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Event geometry and initial state correlations have been invoked as possible explanations of long
range azimuthal correlations observed in high multiplicity p+p and p+Pb collisions. We study
the rapidity dependence of initial state momentum correlations and event-by-event geometry in√
s = 5.02 TeV p+Pb collisions within the 3+1D IP-Glasma model [1], where the longitudinal

structure is governed by JIMWLK rapidity evolution of the incoming nuclear gluon distributions.
We find that the event geometry is correlated across large rapidity intervals whereas initial state
momentum correlations are relatively short range in rapidity. Based on our results, we discuss
implications for the relevance of both effects in explaining the origin of collective phenomena in
small systems.

I. INTRODUCTION

The collective behavior observed in heavy ion collisions
has lead to the discovery of the Quark Gluon Plasma
(QGP), and established the behavior of the QGP as a
nearly perfect fluid. The main observables associated
with this collectivity are the anisotropic flow coefficients
vn, which characterize the anisotropies in the transverse
momentum distributions of produced particles. Exper-
imental measurements of these coefficients can be de-
scribed extremely well using relativistic hydrodynamic
simulations of heavy ion collisions [2–6]. Within the hy-
drodynamic picture, the final state momentum distribu-
tions are explained entirely via the response to the initial
state geometry in the transverse (to the beam line) plane.
Gradients of the pressure drive the directionally depen-
dent expansion of the system, thus leaving an imprint
of the initial shape of the fireball in the final particle
spectra.

More recently, similar signals to those in heavy in col-
lisions have been found in the produced particle spec-
tra of small collision systems, including p/d/3He+A and
even p+p [7–12] and ultraperipheral Pb+Pb [13] colli-
sions. Such findings have lead to increased research re-
garding the question how hydrodynamics could possibly
be applicable in very small systems that only produce on
the order of ten charged hadrons per unit rapidity (see
[14] for a review), as well as on the exploration of al-
ternative mechanisms that could generate the observed
anisotropies without requiring the creation of a nearly
perfect fluid. Examples of the latter include kinetic the-
ory [15–23], as well as the correlated (multi-)particle pro-
duction in the color glass condensate framework [24–41],
where anisotropic momentum distributions result from
correlations in the gluon distributions of the incoming
nuclei.

While calculations involving final state effects (e.g. in
the hydrodynamic framework) have been rather success-
ful in describing the main features of the momentum
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anisotropies observed in small collision systems at RHIC
and LHC [42–56], purely initial state descriptions have so
far struggled to fully reproduce quantitative and qualita-
tive features of the data [39, 40]. Some have, potentially
prematurely, “ruled out” initial-stage glasma correlations
[57], however, they should be present and can in princi-
ple affect observables, even when geometry driven final
state effects dominate.

In the IP-Glasma+Music+UrQMD model [56], both
initial state anisotropies from the Glasma and final state
response to the geometry are present. Their relative con-
tributions have been analyzed as functions of multiplicity
in [11], and an observable that should be able to dis-
tinguish them as sources of the observed anisotropies,
namely the correlation of the elliptic anisotropy with the
mean transverse momentum, was analyzed in [58]. The
results in these works indicate that while the initial state
anisotropy has a non-negligible contribution over a wide
range of multiplicities, it starts to be the dominant con-
tribution only for dNch/dη . 5 − 10, approximately in-
dependent of the collision system or energy.

So far, many calculations for proton-nucleus collisions,
including the aforementioned ones, were performed un-
der the assumption of boost invariance, which means
that correlations of both the transverse geometry and
the initial momentum anisotropy extend over arbitrarily
large separations in rapidity. In this work we relax the
assumption of boost invariance and set out to explore
the longitudinal dependence of both the initial state ge-
ometry and initial state momentum space correlations.
This will provide important input to experimentally dis-
tinguish the two types of signals from each other and
from short range “non-flow” contributions that result e.g.
from mini-jets or resonance decays.

This paper is organized as follows. We start with a
brief description of the 3D IP-Glasma model in Sec. II
and subsequently discuss some global event properties in
5.02 TeV p+Pb collisions in Sec. III. Our main results
regarding the longitudinal dependence of the initial state
geometry and initial state momentum space correlations
are presented in Sec. IV. We conclude and present an
outlook in Sec. V.
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II. THE 3D IP-GLASMA MODEL

We follow the description of [1], which is built on the
high-energy factorization of the expectation values of suf-
ficiently inclusive quantities [59, 60]. Based on the Color
Glass Condensate effective field theory of high-energy
QCD [61], observables O(yobs) at a rapidity yobs can be
calculated on an event-by-event basis

O(yobs) = Ocl

(
V px⊥

(+yobs), V
Pb
x⊥

(−yobs)
)
, (1)

as a functional of the light-like Wilson lines V px⊥
(+yobs)

and V Pbx⊥
(−yobs) of the projectile (p) and target (Pb), by

solving the classical Yang-Mills (CYM) equations. Start-

ing from initial conditions V
p/Pb
x⊥ (−Ymax) determined by

the IP-Glasma model [62, 63] at the maximal observed
rapidity Ymax, the rapidity evolution of the light-like Wil-

son lines V
p/Pb
x⊥ (Y ) is calculated by the JIMWLK evolu-

tion equation [64–68]. Based on Eq. (1), the observables
at each rapidity are computed from the solutions to the
classical field equations, while the longitudinal (rapid-
ity) structure is governed by the small-x evolution of the
Wilson lines. While such factorization, as in Eq. (1), has
been proven only for inclusive quantities which encom-
pass measurements at a single rapidity [59, 60], we will
use the same prescription to calculate un-equal rapidity
correlations on an event-by-event basis. We refer to [1]
for additional discussions of the associated caveats, and
provide details of the implementation of the 3D-Glasma
model below.

A. IP-Glasma initial condition

Within the CGC the small-x gluon fields of the incom-
ing nuclei are generated by the moving valence charges
according to the Yang-Mills equations

[Dµ, F
µν ] = Jν , (2)

where Dµ = ∂µ− igAµ is the gauge covariant derivative,
and Fµν = i

g [Dµ, Dν ] = ∂µAν−∂νAµ− ig[Aµ, Aν ] is the

field strength tensor, with the gluon fields Aµ = Aµat
a.

The ta are the generators of SU(Nc) (for the number of
colors Nc = 3) in the fundamental representation. The
index a is the color index, and runs from 1 to (N2

c −1) =
8. The eikonal currents Jν on the right hand side of
Eq. (2) are given by the sum of the color currents of the
two nuclei (the moving large x degrees of freedom)

Jν = δν+ρPb(x⊥)δ(x−) + δν−ρp(x⊥)δ(x+) . (3)

We will use the IP-Glasma model to determine the color
charge densities ρp/Pb(x⊥) and associated Wilson lines
at the initial rapidities (the largest x values). Wilson
lines at smaller x then follow from JIMWLK evolution,
as discussed in the next subsection.

In IP-Glasma the color charges ρPb(x⊥) and ρp(x⊥)
are sampled on an event-by-event basis, assuming local
Gaussian correlations as in the McLerran-Venugopalan
(MV) model [69, 70]. In practice, one determines the

Wilson lines Vx⊥ for each nucleus numerically, approxi-
mating the path ordered exponential by the product [71]

V Pb/px⊥
=

Ny∏
k=1

exp
(
− ig

ρkPb/p(x⊥)

∇2 − m̃2

)
, (4)

where, m̃ = 0.2 GeV (or 0.8 GeV as indicated) is an in-
frared regulator that is used to avoid unphysical Coulomb
tails, Ny = 50 is the number of slices in the longitudi-
nal direction, and, as in the MV model, the ρkPb and
ρkp have zero mean and their two-point functions satisfy
(suppressing the subscripts Pb and p for clarity)

〈ρai (b⊥)ρbj(x⊥)〉 =
g2µ2(x,b⊥)

Ny
δabδijδ(2)(b⊥−x⊥). (5)

Spatially (b⊥) dependent color charge densities,

g2µPb/p(x,b⊥) = cQs Q
Pb/p
s (x, T (b⊥)), 1 are determined

using the IPSat model [72, 73], which provides the sat-
uration scale Qs(x, T (b⊥)) as a function of the nuclear
thickness T (b⊥) at a given Bjorken x. The nuclear thick-
ness functions T (b⊥), which provide the b⊥ dependence,
are determined as in [56] by sampling the position of in-
dividual nucleons from a Woods-Saxon distribution in
the case of the Pb nucleus. Subsequently, the position
of Nq = 3 hot spots per nucleon are assigned according
to a two-dimensional Gaussian distribution with width
Bp, and each hot spot is assigned a two-dimensional
Gaussian thickness profile of width Bq. The parameters

Bp = 4 GeV−2 and Bq = 0.3 GeV−2 of the model are
constrained using deeply inelastic scattering data on pro-
tons from HERA [74]. Once the nuclear thickness T (b⊥)
is determined, we self-consistently determine Qs(x,b⊥)
by iteratively solving for

x = x(b⊥) =
Qs(x, T (b⊥))
√
sNN

e−Y , (6)

where
√
sNN is the center of mass energy of the collision.

We note that the public IP-Glasma code employed in
this study can be found at [75], and we refer to [56] for
a detailed description of the implementation used in this
work.

Based on the above procedure, we generate a total
of Np = 32 and NPb = 8 configurations of the Wilson

lines V
p/Pb
x⊥ (−Ymax) of the protons and lead nuclei at

the largest x value, corresponding to the initial rapidity
Y = −Ymax = −2.4, with transverse coordinates (x⊥)
discretized on a Ns × Ns lattice with Ns = 1024 sites
and lattice spacing as = 0.02 fm.

B. JIMWLK evolution

Starting from the IP-Glasma initial conditions for the

Wilson lines V
p/Pb
x⊥ (−Ymax), we perform the JIMWLK

1 We employ cQs = 1.25 for m̃ = 0.2GeV and cQs = 1.82 for
m̃ = 0.8GeV.
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FIG. 1. JIMWLK evolution of the gluon fields in three different configurations of the proton for m = 0.2 GeV and αs = 0.3.
The trace of Wilson lines 1 − Re[tr(Vx⊥)]/Nc is shown in the transverse plane for different rapidities (Y ) to illustrate the
emergence of finer structure and growth of the proton with increasing rapidity.

FIG. 2. View of the transverse plane for a particular configuration of a right moving lead nucleus at three different rapidities.
Circles indicate the collision point of the proton with this lead nucleus for a selection of events. The color coding indicates
the centrality class of the event, red (0− 5)%, blue (40− 50)%, green (60− 70)% and orange (80− 90)% (for the definition of
centrality see Sec. II D).

[64–68] evolution from Y = −2.4 to Y = +2.4 for each
configuration of the proton and the lead nucleus. We
store the configurations for various slices in rapidity, in
steps of Y = 0.2.

The implementation of the JIMWLK solver is equal
to that discussed in [1]. Specifically, we express the

JIMWLK hierarchy in terms of a functional Langevin
equation for the Wilson lines [76, 77]. Each Langevin
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step can be written as [78]

Vx⊥(Y + dY ) =

exp
{
− i
√
αsdY

π

∫
z⊥

Kx⊥−z⊥ ·
(
Vz⊥ξz⊥

V †z⊥

)}
× Vx⊥(Y ) exp

{
i

√
αsdY

π

∫
z⊥

Kx⊥−z⊥ · ξz⊥

}
, (7)

with Gaussian white noise ξz⊥
= (ξaz⊥,1

ta, ξaz⊥,2
ta) that

is local in transverse coordinate, color, and rapidity, i.e.,
〈ξbz⊥,i

(Y )〉 = 0 and

〈ξax⊥,i
(Y )ξby⊥,j

(Y ′)〉 = δabδijδ(2)
x⊥y⊥

δ(Y − Y ′) . (8)

Since we are particularly interested in the impact param-
eter dependence, we follow [79] and employ a regularized
JIMWLK kernel

Kx⊥−z⊥ = m|x⊥ − z⊥| K1(m|x⊥ − z⊥|)
x⊥ − z⊥

(x⊥ − z⊥)2
,

(9)
which suppresses emission at large distance scales and
limits growth in impact parameter space. The modi-
fied Bessel function of the second kind K1(x) behaves
as xK1(x) = 1 + O(x2) for small arguments x, leav-
ing the kernel unmodified at short distance scales. Con-
versely, for large arguments K1(x) =

√
π
2xe
−x decays

exponentially, suppressing gluon emissions at large dis-
tance scales. This regularization also prevents the un-
physical exponential growth of the cross section, which
would violate unitarity [80].

We note that the only free parameters controlling the
JIMWLK evolution in Eq. (7) are the (fixed) coupling
constant αs and the infrared regulator m, and we will
consider variations of both parameters to assess the sen-
sitivity of our results.

We illustrate the JIMWLK evolution of the spatial
configuration of three sample protons in Fig. 1, where we
plot the trace of the Wilson lines, 1 − Re[tr(Vx⊥)]/Nc,
for five different rapidities. Going left to right, x de-
creases for the left moving proton. One can see that the
average size of the proton grows with the evolution and
that shorter scale structures emerge as Qs grows with
decreasing x. This is expected as the correlation length
in the transverse plane behaves as ∼ 1/Qs. Similar fea-
tures can be observed for the evolution of the lead nuclei,
shown in Fig. 2, where for the right moving nucleus, x
decreases going from right to left; in addition, the im-
pact parameters of the protons, for events within a given
centrality class (see Sec. II D), are marked by different
colored circles.

C. Event generation & classical Yang-Mills
evolution

Having determined Np proton configurations and NPb
lead configurations over the entire range of rapidities
−2.4 ≤ Y ≤ 2.4, we proceed to generate events, where
for each of the Np × NPb combinations of protons and
lead nuclei, we perform Nb⊥ = 16 collisions with dif-
ferent impact parameters b⊥, sampled according to a

two-dimensional uniform distribution with the restriction
0 < |b⊥| < 8 fm.2

Based on the JIMWLK evolved Wilson lines, the initial
conditions for the non-vanishing components of the gauge
fields Aix⊥

(τ = 0+), Eηx⊥
(τ = 0+) in the forward light-

cone at a given rapidity yobs are then given by

Aix⊥
(τ = 0+, yobs) =

i

g

[(
V px⊥

(+yobs)∂
iV p †x⊥

(+yobs)
)

+
(
V Pbx⊥+b⊥

(−yobs)∂
iV Pb †x⊥+b⊥

(−yobs)
)]

, (10)

Eηx⊥
(τ = 0+, yobs) =

i

g

[(
V px⊥

(+yobs)∂
iV p †x⊥

(+yobs)
)
,(

V Pbx⊥+b⊥
(−yobs)∂

iV Pb †x⊥+b⊥
(−yobs)

)]
. (11)

Starting from the lattice discretized version of the initial
conditions in Eqs. (10) and (11) [81], we solve the lattice
discretized classical Yang-Mills (CYM) equations of mo-
tion up to time τ = 0.2 fm/c, at which we determine the
energy-momentum tensor Tµν (see e.g. [56] for how we

compute Tµν on the lattice), gluon spectra
dNg

d2p⊥dy
and

gluon multiplicity dNg/dy =
∫
d2p⊥

dNg

d2p⊥dy
. The gluon

spectra at a particular time τ are obtained by projecting
the gauge fixed equal time correlation functions on to
transversely polarized gluon modes, as described in [34]

dN

d2p⊥dy
=

1

(2π)2

∑
λ,a

∣∣∣τgµν(ξλ,p⊥
µ (τ)∂τA

a
ν(τ,p⊥)

)∣∣∣2 ,
(12)

where gµν(1,−1,−1,−τ−2) denotes the Bjorken metric
and λ = 1, 2 labels the two transverse polarizations. The
mode function takes the following form in the Coulomb
gauge

ξ1,p⊥
µ (τ) =

√
π

2|p⊥|

−pypx
0

H
(2)
0 (|p⊥|τ) (13)

ξ2,p⊥
µ (τ) =

√
π

2|p⊥|

 0
0

p⊥τ

H
(2)
1 (|p⊥|τ) (14)

where H
(2)
p are the Hankel functions of the second kind

and order p.
Based on the factorization formula in Eq. (1), the

rapidity yobs dependence of these observables in each
event is then calculated as in [1] from a series of in-
dependent 2+1D CYM simulations, which according to
Eqs. (10,11) start from the same Wilson lines V px⊥

and

V Pbx⊥
evolved up to different rapidities Y = ±yobs. We

will consider a rapidity range yobs ∈ [−2.4,+2.4], where
yobs = −2.4(+2.4) corresponds to no JIMWLK evolution
in the proton (lead nucleus), and calculate observables in
intervals of ∆y = 0.4.

2 Note that in order to avoid interpolation of SU(Nc) matrices,
we round the impact parameter b⊥ to the next lattice site.
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FIG. 3. Histogram for the gluon multiplicity distribution
g2dNg/dy normalized by its expectation value 〈g2dNg/dy〉
at mid rapidity (y=0). Simulations are done for two differ-
ent set of parameters m = m̃ = 0.2 GeV with cQs = 1.25
and m = m̃ = 0.8 GeV with cQs = 1.82 along with
αs = 0.15 Crosses are experimental charged hadron distri-
bution data dNch/dy for raw reconstructed primary tracks in√
s = 5.02 TeV p+Pb collisions from the CMS collaboration

[82] Centrality classes are indicated by the vertical lines.

D. Gluon multiplicity and centrality selection

Based on the above procedure, we obtain a total of
Nevents = Nb⊥ × Np × NPb = 4096 events, which
we further classify into centrality classes according to
their gluon multiplicity g2dNg/dy|yobs=0 at mid-rapidity
yobs = 0. Since we do not invoke any collision cri-
teria (e.g. Ncoll ≥ 1), we first disregard events with
g2dNg/dy|yobs=0 < 4 from our event selection and subse-
quently perform the usual binning.

We present the gluon multiplicity distribution at mid-
rapidity (y = 0) in Fig. 3, where we have scaled the distri-
bution by the mean multiplicity, in order to compare to
experimental data on the uncorrected reconstructed pri-
mary tracks from the CMS Collaboration [82]. Different
curves in Fig. 3, show the results for two different sets of
parameters, namely m = m̃ = 0.2 GeV with cQs

= 1.25
and m = m̃ = 0.8 GeV with cQs

= 1.82, which we
will continue to investigate in the following. While in
both cases the width of the gluon multiplicity distribu-
tion agrees well with that of the experimental data on
reconstructed tracks, we find that for m = m̃ = 0.2 GeV
the computed gluon distribution has some peak and dip
structure at small multiplicities, which can be attributed
to very peripheral events and is not seen in the experi-
mental data. Nevertheless, even in this case, for larger
multiplicities (equal or greater than the mean) the data
is well described. The figure also indicates the centrality
classes as obtained from the gluon distribution.

g2dNg/dy 0− 5% 40− 50% 60− 70% 80− 90%

m = 0.2 GeV 141.1 52.9 29.2 9.2

m = 0.8 GeV 152.3 51.2 33.2 16.6

ALICE dNch/dη 42.6 16.1 9.6 4.3

g2dE⊥/dy [GeV]

m = 0.2 GeV 457.1 162.6 80.1 20.1

m = 0.8 GeV 697.1 214.4 136.7 66.2

TABLE I. Values for gluon multiplicity g2dN/dy and trans-
verse energy per unit rapidity g2dE⊥/dy at y = 0 for αs =
0.15 together with the ALICE data [83] for dNch/dη. Sim-
ulation results are obtained for two different setups, m̃ =
m = 0.2 GeV with cQs = 1.25, and m̃ = m = 0.8 GeV with
cQs = 1.82.

III. GLOBAL EVENT STRUCTURE & NATURE
OF HIGH-MULTIPLICITY EVENTS

Before we discuss the event-by-event geometry and az-
imuthal correlations, it is insightful to briefly comment
on the general features of low and high multiplicity events
in high-energy p+Pb collisions. We first study the rapid-
ity dependence of the multiplicity dNg/dy and transverse
energy dE⊥/dy.3 Different panels in Fig. 4 show the ra-
pidity dependence of dNg/dy and dE⊥/dy normalized to
their value at mid-rapidity dNg/dy|y=0 for different cen-
trality classes (0−5), (40−50), (60−70), and (80−90)%,
for the two different sets of parametersm = m̃ = 0.2 GeV
with cQs

= 1.25 and m = m̃ = 0.8 GeV with cQs
= 1.82.

Absolute values of the multiplicities and transverse en-
ergy per unit rapidity at mid-rapidity are provided in
Table I.

Generally, one can see that the rapidity dependence
of both the multiplicity dNg/dy and the transverse en-
ergy dE⊥/dy flattens as one approaches more peripheral
events; however the comparison of the left and right pan-
els indicates that the magnitude of the forward-backward
asymmetry in more central events is actually quite sensi-
tive to the value of the infrared regulators m and m̃. Ev-
idently, it would be instructive to compare the results in
Fig. 4 to experimental measurements, however we are not
aware of measurements of dN/dy of identified hadrons in
p+ Pb collisions. Nevertheless, when comparing our re-
sults for the gluon rapidity distribution to dNch/dη of
unidentified charged hadrons, we find that the gluon dis-
tribution for m = m̃ = 0.2 GeV generally shows a steeper
rapidity dependence than the experimental data from the
ALICE Collaboration [83], which is essentially symmet-
ric in the (80-100)% bin and appears to be more in line
with the behavior observed for m = m̃ = 0.8 GeV.

By comparing the left and right panels of Fig. 4, one
finds a 20 − 30% differences when varying the infrared
regulators m and m̄ by a factor of four, which provides an
estimate of the systematic uncertainty of the calculation.

3 We assume that space-time rapidity is equal to the momentum
rapidity, ηs = y, which holds for a system, where the phase-space
density of gluons is proportional to δ(ηs−y) [16]. Based on this,
we will be using ηs and y interchangeably.
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FIG. 4. Gluon multiplicity dNg/dy (top) and transverse energy per unit rapidity dE⊥/dy ∝ τε (τ = 0.2 fm) (bottom) relative
to their values at mid rapidity for different centrality classes. Simulation parameters: αs = 0.15; m̃ = m = 0.2 GeV (left) and
m̃ = m = 0.8 GeV (right).

While the self-normalized quantities in Fig. 4 empha-
size the rapidity dependence, we note that for both pa-
rameter sets, the centrality dependence of the absolute
yield at mid-rapidity up to 60− 70% is approximately in
line with that of the experimentally determined charged
hadron yield, as can be seen in Table I.

When comparing the top and bottom panels of Fig. 4,
one observes that the transverse energy shows a slightly
weaker centrality dependence compared to the gluon
multiplicity. This is likely a consequence of the trans-
verse energy being more sensitive to the larger of the
two saturation scales Qs, as parametrically one has
dNg/dy ∼ Q2

s<S⊥ while dE⊥/dy ∼ Qs>Q
2
s<S⊥ [84, 85]

where S⊥ is the transverse area and Qs,>/< denotes the
larger/smaller of the two saturation scales.

Next, in order to obtain further insight into the prop-
erties of low and high multiplicity events, we will extract
the average Pb and p saturation scales Qs(y) and deter-
mine a measure of the system size S⊥(y) for the different
centrality classes. Specifically, the saturation scale Qs(y)
is extracted from the dipole scattering amplitude

D(r⊥,d⊥) =
1

Nc
tr
[
Vd⊥+r⊥/2V

†
d⊥−r⊥/2

]
, (15)

averaged over (dipole) impact parameters |d⊥| < 0.2 Rp

from the collision point4 (see App. A for details). By
following previous works [79], we extract the distance
|r⊥|c where the dipole amplitude exceeds a value of c,
i.e.,

D(|r⊥|c, |d⊥| < 0.2Rp) = c , (16)

and calculate Qs = 2/|r⊥|c log1/2(1/c) according to the
parametrization D(r⊥) = exp(−Q2

sr⊥
2/4). We employ

c = 0.8 and 0.9 to estimate the uncertainty of this proce-
dure. While the saturation scale Qs is a property of the
projectile and target, the centrality dependence simply

stems from the fact that larger values of Q
p/Pb
s give rise

to larger multiplicity, corresponding to lower centrality,

and we determine Q
p/Pb
s separately for each centrality

class.
The system size S⊥ is determined from the energy mo-

mentum tensor Tµν as

S⊥ =

∫
d2x⊥ x2

⊥ T
ττ (x⊥)∫

d2x⊥ T ττ (x⊥)
(17)

4 By the collision point we mean the transverse position where
the center of mass of the proton hits the lead nucleus. Hence for
the proton the dipole amplitude is extracted around its center
of mass, while according to Eq. (10,11) for the lead nucleus, the
collision point is offset from the center of the nucleus and the
dipole amplitude is thus measured around the impact parameter
b⊥ of the p+Pb collision.
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which we evaluate at τ = 0.2 fm/c after the collision of
the proton and the lead nucleus.

We will focus on the case m = m̃ = 0.2 GeV, which
exhibits a stronger rapidity and centrality dependence
of dN/dy and dE⊥/dy. For this case our results for

Q
p/Pb
s (y) and S⊥(y) are compactly summarized in Fig. 5.

With decreasing x, which corresponds to increasing ra-
pidity y for the left moving proton and decreasing rapid-
ity y for the right moving lead nucleus, both saturation
scales Qs increase due to the JIMWLK evolution. The
proton saturation scale Qps is similar in the three more
peripheral events, while the nucleus’ QPbs depends more
strongly on centrality, indicating that in mid-central and
peripheral events the multiplicity is determined by the
impact parameter, i.e., the position in the lead nucleus
where the proton hits, as well as fluctuations in the
lead nucleus. In contrast, the proton saturation scale
in the most central bin is significantly larger than for the
other centralities, while there is little difference between
the lead saturation scale in 40-50% and 0-5% central-
ity classes. This means that the highest multiplicities
are reached by upward fluctuations of the proton’s gluon
density, quantified by Qps .

The size of the interaction region increases approxi-
mately linearly (for the three most central centralities
studied), which is driven by the growth of the proton size

with rapidity [79, 80] (see App. A). The most peripheral
events show a significantly larger area, which may appear
counter-intuitive at first sight. However, given the defi-
nition of the area measure in (17), an overall very small
but spread out energy density can lead to a large area,
which seems to be the dominant structure of the most
peripheral events we studied. For all other centralities,
the area is approximately the same, and the difference in
multiplicity is driven almost entirely by changes in the
Qs values.

IV. EVENT GEOMETRY & INITIAL STATE
MOMENTUM CORRELATIONS

Having established the basic features of the events in
different centrality classes, we continue by investigating
the longitudinal structure of the event geometry and the
initial state momentum anisotropy. We follow standard
procedure and characterize the event geometry in terms
of the eccentricities

εn(y) =

∫
d2r⊥T

ττ (y, r⊥) |r⊥|neinφr⊥∫
d2r⊥T ττ (y, r⊥) |r⊥|n

, (18)

where the integer n indicates the harmonic. We will
study the cases n = 2 and n = 3.

Similarly, following [11, 58], the initial state momen-
tum anisotropy can be characterized in terms of the
anisotropic energy flow

εp(y) =

∫
d2r⊥ T

xx(y, r⊥)− T yy(y, r⊥) + 2iT xy(y, r⊥)∫
d2r⊥ T xx(y, r⊥) + T yy(y, r⊥)

(19)

or alternatively as in [34] in terms of the azimuthal
anisotropy vg2 of the produced gluons5

vg2(y) =

∫
d2k⊥|k⊥| dNg

dyd2k⊥
(y)e2iφk⊥∫

d2k⊥|k⊥| dN
dyd2k⊥

(y)
. (20)

We evaluate the expressions in Eqs. (18), (19), and (20)
at τ = 0.2 fm/c to calculate εn, εp, and vg2 as functions
of rapidity y on an event-by-event basis. Subsequently,
to quantify the overall rapidity dependence we compute
the correlation functions

CO(y1, y2) =
〈
Re
(
O(y1)O∗(y2)

)〉
(21)

where 〈.〉 denotes an event average and O is any of the
above observables. The correlation function CO contains
information about both the magnitude and rapidity de-
pendence of the correlation function. To focus on the
rapidity decorrelation of the transverse geometry and
initial state momentum correlations, we will also show
results for the normalized rapidity correlation function

CNO (y1, y2) =
CO(y1, y2)√

〈|O(y1)|2〉〈|O(y2)|2〉
. (22)

5 We note that the additional |k⊥| weight is chosen such that in
the quasi-particle picture the definitions of εp and vg2 agree with
each other.
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FIG. 6. Geometric eccentricities εn{2} =
√
〈|εn(y)|2〉 (top) and initial momentum anisotropies εp{2} =

√
〈|εp(y)|2〉 together

with azimuthal anisotropy vg2{2} =
√
〈|vg2(y)|2〉 (bottom) for different centrality classes 0-5% (left), 40-50% (center) and 80-

90% (right) as a function of rapidity.

A. Rapidity dependence of event geometry and
momentum anisotropy

In Fig. 6 (top) we show the rapidity dependence of

eccentricities ε2{2}(y) =
√
〈|ε2(y)|2〉 and ε3{2}(y) =√

〈|ε3(y)|2〉 for different parameters and centrality
classes. In most cases ε2 decreases with increasing
rapidity, and does so more rapidly for larger αs and
smaller m, as expected by how these parameters affect
the JIMWLK evolution speed. For our standard param-
eters of m̃ = m = 0.2 GeV and αs = 0.15 the rapidity
dependence is rather weak. For the most peripheral bin,
ε2 has a shallow minimum as a function of rapidity. The
triangularity ε3 has an even weaker rapidity dependence
than ε2 in the two more central bins, and increases with
increasing rapidity in the most peripheral bin. Given the
comparable size of ε2 and ε3 in this bin, one might expect
the observed anti-correlation between the two quantities,
as it is difficult geometrically to generate a large ε2 and
ε3 at the same time (This can be seen most easily when
arranging just three hot spots. A maximal triangularity
goes along with a reduced ellipticity and vice versa.)

The bottom panel in Fig. 6 shows the rapidity de-
pendence of the initial state anisotropy εp{2}(y) =√
〈|εp(y)|2〉 and the gluon elliptic momentum anisotropy

vg2{2}(y) =
√
〈|vg2(y)|2〉 for the same centrality classes

and parameter sets as the eccentricities above. First, it is
clear to see that both quantities follow each other closely.
The anisotropy of the energy momentum tensor is thus
a good predictor of the gluon momentum anisotropy in
the situation that strong final state interactions are not
included. Comparing the three panels, we can see that
the initial momentum anisotropy increases with decreas-
ing gluon multiplicity. The rapidity dependence of εp

and vg2 is negligible in most cases, with the case using
αs = 0.3 (shown only for the most central bin) showing
the strongest decrease with increasing rapidity. In the
most peripheral bin the two quantities show a minimum
around y = 1, which is where the transverse energy is
maximal.

In Fig. 7 we focus on the centrality dependence of the
rapidity dependent ε2, ε3, and vg2 and compare results
for the two different parameter sets m = m̃ = 0.2 GeV
and m = m̃ = 0.8 GeV with αs = 0.15 in both cases.6

Generally, the sharper profiles for m = m̃ = 0.8,GeV
lead to larger geometric eccentricities ε2 and ε3 across
all rapidities and centrality classes, as pointed out pre-
viously in [86]. While for m = m̃ = 0.8 GeV both ε2

and ε3 exhibit a monotonic behavior as a function of
centrality, we find that for smaller values of the infrared
regulator m = m̃ = 0.2 GeV, the eccentricity ε2 is max-
imal for 40-50% central collisions, and minimal in the
most peripheral bin, and ε3 increases monotonically to-
wards more peripheral events and shows the strongest
centrality dependence on the lead going side.

On the other hand, the magnitude and centrality
dependence of the gluon momentum anisotropy vg2 is
rather insensitive to the infrared regulator and only very
weakly dependent on the rapidity. However, as has
been observed previously [11, 34], the initial momentum
anisotropy driven vg2 increases monotonically with de-
creasing multiplicity (towards more peripheral events).
We show here that this is true for all studied rapidities.
Furthermore, the value of vg2 is largely independent of
rapidity in all centrality bins, which is also a new result.

6 Since εp and vg2 are essentially identical, we only show the cen-
trality dependence of vg2 .



9

 0

 0.2

 0.4

 0.6

 0.8

 1

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

m = 0.2 GeV m = 0.8 GeV
ε 2

{2
}

y

(0-5)%

(40-50)%

(60-70)%

(80-90)%

(0-5)%

(40-50)%

(60-70)%

(80-90)%

 0

 0.2

 0.4

 0.6

 0.8

 1

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5  2  2.5

m = 0.2 GeV m = 0.8 GeV

ε 3
{2

}

y

(0-5)%

(40-50)%

(60-70)%

(80-90)%

(0-5)%

(40-50)%

(60-70)%

(80-90)%

FIG. 7. Comparison of the rapidity dependence of√
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√
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tom) for different centrality classes for αs = 0.15 and distinct
IR regulators such that m = m̃.

B. Decorrelation of event geometry and
momentum anisotropy

Now that we have established the overall rapidity de-
pendence of the initial state geometry and momentum
anisotropy, we will investigate the correlation across dif-
ferent rapidities, as quantified by the correlation func-
tions Cε2(y1, y2) and Cεp(y1, y2) shown in Fig. 8. The
top panel shows results for (0-5)% central collisions, the
bottom for (60-70)% central collisions. The overall mag-
nitude of this correlator is related to the size of ε2 and

εp, as Cε2(y, y) =
(
ε2{2}(y)

)2
and similarly for Cεp . We

see that Cε2(y1, y2) is maximal for both rapidities be-
ing most negative, where the ε2 is largest. Fixing one
rapidity, we can see the decorrelation when varying the
other rapidity. Cεp(y1, y2) is maximal for y1 = y2 and
does not vary much along this diagonal, as εp (or vg2) is

approximately constant as a function of rapidity. How-
ever, when comparing the results for ε2 and εp, we can
already see that the decorrelation of the initial state mo-
mentum anisotropy in Cεp(y1, y2) is much faster than the
decorrelation of the event geometry in Cε2(y1, y2). One
also observes that Cε2(y1, y2) is only weakly dependent
on centrality, while Cεp(y1, y2) shows some increase when
going to more peripheral events, related to the increase
of the initial state momentum anisotropy (vg2) for lower
multiplicity.

In Fig. 9, we show the normalized correlation func-
tions CNεn(αs∆y) for n = 2, 3, and CNv2(αs∆y)
as functions of the scaled rapidity difference αs∆y.
They are obtained from Eq. (22) as CNO (∆y) =

1
2ymax−∆y

∫ +ymax−|∆y|/2
−ymax+|∆y|/2 dY CNO (Y + ∆y/2, Y − ∆y/2).

For the geometric correlators we find that the decorrela-
tion with rapidity is stronger for n = 3 than n = 2. This
is consistent with experimental observations in heavy ion
collisions [87, 88]. The decorrelation scales only approx-
imately with αs as we see small differences between the
αs = 0.15 and αs = 0.3 case. As expected, smaller m
leads to a faster decorrelation. The centrality depen-
dence shown in the three top panels demonstrates how
the rapidity decorrelation becomes faster towards more
peripheral events.

In the bottom panel of Fig. 9, we present the corre-
lator for the gluon momentum anisotropy CNv2(αs∆y),
which shows a much more rapid decorrelation than the
geometric quantities, but the opposite centrality depen-
dence, with the most peripheral bin showing the broadest
correlation in rapidity. The scaling with αs works more
accurately in this case, and smaller m leads only to a
slightly faster decorrelation. The quick decorrelation in
the initial momentum anisotropy with JIMWLK evolu-
tion, compared to the geometric case, can be expected
based on the fact that every gluon emission in the evo-
lution leads to a color decorrelation, quickly scrambling
information of color domains at the initial rapidity. Con-
versely, the larger scale geometric structures are much
more robust to the evolution, as they are not sensitive to
the color structure.

The centrality dependence of these results is high-
lighted again in Fig. 10. For the geometric quantities,
the width of the correlation function decreases with in-
creasing centrality, while it increases for the initial mo-
mentum anisotropy. This can be understood as follows:
The geometry of the more dilute peripheral events can be
changed more easily by additional gluon emissions in the
evolution (dominantly via the modification of the pro-
ton’s shape). Denser protons are more robust to changes
of the geometry by the same amount of emissions. Re-
garding the momentum anisotropy, it is maximal in the
most peripheral bins. Consequently it takes more evolu-
tion to destroy it.

We find that in the most peripheral events, where the
initial momentum anisotropy can potentially dominate
the observed charged hadron anisotropy [58], the corre-
lation drops by 50% within approximately one unit of ra-
pidity (for the preferred JIMWLK evolution speed with
αs = 0.15).

The two columns of Fig. 10 show the results for differ-
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ent choices of m = m̃. While we do see variations of the
decorrelation speed with the choice of infrared regulator,
in particular for the spatial anisotropy, our main conclu-
sion that the initial momentum anisotropy decorrelates
significantly more quickly than the geometry is robust.

In order to better understand the decorrelation that is
observed in the event averaged quantities, we study both
real and imaginary parts of the spatial and the momen-
tum anisotropies for three individual events in Fig. 11.
In the top panel, we show real and imaginary parts of
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εn as functions of rapidity. As expected from the slow
decorrelation observed above, the plotted quantities vary
smoothly and weakly with rapidity.

In the bottom panel, we show real and imaginary parts
of εp and vg2 as functions of rapidity. For all events
(columns), we observe rather quick variations of the pre-
ferred direction of anisotropy with rapidity even though
the magnitude of anisotropy given by the absolute value
does not change too rapidly, even in a single event. These
rapid variations explain the quick decrease of the corre-

lator with rapidity, the main driver being fluctuations
in the angle. We note that even in a single event, εp
resembles vg2 closely.

C. Estimators for the correlation between mean
transverse momentum and elliptic anisotropy

Finally, we consider estimators for the correlation of
mean transverse momentum and the elliptic anisotropy,
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FIG. 11. Rapidity dependence of the real and imaginary parts of the 2nd and 3rd order spatial eccentricities (top-panel) for
three different events in the (0 − 5)% centrality class (top-panel). Similar result are given for the azimuthal anisotropy of
initial state gluon vg2 and initial state momentum anisotropy εp in the bottom panel. Simulation parameters: αs = 0.15 and
m = m̃ = 0.2 GeV.
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FIG. 12. The estimators based on the initial geometry
ρ̂est(ε

2
2, [s]) (top) and initial state momentum anisotropy

ρ̂est(ε
2
p, [s]) (bottom) as a function of centrality for two differ-

ent values of the infrared regulator (m = m̃). The correlation
measure denoted as ABC is obtained for different rapidity re-
gions: region A with −2.4 < y < −0.8, central region B with
|y| < 0.8 and region C with 0.8 < y < 2.4

which has been suggested as an observable to distinguish
between geometry and initial momentum anisotropy as
the origin of the observed anisotropy [58]. The relevant
correlator studied experimentally is defined as

ρ̂(v2
2 , [pT ]) =

〈δ̂v2
2 δ̂[pT ]〉√

〈(δ̂v2
2)2〉〈(δ̂[pT ])2〉

, (23)

where v2 is the measured elliptic anisotropy and [pT ] is
the mean transverse momentum in a given event, and
the event-by-event deviation for observable O at fixed
multiplicity is defined as [89]

δ̂O ≡ δO − 〈δOδN〉
σ2
N

δN , (24)

where δO = O − 〈O〉, N is the multiplicity and σN the
variance of N in a given centrality bin.

Because we are considering initial state quantities in
this work, we compute estimators for ρ̂ by replacing v2

with ε2 (or εp) and [pT ] by the average entropy density

[s] = [e3/4] where e is the energy density, approximated
as T ττ . The average [f] is computed as

[f ] =

∫
d2x⊥e(x⊥)f(x⊥)∫

d2x⊥e(x⊥)
. (25)

The estimator using the ellipticity ε2, ρ̂est(ε
2
2, [s]), is

shown as a function of centrality in top panel of Fig. 12
for two different ways of choosing the rapidity bins where
the different components of ρ̂ are computed. One takes
all quantities at rapidity zero (y = 0), the other uses
three different rapidity bins (ABC regions) for the dif-
ferent components of ρ̂, following the prescription used
by the ATLAS Collaboration [90]. We find that for the
larger m = m̃ the geometry estimator is always negative,
as can be expected from geometric considerations [58].



13

Since the infrared regulators m, m̃ have a strong effect
on the event geometry, this also affects the ρ̂ estimator.
When considering the smaller m = m̃, we even find pos-
itive values for most central and most peripheral events.
While this is at odds with calculations of this estima-
tor in the IP-Glasma model without JIMWLK evolution
[58], it is conceivable that the JIMWLK evolution, which
has greater effects on the geometry for smaller m, causes
this difference in the most central and most peripheral
events. The appearance of positive values for smaller m,
which leads to larger systems, is in line with findings in a
previous work, where the geometric ρ̂ correlator turned
positive when increasing the system size [91].

Most importantly, for the geometric estimator, we do
not see a large dependence on the choice of rapidity bins,
which is related to the weak decorrelation of the geom-
etry observed. Hence our results justify the use of the
boost-invariant approximation to compute the correla-
tor in geometry driven models [58, 91].

When replacing ε2 by the initial state momentum
anisotropy εp, we observe a positive correlation in the
ρ̂est(ε

2
p, [s]) estimator when considering both quantities

at mid-rapidity, which again is in line with the findings
in [58]. However, due to the rapid decorrelation of εp in
rapidity, this signal does not appear to survive the rapid-
ity gap, as the correlator ρ̂est(ε

2
p, [s]) is consistent with

zero when considering the selection in different rapidity
intervals (ABC).

V. CONCLUSIONS & OUTLOOK

We have presented results for rapidity dependent
quantities in p+Pb collisions, computed within the color
glass condensate framework, which involves the calcu-
lation of classical gluon fields in the proton and lead
nucleus in IP-Glasma, their leading quantum correc-
tions via JIMWLK evolution of the corresponding Wilson
lines, and computation of production and time evolution
of the gluon fields generated by the collision at different
rapidities.

We showed results for the rapidity dependence of gluon
production dNg/dy and the transverse energy dE⊥/dy
for different centralities, and analyzed the role of the sat-
uration scale Qs in the proton and nucleus as well as that
of the overlap area for gluon production as a function of
centrality.

We studied the transverse geometry, quantified by the
eccentricities ε2 and ε3 as a function of centrality and ra-
pidity, finding rather mild dependencies. The initial mo-
mentum anisotropy, quantified by either the anisotropy
of the energy momentum tensor εp or that of the gluon
distribution vg2 , showed a weak rapidity dependence for
all centralities, and increased when increasing centrality
from central to peripheral events.

We computed the unequal rapidity correlations of both
the geometric and initial momentum anisotropy vectors
and observed very different behavior between the two.
The geometry decorrelates much more slowly as a func-
tion of the rapidity difference, compared to the initial
momentum anisotropy. For the latter, the correlation

is widest in the most peripheral centrality bin, but still
drops to about half its maximal value for a rapidity differ-
ence ∆y = 1. This result implies that when using large
rapidity gaps to measure flow harmonics or the ρ̂ cor-
relator experimentally, the initial momentum anisotropy
may play a smaller role than previously assumed. In
order to access this contribution, smaller rapidity gaps
need to be employed, which will make the separation
from other non-flow effects difficult.

Regarding the geometry, we find a faster decorrelation
for ε3 than for ε2, which is in line with observations in
heavy ion collisions [87, 88]. The fast decorrelation of
ε3 can play an important role for the difference between
different v3 measurements in small asymmetric systems
at RHIC [57, 92–94].

For all these observables, we studied in detail the de-
pendence on the infrared regulators employed in the cal-
culation, as well as that on the strong coupling constant
αs, which controls the evolution speed of the JIMWLK
equations. We assumed a fixed coupling constant. Run-
ning coupling effects have been included in leading log-
arithmic JIMWLK evolution calculations [78, 95, 96].
Generally, their inclusion should lead to a faster rapidity
evolution of the long range geometric structures, and a
slower evolution of short range momentum correlations
in the transverse plane.

Finally, we computed an initial state estimator for the
correlation between the elliptic anisotropy and the aver-
age transverse momentum at fixed multiplicity. For the
larger infrared regulator, this quantity is always negative,
in line with previous findings using the IP-Glasma model
(without JIMWLK evolution) [58]. For the smaller reg-
ulator, positive values are found in the most central and
most peripheral bins, which could be attributed to ef-
fects from the JIMWLK evolution on the details of the
geometry at large length scales.

We conclude that even at collision energies available
at the LHC, for small systems the rapidity dependence
is not to be neglected. When rapidity gaps are em-
ployed experimentally, the theoretical description will
not get away with the assumption of boost invariance in
most cases. Rapidity dependent calculations are required
and the experimental procedures should be matched as
closely as possible. Already the centrality selection is
affected by the rapidity dependence, and we recommend
for the purpose of an easier comparison to theoretical cal-
culations to perform centrality classifications using mea-
surements around midrapidity.

We note that from a theoretical point of view, our
description calculates mean-field type correlations and
propagates them using JIMWLK. The sub-leading cor-
rection to the limit of a large number of small x con-
stituents includes the absence of particles that already
scattered and conditional constraints on the small-x evo-
lution. We are not aware of how to include these effects
in dense-dense calculations, and their potential effects on
the observables studied are unclear. However, by consid-
ering the dilute limit of the projectile, the authors of
[97, 98] developed a framework to study multi–particle
production with rapidity correlations, which may provide
a way to assess these effects in future studies.
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In the future, it will also be interesting to couple the
computed rapidity dependent initial state to hydrody-
namics, possibly via an intermediate kinetic theory stage
[99, 100]. Also, a construction of a fully 3 dimensional
Wilson line configuration followed by 3+1D Yang-Mills
evolution, as explored in [101–103], will be desirable.
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Appendix A: Dipole amplitude & Saturation scale

In order to characterise the gluon distribution of the
proton and the Pb nucleus, we use the dipole scattering
amplitude, Eq. (15), where d⊥ = (x⊥ + y⊥)/2 is the
impact parameter and r⊥ = x⊥ − y⊥ is the size of a
color singlet dipole with color charges at positions x⊥
and y⊥. We show the dipole scattering amplitude 1 −
D(r⊥, |d⊥| < 0.2Rp) for the Pb nucleus (top) and proton
(bottom) as a function of dipole size r⊥ = |r⊥| for a
fixed range of impact parameter |d⊥| < 0.2Rp measured
at three different rapidities y = −2.4, 0,+2, 4 in various
centrality classes in Fig. 13. This choice of d⊥ is based on
[79] where the dominant support of D(|d⊥|, |r⊥|) dwells
in the region of small impact parameter.

Due to color transparency the dipole scattering ampli-
tude 1 −D vanishes at r⊥ = 0 and then gradually rises
and reaches a maximum at r⊥/Rp ∼ 1. For the Pb nu-
cleus we observe that the scattering amplitude saturates
for (0− 5)% and (40− 50)% centrality classes, while the
other two centrality classes are dilute even for Y = −2.4
which corresponds to the smallest x. For proton (bot-
tom), the dipole amplitude is much below the saturation
level, even after full rapidity evolution (Y = 2.4), and
starts to fall when the separation between the dipole ex-
ceeds the size of the proton r⊥ � Rp because the dipole
no longer hits the target, as previously observed in [79].
We also note that for protons the shape of the dipole
amplitude as a function of r⊥ does not change much
with centrality, in particular for the three more periph-
eral bins.

In order to investigate the system size, we use the
Weizsäcker Williams fields E−µ , which are represented by

light-like Wilson lines Vp/Pb on a two dimensional lattice
with transverse coordinates as:

E−j,x =
i

4

[
V †x+jVx + V †xVx−j − V †xVx+j − V †x−jVx

]
−

i

4Nc
Tr
[
V†x+jVx + V†xVx−j −V†xVx+j −V†x−jVx

]
(A1)

The mean radius squared is then determined from
E2(x⊥) = Tr[E−x (x⊥)E−x (x⊥) + E−y (x⊥)E−y (x⊥)] as

〈r2
⊥(y)〉 =

∫
d2r⊥r

2
⊥E

2(r⊥, y)∫
d2r⊥E2(r⊥, y)

, (A2)

Similarly, the transverse area S⊥ is obtained as

S⊥ =

∫
Θ(E2(x⊥)− Λ2)d2x⊥ (A3)

where the Heaviside function implies that only regions
with field strength E2(x⊥) larger than the cut-off scale

Λ2 = 0.02 GeV/fm
3

contribute to the integral. The re-
sults for 〈r2

⊥〉 and S⊥ as a function of rapidity for dif-
ferent centrality classes for proton (left) and Pb nucleus
(right) are summarised in Fig. 14. We find that similar
to Fig. 5, the mean radius squared grows almost linearly
in the direction of increasing (decreasing) rapidity for the
proton (Pb nucleus), and is considerably independent of
centrality, except for the most central bin being different
from the other three.

We observe that for the left moving proton, the trans-
verse area S⊥ grows quadratically with decreasing x, in
agreement with the observation made in [79], where the
similarly defined proton radius grows linearly with the
rapidity evolution. Since the transverse size S⊥ of the
Pb nucleus is significantly larger to begin with, the effect
of Gribov diffusion on the Pb nucleus is smaller, lead-
ing to a slower increase of the area with decreasing x
(decreasing rapidity). With regards to the centrality de-
pendence, one finds that due to the larger overall field
strength the transverse area S⊥ of protons is somewhat
larger for the most central events, while for the Pb nu-
cleus no significant centrality dependence is observed.
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FIG. 13. Dipole scattering amplitudes 1−D(r⊥, |d⊥| < 0.2Rp) of the lead nucleus (top) and proton (bottom) at three different
rapidites Y = −2.4, 0,+2.4 as a function of dipole size |r⊥| in units of the proton radius Rp.
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