to negative values. This does,
however, not affect the main features we reported before.
The morphology of the emission region slightly changes,
causing the flare to have a lower amplitude. Since the
orbit is eccentric and the BHs have an equal mass, we do
not see strong Doppler modulation changes due to spec-
tral slope difference, but we anticipate those to be more
prominent in a model with a large total binary mass and
unequal mass ratios, or if i < 80° when the light curve is
only dominated by the Doppler modulations caused by
the orbit.
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FIG. 15. Light curves showing the dependence on the spec-
tral shape, via changing the BH masses. Models M9a-b have
a BH mass of 105 M� and 109 M�, respectively, compared
to 107 M� in the fiducial model. This changes the spectral
slope in the observed X-ray band (between 2.5 an 10 keV) to
α = 1.1, 1.7 and −0.8 respectively. The spectral slope only
modestly affects the overall flare amplitude. We expect it to
have a larger impact on the overall Doppler modulation dur-
ing the orbit in the case of an unequal-mass BH, where the
Doppler effects from the two BHs do not nearly cancel.

I. Opacity dependence

Finally, in Fig. 16, we show model M10, which has
an optically thin disk. In order to isolate the effect of
the opacity alone, we retain the same geometrically thin
shape of the emission as in the other models (even if
this is unphysical). Since the opacity is zero, light rays
can orbit several times around the BH. This allows the
photon ring to become visible, in contrast to the optically
thick models. In model M10, the amplification is larger
than in the fiducial model since the photon ring is a sharp
feature, compressing most of the emission in the domain

into a small solid angle.
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FIG. 16. Light curves demonstrating the impact of optical
depth. Model M10 is identical to the fiducial model M0,
except the minidisks are assumed artificially to be optically
thin, while in the fiducial model M0 they are optically thick.
The sharp features seen for M10 arise from the photon rings.
These can only form in the optically thin case, and concen-
trate the emission to a small solid angle, allowing stronger
amplification when parts of the bright ring are behind the
lens.

IV. DISCUSSION

In this section, we compare our results to previous
works, list observational challenges for observing SLFs,
and discuss possible implications of a SLF measurement.

A. Comparison to previous works

Previous work by [21] showed that point source models
of self lensing binaries could explain the observed flare for
the source KIC-11606854, which they dubbed as Spikey.
Compared to their work, we included GR effects and fi-
nite source sizes. We find that the source size alters the
width of the self lensing flare; the flare width, there-
fore, gives information on the emission morphology of
the lensed source. Additionally, Kerr-Doppler boosting
is shown to increase the overall Doppler modulation of in-
dividual BH light curves, leading to inaccurate model pa-
rameter predictions if only relativistic Doppler boosting
is included. In future work, we aim to fit our presented
model to Spikey’s light curve in different bands.

Ref. [22] computed self-lensing light curves by using the
microlensing approximation. In contrast to [21], ref. [22]
investigated the dependence on source size morphology
and found that it is possible to extract information on
the accretion disk structure, namely disk sizes. This is
in agreement with our findings. Additionally to the work
by [22], we also include strong lensing in the vicinity of
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the individual BHs. This changes the source morphol-
ogy since the BH lenses the accretion flow around itself.
An infinitesimally thin accretion disk viewed edge-on, as
considered in the work by [22], would only show a thin
line, while in our case, we see a circle with a hole in it (see
top panel in Fig. 2). Ref. [22] also computes light curves
in the case where the minidisk is misaligned with the or-
bit, which generates source morphologies that are closer
to ours. However, since only very large binary periods
are considered (∼ 4 years, with a mass of 106 M�), the
angular size of the central hole in the minidisk emission
is negligibly small. The dip in the SLF that we report
here and in Paper II is therefore not visible.

Compared to the work by [23] we use a superposed bi-
nary metric, including dynamical evolution of the space-
time during light propagation. This results in the in-
clusion of Kerr-Doppler boosting. The light curves also
differ in one distinct way between our work and the work
by [29]. Due to different effective temperatures, the light
curves of [23] are more single-peaked, and only a less
prominent, minor asymmetry can be seen in their pre-
dicted light-curves. In their model, the spectrum’s peak
is shifted towards the UV, meaning that at harder X-ray
wavebands, the spectral slope is much steeper, result-
ing in much stronger Doppler (de)boosting, which re-
sults in a less symmetric image morphology. Similarly
to us, they assume an optically thick black-body spec-
trum. The choice of our higher temperature is motivated
by shock heating models by e.g. [4, 5]. If the minidisks,
in reality, are cooler than we adopted, this would shift
the optimal frequency to observe the dip to lower values.
In general, the dip features should be strongest in the fre-
quency band that is emitted close to the horizon, has a
flat spectral slope (a steep slope would make a single disk
appear asymmetric without a clear central shadow) or is
dominated by an optically thin corona. To study the de-
pendence of the SLF on the exact spectral shape in more
detail, in future work we will ray-trace the emission in ei-
ther hydrodynamical or MHD simulations, which should
provide more realistic dynamical and thermodynamical
models for MBHBs.

We show that for the optically thin case, the peak
width is much narrower. Both our models have in com-
mon that the underlying emission model is very simplified
compared to the realistic case of blazars and other AGN.
In reality, sources have multiple components contribut-
ing to the spectra, e.g., the disk, jet, and X-ray corona.
Therefore, investigating how the light curves behave with
more realistic spectral models is needed to fully under-
stand the flare properties expected for these sources. If
the source morphology is more extended, e.g. in the op-
tical/UV, we would expect the overall width of the SLF
to increase as well.

B. Observational limitations

In our work, we neglect the dynamics of the accre-
tion flow. The viscous time scales are larger than the
self lensing time scale, but it will add temporal vari-
ations on the overall light curve. Dynamical accretion
models have been reported in the literature either in hy-
drodynamics [16, 54] and more recently also in GRMHD
[32, 36, 55, 56]. Future ray-tracing of GRMHD simula-
tions of MBHBs in higher Eddington states should give
more insight into the effect of accretion flow dynamics
on MBHB light curves. Work by [32] shows ray traced
images of a close separation MBHB and compute bolo-
metric luminosity as a function of the azimuthal positon
of the observer. For inclinations close to the edge on a
flare is present that also contains hints of a dip (see their
Fig. 11).

Accretion variability of AGN can also induce flares.
However, these flares are not periodic and can therefore
be averaged out by using phase folding. Additionally,
since self-lensing is purely a geometrical effect due to
light bending, it is achromatic. Therefore, amplification
by self-lensing should depend on the observed frequency
relatively weakly and strongly correlate between bands.
In contrast, accretion-induced variations are strongly fre-
quency dependent, and empirically, the optical and UV
fluctuations are not fully correlated [57]. GRMHD also
provides a first-principle velocity profile for the accretion,
which might affect the observability of the double-spiked
SLF profile we report here and in Paper II, however
Fig. 11 in [32] shows azimuthal profiles of the bolometric
luminosity generated by ray tracing GRMHD simulation
which do show a hint of a dip within the SLF for edge
on configurations. In certain configurations, velocity un-
certainties may be less important, e.g. if the emission is
produced by an optically thin corona with small internal
bulk velocity, or if the spin axis of the lensed BH is mis-
aligned with respect to the orbital axis (so its emitting
material is face-on and has small line-of-sight velocities).

To scale our results to observables, the periods of our
light curves can be scaled by black hole mass. We showed
that there is some mass dependence on the light curve,
but this is minimal. For our fiducial model with separa-
tion of 100Rg and a total black hole mass of M = 107M�,
the period is roughly a day.

At fixed binary separation in gravitational units, the
orbital period scales linearly with total BH mass. As a
result, for BHs up to 109−10M�, the periods reach 100-
1000 days (and larger if the binary separation is also in-
creased). In the present sample of binary quasar can-
didates, identified based on their optical periodicity in
large time-domain surveys [10, 11], the BH masses are
skewed towards these high masses, and the orbital peri-
ods are comparable to a year. These candidates would
be favorable for searching for SLFs. In the case of our
fiducial model with a separation of a = 100 Rg the pe-
riod of the orbit for a 109 M� would be approximately
0.7 years. The SLF duration is roughly ten percent of
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the total orbit, so the duration of the SLF is ∼ 25 days.
In the case of model M3e, which has the largest sepa-
ration among our circular models (1000 Rg), we find a
total orbital period of 22 years, and an SLF duration of
approximately 160 days.

In our fiducial model, the binary inspiral time due to
GW emission is approximately 1.5 years ([58]; see Eq. 28
in [59]). This makes it hard to catch such a short-lived
binary, with our fiducial parameters, in current surveys.
However, for large future time-domain surveys, such as
by the Vera Rubin Observatory’s Legacy Survey of Space
and Time (LSST), with a few-day cadence, these rare
and short-lived binaries should be present, and could be
identified as ultra-short periodic sources [60, 61]. In the
optical wavebands we expect a contribution by the spa-
tially extended circumbinary disk that would lower the
observed amplification of the lensed minidisk, mimicking
a lower inclination angle. However, Doppler modulations
and lensing flares could still be identified, if the minidisks
also have a cooler, more extended black-body emission.
Candidates identified in a large time-domain survey, such
as LSST, could then be followed-up by X-ray telescopes,
such as IXPE, XMM-Newton or ATHENA, to study the
emission expected to be strongly dominated by the mini-
disks. The GW inspiral time scales linearly with mass (at
fixed binary separation in gravitational units), increasing
to as high as∼ 102−3 years for the binary candidates with
masses of ∼ 109 M� and periods of order a year [10, 11].
Since the inspiral time scales more steeply with binary
separation (T ∝ a4), increasing the separation will im-
prove the observability; the binaries will be longer lived,
and the SLFs will be stronger, due to smaller angular
source sizes. For example our model M3e with a sep-
aration of a = 1000Rg the GW inspiral time is 15, 000
years with a binary period of 2.6 months in the case of a
107 M� binary and 106−7 years with a binary period of
22 years for binary candidates with masses of ∼ 109 M�.

Apart from identifying MBHBs to begin with, a clear
practical obstacle to identifying lensing flares, and char-
acterizing their shapes, including the ”dips”, is stochas-
tic AGN variability. The typical X-ray variability of
AGNs has an RMS value of about 10% and 40% over
a day to week timescales [62, 63]. The SLF exceeds this
RMS value for inclinations larger than 80°. However,
the dip in the SLF for edge-on viewing angles is of the
order of 20% of the total SLF amplification, although
the time scales are much shorter compared to the typi-
cal accretion-induced variability. As stated before, phase
folding can mitigate this problem, but a first hint of the
SLF should at least stand out of accretion induced vari-
ability or system noise when only one period is observed.

C. Implications

In this work we investigated the MBHB parameter de-
pendence on SLFs, and we report non-degenerate fea-
tures that when observed will help improve parameter

predictions. Observing equal-height SLFs is a strong in-
dication of a close to equal mass binary on a circular
orbit. Any deviations from this that result in the larger
SLF to be narrower than the smaller SLF indicates an un-
equal mass binary. Eccentricity induces unequal height
SLFs as well, but in this case the smaller SLF is also
narrower. The nodal angle for eccentric binaries changes
the relative spacing of the SLFs within the full 2π or-
bital phase; this can be used to constrain eccentricity
and nodal angle. Inclination leaves is imprint by keeping
the width constant but the height smaller. Separation
distance sets the overall period of the orbit but also the
amplification factor of the SLF. We do not find a strong
dependency on spectral shape or black hole spin. If the
SLF is observed close the edge-on, there is a dip visible
in the SLF, caused by substructure in the source mor-
phology and is directly related to the size of the black
hole shadow, as discussed in more detail in Paper II.

Our results also have implications for future LISA ob-
servations. If self-lensing flares are detected in the elec-
tromagnetic observations for a LISA source prior to its
merger [64], with the phase of the flares tracking that of
GWs [27], it will help secure unambiguous identification
of the source. However, since the GWs are observed close
to merger, the binarys orbital separation will be smaller
than in our fiducial model. This could introduce non-
linear terms in the metric that would change the overall
shape of the SLF. Current projections makes this possi-
ble for at least a fraction of LISA binaries, i.e. binaries
with accurate sky positions derived from the GW inspiral
signal days before merger [65]. Having the electromag-
netic source identified will provide its precise sky loca-
tion, and help better constrain binary parameters such
as the inclination angle and distance. Secondly, the self-
lensing flares always occur at the same orbital phase, and
are tied directly to the GW phase through the binary’s
orbital motion. Therefore, they would provide a clean
experiment to correlate the arrival times of GWs and
photons, which can be used to constrain graviton masses
and alternative theories of gravity in which the propaga-
tion speeds of photons and gravitons differ [27].

V. CONCLUSIONS

In this study, we presented a self-lensing binary model,
extending on recent work. To this end, we utilized the
existing general relativistic ray tracing code RAPTOR,
which we optimized by implementing an adaptive mesh
refinement scheme for the camera plane. We constructed
a superposed Cartesian binary metric in which the BHs
are on Keplerian orbits. The emission is assumed to
be produced by two minidisks surrounding each BH. We
generated synthetic light curves for a variety of orbital,
BH, and emission model parameters. We showed how
finite source sizes alter the shape of the light curves com-
pared to previous works that used point source modeling
and recovered point source-like behavior only when the
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separation is sufficiently large. We highlighted the impor-
tance of GR ray tracing for modeling these systems, by
finding discrepancies between microlensing and GR lens-
ing. For gravitational waves sources, as will be measured
by LISA, observing self lensing flares would help orbital
constraint parameters such as the inclination and help
constrain the graviton mass. Observing SLFs provides an
exciting opportunity to not only constrain MBHB param-
eters relevant to LISA GW observations but also opens a
new way to measure black hole shadow sizes in systems
that are unresolvable by current VLBI facilities.
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