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We study electromagnetic field effect on charmonium gluon-dissociation in quark-gluon plasma.
With the effective Hamiltonian derived from QCD multipole expansion under an external electro-
magnetic field, we first solve the two-body Schrödinger equation for a pair of charm quarks with
mean field potentials for color and electromagnetic interactions and obtain the charmonium binding
energies and wave functions, and then calculate the gluon-dissociation cross-section and decay width
by taking the color electric and magnetic dipole interactions as perturbations above the mean field
and employing Fermi’s Golden Rule. Considering the charmonium deformation in magnetic field,
the discrete Landau energy levels make the dissociation cross-section grow hair, and the electric
dipole channel is significantly changed, especially for the P−wave states χc0 and χc±. From our
numerical calculation, the magnetic field strength eB = 5 m2

π already changes the gluon dissociation
strongly, which may indicate measurable effects in high-energy nuclear collisions.

I. INTRODUCTION

It is widely accepted that the strongest electromag-
netic field in nature can be created in non-central rela-
tivistic heavy-ion collisions [1–4]. In Au-Au collisions at
Relativistic Heavy Ion Collider (RHIC) the peak value
of the magnetic field is around eB ∼ 5 m2

π, and in
Pb-Pb collisions at Large Hadron Collider (LHC) the
value even reaches eB ∼ 70 m2

π [3], where mπ is the
pion mass in vacuum. While such strong electromag-
netic field can bring us many fantastic topics in quantum
chromodynamics (QCD) physics, such as chiral magnetic
effect [5, 6] and inverse magnetic catalysis [7, 8], the ini-
tially produced field decays very fast and survives only in
the very beginning of the collisions, although the atten-
uation is delayed slightly as quark-gluon plasma (QGP)
appears afterward [4, 9–12].

Heavy quarks are probably an ideal probe of the short-
lived electromagnetic field due to the fact that they are
produced at the very early stage of heavy-ion collisions
too. The difference in the directed flow between D0

and D̄0 may come from the electromagnetic field [13–
15], and the quarkonium static properties such as the
mass and shape are changed sizeably in the field [16–
27]. The field affects also the quarkonium dissociation in
hot medium [28–31]. Different from the color screening
picture [32] based on calculations at mean field level, the
dissociation processes which originate from the scattering
between quarkonia and thermal partons might be realis-
tic dynamics for quarkonium suppression in high energy
nuclear collisions. There are two kinds of dissociation
processes, one is gluon dissociation (g+Ψ→ Q+ Q̄), the
other is inelastic parton scattering (p+ Ψ→ Q+ Q̄+ p),
where g and p represent gluons and partons. The for-
mer is dominant in the temperature region where the
Debye mass is much smaller than the binding energy,
and the latter is essential when the quarkonium becomes
a loosely bound state [33, 34]. When the external elec-
tromagnetic field is turned on, the Landau-damping leads

to an increasing decay width in the inelastic scattering
processes [28–31].

The gluon dissociation describes the process of a color-
singlet state converting to a color-octet state by absorb-
ing a gluon [33]. The cross section in vacuum neglect-
ing the color-octet interaction in the final state was cal-
culated firstly by Bhanot and Peskin via the operator-
product-expansion (OPE) method [35, 36]. Peskin’s
perturbative analysis can be represented by a gauge-
invariant effective action from which one can get a non-
relativistic Hamiltonian for heavy quark systems via
QCD multipole expansion [37–39]. Based on this effec-
tive Hamiltonian, the cross section of gluon dissociation
in hot medium are derived in the frame of perturbation
theory of quantum mechanics [40–42]. The result in the
Coulomb approximation is in consistent with the OPE .

The goal of this paper is to study the electromag-
netic field effect on the gluon dissociation process and
the charmonium decay width in QGP. We first intro-
duce in Section II the framework of QCD multipole ex-
pansion, including an external electromagnetic field. We
then systematically solve the two-body Schrödinger equa-
tion for a pair of charm quarks at finite temperature. At
mean field level the solution of the equation gives the
magnetic field dependence of the static properties of the
cc̄ bound states, shown in Section III. Above the mean
field we focus in Section IV on the magnetic field effect
on the gluon-dissociation cross-section and calculate the
corresponding decay width, by taking the color electric
and magnetic dipole interactions as perturbations and
employing Fermi’s Golden Rule. We summarize in Sec-
tion V.

II. QCD MULTIPOLE EXPANSION

Multipole expansion is widely used for studying ra-
diation processes in classical electrodynamics [43–45].
Considering the large mass and slowly moving of heavy
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quarks, a heavy flavor system can be treated non-
relativistically, and a multipole expansion of the changing
gluon field converges rapidly [46]. The method has been
successfully used to calculate hadronic transition rates
for both charm and bottom systems [37, 38, 46]. Includ-
ing an external electromagnetic field, we start from the
gauge-invariant effective Lagrangian density for heavy
quarks, which represents the result of partial summa-
tion of the perturbation series [35, 37] in the absence of
electromagnetic field,

L =

∫
d3xψ̄′(x) (iγµDµ −mQ)ψ′(x)

−1

2

g2

4π

8∑
a=0

∫
d3x1d

3x2ρa(x1)
1

|r|
ρa(x2), (1)

where mQ is the heavy quark mass, Dµ = ∂µ + igA′aµ +
iqAµ is the covariant derivative with electric charge
q, strong coupling constant g and two gauge fields,
namely gluon field Aaµ and photon field Aµ. The in-
teraction among heavy quarks here is perturbatively
described by a Coulomb potential between a pair of
heavy quarks located at x1 and x2 with relative co-
ordinate r = x1 − x2. To guarantee the gauge in-
variance, the heavy quark field ψ(xi) and gluon field
Aaµ(xi) are transformed to be ψ′(xi) = U−1ψ(xi) and

A′aµ (xi) = U−1Aaµ(xi)U − (i/g)U−1∂µU through the

equal-time gauge link operator U(xi) = Peig
∫ xi
X dy·Aa(y),

where P is the path-ordering operator and the line inte-
gral is along the straight-line segment from the center-
of-mass coordinate X = (x1 + x2)/2 of the pair to the
quark (anti-quark) coordinate xi. Note that, the exter-
nal electromagnetic field Aµ(x) does not experience such
a transformation because it commutates with the link op-
erator U . The color charge density (vertex factor) ρa is
defined as ρa(xi) = ψ′†(xi)(λa/2)ψ′(xi) with Gell-Mann
matrix λa (a = 1, ..., 8 and λ0/2 = 1) . If the electro-
magnetic field Aµ is turned off, the effective Lagrangian
becomes the original one in Refs. [37, 38].

The Coulomb potential in the Lagrangian is only the
leading term of the color interaction between a pair of
heavy quarks. Aiming to go beyond the perturbation
theory, one assumes that the heavy quark interaction
can be described by a non-relativistic potential and gen-
eralizes the Coulomb interaction to including the color
confinement (Cornell) part in color singlet state [37, 38].
With this consideration, we replace the Coulomb poten-
tial g2/(4π)/|r| in the above Lagrangian by a general and
radial symmetric potential

Va(|r|) = V1(|r|)δa0 + V2(|r|)(1− δa0), (2)

where V1 and V2 are the interaction potentials between
Q and Q̄ in color-singlet state and color-octet state.

Using the expression for the gauge link operator U , the

transformed gluon field can be explicitly expressed as [37]

A′a0 (xi) = Aa0(xi) +

∫ xi

X

dy · ∂A
a(y)

∂t
,

A′a(xi) = Aa(xi)−∇
∫ xi

X

dy ·Aa(y), (3)

and expanding further the original field Aaµ in Taylor
series of xi−X at the center-of-mass coordinate X, one
obtains the perturbative expression of A′aµ in terms of
the color-electric and color-magnetic fields Ea = ∂Aa/∂t
and Ba = ∇×Aa,

A′a0 (xi) = Aa0(X)− (xi −X) · Ea(X) + · · · ,
A′a(xi) = −(xi −X)×Ba(X)/2 + · · · . (4)

The effective Lagrangian (1) with the non-perturbative
interaction (2) is the potential version of QCD to treat
heavy quark systems and the foundation for us to calcu-
late the quarkonium gluon-dissociation. If neglecting the
color degrees of freedom and the external electromagnetic
field, it returns to the QED multipole expansion [43–45].
To solve the Schrödinger equation for a QQ̄ system, we
transfer the Lagrangian to the Hamiltonian in coordinate
representation,

Ĥ = Ĥ0 + ĤI ,

Ĥ0 =
(p̂1 − qA(x1))2

2mQ
+

(p̂2 + qA(x2))2

2mQ

−A0(x1)−A0(x2) + V1(|r|) +

8∑
a=1

λa
2

λ̄a
2
V2(|r|),

ĤI = qaAa0(X)− da · Ea(X)−ma ·Ba(X) + · · · , (5)

where p̂i = −i∇i is the heavy quark (anti-quark) mo-
mentum operator, and

qa = g(λa + λ̄a)/2,

da = g(x1 − x2)(λa − λ̄a)/4,

ma = g/mQ(λa − λ̄a)(σ1 − σ2)/8 (6)

are the color monopole, electric dipole and magnetic
dipole moments of the QQ̄ system with the Pauli ma-
trix σi for heavy quark and anti-quark. It is clear that,
Ĥ0 describes a pair of heavy quarks moving in a mean
field which contains two parts: the strong potentials
V1 and V2 and electromagnetic potential Aµ, and ĤI

is considered as a perturbation above the mean field.
The former controls the static properties of the QQ̄
bound states, and the latter characterizes the quarko-
nium gluon-dissociation into a color-octet state.

Focusing on charmonia (bottom quarks are too heavy
and probably not so sensitive to the electromagnetic
field) and taking the standard perturbative calculation in
quantum mechanics, the cc̄ transition rate from a char-
monium state into a color octet state via absorbing a
gluon at leading order can be given by Fermis Golden
Rule, Γ = 2π|8〈cc̄|ĤI |Ψ〉|2ρ(Ecc̄), where |Ψ〉 and |cc̄〉8
are the initial charmonium bound state and final octet
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scattering state, and ρ(Ecc̄) is the phase-space volume
of the final state with energy Ecc̄. The transition can
be divided into the color-electric dipole (E1) and color-
magnetic dipole (M1) parts. Dividing the transition rate
by the flux of the incident gluons, one can obtain the
corresponding cross section. Following the procedure in
Refs. [41, 42], the cross sections via transition processes
E1 and M1 read

σE1 =
πg2Eg

18

∑
n,m,k

|〈nmk|r|Ψ〉|2δ(Eg − EB − Enmk),

σM1 =
πg2Eg
6m2

c

∑
n,m,k

|〈nmk|Ψ〉|2δ(Eg − EB − Enmk) (7)

with the explicit transition matrix elements

〈nmk|r|Ψ〉 =

∫
d3rΦ∗nmk(r)rΨ(r),

〈nmk|Ψ〉 =

∫
d3rΦ∗nmk(r)Ψ(r), (8)

where Eg is the incident gluon energy, EB and Ψ(r) are
the binding energy and wave function of the charmonium
state |Ψ〉, and Enmk and Φnmk(r) are the relative en-
ergy and wave function of the cc̄ pair in color-octet state.
The δ−function guarantees the energy conservation in
the transition processes.

Before we solve the relative motion for the charmonium
state and octet state in Section III and then calculate the
charmonium dissociation cross section in Section IV, we
simply point out the external electromagnetic field effect
on the cross section. While the perturbative Hamiltonian
ĤI is electromagnetic field independent, the initial and
final states |Ψ〉 and |cc̄〉8 of the transition are both the
field dependent. Especially, for the color octet state |cc̄〉8,
it is no longer a bound state of strong interaction, but
probably a bound state of electromagnetic interaction in
the plane perpendicular to the magnetic field [26]. That
is the reason why we describe the octet state |cc̄〉8 =
|nmk〉 with two discrete quantum numbers n and m for
the transverse bound state and a continuous momentum
k for the longitudinal motion. Therefore, the summation
over the final state energy means a summation over n
and m and an integration over k,

∑
n,m,k =

∑
n,m

∫
dk.

III. STATIC PROPERTIES OF cc̄ PAIRS

Both the charmonium state |Ψ〉 and octet state |nmk〉
are determined by the main Hamiltonian Ĥ0. We first
consider the Schröedinger equation for the charmonium
state |Ψ〉 at finite temperature T and under external mag-
netic field B,

Ĥ0|Ψ〉 = E|Ψ〉. (9)

Taking the symmetric gauge for electromagnetic field
Aµ = (−E · x, (B × x)/2), and making transformation

from the coordinates x1 and x2 to the center-of-mass
and relative coordinates X and r and from the quark
momenta p1 and p2 to their total and relative momenta
P = p1+p2 and p = (p1−p2)/2, the total kinetic energy

in Ĥ0 becomes

(p̂1 − qA(x1))2

2mc
+

(p̂2 + qA(x2))2

2mc
=
P̂ 2
kin

4mc
+
p̂′2

mc
(10)

with kinetic momentum Pkin = P − qB × r/2 and
modified relative momentum p′ = p − qB × X/2.
While the kinetic momentum Pkin and total momen-
tum P are not conserved in electromagnetic field with[
P̂ , Ĥ0

]
6= 0 and

[
P̂kin, Ĥ0

]
6= 0, the pseudo-momentum

Pps = P + qB × r/2 is a conserved quantity with[
P̂ps, Ĥ0

]
= 0 [17]. Keeping this in mind, one factorizes

the total wave function as ei(Pps−qB×r/2)·XΨ(r). Sub-
stituting this factorization into the Schrödinger equation
(9), one derives the equation controlling the relative en-
ergy EΨ = E − P 2

ps/(4mc) and wave function Ψ(r),[
p̂2

mc
+
q2(B × r)2 − 2q(Pps ×B) · r

4mc

−E · r + V1(r)

]
Ψ(r) = EΨΨ(r). (11)

The equation has been solved in previous studies for both
charmonium and bottomonium systems [16–27]. Consid-
ering the fact that, the electromagnetic field breaks down
the central symmetry, the orbital angular momentum is
no longer conserved even the strong potentials V1 and V2

are radial symmetric. Therefore, one can not further sep-
arate the relative wave function into a radial part and the
eigen state Ylm(θ, ϕ) of the orbital angular momentum.
In this case a straightforward way to solve the relative
equation is to expand the wave function in terms of Ylm,

rΨ(r) =
∑
l,m

φlm(r)Ylm(θ, ϕ). (12)

To simplify the calculation, we consider in the fol-
lowing only magnetic field and neglect the electric
field. For convenience, we take the magnetic field
to be in the z-direction B = Bez and the trans-
verse pseudo-momentum in the y-direction P⊥ps =

P⊥psey. Under this choice, the Lorentz potential and
the quadratic term in the relative equation become
−q(Pps × B) · r/(2mc) = qBP⊥psr sin θ sinϕ/(2mc) and

q2(B×r)2/(4mc) = q2B2r2 sin2 θ/(4mc). Expanding the
functions sin2 θYlm and sin θ sinϕYlm in terms of Ylm, one
obtains the equations for the radial functions φlm(r),[

− d2

dr2
+mcV1(r) +

U

r2
+
q2B2V

4
r2 +

qBP⊥psW

2
r

−mcEΨ

]
R(r) = 0 (13)
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with the coefficient matrices

U = l(l + 1)δll′δlm′ ,

V = ulmδll′δmm′ − vlmδl+2,l′δmm′ − vl−2,mδl−2,l′δmm′ ,

W = wl−1,−m−1δl−1,l′δm+1,m′ − wlmδl+1,l′δm+1,m′

+wl−1,m−1δl−1,l′δm−1,m′ − wl,−mδl+1,l′δm−1,m′ ,

ulm =
2(l2 + l − 1 +m2)

(2l − 1)(2l + 3)
,

vlm =
1

2l + 3

√
((l + 1)2 −m2)((l + 2)2 −m2)√

(2l + 1)(2l + 5)
,

wlm =

√
(l +m+ 1)(l +m+ 2)

2i
√

(2l + 1)(2l + 3)
(14)

and the radial wave function vector

R(r) = (φ00(r), φ1,−1(r), φ10(r), φ11(r), ...)T . (15)

Since the matrices V and W are with off-diagonal ele-
ments, this is a group of coupled equations for, in princi-
ple, all the radial functions. In a realistic calculation,
a cut-off of the orbital angular momentum is needed,
l ≤ lmax. We choose lmax = 7 and solve the radial equa-
tion via the inverse power method [47].

Like usual treatment [40–42], we have neglected in the
relative equation the potential V2 in color octet state. In
vacuum the potential V1 in color singlet state is often
taken as the Cornell form,

V1(|r|) = − α

|r|
+ σ|r|. (16)

The eigen value of the radial equation (13) determines
the charmonium mass MΨ = 2mc + EΨ at zero temper-
ature. Taking the charm quark mass mc = 1.29 GeV, by
fitting the experimentally measured charmonium masses
at vanishing magnetic field, the two parameters in the po-
tential are fixed to be α = 0.4105 and σ = 0.2 GeV2 [24].
When the magnetic field is turned on, the central symme-
try is broken by the field, the energy levels of the P-wave
states with different magnetic quantum number m will
no longer degenerate. For instance, the χc state split
into three states χc0, χc+, and χc−, corresponding to
the magnetic quantum number m = 0, 1,−1. On the
other hand, if we take the conserved pseudo-momentum
Pps = 0, the rotational symmetry around the z-axis is re-
stored, which leads to the degeneration of the two states
χc+ and χc−. The masses of J/ψ, ψ(2S), χc0, and χc±
states are shown in Fig. 1. It is clear that all the charmo-
nium masses increase with the magnetic field, due to the
attractive quadratic potential in the relative equation (at
Pps = 0 this is the only electromagnetic potential). The
result is similar to the previous study [17].

We now turn to the calculation at finite temperature.
Due to the many-body interaction in hot medium, the
potential between c and c̄ is screened. When the screen-
ing length (screening mass) is short (large) enough, the
charmonium state is melted by the medium. At very

� � �� �� �� �� ��

���

���

���

���

�� [�π
�]

�
Ψ
[�
��

]

ψ(2S)

χc±

χc0

J/ψ

FIG. 1. The charmonium mass MΨ as a function of magnetic
field eB at vanishing temperature and pseudo-momentum
T = 0 and Pps = 0.

high temperature, the hard-thermal loop (HTL) calcula-
tion shows that the potential is modified by a screening
factor e−mDr with the Debye mass mD [48]. For the QGP
at finite temperature the potential is simulated by lattice
QCD [49, 50]. Based on the Gauss-law approach by using
the permittivity obtained from the HTL approximation
to modify the non-perturbative vacuum potential, one
takes the finite temperature potential V1 as [51],

V1(T, r) = −α
[
mD +

e−mDr

r

]
+

σ

mD

[
2− (2 +mDr)e

−mDr
]
, (17)

and the temperature dependent Debye mass mD(T ) is
obtained by fitting the lattice data [49, 50]. The influence
of the magnetic field on Debye mass is neglected here,
since the change is very small [28–30].

At finite temperature, the long-distance part of the
potential is suppressed by the hot medium and becomes
saturated with the value V1(T,∞) = −αmD + 2σ/mD.
Therefore, the charmonium binding energy relative to the
saturated potential is redefined as ε = EΨ − V1(T,∞).
The temperature and magnetic field dependence of the
binding energy and mean square radii 〈z2〉 in longitudinal
direction and 〈ρ2〉 = 〈x2〉 + 〈y2〉 in transverse plane are
shown in Fig. 2, again the conserved pseudo-momentum
is taken to be zero Pps = 0. Since what we are inter-
ested in is the charmonium behavior in the QGP phase,
the temperature we considered here is above the critical
temperature Tc = 172 MeV [51] of deconfinement phase
transition. Let’s first consider the pure temperature ef-
fect, see the thin solid lines. The binding energy, which is
negative, approaches to zero gradually and becomes sat-
urated at the melting temperature Tm with ε(Tm) = 0.
Correspondingly, the mean square radii 〈z2〉 and 〈ρ2〉,
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FIG. 2. The charmonium binding energy ε and longitudinal
and transverse mean square radii 〈z2〉 and 〈ρ2〉 as functions
of temperature T at vanishing pseudo-momentum Pps = 0.
The temperature and radii are scaled by their values at the
deconfinement phase transition temperature Tc. The thin and
thick solid lines are ε and 〈z2〉 at eB = 0 and 5 m2

π, and the
dashed line is 〈ρ2〉 at eB = 5 m2

π.

which are the same due to the radial symmetry of the
system in the absence of magnetic field, increase with
temperature and go to infinity at Tm. Obviously, the ex-
cited states ψ(2S) and χc are easier to be melted than
the ground state J/ψ, and the three P−wave states χc0
and χc± are degenerate in the absence of magnetic field.

Different from the strong interaction (V1) which is sup-
pressed by the hot medium, the external magnetic field
is temperature independent, and its effect on the cc̄ pair
above the melting temperature Tm becomes the dom-
inant interaction. When the magnetic field is turned
on, while the mean square radius 〈z2〉 still goes to in-
finity at high enough temperature, the magnetic inter-
action confines the pair motion in the transverse plane
and makes the mean square radius 〈ρ2〉 finite at any
temperature [26]. Therefore, the melting temperature
Tm is in fact a transition temperature for the cc̄ pair
to change from a bound state of strong interaction to
a transverse bound state of electromagnetic interaction.
The melting temperature (transition temperature) Tm
can then be defined through the divergence of the lon-
gitudinal size 〈z2〉(Tm)→∞ and the saturation of bind-
ing energy and transverse size ε(T ≥ Tm) = const and
〈ρ2〉(T ≥ Tm) = const, see the horizontal lines in Fig. 2.

To determine the saturation values, we now turn to cal-
culate the relative energy and wave function Enmk and
Φnmk for the octet state of cc̄ pairs. When the strong in-
teraction potential V1 disappears, the cc̄ pair is controlled
only by the magnetic field. The relative Hamiltonian can
be written as

p2
x

mc
+
q2B2

4mc
x2 +

p2
y

mc
+
q2B2

4mc

(
y −

P⊥ps
qB

)2

+
p2
z

mc
. (18)

It is clear that the relative motion can be separated into
a two dimensional harmonic oscillator in the x− y plane
and a plain wave in the z direction. The eigen value
Enmk and eigen function Φnmk(r) of the Hamiltonian
can analytically be expressed as

Enmk = (2n+ |m|+ 1)
qB

mc
+
k2

mc
, (19)

Φnmk(r) = Nnm
eikz√

2π
ρ|m|L(|m|)

n (qBρ2/2)e−qBρ
2/4eimϕ

with the normalization factor Nnm =√
n!(qB/2)|m|+1/(n+ |m|)!/π, where k is the con-

tinuous momentum describing the plane wave in the
z−direction, the main and magnetic quantum numbers
n and m characterize the transverse wave function,

and L
(|m|)
n is the associated Laguerre polynomials. The

transverse radius ρ and azimuth angle ϕ are defined
through x = ρ cosϕ and y = P⊥ps/(qB) + ρ sinϕ, and the
wave function satisfies the orthogonal condition∫

d3rΦ∗nmk(r)Φn′m′k′(r) = δnn′δmm′δ(k − k′). (20)

With the relative energy level Enmk, one can deter-
mine the saturation values of the binding energy ε and
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transverse mean squared radius 〈ρ2〉 of the charmonium
state. They are controlled by the corresponding lowest
Landau energy level,

ε(Tm) = (1 + |m|)qB
mc

,

〈ρ2〉(Tm) = (1 + |m|) 2

qB
. (21)

The saturated binding energy increases linearly with the
magnetic field, and self-consistently the saturated trans-
verse size decreases linearly with the field, which mean a
more and more tight cc̄ bound state of electromagnetic
interaction in the transverse plane.

IV. CHARMONIUM GLUON-DISSOCIATION

To calculate the gluon dissociation cross sections (7),
we need the wave functions Ψ and Φnmk and the binding
energies EB and Enmk for the initial charmonium and
final octet states. Ψ,Φnmk and Enmk are calculated in
the last section. The charmonium binding energy at fi-
nite temperature ε(T ) = EΨ(T ) − V1(T,∞) is relative
to the saturated strong potential. Considering the fact
that the electromagnetic interaction makes the binding
energy nonzero above the dissociation temperature, the
charmonium binding energy EB defined through the en-
ergy conservation in dissociation cross sections (7) should
be

EB(T ) = − [ε(T )− ε(Tm)]

= − [EΨ(T )− V1(T,∞)− ε(Tm)] , (22)

when both the strong and electromagnetic interactions
are taken into account. In this case the binding energy
EB satisfies the physics: it vanishes above the dissocia-
tion temperature, EB(T > Tm) = 0.

When the charmonia are at rest with Pps = 0, the
expansion for the relative wave function (12) is reduced
to

Ψ(r) =

∞∑
l=0

√
2l + 1

4π
φl(r)Pl(cos θ) (23)

for the S-wave states J/ψ and ψ(2S) with even l and
P−wave state χc0 with odd l, and

Ψ(r) =

∞∑
l=1

√
2l + 1

4πl(l + 1)
φl(r)P

(1)
l (cos θ)(e−iϕ ± eiϕ)

(24)
for the P−wave states χc± with odd l.

Substituting the expansion (23) for J/ψ, ψ(2S) and
χc0 into the transition elements (8) and using the ex-
plicit expression for the octet state Φnmk(r) (19) with
ρ = r sin θ and z = r cos θ, the integration over the az-
imuth angle ϕ leads to the selection rules: the transition
elements 〈nmk|z|Ψ〉 and 〈nmk|Ψ〉 are always zero unless
m = 0, and the elements 〈nmk|x|Ψ〉 and 〈nmk|y|Ψ〉 are

always zero unless m = ±1. Since gluon carries spin 1
and its z component is 1, 0 and −1, the physics behind
the selection rules is the conservation of the z compo-
nent of total angular momentum for charmonium states
with zero z component of orbital angular momentum.
From the m−dependence of the wave function Φnmk, the
nonzero transition elements depend only on |m|. This
means that there are only one independent transition el-
ement Tn for channel M1 and two independent elements
Tnz and Tnρ for channel E1,

Tn(k) = Nn0

∑
l,r,x

r2G
(0)
nl (r, x, k), (25)

Tnz(k) = Nn0

∑
l,r,x

r3xG
(0)
nl (r, x, k),

Tnρ(k) = Nn1

∑
l,r,x

r4(1− x2)G
(1)
nl (r, x, k)

with the definition of
∑
l,r,x =

∑
l

∫∞
0
dr
∫ 1

−1
dx and

G
(i)
nl (r, x, k) =

√
2l + 1

2
φl(r)e

−qBr2(1−x2)/4

×L(i)
n (qBr2(1− x2)/2)Pl(x)eikrx (26)

for i = 0, 1.
We take then the integration over the longitudinal mo-

mentum k in the dissociation cross sections. By employ-
ing the relation for the δ−function,∫

dkF (k)δ(Eg − EB − Enmk)

=
mc

2knm
[F (knm) + F (−knm)] (27)

with

knm =
√
mc(Eg − EB − Enm0) (28)

for any function F (k), the cross sections (7) for charmo-
nium states J/ψ, ψ(2S) and χc0 are simplified as

σE1 =
πg2Eg

18

∑
n

[
mc

kn0
|Tnz(kn0)|2 +

mc

kn1
|Tnρ(kn1)|2

]
,

σM1 =
πg2Eg
6m2

c

∑
n

mc

kn0
|Tn(kn0)|2. (29)

For the P−wave states χc±, similar calculations can be
done. Substituting the expansion (24) into the transition
elements (8), the integration over the azimuth angle ϕ is
controlled by the selection rules: only for the quantum
number m = ±1 the transition elements 〈nmk|z|Ψ〉 and
〈nmk|Ψ〉 are not zero, and only for m = 0 and ±2 the
elements 〈nmk|x|Ψ〉 and 〈nmk|y|Ψ〉 are not zero. The
physics is again the conservation of the z component of
total angular momentum for charmonium states with z
component of orbital angular momentum ±1. Again the
nonzero transition elements are |m|−dependent, there
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J/ψ, ψ(2S) χc0 χc±

σE1 ∝ 1/kn1 1/kn0 1/kn0, 1/kn2

σM1 ∝ 1/kn0 kn0 1/kn1

TABLE I. The charmonium gluon-dissociation cross-sections
in channels E1 and M1 around the maximum Landau energy
level.

are only one independent transition element Tn for chan-

nel M1 and three independent elements Tnz, T (0)
nρ and

T (2)
nρ for channel E1,

Tn(k) = Nn1

∑
l,r,x

r3(1− x2)1/2G(1)
nl (r, x, k),

Tnz(k) = Nn1

∑
l,r,x

r4(1− x2)1/2G(1)
nl (r, x, k),

T (0)
nρ (k) = Nn0

∑
l,r,x

r3(1− x2)1/2G(0)
nl (r, x, k),

T (2)
nρ (k) = Nn2

∑
l,r,x

r5(1− x2)G(2)
nl (r, x, k) (30)

with

G(i)
nl (r, x, k) =

√
2l + 1

2l(l + 1)
φl(r)e

−qBr2(1−x2)/4 (31)

×L(i)
n (qBr2(1− x2)/2)P

(1)
l (x)eikrx

for i = 0, 1, 2.
After the integration over the longitudinal momentum

k, the dissociation cross sections for charmonium states
χc± are expressed as

σE1 =
πg2Eg

18

∑
n

[
2mc

kn1
|Tnz(kn1)|2 +

mc

kn2
|T (2)
nρ (kn2)|2

+
mc

kn0
|T (0)
nρ (kn0)|2

]
,

σM1 =
πg2Eg
6m2

c

∑
n

2mc

kn1
|Tn(kn1)|2. (32)

We now analyze the infrared divergence of the transi-
tion elements T and T in the limit of longitudinal mo-
mentum knm = 0. Let’s consider the S−wave states J/ψ
and ψ(2S) as an example. In this case, l is even, Pl(x)
is an even function, the requirement that the integrated
function in any T should be an even function of x leads
to the replacement of eiknmrx by cos(knmrx) in Tn and
Tnρ and by i sin(knmrx) in Tnz. Around knm = 0, by
taking the expansions cos(knmrx) = 1 + O(k2

nm) and
sin(knmrx) = knmrx + O(k3

nm), σE1 is proportional to
1/kn1 and becomes divergent at kn1 = 0, and σM1 to
1/kn0 and divergent at kn0 = 0. Now the only thing
left is the condition for the limit knm = 0. For a
given incident gluon energy Eg, the limit is realized only

when the maximum Landau energy level Enmaxm0 =
(2nmax + |m| + 1)qB/mc satisfies the energy conserva-
tion,

Eg − EB − Enmaxm0 = 0. (33)

The conclusion is therefore the following: When the max-
imum Landau energy level Enmaxm0(Eg) satisfies the con-
servation law, the cross section is divergent at the cor-
responding Eg; If not, the cross section is finite but still
peaks at Eg. The similar analysis can be done for the
P−wave states χc0 and χc±. The behavior of the cross
sections around the maximum Landau energy level for
all the charmonium states is shown in Table I. Except
for channel M1 for χ0, all the other cross sections are
divergent at kn0 = 0 or kn1 = 0 or kn2 = 0.

The cross sections in channels E1 and M1 for dif-
ferent charmonium states at vanishing temperature and
conserved momentum are shown in Fig. 3 as functions
of incident gluon energy Eg. The dashed lines are the
result without magnetic field, which were calculated in
Ref. [41]. When the magnetic field is turned on, while
the global trend of the cross section is similar to the
one without the field, a significant change is the field
induced hair structure. Let us consider J/ψ as an ex-
ample. As analyzed above, the cross section σE1 (σM1)
goes to infinity when the energy difference Eg − EB be-
tween the initial gluon and J/ψ reaches some Landau
energy level 2(n+ 1)qB/mc ((2n+ 1)qB/mc) character-
ized by the main quantum number n. Therefore, with
increasing gluon energy, the cross sections become diver-
gent at the Landau levels and are continuous between
two neighboured levels. This indicates that the magnetic
field makes the cross sections grow hair! The behavior
of the cross sections for ψ(2S) and χc± are very similar
to J/ψ. The only exception is χc0. As shown in Table
I, there is no infrared divergence for the cross section in
channel M1, σM1 is continuous at any incident gluon en-
ergy. Note that, the cross sections for the three P−wave
states χc0 and χc± are the same in the absence of mag-
netic field but separated by the field.

When the incident gluon energy Eg is low, it can disso-
ciate a charmonium with a large distance r between the
c and c̄, and when Eg is high, it can dissociate a charmo-
nium with a small r. In both cases the dissociation cross
section is small, because the probability for a charmo-
nium to be with large or small r is small. Only when Eg
is suitable to dissociate a charmonium with most proba-
ble r, the cross section is the largest. Therefore, the peaks
of the dissociation cross section correspond to the peaks
of the charmonium wave function in radial direction. Dif-
ferent from the ground state J/ψ(1S) or angular excited
state χc(1P ) which has only one peak in the radial wave
function, ψ(2S) is a radial excited state and there are
two peaks in the radial wave function (see for instance
the review article [24]) which lead to the two peaks of the
dissociation cross section in Fig. 3 and the dip between
the two peaks. Furthermore, different perturbations in
the channels E1 and M1 result in the different locations
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FIG. 3. The charmonium gluon-dissociation cross-sections in
channels E1 and M1 at vanishing temperature and conserved
momentum T = 0 and Pps = 0. The bottom label Eg−EB is
the energy difference between the initial gluon and charmo-
nium, and the top label is 2n+ |m| characterizing the Landau
energy level. Solid and dashed lines are the calculations with
and without magnetic field.

of the two dips. Note that the dips are not induced by
the electromagnetic field, they appear already in the pre-
vious calculations without electromagnetic field [41, 42].

We finally calculate the charmonium decay width
through gluon dissociation at finite temperature and
magnetic field. For a charmonium at rest in hot medium,
the width is the integration of the weighted cross-section

over the gluon momentum,

Γ(T,B) = dg

∫
d3p

(2π)3
σ(Eg, T, B)fg(Eg, T ), (34)

where dg, p, Eg and fg are the gluon degeneracy, mo-
mentum, energy and phase-space distribution. Glu-
ons are massless in vacuum with energy Eg = |p| but
obtain thermal mass at finite temperature mg(T ) =√

(2Nc +Nf )/12 gT [52] with energy Eg =
√
p2 +m2

g.

We take in the calculation the degeneracy dg = 16 and
coupling constant g ≈ 2 for Nc = Nf = 3, as used in
Ref. [53]. Since gluons do not carry electric charge, the
mass and in turn the energy and distribution function are
magnetic field independent at leading order (in general
the field can change the gluon properties through modi-
fications from quark loops). Therefore, the gluon distri-
bution can be taken as the Bose–Einstein function in the
local rest frame of the medium fg(Eg, T ) = 1/(eEg/T−1).

The charmonium decay widths for channels E1 and
M1 are shown in Fig. 4 as functions of temperature in the
deconfined phase with T > Tc. From the picture of color
screening, the shape of a width is exactly a δ−function
located at the melting temperature Tm. Considering re-
alistic collision processes, the δ−function is expanded to
be a distribution covering both T < Tm and T > Tm.
While Tm is very different for the ground and excited
states, for instance at eB = 5 m2

π there are from Fig.2
Tm/Tc ∼ 1.4 for ψ(2S) and χc0, 2.1 for χc± and 3 for
J/ψ, all the decay widths peak at about T/Tc ∼ 1.2. For
any charmonium state and in any case with and without
magnetic field, the channel E1 always dominants both
the cross section and the decay width, in comparison
with the channel M1. This is mainly due to the M1
suppression by the mass factor m2

c in the denominator of
the cross sections, see Eqs. (29) and (32). It is also easy
to understand that the loosely bound states ψ(2S) and
χc are easier to decay than the tightly bound state J/ψ.

Now we focus on the magnetic field effect on the de-
cay width. Considering the fact that k is the magni-
tude of the charmonium longitudinal momentum, knm =√
mc(Eg(p)− EB − Enm0) should be positive, and the

momentum integration (34) around a divergence is pro-
portional to∫

dp
1

knm
θ(knm) = 2

∫ δ

0

dknm = 2δ (35)

and is finite. Therefore, the integrated decay width is
convergent at any temperature T . Secondly, the radial
symmetry breaking deforms the charmonium and octet
states, the change in the transition element 〈nmk|r|Ψ〉
by the magnetic field should be stronger than the element
〈nmk|Ψ〉. This means that the cross section and decay
width in channel E1 are more sensitive to the field than
that in channel M1. Due to the larger deformation of
the P−wave states, the magnetic field effect on χc0 and
χc± is more important than the S−wave states J/ψ and
ψ(2S). This is clearly shown in Fig. 4.
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FIG. 4. The charmonium decay width through gluon dissoci-
ation in channels E1 and M1 as functions of scaled tempera-
ture T/Tc at vanishing pseudo-momentum Pps = 0. Solid and
dashed lines are the calculations with and without magnetic
field.

We considered in this study only the gluon dissociation
process, which plays a dominant role in the temperature
region above and close to the critical temperature Tc. In
this case the decay width is largely suppressed by high
energy gluons at high temperatures T � Tc, as shown
in Fig. 4. As we discussed in the introduction, however,
in the high temperature region the dominant dissocia-
tion process is taken over by the inelastic parton scat-
tering (see references [33, 34]), which is usually called as
quasi-free and widely used in the transport description
of heavy flavors in high energy nuclear collisions, see for
instance [54]. Taking this process into account, the decay
width will increase with temperature until charmonia are

dissociated, see the calculations without electromagnetic
field [41, 42].

V. SUMMARY

A typical quantum mechanics problem is the particle
motion in a magnetic field, which leads to the famous
Landau energy levels. While the magnetic field effect is
recently widely discussed in high energy physics, like the
influence on QCD phase transitions and static particle
properties, it is rarely introduced in the calculation of
particle collisions. In this paper we investigated the gluon
dissociation process g + Ψ → c + c̄ in a strong magnetic
field and found that the Landau energy levels make the
cross section grow hair.

We extended the QCD multipole expansion for a pair
of heavy quarks to including an external electromagnetic
field. By solving the two-body Schrödinger equation with
mean field potentials for strong and electromagnetic in-
teractions we firstly determined the charmonium static
properties, including the binding energy and wave func-
tion. Taking then the color dipole interactions as per-
turbations above the mean field and employing Fermi’s
Golden Rule, we focused on the magnetic field effect on
the gluon-dissociation process in the quark-gluon plasma.
In general case the dissociation cross-section becomes di-
vergent when the energy difference between the initial
gluon and charmonium reaches a Landau energy level
for the final octet state. These divergences at differ-
ent Landau levels look like hairs of the cross section.
However, the gluon energy integrated decay width is al-
ways continuous at any temperature. Considering the
deformation of the charmonium states, especially for the
loosely bound states, the magnetic field effect on the
color-electric dipole channel and the excited states is sig-
nificantly important. In our numerical calculation the
difference between the decay widths with and without
magnetic field is already large enough at eB = 5 m2

π.
This indicates that the magnetic field effect on char-
monium dissociation in high energy nuclear collisions at
RHIC and LHC energies might be sizeable and consid-
ered as a probe of the initially produced electromagnetic
field.
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